中學文憑試 卷一甲部 DSE Paper 1 Section A

題 號 Question No.	答 案 Key	題 號 Question No.	答 案 Key
1.	D	26.	С
2.	В	27.	D
3.	А	28.	D
4.	D	29.	С
5.	А	30.	В
6.	С	31.	D
7.	В	32.	В
8.	D	33.	С
9.	В		
10.	А		
11.	В		
12.	А		
13.	С		
14.	С		
15.	А		
16.	С		
17.	В		
18.	А		
19.	D		
20.	А		
21.	D		
22.	А		
23.	А		
24.	С		
25.	В		

註: 括號內數字為答對百分率。

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2019 年香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2019

物理 香港中學文憑考試 試卷一乙 PHYSICS HKDSE PAPER 1B

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之用。本評卷 參考之使用,均受制於閱卷員有關之服務合約條款及閱卷員指引。特別是:

本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之書面批 准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷參考之全部或其部 份。在遵守上述條款之情況下,本局有限 地容許閱卷員可在應屆香港中學文憑考試的 考試成績公布後,將本評卷參考提供任教本科的教師參閱。

在任何情况下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各 閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant service agreement terms and Instructions to Markers. In particular:

The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.

Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2019

2019-DSE-PHY 1B-1

只限閱卷員參閱 FOR MARKERS' USE ONLY

HKDSE Physics

General Marking Instruction

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates may have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *the answer mark* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, answer marks or 'A' marks are awarded for a correct numerical answer with a unit. In case the same unit involved is given incorrectly for more than once in the same question, the 'A' marks thereafter can be awarded even for correct numerical answers without units. If the answer should be in km, then cm and m are considered to be wrong units.
- 3. In a question consisting of several parts each depending on the previous parts, **marks for correct method or substitution** are awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous or for inserting values of appropriate physical quantities into an algebraic expression **irrespective of their order of magnitudes**. However, 'A' marks for the corresponding answers should **NOT** be awarded (unless otherwise specified).
- 4. For the convenience of markers, the marking scheme is written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 5. In cases where a candidate answers more questions than required, the answers to all questions should be marked. However, the excess answer(s) receiving the lowest score(s) will be disregarded in the calculation of the final mark.
- 6. OSM (On-screen marking) marking symbols:

\checkmark	correct point
×	wrong point
=	point to highlight
<	incomplete answer
\wedge	missing point
文	entering text/comment

2019-DSE-PHY 1B-2

只限閱卷員參閱 FOR MARKERS' USE ONLY April 12, 2019

			Solution	Marks	Remarks
1.			1M+1M 1A 3		
		(ii)	More ice is needed to cool the container as it will release heat/thermal energy as well.	1A 1A 2	ReasonMore iceLess ice \checkmark 20 \varkappa 00incomplete10
	(b)	(i)	Conduction: - Foam is a poor conductor (of heat) and it minimizes the transfer of heat/thermal energy from the surroundings to the cool contents/ice cream (inside the bag). <u>OR</u> Convection: - The zipper prevents convection between the hot air outside and the cool contents/ice cream (inside the bag).	1A	Key word: heat / energy One feature + corresponding reason <u>OR</u> Radiation: - The shiny surface inside the bag reduces the transfer of heat/thermal energy from the surroundings to the cool contents/ice cream (inside the bag) through emission of radiation
		(ii)	(Radiation) Make the outer surface (of the bag) shiny.	1A	The answer must be related to the modification of the bag like 'thickening the bag' Adding ice to the bag is NOT accepted
2.	(a)		pV = nRT (100×10 ³)(0.52) = n (8.31)(273+15) $n = 21.727504 \text{ (mol)} \approx 21.7 \text{ (mol)}$	1M 1A 2	Accept: $n = 21 \sim 22 \text{ mol}$
	(b)	(i)	Since $pV = nRT \Rightarrow V = \frac{nRT}{p}$ / volume V of the balloon depends on both T and p, the (fractional) decrease in pressure p (with height) is greater/faster than the (fractional) decrease in temperature T.	1A 1A 2	Accept: volume V decreases as temperature T decreases would be true only if pressure p is constant, however, p decreases with height.
		(ii)	(1) $\frac{pV}{T} = \text{constant}$ $\frac{(100)(0.52)}{(273+15)} = \frac{p(8)}{216}$ p = 4.875 kPa or 4875 Pa	1M 1A 2	Note: $p(8) = 21.7 \times 8.31 \times 216$ p = 4869 Pa
			(2) $p = p_0 e^{-kx}$ 4.875 = 100 $e^{-0.138 x}$ $x = 21.89166726 \text{ (km)} \approx 21.9 \text{ (km)}$	1M 1A 2	e.c.f. from (b)(ii)(1) Accept 21.8 km to 22.0 km

2019-DSE-PHY 1B-3

Provided by dse.life

			Solution	Marks	Remarks
3.	(a)	(i)	(1) $\frac{1}{2}mv^2 = mgh$ $v^2 = 2(9.81)(12)$	1M	
			$v = 15.344054 \text{ m s}^{-1} \approx 15.3 \text{ m s}^{-1}$ ($v = 15.491933 \text{ m s}^{-1} \approx 15.5 \text{ m s}^{-1}$ for $g = 10 \text{ m s}^{-2}$)	1A	Accept: $v = 15 \sim 15.5 \text{ m s}^{-1}$
			$s = \frac{1}{2}gt^2$	1M	
			$12 = \frac{1}{2}(9.81)t^{2}$ $t = 1.564124 \text{ s} \approx 1.56 \text{ s}$ $(t = 1.5491933 \text{ s} \approx 1.55 \text{ s} \text{ for } g = 10 \text{ m s}^{-2})$	1A 2	Accept: $t = 1.5 \sim 1.6 \text{ s}$
		(ii)	F - mg = ma $F = \frac{70 \times (15.3 - 0)}{0.3} + 70 \times 9.81$ = 4266.9793 N \approx 4270 N	1M+1M 1A	$F = ma \qquad 1 M$ $F = ma + mg \qquad 2 M$
		(iii)	$(F = 4314.7845 \text{ N} \approx 4310 \text{ N} \text{ for } g = 10 \text{ m s}^{-2})$ Elastic potential energy	3 1A	Accept: $F = 4180 \sim 4320$ N MUST have the word: 'Elastic'
	(b)	(i)	 (Velocity is too high, hence the force for deceleration is too large.) The life net may be torn. The falling person may be injured. The firemen may not be able to hold the life net tight 	1A	Accept: Elastic energy The answer is related to the consequence due to limitation of any one of the following: (1) the net, (2) the falling person (3) the firemen
			tight.		NOT accept: - The force is too large which exceed the limit of the life net - The life net is not strong enough to withstand the force - The force is too large that the man cannot withstand
		(ii)	There exists a <u>horizontal velocity</u> when a person jumps and the horizontal displacement is very difficult to estimate as it depends on the time of fall, which is usually long.		 1st mark: horizontal velocity / projectile motion 2nd mark: difficult to estimate the horizontal displacement / horizontal direction

2019-DSE-PHY 1B-4

Provided by dse.life

只限閱卷員參閱 FOR MARKERS' USE ONLY April 12, 2019

			Solution	Marks	Remarks
4.	(a)	(i)	Rotation rate = $\frac{\omega}{2\pi} = \frac{5.0}{2\pi}$ = 0.795775 (rev s ⁻¹) ≈ 0.80 (rev s ⁻¹)	1M/1A 1	Accept: $0.79 \sim 0.80$ (rev s ⁻¹)
		(ii)	$\frac{O}{1 - \frac{1}{23.1^{\circ}}}$ 1 m long inextensible	string	
1			$F_{\rm C}$ centripetal force pendulum bob (tension component) of mass 30 g		
			$F_{\rm C}$ correctly indicated.	1A	
			$F_{\rm C} = mr \omega^2$ = (0.03)(1 × cos 23.1°)(5.0) ² = 0.689866 N ≈ 0.690 N (F_{\rm C} = 0.7033402 N ≈ 0.703 N for g = 10 m s ⁻²)	1M 1A 3	$\frac{OR}{T\cos\theta} = F_{C} \text{ and } T\sin\theta = mg \qquad 1M$ $F_{C} = \frac{mg}{\sin\theta}\cos\theta = 0.689866 \text{ N} 1A$ Accept: $F_{C} = 0.70 \text{ N}$
		(iii)	<u>Horizontal component</u> of tension provides the centripetal force, thus tension is <u>larger than</u> the centripetal force. <u>OR</u> $T\cos\theta = F_{\rm C} \Rightarrow T > F_{\rm C}$	1M 1A 2	$T\sin\theta = mg \qquad 1M$ T = 0.750 N $T > F_C \qquad 1A$
	(b)	(i)	The gravitational force is perpendicular to the moon's motion/displacement/velocity, thus no work is done on the moon by this force (k.e. unchanged)	1A 1A 2	
		(ii)	(The claim is incorrect) as, by <u>Newton's third law</u> of motion, gravitational force of the <u>same magnitude</u> (but in opposite direction) is acting on the Earth by the moon.	1A 1A 2	Accept: action and reaction pairs

2019-DSE-PHY 1B-5

只限閱卷員參閱 FOR MARKERS' USE ONLY

2019-DSE-PHY 1B-6

只限閱卷員參閱

FOR MARKERS' USE ONLY

April 12, 2019

2019-DSE-PHY 1B-7

只限閱卷員參閱 FOR MARKERS' USE ONLY

2019-DSE-PHY 1B-8

			Solution	Marks	Remarks
8.	(a)		mains socket Z (L) Y (N) X Y Z	1A	
	(b)	(i)	 If one of the lighting sets/circuits fails, the other (in parallel) can still operate, i.e. both work independently. Both can work at the rated power. Any reasonable answer 	1A	
		(ii)	P = IV (300 + 450) = I(220) $I = 3.409091 \text{ A} \approx 3.41 \text{ A}$ Thus 5 A fuse should be used.	1M 1A 1A 3	1M for substitution The unit of current can be omitted Correct deduction
	(c)	= 0.5 = 11 Cost	rical energy used per day 00 kW × 8 h + 2 kW × 0.5 h + 3 kW × 2 h kW h = \$0.9 / kW h × 11 kW h = \$9.9	1M 1M 1A 3	

只限閱卷員參閱 FOR MARKERS' USE ONLY April 12, 2019

			Solution	Marks	Remarks
9.	(a)	(i)	By Lenz's law, <u>an e.m.f. would be induced</u> such that it opposes <u>the change</u> , i.e. decrease <u>of magnetic flux</u> (into the paper) by driving an induced current (clockwise) in the coil/circuit (complete).	1A	1A for induced e.m.f. 1A for the change of magnetic flux
		(ii)	$N\Delta \Phi = NBA$ = (20)(0.3)(0.005) = 0.03 Wb $\xi = \frac{N\Delta \Phi}{\Delta t} = \frac{0.03}{0.5}$ = 0.06 V (or 60 mV)	1M/1A 1M 1A	Accept equivalent unit : T m ² , V s
	(b)	(i)	The change of (magnetic) flux linkage is double that in (a)(ii), i.e. 0.06 Wb.	1M	e.c.f. from (a)(ii)
		(ii)	Direction of current : PQRS	1A	NOT accept clockwise/anticlockwise
	(c)	(i)	aluminium plate $ \overline{x} - \overline{x} - \overline{x} $ $ \overline{x} - \overline{x} - \overline{x} $	1A 1A 2	Correct position (accept just within the magnetic field) Correct direction (clockwise) with complete circular path inside the aluminium plate
		(ii)	Move/swing to the right initially/momentarily/briefly.	1A 1	

Attachment of 9 (c)(i)

Correct position (accept just within the magnetic field) 1A Correct direction (clockwise) with complete circular path inside the aluminium plate 1A

2019-DSE-PHY 1B-10

只限閱卷員參閱 FOR MARKERS' USE ONLY

Examples:

2019-DSE-PHY 1B-10

只限閱卷員參閱 FOR MARKERS' USE ONLY

只限閱卷員參閱 FOR MARKERS' USE ONLY April 12, 2019

2019-DSE-PHY 1B-10

Provided by dse.life

只限閱卷員參閱 FOR MARKERS' USE ONLY April 12, 2019

			Solution	Marks	Remarks
10.	(a)	(i) (ii)	x = 3 More neutrons are produced in each fission for triggering further fissions, i.e. $x > 1$.	1A 1 1A	Accept: exceed critical mass, suitable concentration of U-235
	(b)	.,	$m = m_0 e^{-kt}$ $k = \frac{\ln 2}{t_{1/2}} = 9.846 \times 10^{-10} \text{ yr}^{-1}$ $0.06 = m_0 e^{-\ln 2 \times \left[\frac{2 \times 10^9}{7.04 \times 10^8}\right]}$ $m_0 = 0.429882832 \text{ (kg)} \approx 0.430 \text{ (kg)}$ $\frac{0.430}{13.556 + 0.430} = 0.03073691 \approx 3.1 \% > 3\%$ Thus natural nuclear fission was possible.	<u>1A</u> 2	<u>OR</u> $0.06 = m_0 \left(\frac{1}{2}\right)^{2 \times 10^9 / 7.04 \times 10^8}$ e.c.f. from (b)(i)
	(c)	<u>or</u> e	rground water might run dry. Energy released by fission drys up the underground water. efore, fission might stop without slow neutrons.	1A 1A 2	

2019-DSE-PHY 1B-11

香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2019 年香港中學文憑考試

HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2019

物理 香港中學文憑考試 試卷二 PHYSICS HKDSE PAPER 2

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之用。本評卷 參考之使用,均受制於閱卷員有關之服務合約條款及閱卷員指引。特別是:

本局擁有並保留本評卷參考的所有財產權利(包括知識產權)。在未獲本局之書面批 准下,閱卷員均不得複製、發表、透露、提供、使用或經營本評卷參考之全部或其部 份。在遵守上述條款之情況下,本局有限 地容許閱卷員可在應屆香港中學文憑考試的 考試成績公布後,將本評卷參考提供任教本科的教師參閱。

在任何情況下,均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各 閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers. The use of this marking scheme is subject to the relevant service agreement terms and Instructions to Markers. In particular:

The Authority retains all proprietary rights (including intellectual property rights) in this marking scheme. This marking scheme, whether in whole or in part, must not be copied, published, disclosed, made available, used or dealt in without the prior written approval of the Authority. Subject to compliance with the foregoing, a limited permission is granted to markers to share this marking scheme, after release of examination results of the current HKDSE examination, with teachers who are teaching the same subject.

Under no circumstances should students be given access to this marking scheme or any part of it. The Authority is counting on the co-operation of markers/teachers in this regard.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2019

2019-DSE-PHY 2-1

只限閱卷員參閱 FOR MARKERS' USE ONLY

只限閱卷員參閱

FOR MARKERS' USE ONLY

HKDSE Physics

General Marking Instruction

- 1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates may have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits *the answer mark* allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. In the marking scheme, answer marks or 'A' marks are awarded for a correct numerical answer with a unit. In case the same unit involved is given incorrectly for more than once in answering the same question, the 'A' marks thereafter can be awarded even for correct numerical answers without units. If the answer should be in km, then cm and m are considered to be wrong units.
- 3. In a question consisting of several parts each depending on the previous parts, method marks or 'M' marks are awarded to substitutions or methods correctly deduced from previous numerical answers, even if these answers are erroneous or appropriate physical quantities of incorrect order of magnitudes are inserted into an algebraic expression. However, 'A' marks for the corresponding answers should **NOT** be awarded (unless otherwise specified).
- 4. For the convenience of markers, the marking scheme is written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 5. In cases where a candidate answers more questions than required, the answers to all questions should be marked. However, the excess answer(s) receiving the lowest score(s) will be disregarded in the calculation of the final mark.
- 6. OSM (On-screen marking) marking symbols:

\checkmark	correct point
×	wrong point
=	point to highlight
<	incomplete answer
\wedge	missing point
文	entering text/comment

Section A : Astronomy and Space Science

1. D (%)	2.B(%)	3.B(%)	4. A (%)
5. D (%)	6. A (%)	7. C (%)	8. C (%)

			Solution	Marks	Remarks
1.	(a)	(i)	$\frac{1}{2}m(v_{\rm B}^2 - v_{\rm A}^2) = GMm(\frac{1}{r_{\rm B}} - \frac{1}{r_{\rm A}})$ $v_{\rm B}^2 - 8.02^2 = 2(4 \times 10^5)(\frac{1}{6400 + 400} - \frac{1}{6400})$ $v_{\rm B} = 7.547679036 \text{ km s}^{-1} \approx 7.55 \text{ km s}^{-1}$	1M 1A	Correct sub. for $v_{\rm A}$, $r_{\rm A}$ and $r_{\rm B}$
		(ii)	$T = \frac{2\pi a}{v} \text{and} \frac{GMm}{a^2} = \frac{mv^2}{a}$ $\therefore T^2 = \frac{4\pi^2 a^3}{GM}$ $T = 2\pi \sqrt{\frac{a^3}{GM}} \text{where } a = \frac{r_A + r_B}{2} \text{for elliptical orbit}$	1M	Correct expression/derivation for Kepler's 3 rd law
			$a = \frac{r_A + r_B}{2} = \frac{(6400) + (400 + 6400)}{2} = 6600 \text{ km}$ $T_{AB} = \frac{T}{2} = \frac{1}{2} \left\{ 2\pi \sqrt{\frac{6600^3}{4 \times 10^5}} \right\} = 2663.3962 \text{ s} \approx 2663 \text{ s}$	1M 2	Correct semi-major axis
		(iii)	 The <u>gravitational force</u> acting on the astronaut is (all) used <u>for accelerating</u> the astronaut. The astronaut and the spacecraft are under the <u>same acceleration due to gravity</u>, i.e. free falling. The <u>gravitational force</u> (weight) acting on the astronaut is (all) used <u>for centripetal force</u>. 	1A 1	NOT accept: -They have the same acceleration - The acceleration of gravity is used for centripetal force - No normal reaction to the astronaut in the spacecraft
	(b)	(i)	$\theta = \frac{\frac{5570}{2} - 2663}{5570} \times 360^{\circ}$ = 7.8850987° \approx 7.89° Accept : 7.8° \approx 7.9°	1M 1A 2	$\frac{OR}{OR} \frac{2663}{5570} = \frac{180^{\circ} - \theta}{360^{\circ}}$ $\frac{OR}{7.67} \frac{2\pi (6800)}{7.67} \times \frac{180^{\circ} - \theta}{360^{\circ}} = 2663$ $\frac{OR}{OR} \theta = \omega \Delta t = \frac{2\pi}{5570} (\frac{5570}{2} - 2663)$ $= (1.128 \times 10^{-3} \text{ rad s}^{-1})(122 \text{ s})$
		(ii)	If the launching speed at A is slightly higher (or lower), the length of the elliptical orbit's major axis will be longer (or shorter), i.e. the orbit changed. Thus the two orbits will no longer touch at B .	1A 1A 1A 2	Accept: The shape of the spacecraft's orbit will be changed. Thus the two orbits cannot meet at <i>B</i> .
		(iii)	The spacecraft has to fire its rocket briefly at <i>B</i> so as to boost up its speed to the required speed. (i.e. from 7.55 km s ⁻¹ to 7.67 km s ⁻¹)	1A	E.c.f. from $a(i)$,. if it is greater than 7.67 km s ⁻¹ , then the spacecraft should be slowed down by reverse firing of rocket.

Section B : Atomic World

1. C (%)	2. D (%)	3. A (%)	4.B(%)
5. A (%)	6. D (%)	7.B(%)	8. A (%)

			Solution	Marks	Remarks
2.	(a)	(i)	Most alpha particles passed (straight) through the foil, some were only slightly deflected.	1A	If the candidate does not show a difference in quantity of the particles in these two cases, at most 1A is
			A <u>small number</u> of alpha particles were scattered at <u>large</u> <u>angles</u> and a few even rebounded backward.	1A 2	awarded.
		(ii)	Since the charge and mass of an atom in Thomson's atomic model are evenly distributed, the alpha particles <u>should not</u> be deflected (by large angles).	1A 1	Accept explanation for the expt. result supporting Rutherford model (Mass and charge concentrated at a small nucleus so that alpha particles can be deflected / deflected by large angles.)
	(b)	(i)	The electron is bounded by the nucleus, i.e. energy/work must be supplied in order to remove the electron from the atom/ionize the atom. (either)	1A	NOT accept using PE instead of the total energy. NOT accept E_n is lower than E_{∞} and $E_{\infty} = 0$ so $E_n < 0$.
			An electron at E_{∞} is not bounded by the attractive force from the nucleus, i.e. free.	1A 2	Accept the electron is free / is not bounded / escapes / is infinite from the atom / nucleus / ionized. NOT accept: the electron is delocalized.
		(ii)	$\Delta E = E_7 - E_1$ = -13.6 $\left(\frac{1}{8^2} - \frac{1}{2^2}\right)$ = 3.1875 eV \approx 3.1875 \times (1.60 \times 10^{-19}) J		Accept $\pm 13.6 \left(\frac{1}{8^2} - \frac{1}{2^2} \right)$ NOT accept $13.6 \left(\frac{1}{8^2} + \frac{1}{2^2} \right)$.
			$\lambda = \frac{hc}{\Delta E} = \frac{(6.63 \times 10^{-34})(3 \times 10^8)}{3.1875 \times (1.60 \times 10^{-19})}$	1M	Need to check substitution of <i>h</i> , <i>c</i> and ΔE for 1M. 1.60 × 10 ⁻¹⁹ C not required for 1M. Accept using de Broglie formula to
			$= 3.9 \times 10^{-7} \text{ m} \approx 390 \text{ nm}$	1A 3	Find the wavelength: $\Delta E = mc^2$ and $\lambda = h/p = h/mc$ $\therefore \lambda = hc/\Delta E \dots$
		(iii)	$E_3 = -\frac{13.6}{4^2} = -0.85 \text{eV}$	1M	Accept $E_3 = +\frac{13.6}{4^2}$ for 1M. I.E. = $E_3 = 0.85$ eV \Rightarrow 1M only
			Energy required = $0 - (-0.85)$ = 0.85eV or 1.36 × 10 ⁻¹⁹ J	1A	I.E. $=\frac{13.6}{4^2} = 0.85 \text{ eV} \Rightarrow 1\text{M} + 1\text{A}$ NOT accept I.E. $=-\frac{13.6}{3^2}$ for 1M.
				2	NOT accept I.E. = -0.85 eV for 1A.

Section C : Energy and Use of Energy

1. B (%)	2.B(%)	3. A (%)	4. D (%)
5. D (%)	6. A (%)	7. C (%)	8. C (%)

			Solution	Marks	Remarks
3.	(a)	(i) (ii)	The radiant power coming from the Sun on unit area is given by $P_0 = \frac{P_S}{4\pi R_0^2} = \frac{3.86 \times 10^{26} \text{ W}}{4\pi (1.50 \times 10^{11})^2 \text{ m}^2}$ $= 1.365195734 \times 10^3 \text{ W m}^{-2} \approx 1365 \text{ W m}^{-2}$ Loss due to absorption by the atmosphere.	1M 1A 2 1A	Note: The total (spherical) area irradiated at the Earth's orbit is $4\pi R_0^2 = 2.8274334 \times 10^{23} \text{ m}^2$ Correct sub. of P_s and R_0 Accept: 1360 – 1370 W m ⁻² Accept: absorption / reflection / scattering by ozone layer OR
		(11)	Loss due to <u>absorption</u> by the <u>atmosphere</u> .	1	some are blocked by the atmosphere
	(b)	(i)	Solar energy \rightarrow electrical energy \rightarrow chemical energy 1A only for solar energy \rightarrow chemical energy	1A 1A 2	Accept: light energy → electric energy NOT accept:
		(ii)	$\eta = \frac{\text{power output}}{\text{solar power input}} \times 100\%$ $= \frac{300}{1000 \times 1.65} \times 100\%$ $= 18.1818 \% \approx 18.2 \%$	1M 1A2	light and heat energy \rightarrow electrical energy light \rightarrow electricity Correct sub. of input & output powers Accept: 18.0 – 18.2 %
		(iii)	$t = \frac{\text{total energy stored}}{\text{power input}}$ $= \frac{100 \text{ Ah} \times 12 \text{ V}}{300 \text{ W} \times 0.8}$ $= 5 \text{ hours}$	1M 1A	1M for $\frac{100 \text{ Ah} \times 12 \text{ V}}{300 \text{ W}}$ 1A for 5 h / 300 min / 18000 s
			The sun rays are (always) normal to the panel <u>Or</u> Clear sky / not cloudy.	1A 3	3

Section D : Medical Physics

1. C (%)	2.B(%)	3. A (%)	4. D (%)
5. A (%)	6. C (%)	7. D (%)	8.B(%)

			Solution	Marks	Remarks
4.	(a)	(i)	$\sin c = \frac{1.45}{1.5}$ $c = 75.2^{\circ}$	1A 1	
		(ii)	For α larger than α_{max} , subsequently the light ray incident angle at the core-cladding boundary would be less than <i>c</i> , thus total internal reflection fails to occur. For α less than α_{max} , subsequently the light ray incident angle at the core-cladding boundary would be greater than <i>c</i> , thus total internal reflection occurs. Correct description, but without mentioning core-cladding boundary		When $\alpha > \alpha_{max}$, incident angle at core-cladding boundary $< c$, no total internal reflection occurs. When $\alpha < \alpha_{max}$, incident angle at core-cladding boundary $> c$, total internal reflection occurs. Note: $\alpha_{max} = 22.6^{\circ}$
		(iii)	 When comparing to X-rays radiographic imaging: Advantage: direct view of the stomach lining / inside / wall perform biopsy (getting a tissue) during examination if necessary without exposure to ionizing radiation by X-rays Disadvantage: requires fasting (for a few hours) prior to examination endoscopy is an invasive procedure <u>or</u> having a risk of causing patient internal bleeding or discomfort / unwell anesthetic may be needed X-rays imaging is non-invasive 	1A E	NOT accept: Endoscope does not 'radioactive' / is clear / has higher resolution / produce real-time image / produce colour image. Barium meal enables visualization of soft tissue using X-ray imaging. In such case, soft tissue has low contrast in X-rays radiographic image is not accepted as a correct answer.
	(b)	(i)	$Z_{\rm B} = \rho c$ 7.15 × 10 ⁶ = ρ (3780) ρ = 1891.534392 kg m ⁻³ ≈ 1890 kg m ⁻³	2 1M/1A 1	Accept: $\rho = 1890 \sim 1900 \text{ kg m}^{-3}$
		(ii)	$\alpha_{\rm b} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$ $= \frac{(7.15 - 1.65)^2}{(7.15 + 1.65)^2}$ $\alpha_{\rm b} = \frac{I}{I_0} = 0.390625 \approx 0.391 = 39.1\%$	1M 1A 2	Correct sub., the powers of Z's can be omitted. Accept: $\alpha_{\rm b} = \left(\frac{5.5}{8.8}\right)^2 = \frac{25}{64}$ Accept: 0.39 ~ 0.391
2010 5	D-DSE	(iii) PHY 2-	The <u>difference in acoustic impedances</u> of a muscle-bone boundary is greater than that of a muscle-fat boundary (<u>or</u> vice versa), therefore giving a <u>larger intensity reflection</u> <u>coefficient</u> α_b (~39%) / <u>larger intensity reflection ratio</u> (<u>or</u> vice versa), <u>so more clear / easier to be distinguished</u> .	1A 1A	Accept: $\alpha_{(muscle-fat)} = 0.00859 = 0.86\%$ as a supporting statement that $\alpha_{(muscle-fat)}$ is less than $\alpha_{(muscle-bone)}$ The underlined statement repeats the question stem, hence NOT accepted.

只限閱卷員參閱	
---------	--

2