Question No.	Key	Question No.	Key
1.	A (62)	26.	C (35)
2.	A (78)	27.	B (51)
3.	C (53)	28.	B (62)
4.	B (43)	29.	C (70)
5.	D (35)	30.	D (69)
6.	D (62)	31.	
7.	C (58)	32.	D (76)
8.	A (44)	33.	$\begin{aligned} & D(10) \\ & D(48) \end{aligned}$
9.	A (53)		D (48)
10.	C (75)		
11.	B (85)		
12.	C (68)		
13.	B (63)		
14.	D (47)		
15.	B (61)		
16.	B (63)		
17.	D (61)		
18.	C (56)		
19.	A (56)		
20.	C (33)		
21.	D (76)		
22.	A (28)		
23.	B (47)		
24.	A (45)		
25.	C (63)		

Paper 1 Section B

Solution	Marks	Remarks
5. (a) (i) $\begin{aligned} F=\frac{\Delta p}{\Delta t}=\frac{2.60 \times 10^{3} \times v}{1} & =5.20 \times 10^{6} \\ v & =2000 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ (ii) $\begin{aligned} & F-m g=m a \\ & \begin{aligned} a=\frac{F}{m}-g & =\frac{5.2 \times 10^{6}}{3.6 \times 10^{5}}-8.56 \\ & =5.884444 \mathrm{~m} \mathrm{~s}^{-2} \approx 5.88 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned} \end{aligned}$ (iii) The acceleration would increase. Although the thrust remains the same, the mass of the rocket and/or g decreases. (b) (i) 24 hours / 1 day / 86400 s (ii) $\begin{aligned} & m \omega^{2} r=\frac{G M m}{r^{2}} \text { OR } \frac{m v^{2}}{r}=\frac{G M m}{r^{2}} \text { OR } g R^{2}=v^{2} r=\left(\frac{2 \pi r}{T}\right)^{2} r \\ & r^{3}=\frac{G M}{R^{2}} \times R^{2} \times \frac{1}{\omega^{2}}=9.81 \times\left(6.37 \times 10^{6}\right)^{2} \times\left(\frac{24 \times 60 \times 60}{2 \pi}\right)^{2} \\ & r=4.222197 \times 10^{7} \mathrm{~m} \approx 42000 \mathrm{~km} \end{aligned}$	1 M 1 A 1 M 1 A 1 A 1 A 1 M 1 M 	force on gas = thrust on rocket in magnitude Accept $5.88 \mathrm{~m} \mathrm{~s}^{-2}$ to $5.90 \mathrm{~m} \mathrm{~s}^{-2}$
6. (a) (i) $\begin{aligned} f & =\frac{c}{\lambda} \\ & =\frac{3 \times 10^{8}}{675 \times 10^{-9}} \\ & =4.444444 \times 10^{14} \mathrm{~Hz} \approx 4.44 \times 10^{14} \mathrm{~Hz} \end{aligned}$ (ii) $\begin{gathered} \frac{\sin 30^{\circ}}{\sin \theta}=\frac{c}{v}=\frac{\lambda}{\lambda^{\prime}} \\ =\frac{675}{450} \\ \sin \theta=\left(\frac{450}{675}\right) \sin 30^{\circ} \\ \theta=19.471^{\circ} \approx 19.5^{\circ} \end{gathered}$ Pefinition: $n=\frac{\sin \theta \operatorname{ain}}{\sin \theta^{\prime}}$ ex of glass for blue light is greater (than (iii) The refractive index of glass for blue light is greater (than that for red light). (b) (i) real and/or inverted (ii) 10 cm	1 M 1 A 1 A 1 A 1 A 1 A 1	

${ }_{112} \mathrm{~A}$: Astronomy and Space Science

A (46%)
6. (52%)

3. D (53%)	4. C (62%)
7. A (39%)	8. D (34%)

1. C (56\%)	2. A (51\%)	3. D (39\%)	4. B (60\%)
$5 . \mathrm{C}(54 \%)$	6. A (36\%)	7. D (51\%)	8. B (36\%)

C : Energy and Use of Energy

Solution	Marks	Remarks
3. (a) The size of A is larger, more energy is used to overcome air	1 A	

(b) (i) $95 \times 10^{3} \mathrm{~Wh}=220 \mathrm{~V} \times I \times 12 \mathrm{~h}$

$$
I=35.984848 \mathrm{~A} \approx 36.0 \mathrm{~A}
$$

(ii) The charging efficiency is not 100% / energy is lost in the charging process (as heat / thermal energy).
(c) (i)

$$
\begin{aligned}
& \text { Power out }=\frac{\frac{1}{2} m \nu^{2}}{t}=\frac{\frac{1}{\frac{1}{2}} \times 2500 \times\left(\frac{100}{3.6}\right)^{2}}{5.5} \approx \frac{9.64506 \times 10^{5}}{5.5} \\
& =1.753648 \times 10^{5} \mathrm{~W} \approx 175 \mathrm{~kW} \\
& \text { Efficiency }=\frac{175}{300} \times 100 \% \\
& =58.454920 \% \approx 58.5 \%
\end{aligned}
$$

(ii) Total time taken for maximum driving range test $=\frac{414}{70}=5.914286 \mathrm{~h} \approx 5.91 \mathrm{~h}$
Power output $=\frac{66}{5.91}$

$$
=11.159420 \mathrm{~kW} \approx 11.2 \mathrm{~kW}
$$

(d) Mode 2 (driving in a city with smooth traffic regulated by traffic lights) as (regenerative) braking can utilize the (relatively large) kinetic energy of the vehicle, say, when stopping at traffic lights.
Or
Mode 1 (driving at a few km per hour in often stop-and-go traffic conditions) as (regenerative) braking needs to be applied often.

Section D : Medical Physics

1. D (51\%)	2. B (39\%)	3. A (27\%)	4. C (49\%)
5. A (51%)	6. C (54%)	7. D (73\%)	8. B (59\%)

