PHYSICS PAPER 1

(Sample Paper)

Time allowed: 2 hours 30 minutes
This paper must be answered in English

GENERAL INSTRUCTIONS

1. There are TWO sections, A and B , in this Paper. Section A consists of multiple-choice questions in this question book, while Section B contains conventional questions printed separately in Question-Answer Book B. You are advised to finish Section A in about 60 minutes.
2. Answers to Section A should be marked on the Multiple-choice Answer Sheet while answers to Section B should be written in the spaces provided in Question-Answer Book B. The Answer Sheet for Section A and the Question-Answer Book for Section B must be handed in separately at the end of the examination.

SECTION A (MULTIPLE-CHOICE QUESTIONS)

INSTRUCTIONS FOR SECTION A

1. Read the instructions on the Answer Sheet carefully. Stick a barcode label and insert the information required in the spaces provided.
2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF SECTION A' after the last question.
3. All questions carry equal marks.
4. ANSWER ALL QUESTIONS. You should use an HB pencil to mark all your answers on the Answer Sheet. Wrong marks must be completely erased.
5. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
6. No marks will be deducted for wrong answers.

There are 36 questions. Questions marked with "*" involve knowledge of the extension component. The back cover of this question paper contains a list of data, formulae and relationships which you may find useful.
1.

Cynthia places a piece of carpet on a tiled floor. After a while, she stands in bare feet with one foot on the tiled floor and the other on the carpet as shown above. She feels that the tiled floor is colder than the carpet. Which of the following best explains this phenomenon?
A. The tile is a better insulator of heat than the carpet.
B. The tile is at a lower temperature than the carpet.
C. The specific heat capacity of the tile is smaller than that of the carpet.
D. Energy transfers from Cynthia's foot to the tile at a greater rate than that to the carpet.
2.

The graph shows the variation in temperature of equal masses of two substances P and Q when they are separately heated by identical heaters. Which deduction is correct?
A. The melting point of P is lower than that of Q.
B. The specific heat capacity of P in solid state is larger than that of Q.
C. The specific latent heat of fusion of P is larger than that of Q.
D. The energy required to raise the temperature of P from room temperature to boiling point is more than that of Q.
*3.

As the gas in a vessel of fixed volume is heated, it gradually leaks out. The gas in the vessel changes from state X to state Y along the path $X Y$ shown in the plot of pressure against absolute temperature. What percentage of the original mass of the gas leaks out from the vessel in this process ?
A. 10%
B. 20%
C. 25%
D. 50%
*4. Two vessels contain hydrogen gas and oxygen gas respectively. Both gases have the same pressure and temperature and are assumed to be ideal. Which of the following physical quantities must be the same for the two gases?
A. The volume of the gas
B. The mass per unit volume of the gas
C. The r.m.s. speed of the gas molecules
D. The number of gas molecules per unit volume

A fish is hung on a light string as shown above. The tension in the string is 10 N . Find the total weight of the fish and the hook.
A. $\quad 20 \sin 70^{\circ} \mathrm{N}$
B. $\quad 20 \cos 70^{\circ} \mathrm{N}$
C. $\quad 10 \sin 70^{\circ} \mathrm{N}$
D. $\quad 10 \cos 70^{\circ} \mathrm{N}$
6.

A 1 kg block is pulled by a horizontal force of 5 N and moves with an acceleration of $2 \mathrm{~m} \mathrm{~s}^{-2}$ on a rough horizontal plane. Find the frictional force acting on the block.
A. zero
B. $\quad 2 \mathrm{~N}$
C. $\quad 3 \mathrm{~N}$
D. $\quad 7 \mathrm{~N}$
7. Patrick is driving along a straight horizontal road. At time $t=0$, he observes that an accident has happened. He then applies the brakes to stop his car with uniform deceleration. The graph shows the variation of the speed of the car with time.

Find the distance travelled by the car from time $t=0$ to 5.0 s .
A. $\quad 29.4 \mathrm{~m}$
B. $\quad 40.6 \mathrm{~m}$
C. $\quad 46.2 \mathrm{~m}$
D. $\quad 81.2 \mathrm{~m}$

A block remains at rest on a rough inclined plane. Which diagram shows all the forces acting on the block ?

Note : $W=$ gravitational force acting on the block,
$R=$ normal reaction exerted by the inclined plane on the block, and $F=$ friction acting on the block.
A.

B.

C.

D.

9. Kelvin is standing on a balance inside a lift. The table shows the readings of the balance in three situations.

Motion of the lift	Reading of the balance
moving upwards with a uniform speed	R_{1}
moving downwards with a uniform speed	R_{2}
moving upwards with an acceleration	R_{3}

Which relationship is correct?
A. $\quad R_{1}=R_{2}>R_{3}$
B. $\quad R_{3}>R_{1}=R_{2}$
C. $\quad R_{1}>R_{2}>R_{3}$
D. $\quad R_{3}>R_{1}>R_{2}$
10.

Figure (a)

Figure (b)

Figure (a) shows a uniform plank supported by two spring balances P and Q. The readings of the two balances are both $150 \mathrm{~N} . P$ is now moved 0.25 m towards Q (see Figure (b)). Find the new readings of P and Q.

Reading of P / \mathbf{N}

A.
B.
C. 200 200
200

Reading of Q / \mathbf{N}

11. Which of the following pairs of forces is/are example(s) of action and reaction?
(1) The centripetal force keeping a satellite in orbit round the earth and the weight of the satellite.
(2) The air resistance acting on an object falling through the air with terminal velocity and the weight of the object.
(3) The forces of attraction experienced by two parallel wires carrying currents in the same direction.

A.	(1) only
B.	(3) only
C.	(1) and (2) only
D.	(2) and (3) only

12. Two small identical objects P and Q are released from rest from the top of a building 80 m above the ground. Q is released 1 s after P. Neglecting air resistance, what is the maximum vertical separation between P and Q in the air ?
A. $\quad 5 \mathrm{~m}$
B. $\quad 10 \mathrm{~m}$
C. $\quad 35 \mathrm{~m}$
D. $\quad 45 \mathrm{~m}$
13. A car P of mass 1000 kg moves with a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ and makes a head-on collision with a car Q of mass 1500 kg , which was moving with a speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$ in the opposite direction before the collision. The two cars stick together after the collision. Find their common velocity immediately after the collision.
A. $\quad 2 \mathrm{~m} \mathrm{~s}^{-1}$ along the original direction of P
B. $\quad 2 \mathrm{~m} \mathrm{~s}^{-1}$ along the original direction of Q
C. $\quad 14 \mathrm{~m} \mathrm{~s}^{-1}$ along the original direction of P
D. $\quad 14 \mathrm{~m} \mathrm{~s}^{-1}$ along the original direction of Q
*14.

A simple pendulum is held at rest in a horizontal position. It is then released with the string taut. Which statement about the tension in the string is not correct when the pendulum reaches its vertical position?
A. The tension equals the weight of the pendulum bob in magnitude.
B. The tension attains its greatest value.
C. The tension does not depend on the length of the pendulum.
D. The tension depends on the mass of the pendulum bob.

The diagram shows the image of a clock in a plane mirror. What is the time displayed by the clock ?
A. $3: 58$
B. $\quad 4: 02$
C. $\quad 7: 58$
D. 8:02
16.

Cecilia uses a magnifying glass to read some small print. Which diagram shows how the image of the print is formed?
A.

C.
D.

17.
18.
19.

The solid curve in the diagram shows a transverse wave at a certain instant. After 0.05 s , the wave has travelled a distance of 2.0 cm and is indicated by the dashed curve. Find the wavelength and frequency of the wave.

Wavelength/cm

A.
-8
16
C. 8
D. 16

Frequency/Hz

2.5 2.5

5
5
statement about the motion of the particles P, Q and R on the string at this instant is correct ?
A. Particle P is moving downwards.
B. Particle Q is stationary.
C. Particle R attains its maximum acceleration.
D. $\quad P$ and Q are in phase.

String $X Y$ is fixed at both ends. The distance between X and Y is 45 cm . Two identical sinusoidal waves travel along $X Y$ in opposite directions and form a stationary wave with an antinode at point P. The figure shows the string when P is 2 mm , its maximum displacement, from the equilibrium position. What is the amplitude and wavelength of each of the travelling waves on the string?

Amplitude

A.	1 mm	30 cm
B.	1 mm	15 cm
C.	2 mm	30 cm
D.	2 mm	15 cm

20. A Young's double-slit experiment was performed using a monochromatic light source. Which change would result in a greater fringe separation on the screen ?
(1) Using monochromatic light source of longer wavelength
(2) Using double slit with greater slit separation
(3) Using double slit with larger slit width
A. (1) only
B. (1) and (2) only
C. (2) and (3) only
D. (1), (2) and (3)
21. An object is placed at the focus of a concave lens of focal length 10 cm . What is the magnification of the image formed?
A. $\quad 0.5$
B. $\quad 1.0$
C. $\quad 2.0$
D. infinite
22. Which of the following statements about sound waves is/are correct?
(1) Sound waves are longitudinal waves.
(2) Sound waves are electromagnetic waves.
(3) Sound waves cannot travel in a vacuum.
A. (2) only
B. (3) only
C. (1) and (2) only
D. (1) and (3) only
23.

When monochromatic light is passed through a diffraction grating, a pattern of maxima and minima is observed as shown. Which combination would produce the largest angle θ between the first-order maxima?

Grating (lines per mm)

A.	200	blue
B.	200	red
C.	400	blue
D.	400	red

24. Two conducting spheres are hanging freely in air by insulating threads. In which of the following will the two spheres attract each other?

Note : ' N ' denotes that the sphere is uncharged.
(1)

(2)

(3)

A. (1) only
B. (2) only
C. (3) only
D. (1), (2) and (3)
25. The table shows three electrical appliances which Clara used in a certain month :

Appliance	Rating	Duration
Air-conditioner	$220 \mathrm{~V}, 1200 \mathrm{~W}$	250 hours
television	$220 \mathrm{~V}, 250 \mathrm{~W}$	80 hours
computer	$220 \mathrm{~V}, 150 \mathrm{~W}$	60 hours

Calculate the cost of electricity used.
Note : 1 kW h of electricity costs $\$ 0.86$.
A. $\quad \$ 62.25$
B. $\$ 73.79$
C. $\$ 282.94$
D. $\$ 536.64$
26. If a 15 A fuse is installed in the plug of an electric kettle of rating ' $220 \mathrm{~V}, 900 \mathrm{~W}$ ', state what happens when the kettle is plugged in and switched on.
A. The kettle will not operate.
B. The kettle will be short-circuited.
C. The output power of the kettle will be increased.
D. The chance of the kettle being damaged by an excessive current will be increase
27.

In the above circuit, the bulbs are identical. The reading of ammeter A_{1} is 1 A . Find the readings of ammeters A_{2} and A_{3}.

Reading of $\boldsymbol{A}_{\mathbf{2}}$

$\begin{array}{ll}\text { A. } & 2 \mathrm{~A} \\ \text { B. } & 2 \mathrm{~A} \\ \text { C. } & 0.5 \mathrm{~A} \\ \text { D. } & 0.5 \mathrm{~A}\end{array}$

Reading of $\boldsymbol{A}_{\mathbf{3}}$

2 A
3 A
1 A
1.5 A

The figure shows a simple motor. Which of these changes would increase the turning effect of the coil?
(1) using a stronger magnet
(2) reducing the resistance of the rheostat
(3) using a coil with a smaller number of turns
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
29.

Which diagram shows the magnetic field pattern around a flat circular current-carrying coil, in the plane shown?
A.

B.

C.

D.

A student wants to measure the resistance of a resistor R and sets up the circuit shown. The student made which of these mistakes setting up the circuit?
(1) The polarity of the ammeter was reversed.
(2) The polarity of the voltmeter was reversed.
(3) The voltmeter was connected across both R and the rheostat.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
31.

The figure shows conducting rods $P Q$ and $R S$ placed on two smooth, parallel, horizontal conducting rails. A uniform magnetic field is directed into the plane of the paper. $P Q$ is given an initial velocity to the right and left to roll. Which statement is INCORRECT ?
A. The induced current is in the direction $P Q R S$.
B. The magnetic force acting on $\operatorname{rod} P Q$ is towards the left.
C. Rod $R S$ starts moving towards the right.
D. Rod $P Q$ moves with a uniform speed.

The figure shows the location of an isolated charge of size $+Q$. The size (in an arbitrary unit) of the electric field strength is marked at certain points. What is the size (in the same arbitrary unit) of the electric field strength at X and Y ?

	electric field strength at \boldsymbol{X}	electric field stren
A.	72	30
B.	72	36
C.	90	30
D.	90	36

*33. Power is transmitted over long distances at high alternating voltages. Which statements are correct?
(1) Alternating voltages can be stepped up or down efficiently by transformers.
(2) For a given transmitted power, the current will be reduced if a high voltage is adopted.
(3) The power loss in the transmission cables will be reduced if a high voltage is adopted.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
34. Which of these is a nuclear fusion reaction?
A. $\quad{ }_{92}^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{90} \mathrm{Kr}+2 \mathrm{n}$
B. $\quad{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+\mathrm{n}$
C. $\quad{ }_{7}^{14} \mathrm{~N}+\mathrm{n} \rightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H}$
D. $\quad{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+\alpha$
*35. On which of the following does the activity of a radioactive source depend ?
(1) the nature of the nuclear radiation emitted by the source
(2) the half-life of the source
(3) the number of active nuclides in the source
A. (1) only
B. (3) only
C. (1) and (2) only
D. (2) and (3) only
36. Different absorbers are placed in turn between a radioactive source and a Geiger-Muller tube. Three readings are taken for each absorber. The following data are obtained:

Absorber	${\text { Count rate } / \mathbf{s}^{\mathbf{- 1}}}^{--}$		
paper	200	205	198
5 mm aluminium	197	202	206
25 mm lead	60	108	111
50 mm lead	34	62	58

What type(s) of radiation does the source emit ?
A. $\quad \beta$ only
B. $\quad \gamma$ only
C. $\quad \beta$ and γ only
D. α, β and γ

END OF SECTION A

List of data, formulae and relationships

Data

speed of light in vacuum
acceleration due to gravity
universal gravitational constant
charge of electron
electron rest mass
permittivity of free space
permeability of free space
Planck constant
molar gas constant
Stefan constant
Avogadro constant
atomic mass unit
(1 u is equivalent to 931 MeV)

$$
\begin{aligned}
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\left(\mathrm{Close}^{2}\right. \text { to the Earth) } \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \mu_{\mathrm{o}}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}^{2} \\
& R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

Rectilinear motion

For uniformly accelerated motion :

$$
\begin{aligned}
v & =u+a t \\
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s
\end{aligned}
$$

Mathematics

Equation of a straight line $y=m x+c$
Arc length $=r \theta$
Surface area of cylinder $=2 \pi r h+2 \pi r^{2}$
Volume of cylinder $\quad=\pi r^{2} h$
Surface area of sphere $=4 \pi r^{2}$

Volume of sphere
$=\frac{4}{3} \pi r^{3}$

For small angles, $\quad \sin \theta \approx \tan \theta \approx \theta$ (in radians)

A1. $E=m c \Delta T$

A2. $E=l \Delta m$
A3. $p V=n R T$
A4. $p V=\frac{1}{3} N m \overline{c^{2}}$
A5. $\quad E_{k}=\frac{3 R T}{2 N_{A}}$
B1. $F=m \frac{\Delta v}{\Delta t}=\frac{\Delta p}{\Delta t}$
B2. \quad moment $=F \times d \quad$ moment of a force

B3. $E_{\mathrm{P}}=m g h$
B4. $E_{\mathrm{K}}=\frac{1}{2} m v^{2}$
B5. $F=k x$
B6. $P=F v=\frac{W}{t} \quad$ mechanical power
B7. $\quad a=\frac{v^{2}}{r}=\omega^{2} r \quad$ centripetal acceleration
B8. $F=\frac{G m_{1} m_{2}}{r^{2}}$
C1. $\Delta y=\frac{\lambda D}{a}$
C2. $\quad d \sin \theta=n \lambda$
C3. $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
D1. $F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
D2. $\quad E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
energy transfer during heating and cooling
energy transfer during change of state
equation of state for an ideal gas
kinetic theory equation
molecular kinetic energy
force
gravitational potential energy
kinetic energy

Hooke's law

Newton's law of gravitation
fringe width in double-slit interference
diffraction grating equation
equation for a single lens

Coulomb's law
electric field strength due to a point charge

D3. $\quad V=\frac{Q}{4 \pi \varepsilon_{0} r}$
D4. $E=\frac{V}{d}$
D5. $\quad I=n A v Q$
D6. $R=\frac{\rho l}{A}$
D7. $R=R_{1}+R_{2}$
D8. $\quad \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
D9. $\quad P=I V=I^{2} R$
D10. $F=B Q v \sin \theta$

D11. $F=B I l \sin \theta$
D12. $V=\frac{B I}{n Q t}$
D13. $B=\frac{\mu_{0} I}{2 \pi r}$
D14. $B=\frac{\mu_{0} N I}{l}$
D15. $\varepsilon=N \frac{\Delta \Phi}{\Delta t}$
D16. $\frac{V_{s}}{V_{p}} \approx \frac{N_{s}}{N_{p}}$
E1. $N=N_{0} e^{-k t}$
E2. $\quad t_{\frac{1}{2}}=\frac{\ln 2}{k}$
E3. $A=k N$

E4. $\quad E=m c^{2}$
electric potential due to
a point charge
energy field between parallel plates (numerically)
general current flow equation
resistance and resistivity
resistors in series
resistors in parallel
power in a circuit
force on a moving charge in a magnetic field
force on a current-carrying conductor in a magnetic field

Hall voltage
magnetic field due to a long straight wire
magnetic field inside a long solenoid
induced e.m.f.
ratio of secondary voltage to primary voltage in a transformer
law of radioactive decay
half-life and decay constant
activity and the number of undecayed nuclei
mass-energy relationship

Astronomy and Space Science $\begin{array}{ll} U=-\frac{G M m}{r} & \text { gravitational potential energy } \\ P=\sigma A T^{4} & \text { Stefan’s law } \\ \frac{\Delta f}{f_{\mathrm{o}}} \approx \frac{v}{c} & \text { Doppler effect } \end{array}$	Energy and Energy Use $\frac{Q}{t}=k \frac{A\left(T_{H}-T_{C}\right)}{d}$ rate of energy transfer by conduction $U=\frac{k}{d} \quad$ thermal transmittance U -value $P=\frac{1}{2} \rho A v^{3} \quad$ maximum power by wind turbine
Atomic World $\frac{1}{2} m_{e} v_{\max }^{2}=h f-\phi \quad$ Einstein's photoelectric equation $E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$ energy level equation for hydrogen atom $\lambda=\frac{h}{p}=\frac{h}{m v} \quad$ de Broglie formula $\theta \approx \frac{1.22 \lambda}{d} \quad$ Rayleigh criterion (resolving power)	Medical Physics $\theta=\frac{1.22 \lambda}{d} \quad$ Rayleigh criterion (resolving power) power $=\frac{1}{f} \quad$ power of a lens $10 \log \frac{I}{I_{\mathrm{o}}} \quad$ intensity level (dB) $Z=p c \quad$ acoustic impedance $\alpha=\frac{I_{\mathrm{r}}}{I_{\mathrm{o}}}=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}}$ intensity reflection coefficient $I=I_{\mathrm{o}} \mathrm{e}^{-\mu x} \quad$ transmitted intensity through a medium

