<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">PP－DSE</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">PHY</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">PAPER 1A</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | |
| :--- | :--- |
| PP－DSE | |
| PHY | HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY |
| PAPER 1A | HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION |</table-markdown></div>
 PRACTICE PAPER

 PHYSICS PAPER 1

 PHYSICS PAPER 1}

（2 hours 30 minutes）
This paper must be answered in English

GENERAL INSTRUCTIONS

1．There are TWO sections，A and B ，in this Paper．You are advised to finish Section A in about 60 minutes．

2．Section A consists of multiple－choice questions in this question paper，while Section B contains conventional questions printed separately in Question－Answer Book B．

3．Answers to Section A should be marked on the Multiple－choice Answer Sheet while answers to Section B should be written in the spaces provided in Question－Answer Book B．The Answer Sheet for Section A and the Question－Answer Book for Section B will be collected separately at the end of the examination．

4．The diagrams in this paper are NOT necessarily drawn to scale．
5．The last pages of this question paper contain a list of data，formulae and relationships which you may find useful．

INSTRUCTIONS FOR SECTION A（MULTIPLE－CHOICE QUESTIONS）

1．Read carefully the instructions on the Answer Sheet．After the announcement of the start of the examination，you should first stick a barcode label and insert the information required in the spaces provided．No extra time will be given for sticking on the barcode label after the＇Time is up＇ announcement．

2．When told to open this book，you should check that all the questions are there．Look for the words ＇END OF SECTION A＇after the last question．

3．All questions carry equal marks．
4．ANSWER ALL QUESTIONS．You are advised to use an HB pencil to mark all the answers on the Answer Sheet，so that wrong marks can be completely erased with a clean rubber．You must mark the answers clearly；otherwise you will lose marks if the answers cannot be captured．

5．You should mark only ONE answer for each question．If you mark more than one answer，you will receive NO MARKS for that question．

6．No marks will be deducted for wrong answers．

There are 36 questions. Questions marked with "*" involve knowledge of the extension component.

Section A

1. The graphs below show how the electrical resistances R of three different circuit elements change with temperature θ. Which of the circuit elements can be used to measure temperature?
(1)

(2)

(3)

A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
2. In the figure below, a training pool B is located next to the main pool A. The training pool B has a smaller area and is shallower. If the pools are under the sunlight at the same time, which of the following statements about the rise in the water temperature of the two pools is correct? Assume that the initial water temperatures of the pools are the same.

A. The water temperature of training pool B rises faster because it is shallower.
B. The water temperature of training pool B rises faster because it has a smaller surface area.
C. The water temperature of main pool A rises faster because it is deeper.
D. The water temperature of main pool A rises faster because it has a larger surface area.
3. Peter adds 50 g of milk at $20^{\circ} \mathrm{C}$ to 350 g of tea at $80^{\circ} \mathrm{C}$, what is the final temperature of the mixture ?

Given: Specific heat capacity of milk $=3800 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ Specific heat capacity of tea $=4200 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
A. $\quad 50.0^{\circ} \mathrm{C}$
B. $\quad 72.5^{\circ} \mathrm{C}$
C. $\quad 73.1^{\circ} \mathrm{C}$
D. $\quad 77.4^{\circ} \mathrm{C}$
4. The sprinkler system on a rooftop is able to spray small water droplets onto the rooftop which can lower the temperature of the rooftop on hot sunny days. Which of the following explanations about the sprinkler system is/are reasonable ?

(1) Water is a good conductor, which conducts heat quickly.
(2) Water has a high specific heat capacity, absorbing a lot of energy when its temperature rises.
(3) Water has a high specific latent heat of vaporization, absorbing a lot of energy when it evaporates.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
*5. A fixed mass of an ideal gas is contained in a cylinder fitted with a frictionless piston as shown in the figure below. If the gas is cooled under constant pressure,

(1) the average separation of the gas molecules will decrease.
(2) the r.m.s. speed of the gas molecules will decrease.
(3) the number of collisions per second of the gas molecules on the piston will decrease.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
6.

A toy car travelled due east for 10 m in 5 s , then immediately turned north and travelled 5 m for 1 s . What was the average speed of the car?
A. $\quad 1.9 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 2.2 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 2.5 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 3.5 \mathrm{~m} \mathrm{~s}^{-1}$
7. A stone falls from rest. Neglecting air resistance, the ratio of the distance travelled by the stone in the $1^{\text {st }}$ second to that travelled in the $2^{\text {nd }}$ second is
A. $1: 1$
B. $1: 2$
C. $1: 3$
D. $1: 4$
8.

A block of weight 100 N is placed on a horizontal table and a vertical force of 60 N is exerted on the block as shown in the figure above. Which of the following statements is/are correct?
(1) The weight of the block is balanced by the force exerted on the block by the table.
(2) The weight of the block and the force exerted on the table by the block are equal in magnitude.
(3) The force exerted on the table by the block and the force exerted on the block by the table are an action-reaction pair.
A. (1) only
B. (3) only
C. (1) and (2) only
D. (2) and (3) only

Blocks, P, Q and R, connected by light inextensible threads, are placed on a smooth horizontal surface as shown. A constant force F is applied to P so that the whole system travels to the right with acceleration.

A lump of plasticine is placed on Q and it moves together with Q. If the applied force F remains unchanged, how would the tensions T_{1} and T_{2} in the two threads change ?

Tension T_{1}

A. increase decrease
B. increase increase
C. decrease decrease
D. decrease increase
10.

Figure (a)

Figure (b)

As shown in Figure (a), a block slides down along a smooth inclined plane from rest. The corresponding speed-time graph of its motion is shown in Figure (b). Which of the following speed-time graphs (in dotted lines) best represents the motion of the block if it is released at a higher position on the plane instead ? Assume that the friction between the ground and the block remains unchanged.
A.

B. v

C.

D.

11.

A football player kicks a ball on the ground. The ball leaves the ground with speed v and hits the bar at X with a speed of $17 \mathrm{~m} \mathrm{~s}^{-1}$. X is 2 m above the ground. Neglecting air resistance, what is the value of v ?
A. $\quad 15.8 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 18.1 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 19.0 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 23.3 \mathrm{~m} \mathrm{~s}^{-1}$
12. A rod $X Y$ hinged at X is kept horizontal by a light string. M is the midpoint of $X Y$. In which of the following arrangements will the tension T in the string be the smallest ?
A.

B.

C.

D.

13.

A ball of mass 0.2 kg is released from rest. It hits the ground and rebounds. The velocity-time graph of the ball is shown above. Which of the following statements are correct?
(1) The magnitude of the change in momentum of the ball during the collision is $1.2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.
(2) The magnitude of the average force acting on the ball by the ground during the collision is 12 N .
(3) There is mechanical energy loss during the collision.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
*14. A disc of mass 0.1 kg and velocity $5 \mathrm{~m} \mathrm{~s}^{-1}$ strikes a stationary disc of mass 0.2 kg on a smooth table. After the collision, the 0.1 kg disc moves with a speed of $3 \mathrm{~m} \mathrm{~s}^{-1}$ at 50° to the x direction. Find the component of the velocity of the 0.2 kg disc in y direction, v_{y}, after the collision.

A. $\quad 1.15 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 1.54 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 1.92 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 2.01 \mathrm{~m} \mathrm{~s}^{-1}$
*15.

A man is rotating with constant speed inside a cylindrical 'rotor' and he remains pressed against the wall. The floor of the 'rotor' is smooth. Which of the following forces provides the centripetal force for the man?
A. the weight of the man
B. the frictional force from the wall
C. the normal reaction from the wall
D. the supporting force from the floor
16. Which of the following phenomena demonstrates that light is an electromagnetic wave ?
A. Light carries energy.
B. Light reflects when it meets a polished metal surface.
C. Light bends when it travels across a boundary from one medium into another.
D. Light can travel from the Sun to the Earth.

A longitudinal wave travels to the right through a medium containing a series of particles. The figure above shows the positions of the particles at a certain instant. The dotted lines indicate the equilibrium positions of the particles. Which of the following statements about the wave at the instant shown is/are correct?
(1) The wavelength of the longitudinal wave is 16 cm .
(2) Particles 8 and 10 are moving in the same direction.
(3) Particle 3 is momentarily at rest.
A. (1) only
B. (3) only
C. (1) and (2) only
D. (2) and (3) only
18.

Two pulses, X and Y, are travelling along a string which is fixed at one end to the wall as shown in the figure above. Which of the following is a possible waveform of the string after the two pulses reflect ?
A.

B.

C.

D.

A stationary wave is set up along a string by a vibrator. The waveform at a certain instant is shown above. If the frequency of the vibrator is 50 Hz , what is the wave speed along the string ?
A. $\quad 15 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 30 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 45 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 55 \mathrm{~m} \mathrm{~s}^{-1}$
20.

As shown above, a ray of light travels from medium 1 to medium 2, and then enters medium 3. The boundaries are parallel to each other. Arrange the speed of light, c, in the three media in ascending order.
A. $\quad c_{3}<c_{2}<c_{1}$
B. $\quad c_{3}<c_{1}<c_{2}$
C. $\quad c_{2}<c_{3}<c_{1}$
D. $c_{2}<c_{1}<c_{3}$
*21.
illuminated
object

Figure (a)

Figure (b)

A student uses the set-up in Figure (a) to study the relationship between the object distance u and the image distance v of a convex lens. A graph of $1 / v$ against $1 / u$ is plotted in Figure (b). If the lens is replaced by another convex lens of shorter focal length, which of the following graphs (in dotted lines) would be obtained ?
A.

B.

C.

D.

*22.

In a Young's double slit experiment, a monochromatic light source of wavelength 600 nm is used. The fringe separation is 5 mm on the screen. If the slit separation is halved and a monochromatic light source of wavelength 450 nm is used instead, what is the new fringe separation ?
A. $\quad 1.9 \mathrm{~mm}$
B. $\quad 3.3 \mathrm{~mm}$
C. $\quad 7.5 \mathrm{~mm}$
D. $\quad 13.3 \mathrm{~mm}$
*23. Yellow light of wavelength 590 nm is incident normally on a diffraction grating with 400 lines per mm. Find the difference in angular positions for the third order and the fourth order bright fringes.
A. $\quad 13.7^{\circ}$
B. $\quad 25.7^{\circ}$
C. $\quad 45.1^{\circ}$
D. $\quad 70.7^{\circ}$
24.

Three identical point charges q (represented by dots) are situated in the space as shown. Which of the following descriptions about the direction and magnitude of the electric field E at X and at Y is correct ?

Direction Magnitude

A. Same $\quad E_{\mathrm{X}}>E_{\mathrm{Y}}$
B. Same $E_{\mathrm{X}}<E_{\mathrm{Y}}$
C. Opposite $\quad E_{\mathrm{X}}>E_{\mathrm{Y}}$
D. Opposite $\quad E_{\mathrm{X}}<E_{\mathrm{Y}}$
*25.

The figure above shows four points W, X, Y and Z in a uniform electric field. $W X Z Y$ is a square. The electric potential at W, X and Y are $1 \mathrm{~V}, 5 \mathrm{~V}$ and 5 V respectively. What is the electric potential at Z ?
A. $\quad 1 \mathrm{~V}$
B. $\quad 6 \mathrm{~V}$
C. $\quad 9 \mathrm{~V}$
D. $\quad 11 \mathrm{~V}$
26. Two metal rods, X and Y, of uniform cross-sectional area are made of the same material and have the same volume. The length and resistance of X are l and R respectively. What is the resistance of Y if it has a length of $2 l$?
A. $\quad R / 4$
B. $\quad R / 2$
C. $\quad 2 R$
D. $4 R$
27. The figure below shows a battery of e.m.f. 3.0 V and internal resistance 2.0Ω is connected to a light bulb of resistance 10.0Ω. A voltmeter of internal resistance $10 \mathrm{k} \Omega$ is connected in parallel with the light bulb. What is the reading of the voltmeter ?

A. $\quad 2.4 \mathrm{~V}$
B. $\quad 2.5 \mathrm{~V}$
C. $\quad 2.9 \mathrm{~V}$
D. $\quad 3.0 \mathrm{~V}$
28. In Figure (a), two identical resistors are connected in series to a cell of e.m.f. V and negligible internal resistance. The power dissipated by each resistor is P. If the two resistors are now connected in parallel as shown in Figure (b), what is the power dissipated by each resistor?

Figure (a)

Figure (b)
A. $\quad 2 P$
B. $\quad 4 P$
C. $\quad 8 P$
D. $16 P$
29. In the circuit below, three identical light bulbs are connected to a cell. Under what conditions will light bulb P have the maximum brightness ?

Switch X

A. closed
B. closed
C. open
D. open
closed
Switch Y
open
open
closed

The figure above shows the main parts of an electric iron. In which of the following situations will the fuse blow when the switch is closed?
A. The heating element is broken and becomes an open circuit.
B. The earth wire is worn out and becomes disconnected.
C. The insulation at contact point X is worn out so that the wire touches the metal case.
D. The insulation at contact point Y is worn out so that the wire touches the metal case.
31. The figure below shows a current of 1.0 A flowing in a metal rod of length 0.5 m . The rod is placed inside a region with a uniform magnetic field of strength 5 mT . What is the direction and the magnitude of the magnetic force acting on the rod ?

Direction

A. into the paper
B. out of the paper
C. into the paper
D. out of the paper

Magnitude
$1.25 \times 10^{-3} \mathrm{~N}$
$1.25 \times 10^{-3} \mathrm{~N}$
$2.17 \times 10^{-3} \mathrm{~N}$
$2.17 \times 10^{-3} \mathrm{~N}$
*32. A Hall probe is placed in a uniform magnetic field. The slice of semiconductor inside the Hall probe is $1.3 \times 10^{-3} \mathrm{~m}$ thick and has 10^{25} charge carriers per cubic metre. When a steady current of 0.4 A passes through the slice, a Hall voltage of $2 \times 10^{-5} \mathrm{~V}$ is set up. What is the magnetic field strength detected by the probe? Assume that the magnitude of the charge of each charge carrier is $1.6 \times 10^{-19} \mathrm{C}$.
A. $\quad 0.104 \mathrm{~T}$
B. $\quad 0.962 \mathrm{~T}$
C. $\quad 1.04 \mathrm{~T}$
D. $\quad 9.62 \mathrm{~T}$
*33.

A square metal frame of side length L is placed inside a uniform magnetic field B as shown. What is the change in magnetic flux through the frame when it is rotated about the axis $X Y$ by 90° and 180° respectively?
$90^{\circ} \quad 180^{\circ}$
A. 00
B. $0 \quad 2 B L^{2}$
C. $B L^{2} \quad 0$
D. $B L^{2} \quad 2 B L^{2}$
34. Which of the following statements about α and β particles is/are correct ?
(1) The mass of an α particle is greater than that of a β particle.
(2) $\quad \alpha$ particles have a stronger penetrating power than β particles.
(3) An α source can discharge a positively charged metal sphere nearby.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
35.

A radioactive source is placed in front of a uniform magnetic field pointing into the paper as shown above. The count rates recorded by the GM tubes at X and Y are 101 counts per minute and 400 counts per minute respectively. Which of the following deductions must be correct ?
A. The source does not emit α radiation.
B. The source emits β radiations.
C. The source emits γ radiations.
D. The background count rate is about 100 counts per minute.
*36. For the following nuclear reaction, state the type of reaction and determine the energy released.

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}
$$

Given: mass of ${ }_{1}^{2} \mathrm{H}=2.014 \mathrm{u}$
mass of ${ }_{1}^{3} \mathrm{H}=3.016 \mathrm{u}$
mass of ${ }_{2}^{4} \mathrm{He}=4.003 \mathrm{u}$
mass of ${ }_{0}^{1} \mathrm{n}=1.009 \mathrm{u}$

Type of reaction

A. fusion
B. fusion
C. fission
D. fission

Energy released

0.018 MeV
16.76 MeV 0.018 MeV
16.76 MeV

END OF SECTION A

List of data, formulae and relationships

Data

molar gas constant
Avogadro constant
acceleration due to gravity
universal gravitational constant speed of light in vacuum
charge of electron
electron rest mass
permittivity of free space
permeability of free space
atomic mass unit
astronomical unit
light year
parsec
Stefan constant
Planck constant

$$
\begin{aligned}
& R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\left(\mathrm{close}^{2} \text { to the Earth }\right) \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{AU}=1.50 \times 10^{11} \mathrm{~m} \\
& \mathrm{ly}=9.46 \times 10^{15} \mathrm{~m} \\
& \mathrm{pc}=3.09 \times 10^{16} \mathrm{~m}=3.26 \mathrm{ly}=206265 \mathrm{AU} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m} \\
& h=6.63 \times 10^{-24} \mathrm{~J} \mathrm{~S}^{-4}
\end{aligned}
$$

Rectilinear motion

For uniformly accelerated motion :

$$
\begin{aligned}
v & =u+a t \\
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s
\end{aligned}
$$

Mathematics

Equation of a straight line	$y=m x+c$
Arc length	$=r \theta$
Surface area of cylinder	$=2 \pi r h+2 \pi r^{2}$
Volume of cylinder	$=\pi r^{2} h$
Surface area of sphere	$=4 \pi r^{2}$
Volume of sphere	$=\frac{4}{3} \pi r^{3}$

For small angles, $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

A1. $E=m c \Delta T$

A2. $E=l \Delta m$

A3. $p V=n R T$
A4. $\quad p V=\frac{1}{3} N m \overline{c^{2}} \quad$ kinetic theory equation
A5. $\quad E_{\mathrm{K}}=\frac{3 R T}{2 N_{\mathrm{A}}} \quad$ molecular kinetic energy

B1. $F=m \frac{\Delta v}{\Delta t}=\frac{\Delta p}{\Delta t}$ Force
B2. \quad moment $=F \times d$ moment of a force

B3. $E_{\mathrm{P}}=m g h$
gravitational potential energy
B4. $E_{\mathrm{K}}=\frac{1}{2} m v^{2} \quad$ kinetic energy
B5. $P=F v=\frac{W}{t} \quad$ mechanical power
B6. $a=\frac{v^{2}}{r}=\omega^{2} r \quad$ centripetal acceleration
B7. $F=\frac{G m_{1} m_{2}}{r^{2}}$
Newton's law of gravitation

C1. $\Delta y=\frac{\lambda D}{a}$
fringe width in double-slit interference

C2. $d \sin \theta=n \lambda \quad$ diffraction grating equation
C3. $\frac{1}{u}+\frac{1}{v}=\frac{1}{f} \quad$ equation for a single lens

D1. $F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
D2. $\quad E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
D3. $V=\frac{Q}{4 \pi \varepsilon_{0} r}$
D4. $E=\frac{V}{d}$
D5. $\quad I=n A v Q$

D6. $R=\frac{\rho l}{A}$
D7. $R=R_{1}+R_{2}$
D8. $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad$ resistors in parallel
D9. $P=I V=I^{2} R$
D10. $F=B Q v \sin \theta$

D11. $F=B I l \sin \theta$
D12. $V=\frac{B I}{n Q t}$
D13. $B=\frac{\mu_{0} I}{2 \pi r}$
D14. $B=\frac{\mu_{0} N I}{l}$
D15. $\varepsilon=N \frac{\Delta \Phi}{\Delta t}$
D16. $\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}} \approx \frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}$

E1. $N=N_{0} e^{-k t} \quad$ law of radioactive decay
E2. $\quad t_{\frac{1}{2}}=\frac{\ln 2}{k} \quad$ half-life and decay constant
E3. $A=k N$

E4. $\quad E=m c^{2}$

Coulomb's law
electric field strength due to a point charge
electric potential due to
a point charge
electric field between parallel plates (numerically)
general current flow equation
resistance and resistivity
resistors in series
power in a circuit
force on a moving charge in a magnetic field
force on a current-carrying conductor in a magnetic field

Hall voltage
magnetic field due to a long straight wire
magnetic field inside a long solenoid
induced e.m.f.
ratio of secondary voltage to primary voltage in a transformer
activity and the number of undecayed nuclei
mass-energy relationship

