只限閱卷員參閱 FOR MARKERS' USE ONLY 18 May 2020

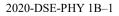
香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2020 年香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2020

物理 香港中學文憑考試 試卷一乙 PHYSICS HKDSE PAPER 1B

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之用。本評卷 參考之使用,均受制於閱卷員有關之委任條款及閱卷員指引。特別是:

本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之書面批 准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷參考之全部或其部 份。在遵守上述條款之情況下,本局有限 地容許閱卷員可在應屆香港中學文憑考試的 考試成績公布後,將本評卷參考提供任教本科的教師參閱。


在任何情况下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各 閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant appointment terms and Instructions to Markers. In particular:

The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.

Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2020

只限閱卷員參閱 FOR MARKERS' USE ONLY

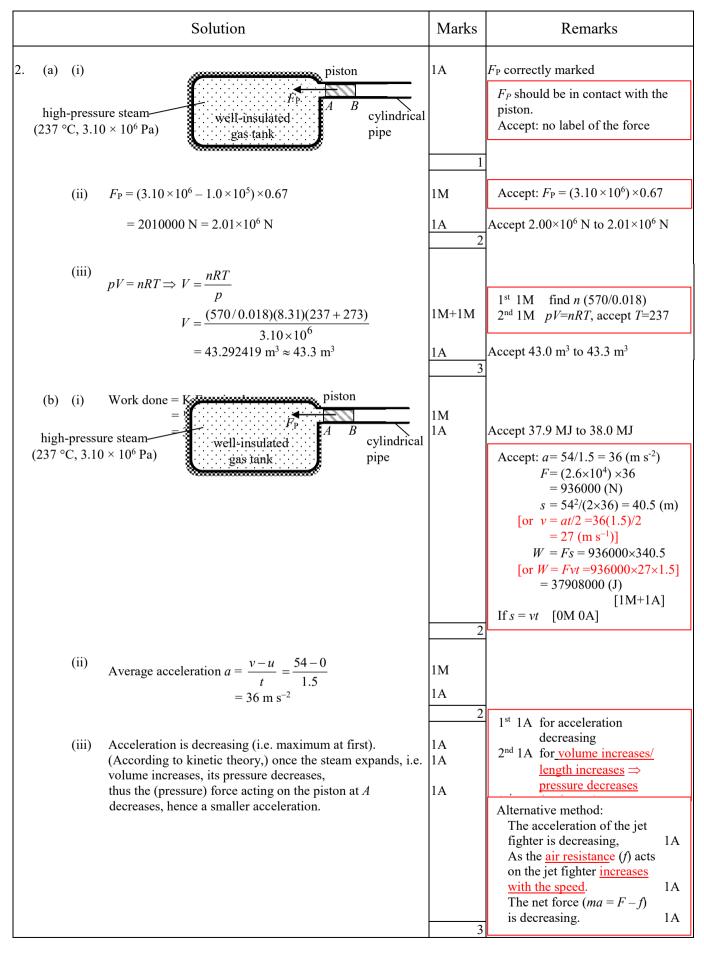
只限閱卷員參閱 FOR MARKERS' USE ONLY 18 May 2020

HKDSE Physics

General Marking Instruction

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates may have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *the answer mark* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, answer marks or 'A' marks are awarded for a correct numerical answer with a unit. In case the same unit involved is given incorrectly for more than once in the same question, the 'A' marks thereafter can be awarded even for correct numerical answers without units. If the answer should be in km, then cm and m are considered to be wrong units.
- 3. In a question consisting of several parts each depending on the previous parts, **marks for correct method or substitution** are awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous or for inserting values of appropriate physical quantities into an algebraic expression **irrespective of their order of magnitudes**. However, 'A' marks for the corresponding answers should **NOT** be awarded (unless otherwise specified).
- 4. For the convenience of markers, the marking scheme is written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 5. In cases where a candidate answers more questions than required, the answers to all questions should be marked. However, the excess answer(s) receiving the lowest score(s) will be disregarded in the calculation of the final mark.
- 6. OSM (On-screen marking) marking symbols:

\checkmark	correct point
×	wrong point
=	point to highlight
<	incomplete answer
Λ	missing point
文	entering text/comment


2020-DSE-PHY 1B-2

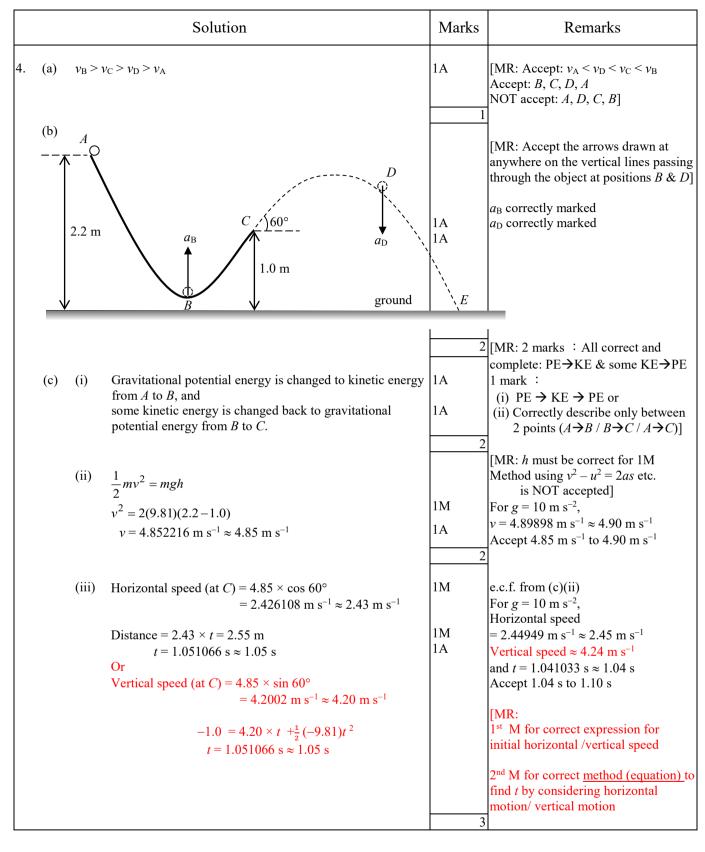
FOR MARKERS' USE ONLY 18 May 2020

			Solution	Marks	Remarks
1.	(a)	5×0.0	$02 \times 3300 \times (T-4) = 0.60 \times 4200 \times (96 - T)$ $T = 85.347368 \text{ °C} \approx 85.3 \text{ °C}$	1M 1A 2	Accept 85.0 °C to 85.4 °C [Marking Remark (MR): temperature difference must be correct & accept missing '5' – 1 M]
	(b)	(i)	To compensate for / balance the heat loss (of the container with soup) to the surroundings.	1A 1	[MR: Key words - heat loss to the surroundings (from container or through evaporation)]
		(ii)	$P \times 10 \times 60 = 2000 \times 9 + 16 \times 4200 \times 9$ $P = 1038 \text{ W} \approx 1040 \text{ W}$	1M+1M 1A <u>3</u>	Assume : Power of the heater = Rate of heat loss (of the container with soup) to the surroundings [MR: $P \times t \checkmark + 1$ term $\checkmark - 1M$ $P \times t \checkmark + 2$ term $\checkmark - 2M$ $P \times t$: accept $P \times 10$
		(iii)	Smaller than 9 °C. As the temperature of (the container with) soup drops, the rate of heat loss to the surroundings becomes lower due to a smaller temperature difference (w.r.t. the surroundings).	1A 1A 2	ΔT : accept (96 – 9)] [2 A marks are independent Key concept: smaller temperature difference]

2020-DSE-PHY 1B-3

FOR MARKERS' USE ONLY 18 May 2020

2020-DSE-PHY 1B-4

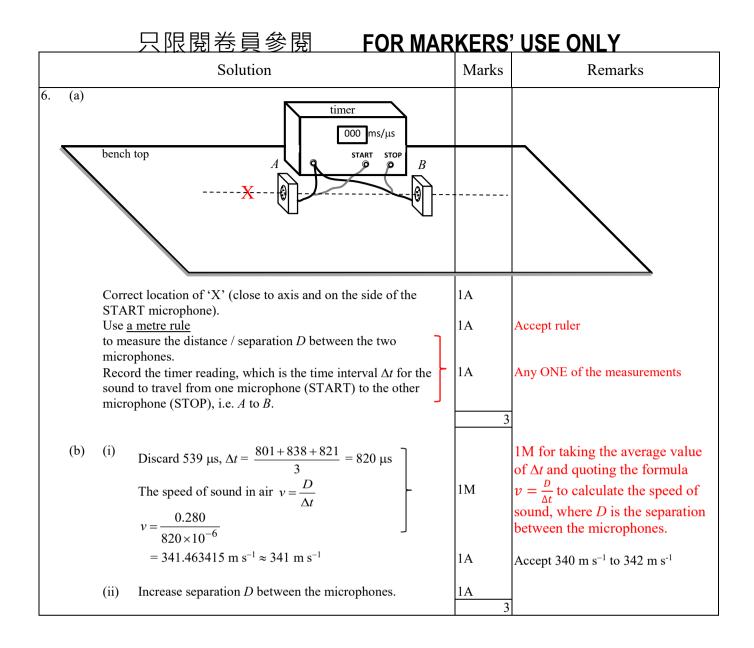

只限閱卷員參閱 FOR MARKERS' USE ONLY

只限閱卷員參閱 FOR MARKERS' USE ONLY 18 May 2020

	Solution			Marks			Re	marks		
3.	(a)	a mu	a superconductor / extremely low or nearly zero resistance, ich larger current flows in the coils producing a stronger netic field (with less heat loss due to the current flow).	1A 1A 2	[Mł	R: low R large low R	I only		nark	2
	(b)	P an	d Q : N (north pole)	1A	ц		2N	2S/S+N 0	正 1	NA
			alsive force between like poles	1A 2		×/NA	2	0	0	0
	(c)	(i)	As the train is not in contact with the rail, <u>there is no friction / interaction between the train and the</u> <u>rail</u> , thus smoother due to less vibration.	1A	NA -	– Not ansv	vered			
		(ii)	There is no friction / interaction between the train and the rail, and the propulsion of the train only needs to work against air resistance, therefore much faster.	1A 2	-					

2020-DSE-PHY 1B-4

FOR MARKERS' USE ONLY 18 May 2020

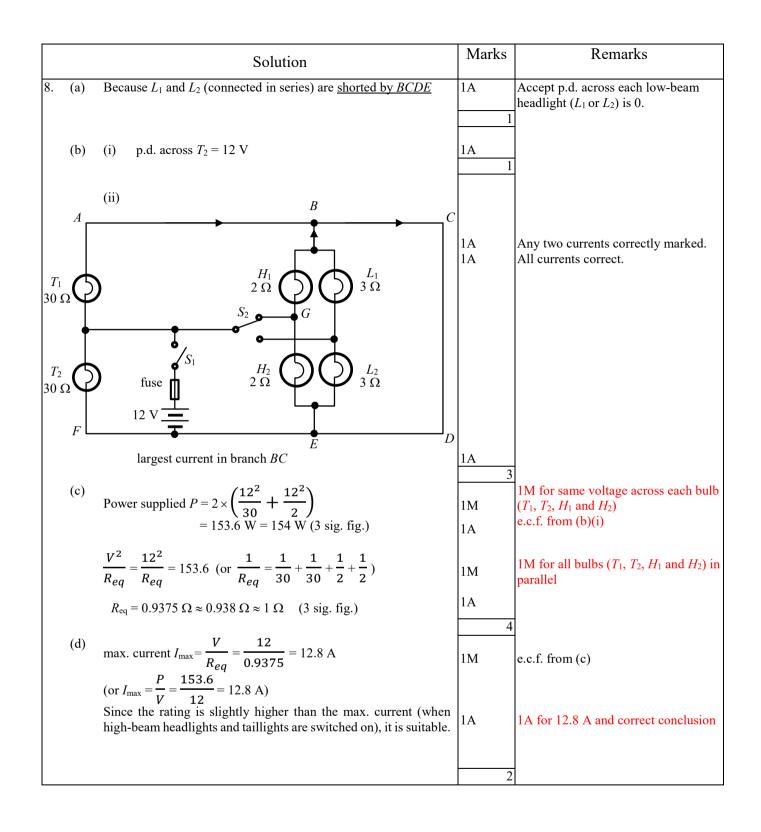

2020-DSE-PHY 1B-4

只限閱卷員參閱 FOR MARKERS' USE ONLY

			只限閱卷員參閱 FOR MAR	<u>KERS</u>	' USE ONLY
			Solution	Marks	Remarks
5.	(a)	(i)	F P $reaction R$ $reaction R$ $smooth$ weight W	1A 1A	Forces $R(\text{or } N)$ and $W(\text{or } Mg)$ correctly indicated and labelled. [MR: 1A for weight with correct label ($W/Mg/$ weight/gravity) 1A for normal reaction with correct label ($R/N/$ normal force/contact force/reaction)
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		30° ↓ weight w		1A only: if both <i>W</i> and <i>R</i> drawn (without/wrong label) Withhold 1A for additional force drawn (more than 2 forces)
				2	 W components added with correct labels (ignored) W components added without correct labels (treated as additional force drawn)
		(ii)	$R\cos 30^\circ = W = Mg$ and $R\sin 30^\circ = F$	1M	M = 10 kg; Mg = 98.1 N [MR: 1M for both equations are correct]
			$F = Mg \times \tan 30^\circ = 56.63806 \text{ N} \approx 56.6 \text{ N}$	1A	For $g = 10 \text{ m s}^{-2}$, 57.735027 N \approx 57.7 N
			$N = R = \frac{Mg}{\cos 30^{\circ}} = 113.27612 \text{ N} \approx 113 \text{ N}$	1A	$57.73027 \text{ N} \approx 57.7 \text{ N}$ 115.470054 N $\approx 115 \text{ N}$
			<u>Or</u> $R = W \cos 30^\circ + F \sin 30^\circ$ and $W \sin 30^\circ = F \cos 30^\circ$	(1M) 3	[MR: 1M for both equations are correct]
	(b)	(i)	$g \sin \theta = 9.81 \sin 30^\circ = 4.905 \text{ m s}^{-2} \approx 4.91 \text{ m s}^{-2}$	1A 1	$5 \text{ m s}^{-2} \text{ for } g = 10 \text{ m s}^{-2},$
		(ii)	Decrease as the component of F perpendicular to the incline no	1A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			longer acts on the block / incline <u>Or</u> as <i>F</i> is removed, the force pressing the block / incline would decrease (only the weight's component left)	1A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2020-DSE-PHY 1B-5

Provided by dse.life


2020-DSE-PHY 1B-6

只限閱卷員參閱 FOR MARKERS' USE ONLY

<u> 只限閱卷員參閱 FOR MARKERS' USE ONLY</u>

		Solution	Marks	Remarks
(a)	(i)	Angle of incidence at A , $i_{\rm A} = 90^{\circ} - 30^{\circ} = 60^{\circ}$	1A 1	
	(ii)	$n_g \sin c = n_c \sin 90^\circ$	1M	1M for correct equation with angle of refraction in the cladding = 90°
		$\Rightarrow \frac{n_g}{n_c} = \frac{1}{\sin c} \ge \frac{1}{\sin 60^\circ} = 1.1547005 \approx 1.15$	1A 2	Accept 1.2 or $\frac{2}{\sqrt{3}}$
	(iii)	Total internal reflection. For light rays from $O \text{ with } \theta > 30^{\circ}$, they will fail to undergo total internal reflection.	1A 1A 2	Correct spelling Accept $\theta \ge 30^{\circ}$
(b)	(i)	Some light / energy (of the narrow light pulse) taking the shortest path (i.e. <i>OD</i>) arrives first while the rest of the energy taking longer paths arrives later. Therefore the pulse is broader and the height of the pulse is lower (smaller intensity).	1A 1A 2	 1A for 'taking different paths' 1A for 'different arrival time' NOT accept: Some of the energy (going at angles larger than 30° from the axis) would be lost due to leakage, thus lower intensity.
	(ii)	The refractive index of cladding should be increased, as $\frac{n_g}{n_c} = \frac{1}{\sin c}$, by <u>making $c / \sin c$ larger</u> , only those light rays close to the axis / within a smaller θ are totally internal reflected, (such that $\frac{n_g}{n_c}$ getting closer to 1).	1A 1A	0 A for the explanation if the choice for the change of n_c is INCORRECT. Note: More light rays will escape the optical fibre for a larger n_c .
		(ii) (iii) (b) (i)	 (a) (i) Angle of incidence at A, i_A = 90 °- 30° = 60 ° (ii) n_g sin c = n_c sin 90° ⇒ n_g/n_c = 1/sin c ≥ 1/sin 60° = 1.1547005 ≈ 1.15 (iii) Total internal reflection. For light rays from O with θ ≥ 30°, they will fail to undergo total internal reflection. (b) (i) Some light / energy (of the narrow light pulse) taking the shortest path (i.e. OD) arrives first while the rest of the energy taking longer paths arrives later. Therefore the pulse is broader and the height of the pulse is lower (smaller intensity). (ii) The refractive index of cladding should be increased, as ng/n_c = 1/sin c, by making c/sin c larger, only those light rays close to the axis / within a smaller θ are totally internal reflected, 	(a) (i) Angle of incidence at A, $i_A = 90^\circ - 30^\circ = 60^\circ$ 1A(ii) $n_g \sin c = n_c \sin 90^\circ$ 1M $\Rightarrow \frac{n_g}{n_c} = \frac{1}{\sin c} \ge \frac{1}{\sin 60^\circ} = 1.1547005 \approx 1.15$ 1A(iii) Total internal reflection. For light rays from O with $\theta \ge 30^\circ$. they will fail to undergo total internal reflection.1A(b) (i) Some light / energy (of the narrow light pulse) taking the energy taking longer paths arrives later. Therefore the pulse is broader and the height of the pulse is lower (smaller intensity).1A(ii) The refractive index of cladding should be increased, as $\frac{n_g}{n_c} = \frac{1}{\sin c}$, by making $c / \sin c$ larger, only those light rays close to the axis / within a smaller θ are totally internal reflected,1A

2020-DSE-PHY 1B-7

2020-DSE-PHY 1B-8

只限閱卷員參閱

FOR MARKERS' USE ONLY

	Solution	Marks	Remarks
9. (a) Top vie	w		Accept: field lines are not on Figure 9.2
		1A	Correct direction (From A to B) Accept: field lines not in contact with the plates
	-2	1A	Perpendicular to plates, parallel and evenly spaced
			Accept: 3 or more field lines NOT accept: 2 or more mistakes in the drawing
		2	
(b) (i) F >	$d = (2.0 \times 10^{-5})(0.05 \cos 20^{\circ})$ $= 9.396926 \times 10^{-7} \text{ N m} \approx 9.40 \times 10^{-7} \text{ N m}$	1M 1A	1M $F \times d$ Accept: without consider the component / without component d (0.05, 0.05/2, 2×0.05 , 5, 5/2, 2×5) NOT accept: calculation using separation between plates d (0.1, 10)
(;;)	17	2	
	$= \frac{v}{d}$ = $\frac{5.0 \times 10^3}{0.1}$ = 50 000 V m ⁻¹ or N C ⁻¹ = 50 kV m ⁻¹ or kN C ⁻¹	1M 1A 2	Accept: $\frac{5 \times 10^3}{0.1}, \frac{5 \times 10^3}{1}, \frac{5}{1}, \frac{5}{0.1}$
(iii) _E = Q =	$= \frac{F}{Q}$ = $\frac{F}{E} = \frac{2.0 \times 10^{-5}}{5.0 \times 10^{4}}$ = $4.0 \times 10^{-10} \text{ C}$	1M 1A 2	e.c.f. from (b)(ii)

2020-DSE-PHY 1B-9

		Solution	Marks	Remarks
10.	(a)	proton / $^{1}_{1}$ H / p / hydrogen nucleus	1A	Accept:proton / ¹ ₁ H / p / ¹ ₁ p / H / hydrogen nucleus / hydrogen / hydrogen atom NOT accept: H ₂
	(b)	Change in mass $\Delta m = (16.9947 + 1.0073) - (13.9993 + 4.0015)$ = 0.0012 u Energy = 0.0012×931 $= 1.1172 \text{ (MeV)} \approx 1.12 \text{ (MeV)}$	1 1M 1A	1M for Δ <i>m</i> Accept 1.10 to 1.12 (MeV)
		$\frac{(\underline{Or} = 0.0012 \times (1.661 \times 10^{-27}) \times (3.00 \times 10^8)^2}{$	2	Answer should be in MeV, not J. MeV could be omitted $[Energy = 0.0012 \times (1.661 \times 10^{-27}) \times (3.00 \times 10^8)^2$ $= 1.79388 \times 10^{-13} \text{ J}$ $\approx 1.79 \times 10^{-19} \text{ MJ}$ $\approx 1.12 \text{ (MeV)}$ Accept (1.79 to 1.80) × 10 ⁻¹⁹ MJ
	(c)	By the conservation of momentum, as before the reaction occurs the α particle has momentum, the total momentum of the products (= momentum of the α particle) must also be non-zero, i.e. the total KE of the products must greater than 0, thus the α particle should have a larger KE.	1A 1A	 1st 1A should mention the product(s) has/have momentum 2nd 1A KE/speed of the products must greater than zero Accept: kinetic energy shared by other particles (NOT accept : energy shared.) NOT accept: against repulsion of nucleus / inelastic collisions / KE loss / consider binding energy
			2	[The kinetic energy of the <i>a</i> particle = energy calculated in (b) + total KE of the products]

2020-DSE-PHY 1B-10

FOR MARKERS' USE ONLY

香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2020 年香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2020

物理 香港中學文憑考試 試卷二 PHYSICS HKDSE PAPER 2

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之用。本評卷 參考之使用,均受制於閱卷員有關之委任條款及閱卷員指引。特別是:

本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之書面批 准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷參考之全部或其部 份。在遵守上述條款之情況下,本局有限 地容許閱卷員可在應屆香港中學文憑考試的 考試成績公布後,將本評卷參考提供任教本科的教師參閱。

在任何情況下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各 閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant appointment terms and Instructions to Markers. In particular:

The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.

Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2020

2020-DSE-PHY 2-1

只限閱卷員參閱 FOR MARKERS' USE ONLY

FOR MARKERS' USE ONLY

HKDSE Physics

General Marking Instruction

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates may have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *the answer mark* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, answer marks or 'A' marks are awarded for a correct numerical answer with a unit. In case the same unit involved is given incorrectly for more than once in answering the same question, the 'A' marks thereafter can be awarded even for correct numerical answers without units. If the answer should be in km, then cm and m are considered to be wrong units.
- 3. In a question consisting of several parts each depending on the previous parts, method marks or 'M' marks are awarded to substitutions or methods correctly deduced from previous numerical answers, even if these answers are erroneous or appropriate physical quantities of incorrect order of magnitudes are inserted into an algebraic expression. However, 'A' marks for the corresponding answers should **NOT** be awarded (unless otherwise specified).
- 4. For the convenience of markers, the marking scheme is written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 5. In cases where a candidate answers more questions than required, the answers to all questions should be marked. However, the excess answer(s) receiving the lowest score(s) will be disregarded in the calculation of the final mark.
- 6. OSM (On-screen marking) marking symbols:

\checkmark	correct point
×	wrong point
=	point to highlight
<	incomplete answer
\wedge	missing point
文	entering text/comment

Section A : Astronomy and Space Science

1. D (%)	2. D (%)	3. C (%)	4.B(%)
5. C (%)	6.B(%)	7. C (%)	8. A (%)

			Solution	Marks	Remarks
1.	(a)	Thus the Accept or 50	ce 50 kpc = 50000×3.26 ly = 163000 ly he explosion of the star took place 163000 years ago. ted range: $163000 \sim 164000$ years $000 \times 3.09 \times 10^{16} / (3 \times 10^8 \times 365 \times 24 \times 3600) = 163305$ $000 \times 206265 \times 1.5 \times 10^{11} / (3 \times 10^8 \times 365 \times 24 \times 3600) = 163516$	1A	Note: 2020 – 1987 = 33 years can be ignored.
	(b)	be mu placed <u>NO M</u>	87A at 50 kpc, being much farther away than 10 pc, would ch brighter (than that corresponding to +2.9) if it were l at 10 pc . <u>ARK awarded without 'placed at 10 pc'</u> (the numerical value of) its absolute magnitude is much	1A	[Absolute magnitude is the apparent brightness of the object at 10 pc.]
			(the numerical value of) its absolute magnitude is much er than +2.9 / the apparent magnitude.	1A 2	
	(c)	1	Take L_S , R_S and T_S to be the luminosity, radius and surface temperature of the Sun respectively, whereas let L_X , R_X and T_X be those of X respectively. By Stefan's law, $L_S = \sigma(4\pi R_S^2)T_S^4$ and $L_X = \sigma(4\pi R_X^2)T_X^4$		
		,	Therefore, $\frac{L_X}{L_S} = \left[\frac{R_X}{R_S}\right]^2 \left[\frac{T_X}{T_S}\right]^4$	1M	
			$40000 = \left[\frac{R_{\rm X}}{R_{\rm S}}\right]^2 [3.1]^4$ $\frac{R_{\rm X}}{R_{\rm S}} = 20.81165 \approx 20.8$	1M	
			R _S	2	
]	Region A. Not a 'red giant' as the temperature of star X is (much) higher than that of the Sun. / Red giants are in region B	1A 1A	Note: red giants are in region <i>B</i> , star <i>X</i> is in fact a blue supergiant.
	(d)	Accord	or <i>R</i> : L ₁ ding to Doppler's effect, <u>gas at <i>R</i> receding</u> from the observer	2 1A 1A	
		while t	tise to red shift (vice versa for <i>P</i>), there is <u>no velocity component for gas at <i>Q</i> (and <i>S</i>) towards from the observer, no Doppler / blue / red shift.</u>	1A 3	

Section B : Atomic World

1. C (%)	2. C (%)	3.B(%)	4. D (%)
5. A (%)	6. A (%)	7.B(%)	8. D (%)

			Solution	Marks	Remarks
2.	(a)	(i)	ultra-violet (UV)	1A 1	
		(ii)	Light (energy) is (transferred to electrons of the cathode) in packets or (whole number of) quanta (i.e. quantized) called photons.	1A 1	
	(b)	(i)	Microammeter reading remains zero, energy <i>E</i> of incident photons remains unchanged, although intensity \uparrow causing more photons incident but no effect on	1A	
			maximum KE of the electrons emitted or on photoemission.	1A 2	
		(ii)	Energy of photon = $\frac{hc}{\lambda}$ = $\frac{(6.63 \times 10^{-34})(3 \times 10^8)}{300 \times 10^{-9}}$ = 6.63×10^{-19} J = 4.14375 (eV) ≈ 4.14 (eV)	1 M	Accept 4.10 (eV) to 4.14 (eV)
			Work function $\Phi = 4.14 - 1.7$ = 2.44375 (eV) \approx 2.44 (eV)	1M 1A 3	e.c.f. Accept 2.40 (eV) to 2.44 (eV)
	(c)	(i)	No. of photoelectrons reaching A in 1 s = $\frac{0.4 \times 10^{-6}}{1.6 \times 10^{-19}} = 2.5 \times 10^{12}$	1A 1	
		(ii)	1.7 - 0.8 = 0.9 (eV) or $4.14 - 2.4 - 0.8 = 0.94$ (eV). Electrons inside cathode <i>C</i> (not on surface) need an amount of energy more than the work function to escape / be emitted from <i>C</i> .		

Section C : Energy and Use of Energy

1.B(%)	2. A (%)	3. D (%)	4. C (%)	
5.A(%)	6.B(%)	7. D (%)	8. A (%)	

	Solution		Marks	Marks Remarks		
(a)			1A 1A for comparing the binding energy per nucleon before and after fission of $^{235}_{92}U$ 1A 1A for more stable after fission 2 2			
(b)	(i)	It represents the energy <u>required</u> to separate all nucleons (protons and neutrons) of uranium-235 to <u>infinity / far apart / separate completely</u> .	1A	Accept: Energy <u>released</u> by combining protons and neutrons (nucleons) into a single nucleus.		
	(ii)	Binding energy (B.E.) of ${}^{235}_{92}$ U nucleus = 1783 MeV B.E. of ${}^{144}_{56}$ Ba nucleus = 8.27 × 144 = 1190.88 MeV B.E. of ${}^{90}_{36}$ Kr nucleus = 8.59 × 90 = 773.1 MeV Hence, energy released in fission = (1190.88 + 773.1) - 1783 = 180.98 (MeV) ≈ 181 (MeV)	1M 1A	1M for calculating the total binding energy of ${}^{144}_{56}$ Ba & ${}^{90}_{36}$ Kr from the binding energy per nucleon Accept: 180 - 181 MeV (2.88 - 2.90) × 10 ⁻¹¹ J		
(c)	(i)	$\frac{\text{Totalenergy released} \times \text{efficiency}}{\text{Power output}}$ = $\frac{(1.30 \times 10^{30} \times 10^{6})(1.6 \times 10^{-19})(0.4)}{500 \times 10^{6}}$ = $1.664 \times 10^{8} \text{ s} \approx 5.28254 \text{ years} \approx 5.28 \text{ years}$ $\frac{(1.30 \times 10^{30})}{931}(1.661 \times 10^{-27})(3 \times 10^{8})^{2}}{500 \times 10^{6}}(0.4) = 5.30 \text{ years}$	1M 1A 2	1M for $\frac{(1.30 \times 10^{30} \times 10^{6})(1.6 \times 10^{-19})}{500 \times 10^{6}}$ Accept: 5.27 – 5.30 years		
	(ii)	The concentration of uranium-235 nuclei will <u>decrease</u> with time and chain <u>reaction cannot be maintained</u> when the concentration is too low.	1A 1			
(d)	(i)	moderator: to <u>slow down</u> the fast <u>neutrons</u> produced in fission.	1A 1			
	(ii)	control rods: to control the rate of nuclear fission / reaction by absorbing the neutrons <u>or</u> for shutting down the reactor in case of emergency.	1A	1A: absorbing neutrons + controlling / slowing down the chain reaction Or absorbing neutrons + shutting down the reactor		

Section D : Medical Physics

1. D (%)	2. C (%)	3. D (%)	4. A (%)
5.B(%)	6. C (%)	7.B(%)	8. A (%)

		Solution		Marks	Remarks	
4.	(a)	X-rays are produced when high-speed electrons strike a heavy metal target (like tungsten).		1A 1		
	(b)	(i)	density of bone is higher / bone contains element(s) with high atomic number / heavy elements like calcium in bone block X-rays. (Accept other reasonable answers.)	1A 1		
		(ii)	$I = I_0 e^{-\mu_{\rm s} t_{\rm s}} = I_0 e^{-0.51 \times 5.6}$ $I = I_0 e^{-\mu_{\rm b} t_{\rm b}} = I_0 e^{-2.46 \times t_{\rm b}}$	1M	Alternative method: $0.51 \times 5.6 = 2.46 \times t_b$	
			$t_{\rm b} = 1.16097561 \text{ cm} \approx 1.2 \text{ cm} (2 \text{ sig. fig.})$	1A2	Accept 1.16 cm to 1.2 cm	
		(iii)	Imaging of the breast only involves soft tissues and X- rays of longer wavelength / lower frequency / less penetrating power are needed <u>or</u> giving better contrast of soft tissues / more sensitive to small changes in density of soft tissues. For structures with bone, X-rays of shorter wavelength / higher frequency / greater penetrating power are needed.	1A 1A 2	Accept less harmful with X-rays of lower energy	
	(c)	(i)	Induce (cause) cancer / heritable mutations / genetically associated diseases. (Accept other reasonable answers.)	1A 1		
		(ii)	A CT scan delivers a 2-D cross-sectional image of the body part by means of multiple exposure (using a rotating X-ray source(s)), equivalent dose is larger due to a relatively longer time of exposure.	1A 1A 2		
		(iii)	cosmic rays / radon gas (from building) / radioactive substances in soil / rock / food or water. (Accept other reasonable answers.)	1A 1		