中學文憑試 卷一甲部

DSE Paper 1 Section A

註：括號內數字為答對百分率。
Note：Figures in brackets indicate the percentages of candidates choosing the correct answers．

2019 年香港中學文憑考試

HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2019

物理 香港中學文憑考試 試卷一乙

PHYSICS HKDSE PAPER 1B

本評卷參考乃香港考試及評核局專為今年本科考試而編寫，供閱卷員參考之用。本評卷
參考之使用，均受制於閱卷員有關之服務合約條款及閱卷員指引。特別是：
－本局擁有並保留本評卷參考的所有財產權利（包括知識產權）。在未獲本局之書面批准下，閱卷員均不得複製，發表，透露，提供，使用或經營本評卷參考之全部或其部份。在遵守上述條款之情況下，本局有限 地容許閱卷員可在應屆香港中學文憑考試的考試成績公布後，將本評卷參考提供任教本科的教師參閱。
－在任何情況下，均不得容許本評卷參考之全部或其部份落入學生手中。本局籲請各閱卷員／教師通力合作，堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers．The use of this marking scheme is subject to the relevant service agreement terms and Instructions to Markers．In particular：
－The Authority retains all proprietary rights（including intellectual property rights）in this marking scheme．This marking scheme，whether in whole or in part，must not be copied，published，disclosed， made available，used or dealt in without the prior written approval of the Authority．Subject to compliance with the foregoing，a limited permission is granted to markers to share this marking scheme， after release of examination results of the current HKDSE examination，with teachers who are teaching the same subject．
－Under no circumstances should students be given access to this marking scheme or any part of it． The Authority is counting on the co－operation of markers／teachers in this regard．

只限閲卷員參閱
 HKDSE Physics

General Marking Instruction

1．It is very important that all markers should adhere as closely as possible to the marking scheme．In many cases， however，candidates may have obtained a correct answer by an alternative method not specified in the marking scheme．In general，a correct answer merits the answer mark allocated to that part，unless a particular method has been specified in the question．Markers should be patient in marking alternative solutions not specified in the marking scheme．

2．In the marking scheme，answer marks or＇A＇marks are awarded for a correct numerical answer with a unit．In case the same unit involved is given incorrectly for more than once in the same question，the＇A＇marks thereafter can be awarded even for correct numerical answers without units．If the answer should be in km ，then cm and m are considered to be wrong units．

3．In a question consisting of several parts each depending on the previous parts，marks for correct method or substitution are awarded to steps or methods correctly deduced from previous answers，even if these answers are erroneous or for inserting values of appropriate physical quantities into an algebraic expression irrespective of their order of magnitudes．However，＇A＇marks for the corresponding answers should NOT be awarded（unless otherwise specified）．

4．For the convenience of markers，the marking scheme is written as detailed as possible．However，it is still likely that candidates would not present their solution in the same explicit manner，e．g．some steps would either be omitted or stated implicitly．In such cases，markers should exercise their discretion in marking candidates＇work．In general， marks for a certain step should be awarded if candidates＇solution indicated that the relevant concept／technique had been used．

5．In cases where a candidate answers more questions than required，the answers to all questions should be marked． However，the excess answer（s）receiving the lowest score（s）will be disregarded in the calculation of the final mark．

6．OSM（On－screen marking）marking symbols：

\checkmark	correct point
\times	wrong point
$=$	point to highlight
$\swarrow---$	incomplete answer
\wedge	missing point
\times 文	entering text／comment

FOR MARKERS＇USE ONLY

	Solution	Marks	Remarks
4．（a）（i） $\begin{aligned} \text { Rotation rate } & =\frac{\omega}{2 \pi}=\frac{5.0}{2 \pi} \\ & =0.795775\left(\mathrm{rev} \mathrm{~s}^{-1}\right) \approx 0.80\left(\mathrm{rev} \mathrm{~s}^{-1}\right) \end{aligned}$ （ii） centripetal force （tension component） pendulum bob of mass 30 g F_{C} correctly indicated． $\begin{aligned} F_{\mathrm{C}} & =m r \omega^{2} \\ & =(0.03)\left(1 \times \cos 23.1^{\circ}\right)(5.0)^{2} \\ & =0.689866 \mathrm{~N} \approx 0.690 \mathrm{~N} \\ \left(F_{\mathrm{C}}\right. & \left.=0.7033402 \mathrm{~N} \approx 0.703 \mathrm{~N} \text { for } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$ （iii）Horizontal component of tension provides the centripetal force，thus tension is larger than the centripetal force． OR $T \cos \theta=F_{\mathrm{C}} \Rightarrow T>F_{\mathrm{C}}$ （b）（i）The gravitational force is perpendicular to the moon＇s motion／displacement／velocity， thus no work is done on the moon by this force（k．e． unchanged） （ii）（The claim is incorrect）as，by Newton＇s third law of motion，gravitational force of the same magnitude（but in opposite direction）is acting on the Earth by the moon．		1M／1A	Accept： $0.79 \sim 0.80$（rev s ${ }^{-1}$ ）
		string	
		$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	$\frac{\mathrm{OR}}{T \cos \theta=F_{\mathrm{C}} \text { and } T \sin \theta=m g} \begin{array}{ll} \\ F_{\mathrm{C}}=\frac{m g}{\sin \theta} \cos \theta=0.689866 \mathrm{~N} & 1 \mathrm{M} \\ \text { Accept：} F_{\mathrm{C}}=0.70 \mathrm{~N}\end{array}$
		$\bigcirc 3$	
		1 M 1 A	$\begin{array}{ll} T \sin \theta=m g & 1 \mathrm{M} \\ T=0.750 \mathrm{~N} & \\ T>F_{\mathrm{C}} & 1 \mathrm{~A} \end{array}$
		1 A 1 A 	
		1 A 1 A	Accept：action and reaction pairs

Solution	Marks	Remarks
（a） Close the switch and record corresponding V and R readings Adjust the resistance R to lower／other value（s）and repeat the experiment Precaution： －First set the variable resistor to its maximum／a large］ value －Open the switch after each measurement －Any reasonable answer （b）Terminal voltage V delivered increases with increasing（loading） resistance R（or graphical representation） $V=\xi \frac{R}{R+r} \quad \underline{\text { OR }} \quad V=\xi-\frac{\xi}{R+r} r$	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$ 1A 1A 1A 1A 1A	Correct circuit with correct symbol Correct polarity Alternative circuit NOT accept Change of apparatus e．g． Using thicker connecting wires etc． Accept NOT accept V is directly proportional to R V varies linearly with R

Attachment of 9 （c）（i）

Correct position（accept just within the magnetic field） $\mathbf{1 A}$
Correct direction（clockwise）with complete circular path inside the aluminium plate $\mathbf{1 A}$

FOR MARKERS＇USE ONLY

Examples：

	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 1 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$
$\underbrace{x}_{x} x_{x}^{x}$	$\begin{aligned} & \hline 0 \\ & 1 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
	$\begin{aligned} & \hline \text { 1A } \\ & 0 \end{aligned}$		$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$
	$\begin{aligned} & 0 \\ & 1 \mathrm{~A} \\ & \\ & \\ & 0 \\ & 0 \end{aligned}$		

香港考試及評核局
 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2019 年香港中學文憑考試
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2019

物理 香港中學文憑考試 試卷二
 PHYSICS HKDSE PAPER 2

本評卷參考乃香港考試及評核局專為今年本科考試而編寫，供閱卷員參考之用。本評卷參考之使用，均受制於閲卷員有關之服務合約條款及閲卷員指引。特別是：
－本局擁有並保留本評卷參考的所有財產權利（包括知識產權）。在未獲本局之書面批准下，閱卷員均不得複製，發表，透露，提供，使用或經營本評卷參考之全部或其部份。在遵守上述條款之情況下，本局有限 地容許閱卷員可在應屆香港中學文憑考試的考試成績公布後，將本評卷參考提供任教本科的教師參閱。
－在任何情況下，均不得容許本評卷參考之全部或其部份落入學生手中。本局䧻請各閱卷員／教師通力合作，堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for the reference of markers．The use of this marking scheme is subject to the relevant service agreement terms and Instructions to Markers．In particular：
－The Authority retains all proprietary rights（including intellectual property rights）in this marking scheme．This marking scheme，whether in whole or in part，must not be copied，published，disclosed， made available，used or dealt in without the prior written approval of the Authority．Subject to compliance with the foregoing，a limited permission is granted to markers to share this marking scheme， after release of examination results of the current HKDSE examination，with teachers who are teaching the same subject．
－Under no circumstances should students be given access to this marking scheme or any part of it． The Authority is counting on the co－operation of markers／teachers in this regard．

HKDSE Physics

General Marking Instruction

1．It is very important that all markers should adhere as closely as possible to the marking scheme．In many cases， however，candidates may have obtained a correct answer by an alternative method not specified in the marking scheme．In general，a correct answer merits the answer mark allocated to that part，unless a particular method has been specified in the question．Markers should be patient in marking alternative solutions not specified in the marking scheme．

2．In the marking scheme，answer marks or＇A＇marks are awarded for a correct numerical answer with a unit．In case the same unit involved is given incorrectly for more than once in answering the same question，the＇A＇marks thereafter can be awarded even for correct numerical answers without units．If the answer should be in km ，then cm and m are considered to be wrong units．

3．In a question consisting of several parts each depending on the previous parts，method marks or＇ M ＇marks are awarded to substitutions or methods correctly deduced from previous numerical answers，even if these answers are erroneous or appropriate physical quantities of incorrect order of magnitudes are inserted into an algebraic expression． However，＇A＇marks for the corresponding answers should NOT be awarded（unless otherwise specified）．

4．For the convenience of markers，the marking scheme is written as detailed as possible．However，it is still likely that candidates would not present their solution in the same explicit manner，e．g．some steps would either be omitted or stated implicitly．In such cases，markers should exercise their discretion in marking candidates＇work．In general， marks for a certain step should be awarded if candidates＇solution indicated that the relevant concept／technique had been used．

5．In cases where a candidate answers more questions than required，the answers to all questions should be marked． However，the excess answer（s）receiving the lowest score（s）will be disregarded in the calculation of the final mark．

6．OSM（On－screen marking）marking symbols：

\checkmark	correct point
\times	wrong point
$=$	point to highlight
$\swarrow---$	incomplete answer
\wedge	missing point
\times 文	entering text／comment

Section A：Astronomy and Space Science

1．D（\％）	2．B（\％）	3．B（\％）	4．A（\％）
5．D（\％）	6．A（\％）	7．C（\％）	8．C（\％）

Solution			Marks	Remarks
1．（a）（i） $\begin{aligned} & \frac{1}{2} m\left(v_{\mathrm{B}}^{2}-v_{\mathrm{A}}^{2}\right)=\operatorname{GMm}\left(\frac{1}{r_{\mathrm{B}}}-\frac{1}{r_{\mathrm{A}}}\right) \\ & v_{\mathrm{B}}^{2}-8.02^{2}=2\left(4 \times 10^{5}\right)\left(\frac{1}{6400+400}-\frac{1}{6400}\right) \\ & v_{\mathrm{B}}=7.547679036 \mathrm{~km} \mathrm{~s}^{-1} \approx 7.55 \mathrm{~km} \mathrm{~s}^{-1} \end{aligned}$ （ii） $\begin{aligned} & T=\frac{2 \pi a}{v} \quad \text { and } \quad \frac{G M m}{a^{2}}=\frac{m v^{2}}{a} \\ & \therefore T^{2}=\frac{4 \pi^{2} a^{3}}{G M} \\ & T=2 \pi \sqrt{\frac{a^{3}}{G M}} \quad \text { where } a \quad=\frac{r_{A}+r_{B}}{2} \quad \text { for elliptical orbit } \\ & a=\frac{r_{A}+r_{B}}{2}=\frac{(6400)+(400+6400)}{2}=6600 \mathrm{~km} \\ & T_{A B}=\frac{T}{2}=\frac{1}{2}\left\{2 \pi \sqrt{\frac{6600^{3}}{4 \times 10^{5}}}\right\}=2663.3962 \mathrm{~s} \approx 2663 \mathrm{~s} \end{aligned}$ （iii）－The gravitational force acting on the astronaut is （all）used for accelerating the astronaut． －The astronaut and the spacecraft are under the same acceleration due to gravity，i．e．free falling． －The gravitational force（weight）acting on the astronaut is（all）used for centripetal force． （b）（i） $\begin{aligned} \theta & =\frac{\frac{5570}{2}-2663}{5570} \times 360^{\circ} \\ & =7.8850987^{\circ} \approx 7.89^{\circ} \end{aligned}$ Accept ： $7.8^{\circ} \sim 7.9^{\circ}$ （ii）If the launching speed at A is slightly higher（or lower）， the length of the elliptical orbit＇s major axis will be longer （or shorter），i．e．the orbit changed． Thus the two orbits will no longer touch at B ． （iii）The spacecraft has to fire its rocket briefly at B so as to boost up its speed to the required speed． （i．e．from $7.55 \mathrm{~km} \mathrm{~s}^{-1}$ to $7.67 \mathrm{~km} \mathrm{~s}^{-1}$ ）				Correct sub．for $v_{\mathrm{A}}, r_{\mathrm{A}}$ and r_{B} Correct expression／derivation for Kepler＇s 3 ${ }^{\text {rd }}$ law Correct semi－major axis
			1A	NOT accept： －They have the same acceleration －The acceleration of gravity is used for centripetal force －No normal reaction to the astronaut in the spacecraft
			1 M 1 A	$\begin{aligned} & \text { OR } \frac{2663}{5570}=\frac{180^{\circ}-\theta}{360^{\circ}} \\ & \text { OR } \frac{2 \pi(6800)}{7.67} \times \frac{180^{\circ}-\theta}{360^{\circ}}=2663 \\ & \underline{\text { OR } \theta} \theta=\omega \Delta t=\frac{2 \pi}{5570}\left(\frac{5570}{2}-2663\right) \\ & \quad=\left(1.128 \times 10^{-3} \mathrm{rad} \mathrm{~s}^{-1}\right)(122 \mathrm{~s}) \end{aligned}$
			1 A 1 A	Accept： The shape of the spacecraft＇s orbit will be changed．Thus the two orbits cannot meet at B ．
			1 A	E．c．f．from a（i），．if it is greater than $7.67 \mathrm{~km} \mathrm{~s}^{-1}$ ，then the spacecraft should be slowed down by reverse firing of rocket．

Section B ：Atomic World

1．C（\％）	2．D（\％）	3．A（\％）	4．B（\％）
5．A（\％）	6．D（\％）	7．B（\％）	8．A（\％）

Section C ：Energy and Use of Energy

1．B（\％）	2．B（\％）	3．A（\％）	4．D（\％）
5．D（\％）	6．A（\％）	7．C（\％）	8．C（\％）

Solution	Marks	Remarks
3．（a）（i）The radiant power coming from the Sun on unit area is given by $\begin{aligned} P_{0}=\frac{P_{\mathrm{S}}}{4 \pi R_{0}^{2}} & =\frac{3.86 \times 10^{26} \mathrm{~W}}{4 \pi\left(1.50 \times 10^{11}\right)^{2} \mathrm{~m}^{2}} \\ & =1.365195734 \times 10^{3} \mathrm{~W} \mathrm{~m}^{-2} \approx 1365 \mathrm{~W} \mathrm{~m}^{-2} \end{aligned}$ （ii）Loss due to absorption by the atmosphere．		Note：The total（spherical）area irradiated at the Earth＇s orbit is $4 \pi R_{0}{ }^{2}=2.8274334 \times 10^{23} \mathrm{~m}^{2}$ Correct sub．of P_{S} and R_{0} Accept： $1360-1370 \mathrm{~W} \mathrm{~m}^{-2}$ Accept： absorption／reflection／ scattering by ozone layer OR some are blocked by the atmosphere
（b）（i）Solar energy \rightarrow electrical energy \rightarrow chemical energy 1A only for solar energy \rightarrow chemical energy （ii） $\eta=\frac{\text { power output }}{\text { solar power input }} \times 100 \%$		Accept： light energy \rightarrow electric energy NOT accept： light and heat energy \rightarrow electrical light \rightarrow electricity
$\begin{aligned} & =\frac{300}{1000 \times 1.65} \times 100 \% \\ & =18.1818 \% \approx 18.2 \% \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \mathrm{M} \\ 1 \mathrm{~A}-2 \\ \hline \end{array}$	Correct sub．of input \＆output powers Accept： 18.0 － 18.2 \％
$\text { (iii) } \begin{aligned} t & =\frac{\text { total energy stored }}{\text { power input }} \\ & =\frac{100 \mathrm{Ah} \times 12 \mathrm{~V}}{300 \mathrm{~W} \times 0.8} \\ & =5 \text { hours } \end{aligned}$	1M 1A	1 M for $\frac{100 \mathrm{Ah} \times 12 \mathrm{~V}}{300 \mathrm{~W}}$ 1 A for $5 \mathrm{~h} / 300 \mathrm{~min} / 18000 \mathrm{~s}$
The sun rays are（always）normal to the panel Or Clear sky／not cloudy．	1A 3	

Section D ：Medical Physics

1．C（\％）	2．B（\％）	3．A（\％）	4．D（\％）
5．A（\％）	6．C（\％）	7．D（\％）	8．B（\％）

