Paper 1 Section A

Question No.	Key	Question No.	Key
1.	A (62)	26	0 (25)
2.	A (78)	26.	C (35)
3.	C (53)	27.	B (51)
4.	B (43)	28.	A (62)
5.	D (35)	29.	C (70)
		30.	D (69)
6.	D (62)	31.	D (04)
7.	C (58)	32.	B (84)
8.	A (44)	33.	D (76)
9.	A (53)	55.	D (48)
10.	C (75)		
11.	B (85)		
12.	C (68)		
13.	B (63)		
14.	D (47)		
15.	B (61)		
16.	B (63)		
17.	D (61)		
18.	C (56)		
19.	A (56)		
20.	C (33)		
21.	D (76)		
22.	A (28)		
23.	B (47)		
24.	A (45)		
25.	C (63)		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

Paper 1 Section B

¢

	Solution	Marks	Remarks
1. (a	h) $Pt = ml$ $l = \frac{150 \times (5 \times 60)}{0.016}$ $= 2812500 \text{ J kg}^{-1} \approx 2810 \text{ kJ kg}^{-1}$	1M 1A 2	
(b) $C(100-22) = m_w c_w (22-20)$ $C = \frac{0.100 \times 4200(22-20)}{(100-22)}$ $= 10.76923 \text{ J} \circ \text{C}^{-1} \approx 10.8 \text{ J} \circ \text{C}^{-1}$	1M 1A 2	
(c)	energy from the metal sphere / extra energy is transferred (by the boiling water) to the cup of water / the final temperature is higher.	1A 1A	
(d)	The true value of <i>C</i> is smaller (than the calculated value). Not justified (with correct explanation). Copper – (good) conductor while polystyrene – (good) insulator or poor conductor, more energy will be lost to the surroundings by conduction via a copper cup / most part of the polystyrene cup is	2 1A	
	still at room temperature, negligible energy is absorbed.	1A 2	

57

			Solution	Marks	Remarks
3.	(a)	(i)	Work done = K.E. gained = $\frac{1}{2} (0.22) (13.4)^2$ = 19.7516 J \approx 19.8 J	1M 1A 2	
		(ii)	By conservation of mechanical energy, $\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mgh$ $v^2 - 13.4^2 = 2(9.81)(1.0)$ $v = 14.113114 \text{ m s}^{-1} \approx 14.1 \text{ m s}^{-1}$	1M 1A	For $g = 10 \text{ m s}^{-2}$, $v = 14.13 \text{ m s}^{-1}$
			$\frac{\text{Or}}{v_y^2} = u_y^2 + 2 \ a \ s$ $v_y^2 = (13.4 \ \sin 55^\circ)^2 + 2 \ (-9.81) \ (-1.0)$ $v_y = 11.836662 \ \text{m s}^{-1} \approx 11.8 \ \text{m s}^{-1}$	1M	
			speed $v = \sqrt{v_x^2 + v_y^2}$ = $\sqrt{11.8^2 + (13.4 \cos 55^\circ)^2}$ = 14.113079 m s ⁻¹ \approx 14.1 m s ⁻¹	1A 2	Accept 14.1 m s ^{-1} to 14.2 m s ^{-1}
	(b)	(i)	descending La pointing downward)	1A 1	
		(ii)	$\frac{18}{2} = 13.4 \cos 55^\circ \times t \text{ (constant horizontal speed)}$ $t = 1.170971 \text{ s} \approx 1.17 \text{ s}$	1M 1A 2	
	(c)	Horiz incre (35° <u>Or</u> Verti / vert Time	fied (with correct explanation) zontal component of the (initial) velocity is (greatly) ased (for a similar speed but at a much smaller angle << 55°)) ical component of the (initial) velocity is (greatly) reduced tical height reached is smaller. e of flight (to the highest point as well as) for the whole	1A 1A	
	(d)	journ (Woo it len	bey would be shortened. od is soft compared to concrete, thus) agthens the time of impact when the feet land on the nd. This reduces the impact force. therefore $F = \frac{mv - mu}{t} = \frac{0 - mu}{t}$]	2 1A 1A 2	

			Solution	Marks	Remarks
	(a)	(i)	$F = \frac{\Delta p}{\Delta t} = \frac{2.60 \times 10^3 \times v}{1} = 5.20 \times 10^6$ $v = 2000 \text{ m s}^{-1}$	1M 1A 2	force on gas = thrust on rocket in magnitude
			F - mg = ma $a = \frac{F}{m} - g = \frac{5.2 \times 10^6}{3.6 \times 10^5} - 8.56$ $= 5.884444 \text{ m s}^{-2} \approx 5.88 \text{ m s}^{-2}$	1M 1A	Accept 5.88 m s ⁻² to 5.90 m s ⁻²
		(iii)	The acceleration would increase. Although the thrust remains the same, the mass of the rocket and/or g decreases.	1A 1A 2	
	(b)	(i)	24 hours / 1 day / 86400 s	1A 1	
		(ii)	$m\omega^2 r = \frac{GMm}{r^2}$ OR $\frac{mv^2}{r} = \frac{GMm}{r^2}$ OR $gR^2 = v^2 r = (\frac{2\pi r}{T})^2 r$	1M	
			$r^{3} = \frac{GM}{R^{2}} \times R^{2} \times \frac{1}{\omega^{2}} = 9.81 \times (6.37 \times 10^{6})^{2} \times (\frac{24 \times 60 \times 60}{2\pi})^{2}$	1M	
			$r = 4.222197 \times 10^7 \text{ m} \approx 42000 \text{ km}$	2	and the second second
5.	(a)	(i)	c _ c		
			$f = \frac{c}{\lambda}$ $= \frac{3 \times 10^8}{675 \times 10^{-9}}$	1M	
			$= 4.444444 \times 10^{14} \text{ Hz} \approx 4.44 \times 10^{14} \text{ Hz}$	1A 2	
		(ii)	$\frac{\sin 30^{\circ}}{\sin \theta} = \frac{c}{v} = \frac{\lambda}{\lambda t}$ $= \frac{675}{450}$	1M	
			$\sin \theta = \left(\frac{450}{675}\right) \sin 30^{\circ}$ $\theta = 19.471^{\circ} \approx 19.5^{\circ}$	1A	
		(iii)	Definition : $N = \overline{sin\theta}^{3}$ The refractive index of glass for blue light is greater (than that for red light).	1A	
	(b)	(i)	real and/or inverted	1A	
		(ii)	10 cm	1A	

s

			Solution	Marks	Remarks
7.	(a)	(i)	Eddy currents are induced to oppose the change of magnetic flux due to the movement of the metal sheet.	1A	
			Moving to the left > accept magnetic field	1A 2	
	43	(ii)	Kinetic energy \rightarrow Electrical energy \rightarrow Internal (heat/thermal) energy	2A 2	
		(iii)	Limitation: Eddy braking only works when the vehicle is moving. e.g. The vehicle cannot park in stationary positions / still on a slope.	1A	
	(b)	Elect	rical energy consumed = $2 \text{ kW} \times \frac{15}{60} \text{ h} = 0.5 \text{ kW h}$	1 1M	
			$= \$ 1.1 \times 0.5 = \$ 0.55$	1A 2	
	(c)	i.e. th	nation, le cores of these devices are made up of multiple insulated s of metal.	1A 1	
	(d)	decre	nagnetic field (produced by eddy currents) measured will ase (where there are irregularities). ecause the crack will reduce the eddy currents.	1A 1A 2	

SECONDARY SURVEL LIBHARY

	-		Solution	Marks	Remarks
9.	(a)	(i)	β decay / beta decay OR $\frac{40}{19}$ K $\rightarrow \frac{40}{20}$ Ca + $\frac{0}{-1}\beta$	1A	
				1	
		(ii)	Justified: the penetrating power of β radiation enables it to penetrate the body's organ / skin <u>Or</u> Not justified: the activity is low and is comparable to background radiation / β radiation is largely shielded by the human body	1A 1	
	(b)	(i)	$\frac{0.45 \times 0.012\%}{40.0} = 1.35 \times 10^{-6} \text{ (mole)}$	1A	
		(ii)	$k = \frac{\ln 2}{1.25 \times 10^9 (3.16 \times 10^7)} = 1.754803 \times 10^{-17} (s^{-1})$	1M/1A	i. e. 5.545177 × 10 ⁻¹⁰ (year ⁻¹)
			Activity = kN = 1.754803 × 10 ⁻¹⁷ × (1.35 × 10 ⁻⁶ × 6.02 × 10 ²³) = 14.261284 (Bq) \approx 14.3 (Bq)	1A 2	Accept 14.2 to 14.3 (Bq)

Anti

ection A : Astronomy and Space Science

tion A.	4%)	2. B (52%)	3. D (53%)	4. C (62%)			
1. B (54 5. A (40	6%)	6. D (44%)	7. A (39%)	8. D (34%)			
5. AT							•
		Soluti			Ma	rks	Remarks
(a) (i)	By Her	definition: $1'' = 1$ AU nce, the semi-major a	1/1 pc xis $a = 0.125'' \times 794$ = 992.5 AU ≈ 9		1A		
	a = =	ular size $\theta = 0.125''$ $= \frac{0.125}{60 \times 60} \times \frac{1}{9}$ $= 6.06 \times 1$ $d \times \theta$ (7940 × 206265) × 6 992.5 AU	0^{-7} rad		1A	1	
(ii)	a = By $\frac{M_{Sgr}}{M_{Sgr}}$	asider the Earth and the simple ratio, $\frac{fA*}{s} = \frac{\left(\frac{993 AU}{1 AU}\right)^3}{\left(\frac{160 yr}{1 yr}\right)^2} = 3.81$ and the mass of the solution of	= 1 year. 19017 $\times 10^6 \approx 3.82$	× 10 ⁶ 10 ⁶ M _S .	1M 1M	2	
(b) (i)	spec For feat freq	lial velocity v_r : measu ctral lines (emission / positive v_r , the obser cures will be redshifte puency) or blue shift (puency) for negative v	absorption lines) of ved wavelength of th d (larger wavelength shorter wavelength	star X. ne spectral n or lower	1A 1A	2	
(ii)	v _r is whi pos <u>Or</u> In velo (aw Ear	position D (around 20 s positive (away from ch implies that (the ition 2 (according to 2 2002, star X experi- poity / very large acc ay from the Earth) to th), indicating that it pler's second law), Sg	the Earth) and incre- massive force centre Kepler's second law) enced a sharp chan- eleration, from a lar o a large, negative w is close to Sgr A*	e) Sgr A* is in ge in (radial) rge, positive v_r v_r (towards the (according to	1A 1A	2	Accept: When X is closer to Sgr A*, it moves faster due to very large gravitational force.
Set	tting v a 2G 3H =	velocity $v = \sqrt{\frac{2GM}{R}}$ as the speed of light c $\frac{M_{\text{Sgr A}}}{c^2}$ $\frac{2(1.33 \times 10^{20} \times 3.82 \times 1)}{(3 \times 10^8)^2}$, radius of black hole	2	1M 1M		
		129022 × 10 ¹⁰ m ≈ 1.1 0752681 (AU) ≈ 0.07:			1A	3	

Provided by dse.life

Statistica vy

Section B : Atomic World

_

1. C	(56%)	2. A (51%)	3. D (39%)	4. B ((60%)		
5. C	(54%)	6. A (36%)	7. D (51%)	8. B ((36%)		
ta din can		Solutio	on	-		Marks	Remarks
2. (a)	radiati spirals	model the orbital electr on) and inwards until it finally collapses.				1A 1	
(b)	(i) 1	Line C (from $n = 5$ to n	= 2)		-	1A 1	
	(ii)	$\lambda = 364.6 \left(\frac{5^2}{5^2 - 2^2} \right)$ = 434.047619 (nm)	≈ 434 (nm)		4	1A	
		Colour – violet / blue /	indigo			1A 2	
		The incident photon is a The hydrogen atom is i The orbital electron bec (i.e. liberated with some	onized / becomes a comes a free electro		ion.	1A 1A 1A 3	
	(iv)		n = 4 $n = 3$ $n = 2$	•		2A	
	(_↓↓↓ (Total number of spect	n = 1 ral lines = 6)		-	1A 3	Two visible lines correctly marked

 $\boldsymbol{\omega}_{bb}$

_{Jn} C : Energy and Use of Energy

tion C:	(73%)	2. D (61%)	3. B (66%)	4 6	(49%)		
1.0	(55%)	6. C (74%)	7. B (50%)		(64%)		
5. A	0.			0.74	0470)		
		Soluti				Marks	Remarks
(a)	The siresista	ize of A is larger, monoce / friction.	re energy is used	to overcor	ne air	1A	
	Or						
	and/OI	ass of A is larger, more decelerating the vehic pt reasonable factors re	le.		-		
						1	
	(1)	95×10^3 W h = 220 V ×	$I \times 12$ h				Set Start
(b)	(i)		$48 \text{ A} \approx 36.0 \text{ A}$			1M 1A	Accept 35.9 A – 36.1 A
						2	
			1			1.2.1	
	(ii)	The charging efficienc charging process (as he	y is not 100% / ene eat / thermal energy	ergy is lost).	in the	1A	
						1	
(c)	(i)	Power out $=$ $\frac{\frac{1}{2}mv^2}{t} = \frac{\frac{1}{2}x^2}{t}$ $= 1.7$	$\frac{2500 \times (\frac{100}{3.6})^2}{5.5} \approx \frac{9.64506 \times 10}{5.5}$ 53648 × 10 ⁵ W ≈17	5 kW	4	1M	
		Efficiency = $\frac{175}{300} \times 100$				1A	Accept 58% – 59%
		- 50.45452	$0.70 \approx 30.370$			2	4
						<u>L</u>	· · · · · ·
		Total time taken for ma = $\frac{414}{70}$ = 5.914286 h \approx 5	-	ge test		1M	· · · · · · · · · · · · · · · · · · ·
		Power output = $\frac{66}{5.91}$				• 1	
			9420 kW ≈ 11.2 kW			1A	Accept 11.0 kW – 11.5 kW
		an a				2	
						2	
(d)	lights)	2 (driving in a city wit as (regenerative) brak c energy of the vehicle,	ing can utilize the (relatively	large)	1A+1A	~
	Or						
	Mode	1 (driving at a few km tions) as (regenerative)	per hour in often sto braking needs to be	p-and-go t applied of	Search and the second second	0A+1A	
	- on un	(regenerative)			· · ·	2	

Section D : Medical Physics

			1.00()
1. D (51%)	2. B (39%)	3. A (27%)	4. C (49%)
	2. 0 (00 /0)		8. B (59%)
5. A (51%)	6. C (54%)	7. D (73%)	8. B (5978)

