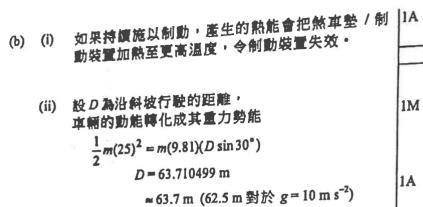

1 熱和氣體

1. DSE 2018, Q1

2. DSE 2018, Q2*

(a)
$$n = \frac{pV}{RT} \propto pV$$
 (T 為 恆定)
$$\frac{n_A}{n_B} = \frac{(p)(3V)}{(2p)(2V)}$$
 $n_A = 0.75 \times 0.80 \text{ mol}$
 $= 0.60 \text{ (mol)}$


1A

$$\underline{\mathbb{R}} (2p)(2V) = 0.8RT$$
 $pV = 0.2RT$
 $p(3V) = nRT$
 $n = 3 \times 0.2 = 0.6 \text{ (mol)}$

(ii) 當開關閥開通,因分子從容器 B (淨)流向 A,容 IA 器 A 內氣體分子的數目增加。 氣體分子與容器壁碰撞更頻繁 / 頻率增加,壓強 IA 因此而增加。

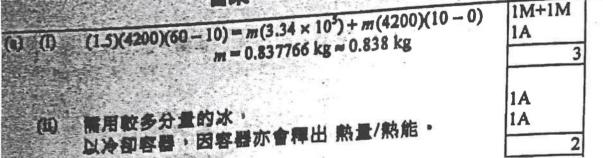
3. DSE 2018, Q3

	香茶 # # # # # # # # # # # # # # # # # # #	IA	
(a)	查案 如果超過了車輛的最大負荷。倘所提供的摩擦力保持 不變。制動距離便會增加。 在緊急情況時車輛不能及時停下來。(發生危險)。	1A	
	另解: 於相同距離內制動車輛需更大的摩擦,倘制動裝置不 於相同距離內制動車輛需更大的摩擦,倘制動裝置不 能提供相應的摩擦力,便會導致意外。	1A 1A	
	能提供相應的摩擦力,便管導致急力	•	_2

m (62.5 m 對於 g = 10 m s ⁻²)	1A
	1M
81 sin 30°) <i>D</i>	1A

或車輛以其動能對抗車輛重量 沿斜坡的分量:

$$\frac{1}{2}mv^2 = mg\sin\theta \times D$$


車輛的質量=m

註: D sin 30° = 31.8552 m

(或 31.25 m 對於 g = 10 m s⁻²)

接受 D=62.0 m至64.0 m

4. DSE 2019, Q1

個題: (b) (l) · 發泡聚乙烯是不良 (的熱) 傳導體, 可盡 量減少從環境傳遞到 (袋內) 冷凍物品 / 雪糕的 熱量/熟能。

辐射:

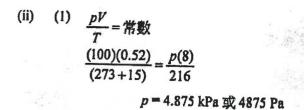
- 光亮 (內) 面可減少熱量 / 熱能從環境以 輻射發射的模式傳遞到 (袋内) 冷凍物品 / 蛋糕 •

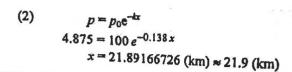
對流:

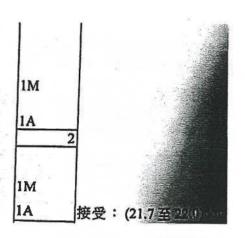
- 拉鏈阻止外界熱空氣和(袋內)冷凍物品 / 雪糕 産生對流・
- (輻射:)使(袋的)外表面光亮。
- 5. DSE 2019, Q2*
- pV = nRT(a) $(100 \times 10^3)(0.52) = n (8.31)(273+15)$ $n = 21.727504 \text{ (mol)} \approx 21.7 \text{ (mol)}$
- 由於 $pV = nRT \Rightarrow V = \frac{nRT}{l}$ (b) (i) 無球體積 V取決於 T和p・ 壓強 p (隨離地面高度增加) 之減小 (百分比), 比相應的溫度 T之減小 (百分比) 更大 / 更急。

1A

任何


一項


1A


註:對流在此為較低效的熟傷 遞過程,因容糕周圍密度較高 的凍空無是處於外界熱空氣之

1M 接受: (21.0至22.0) mol

接受: **1A** 只有當壓強 p 保持不變時 n 體 積 V 才會隨溫度 T 下降而減 小,但壓強 p 隨離地面高度增加 1A 而减小。

6. DSE 2020, Q1

(a) 設混合物的末溫度為 T。 (5×0.02)×3300×(T-4)=0.60×4200×(96-T) T=85.347368℃≈85.3℃

| 1M | 1A | 接受:85.0 ℃至85.4 ℃

- (b) (i) 補償/平衡 (容器和所盛碧的湯) 散失至周圍環境 1A 的熱。
- (ii) $P \times 10 \times 60 = 2000 \times 9 + 16 \times 4200 \times 9$ $P = 1038 \text{ W} \approx 1040 \text{ W}$

1M+1M 假設: 1A 電熱器的功率=熱(從容器和 湯)散失至周闡環境的率

- (iii) 小於9℃。 因為湯(及容器)的溫度下降,(與周圍環境的)溫 度差距亦隨之減少,熱散失率因而減少。
- 7. DSE 2020, Q2
- (a) (i)

高壓蒸汽 一(237°C, 3.10×10°Pa)

圓柱形 管道 正確標示 Fp

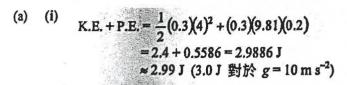
- (ii) $F_P = (3.10 \times 10^6 1.0 \times 10^5) \times 0.67$ = 2010000 N = 2.01×10⁶ N
- (iii) $pV = nRT \Rightarrow V = \frac{nRT}{p}$ $V = \frac{(570/0.018)(8.31)(237 + 273)}{3.10 \times 10^6}$ $= 43.292419 \text{ m}^3 \approx 43.3 \text{ m}^3$
- (b) (i) 作功 = 增加的動能 = ½ (2.6×10⁴) 54² = 3.7908×10⁷ J≈37.9 MJ
- (ii) 平均加速度 $a = \frac{v u}{t} = \frac{54 0}{1.5}$ = 36 m s⁻²

IM IA 接受: 2.00×10⁶ N至 2.01×10⁶ N

1M+1M

|IA |接受:43.0 m³至43.3 m³

IM 1A


接受: 37.9 MJ 至 38.0 MJ

IM IA (iii) 加速度不斷減少 (即最初時是最大的)。 (根據分子運動論,)當蒸汽膨脹,即體積增加, 其壓強減少, 以致作用於活塞 A 處的(壓)力減少,加速度亦相 應減少。

	1.	А	2.	D	3.	Α	4.	D	5.	В
Ī	6.	Α	7.	D	8.	С	9.	D		

2 力和運動

1. DSE 2018, Q4

1M+1M 1A = 2.4 + 0.6 = 3.0 J 對於 g = 10 m s⁻²

1A

(ii) 由於彈簧槍為固定,因此有外力作用於系統 / 槍,(彈簧槍和砲彈的)總動量並不守恆。

(b) 豎直: $s = ut + \frac{1}{2}at^2$ $0 = (4 \sin 50^\circ) t_t - \frac{1}{2}(9.81) t_t^2$ $t_t = 0.624705 \text{ s} (0.612836 \text{ s} 對於 g = 10 \text{ m s}^{-2})$ $\approx 0.625 \text{ s} (0.613 \text{ s} 對於 g = 10 \text{ m s}^{-2})$

水平: $R = 4 \cos 50^{\circ} \times f_{\rm f} = 4 \cos 50^{\circ} \times 0.625$ = 1.606210 m $\approx 1.61 \, {\rm m} \, (1.57 \, {\rm m} \, {\rm s})$ $g = 10 \, {\rm m} \, {\rm s}^{-2}$)

(c) /_t增加 因為初始豎直速度/分量較大。

1A D

2. DSE 2018, Q5

(a) (i)
$$m (5.0 \text{ cm}) = 50 \text{ g} (10.0 \text{ cm})$$

 $m = 100 \text{ g} \approx 0.1 \text{ kg}$

即最大誤差=±lg

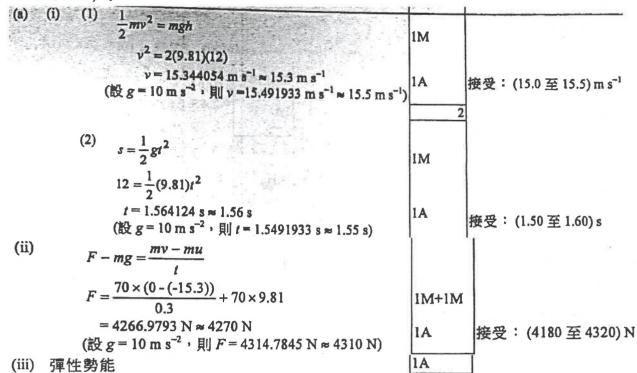
1A 2 1M

(ii) 平衡鍾位置: 10.0 cm ± 0.1 cm 誤差百分率 = 100%×(0.1 / 10.0) = 1% ∴ m = 101 g 至 99 g

(b) 彈簧秤讀數 = mg = (0.1 kg) (9.81 N kg⁻¹) = 0.981 N (1.0 N對於 g = 10 N kg⁻¹) ≈ 1.0 N

1M/1A

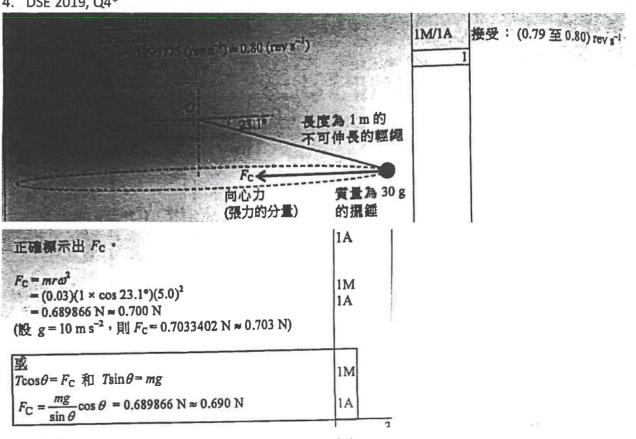
(c) (i)

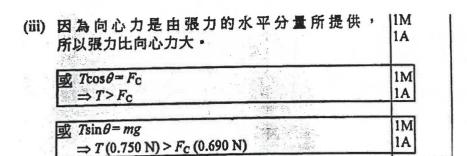

天平上平**街錘的位置** 彈簧秤的讀數 相同 讀數增加

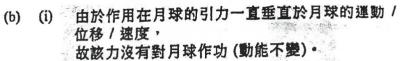
1A+1A 2 1A

1A

(ii) 天平未能運作/量度該負荷的質量, 因其表觀重量為零(或無重),平衡錘可取任何位 置。

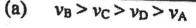


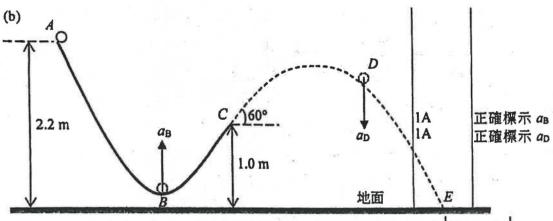

- (速度太高,因此减速所需的力也太大。) (b) (i)
 - 救生網或會被撕裂。
 - 下堕者或會受傷。
 - 消防員或未能緊握救生網·
- 人跳下時有水平速度, 相應的水平位移很難估算,因其取決於下墮時 間,而一般如顯中情況的下墮時間相對較長。
- 1A 1A


任何

1A

4. DSE 2019, Q4*




(ii) (該說法不正確。) 由牛頓運動第三定律可知,月球對地球的施力和 地球對月球的施力之大小相同(,但方向相向)。

接受:是一對 作用與反作用力

5. DSE, 2020, Q4

(c) (i) 小球從 A 至 B 運動時, 重力勢能轉換成動能, 而當小球從 B 至 C 運動時, 部分動能轉換回重力 勢能。

(ii) $\frac{1}{2}mv^2 = mgh$ $v^2 = 2(9.81)(2.2 - 1.0)$ $v = 4.852216 \text{ m s}^{-1} \approx 4.85 \text{ m s}^{-1}$

設g=10 m s⁻²,則 v=4.89898 m s⁻¹≈4.90 m s⁻¹ 接受:4.85 m s⁻¹ 至4.90 m s⁻¹

設g=10 m s⁻²,則 水平速率 =2.44949 m s⁻¹≈2.45 m s⁻¹ 接受:1.04 s 至 1.10 s

1A

1M

1A

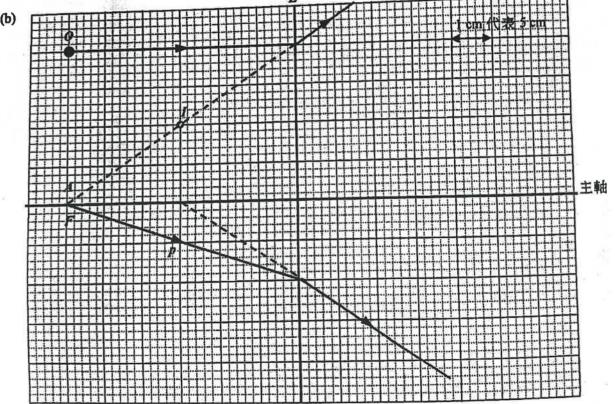
設 g = 10 m s⁻²,則 豎直速率≈4.24 m s⁻¹

而 t = 1.041033 s≈ 1.04 s

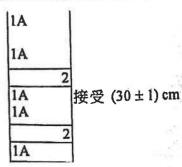
- 6. DSE, 2020, Q5

正確標示及註明力 R(或 N) 及 W(或 Mg)

M = 10 kg; Mg = 98.1 N設 $g = 10 \text{ m s}^{-2}$,則 57.735027 N \approx 57.7 N 115.470054 N \approx 115 N


(b) (i) g sinθ=9.81 sin 30° = 4.905 m s⁻² ≈ 4.91 m s⁻²
 (ii) 減少
由於 F 垂直於斜面的分量 不再作用於方塊/斜面
図
當撤去 F・壓在方塊/斜面的力減少(只餘下重量的
分量)

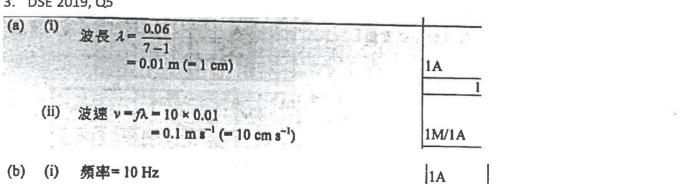
1.	A	2.	C	3.	В	4.	S	5.	Α
6.	D	7.	В	8.	Α	9.	С	10.	D
11.	Α	12.	С	13.	В	14.	D	15.	В
16.	Α	17.	В	18.	Α	19.	С	20.	D
21.	Α	22.	С	23.	В	24.	D	25.	В
26	Δ						State of the state		


3 波動

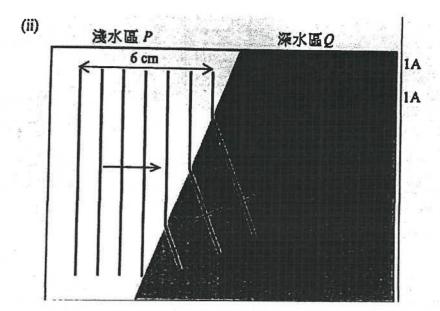
1. DSE 2018, Q6

另解:利用透鏡公式 (a) 特(柱面) 医黄胆炎纸银毛、苗种透镜的轴廊、並採用 - 採用描畫光線徑跡的方法:以 一光線(跟主軸並不平行)射向透 描畫光線徑跡的方法例如 鏡並描畫其徑跡。 - 以一光線射向透鏡並描查其徑跡 - 以一光線平行或沿主軸射向透鏡並描畫其徑跡 - 向後延伸出射光線的(路徑), (移動光線箱) 使另一跟前者平行或沿主軸的光線射向 並確定其(跟主軸的)相交點。 透鏡,並於纸張上描畫其(出射)光線的徑跡。 向後延伸兩出射光線的 (路徑),並確定其相交點 (位於 - (在主軸上)量度相應的物距, 和像距v 量度相交點 (或戶)與透鏡中心的距離,即為透鏡無距。 IA - 將u和v代入透鏡公式以來 f 1A 接受:以繪圖輔助/簡化描述。 膠尺刻度的不確定性/準確度/精確度(讀至 mm)· 或 未能標示正確的光線路徑,因光線箱所射出光束 或光線並非平行 (與主軸平行) 或任何合理答案 (例如:光線並非垂直透鏡,對於利 用平行主軸的光線的方法而言) (b)

- (i) L是發散透鏡 / 凹透鏡 - 只有發散透鏡能在物體與透鏡之間產生(縮小 直立的虚)像。
- (ii) 焦距 = 30 cm 正確光線求 F
- (iii) 正確光線 p

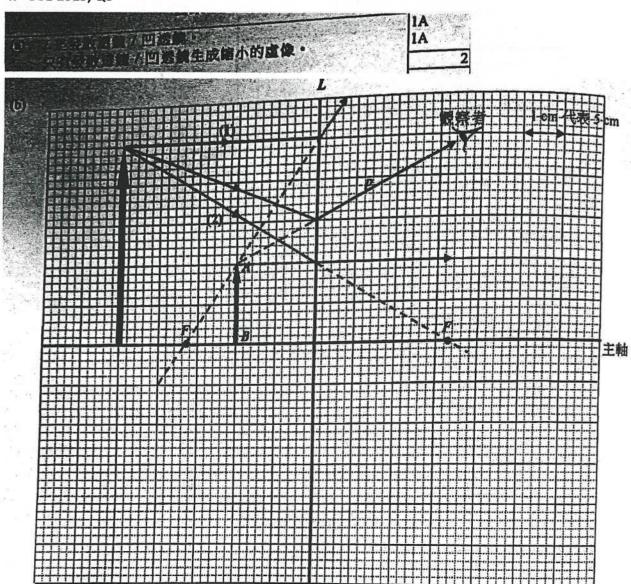

(a)	(h	增加雙繼與屏幕之間的間距 D·	
``		和加入是六叶帝之间的间距 20。	1A
	n Ann		1
	(ii)	屏幕上亮點的間距增大,因此其測量中的百分誤 整較小,	1A
			1
	(iii)	第二級亮點的角位置	
		$\theta = \tan^{-1} \left(\frac{1.56/2}{1.40} \right) = 29.124053^{\circ}$	1М
		栅線間距 $d = \frac{10^{-3}}{400} = 2.5 \times 10^{-6} \mathrm{m}$	1M
		應用 $d\sin\theta = n\lambda$,	
		波長 $\lambda = \frac{2.5 \times 10^{-6} \times \sin 29.12^{\circ}}{2}$	
		$=6.08378 \times 10^{-7} \text{ m}$	
		$\approx 6.08 \times 10^{-7} \text{ m} (= 608 \text{ nm})$	1A 接受 $\lambda = (6.06 \ \Xi \ 6.10) \times 10^{-7} \ m$
(b)	(i)	方程只適用於	注意:聲音波長的數量級約為
			1A 10-1 m
		- A << a (即波長 << 兩源的間距),或 A 遠小於 a - a << D (即兩源的間距 << 兩源與探測器的間	TV III
		距),或a遠小於D	
		或	
		以條紋間距方程求聲音的波長並不準確,原因為	
		- ル跟 a 相若 / 並非遠小於 a] 任何 - a 並非遠小於 D - 1	1A
		一。此外这小原也	
			1
	(ii)	對第一級極大 ,	
		波長 λ=程差 PB-PA	1M
		$=\sqrt{(1+0.5)^2+2^2}-\sqrt{(1-0.5)^2+2^2}$	1374
		$= 2.5 - 2.06155281 = 0.43844719 \text{ m} \approx 0.438 \text{ m}$	1M
		mie mivvioumva viivuitt/1/ III ~ V.TJU III	

3. DSE 2019, Q5


聲速:

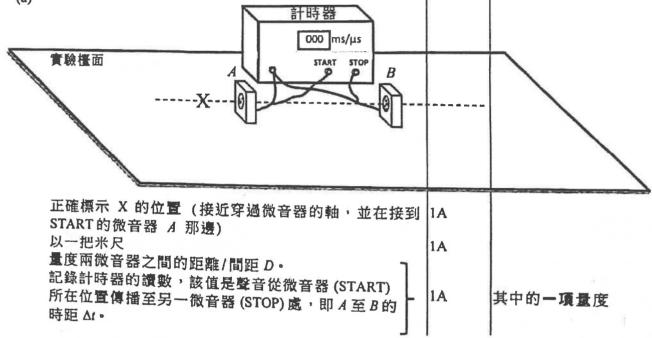
 $v = f\lambda = 750 \times 0.4384$

= 328.835 m s⁻¹ \approx 329 m s⁻¹

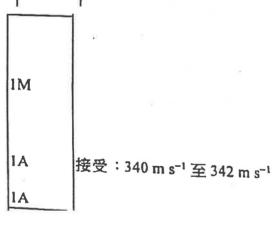

接受 v = 328 m s⁻¹ 至 330 m s⁻¹

(iii) 折射。 這是由於 波長 / 波速 在不同 介質 / 深度 出現變 化。

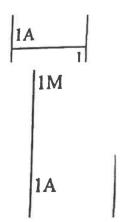
1A 1A


4. DSE 2019, Q6


物體的位置和高度正確。


- 正確光線以找出透鏡焦點 F, 及正確標示 F的位置。 (c) 焦距= 16.5 cm
- 2M |接受:(15.5 至 17.5) cm 2A

- (d) 由物體頂端出發的正確光線 p
- 5. DSE 2020, Q6
- 6. (a)


- (b) (i) 捨棄數據 539 μs, $\Delta t = \frac{801 + 838 + 821}{3} = 820$ μs 在空氣中的聲速 $v = \frac{D}{\Delta t}$ 820×10^{-6} $= 341.463415 \text{ m s}^{-1} \approx 341 \text{ m s}^{-1}$

- 6. DSE 2020, Q7
- 在A點的入射角, (a) (i) $i_A = 90^{\circ} - 30^{\circ} = 60^{\circ}$
- $n_g \sin c = n_c \sin 90^\circ$ (ii)

$$\Rightarrow \frac{n_g}{n_c} = \frac{1}{\sin c} \ge \frac{1}{\sin 60^{\circ}} = 1.1547005 \approx 1.15$$

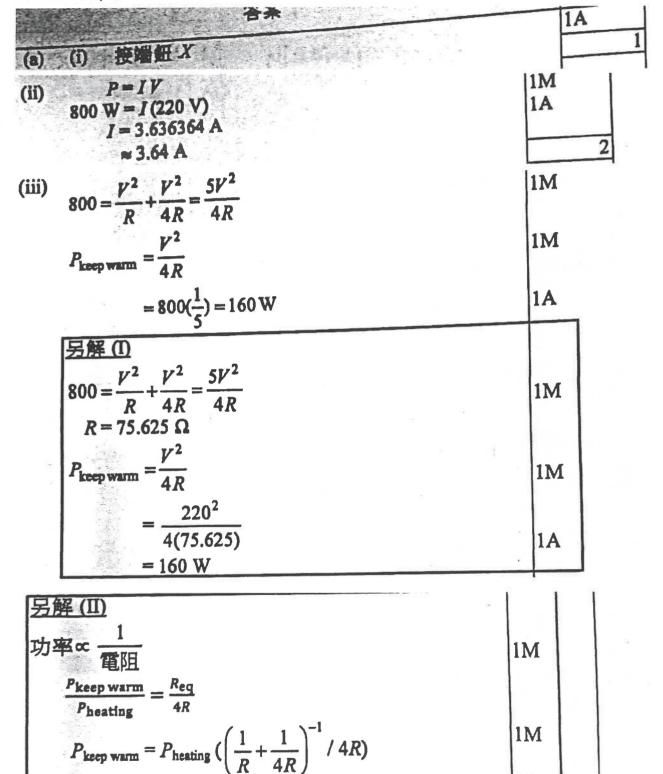
(iii) 全内反射 來自 O點且 $\theta > 30^{\circ}$ 的光線,將不會發生全內反 射。

1A 1A

IA

(b) (i) (狹窄的光脈衝中的)部分光/能量 從最短的路徑 IA (即 OD) 首先到達,其餘的能量經較長的路徑隨 IA 所以脈衝變得較寬,而脈衝高度亦較低(強度較 低)。

IA「取不同的路徑」 IA「到達的時間不同」


包覆層的折射率 n。應該增加・ (ii) 由於 $\frac{n_g}{n_c} = \frac{1}{\sin c}$,若使 $c/\sin c$ 增加,只有較接近 軸 $/ \theta$ 較小 的光線會發生全內反射。 1A

注意:對於較大的nc·較多的光 線可從光導纖維逃逸。

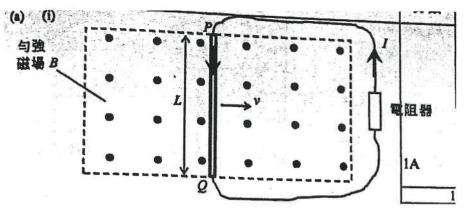
1.	D	2.	С	3.	В	4.	D	5.	С
6.	В	7.	D	8.	С	9.	С	10.	Α
11.	С	12.	В	13.	Α	14.	D	15.	Α
16.	D	17.	Α	18.	В	19.	Α	20.	С
21.	С	22.	Α	23.	С	24.	В	25.	Α
26.	D	27.	Α	28.	D		100	***************************************	_

4 電和磁

1. DSE 2018, Q8

- (所耗用的)電能 (b) (i)
- (ii) (1) 只有保險絲燒斷
 - (2) 只有 RCCB 切斷電路

= 160 W


1A

1A 1A

1M

1A

(ii) 根據楞次定律,磁力 FB作用於棒從而對抗其運動。需一外力 F平衡 FB以維持勻速運動 (或 v 保持不變)

需一外力作功將機械能轉為電 能

(iii) 機械功率輸入=Fv =(ILB)v

> 功率輸入=(電)功率輸出 *ILB* ν= I ξ ξ = *BL*ν

1M 1M

1A

1A

(ii) $\xi = (B \cos 30^{\circ}) L v$ = $(50 \times 10^{-6} \cos 30^{\circ}) (20) (6)$ = $5.196152 \times 10^{-3} V$ $\approx 5.20 \text{ mV}$ 根據 (a)(iii) 運用 B 的水平分量

1M

1A

1A

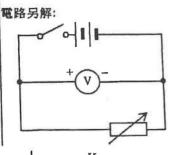
電子的分佈較多在端 X

IA IA

3. DSE 2019, Q7

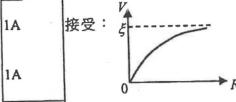
1A 1A

以正確符號顯示的正確電路正確極性

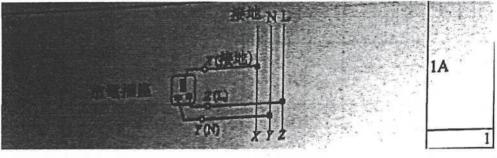

注意事項:

- 首先將可變電阻調至最大/較大的電阻值]
- 在每次量度後,把開關打開/斷開
- 其他合理答案

1A


1A

1A



(b) 電池組輸出的端電壓 V 隨(負荷)電阻值 R 增加而增加。(或以線圖表示)

$$V = \xi \frac{R}{R+r} \qquad \boxed{\mathbb{Z}} \qquad V = \xi - \frac{1}{2}$$

4. DSE 2019, Q8

- - 各層明證祖可在額定功率下運作。
 - 接受其他合理答案:

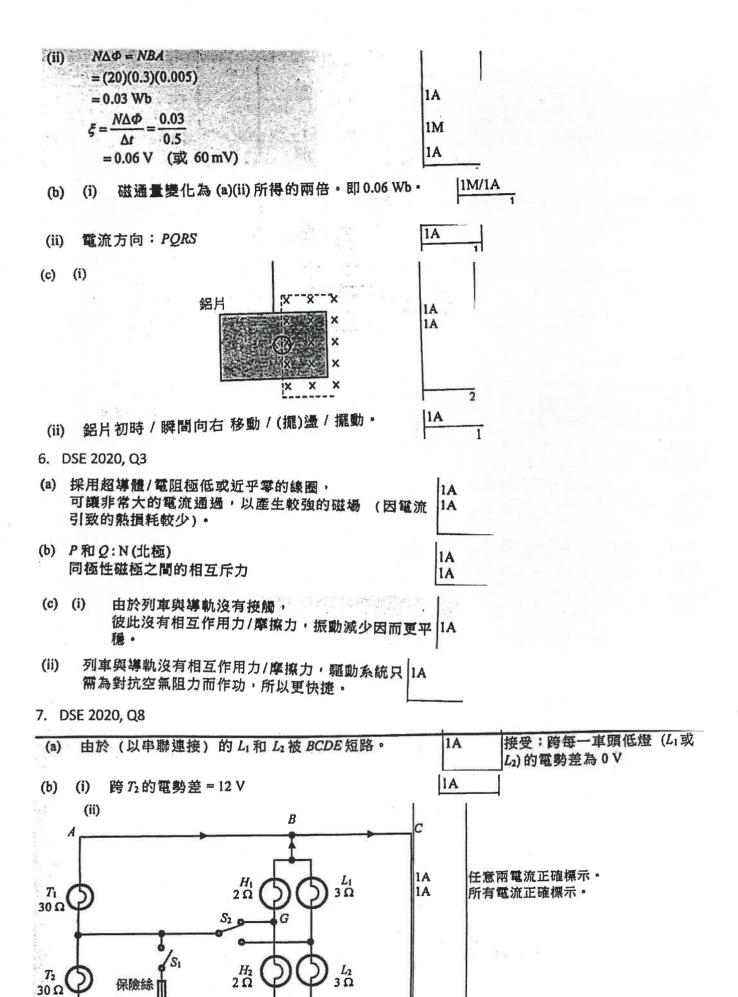
任何 一項

(ii)
$$P = IV$$
 $I = I(220)$ $I = 3.409091 \text{ A} \approx 3.41 \text{ A}$

$$I = \frac{P_1}{V} + \frac{P_2}{V} = \frac{300}{220} + \frac{450}{220}$$
1M
1A

1A

故應選用標着5A的保險絲。

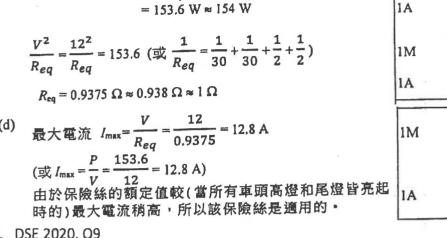

(c) 每天所用電能 = 0.500 kW × 8 h + 2 kW × 0.5 h + 3 kW × 2 h = 11 kW h 常付費用 = \$0.9 / kW h × 11 kW h

= \$9.9

1M 1M 1A

5. DSE 2019, Q9

(a) (i) 由楞次定律可知・磁通量更化會取生一電動勢・ 以抵抗該磁通量要化・即(指人紙面的)・磁通量減 少・ 會在線圏 / (完整)電路中収生ー (順時針方向的)

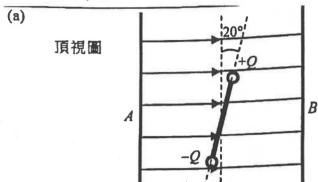


854

支路 BC上的電流最大。

(c) 所提供的功率
$$P = 2 \times \left(\frac{12^2}{30} + \frac{12^2}{2}\right)$$

= 153.6 W ≈ 154 W


(d) 最大電流
$$I_{\text{max}} = \frac{V}{R_{eq}} = \frac{12}{0.9375} = 12.8 \text{ A}$$

1A

1M

8. DSE 2020, Q9

1A	正確方向	(由 A	至	B)

(b) (i)
$$F \times d = (2.0 \times 10^{-5})(0.05 \cos 20^{\circ})$$

= 9.396926 × 10⁻⁷ N m ≈ 9.40 × 10⁻⁷ N m

(ii)
$$E = \frac{V}{d}$$

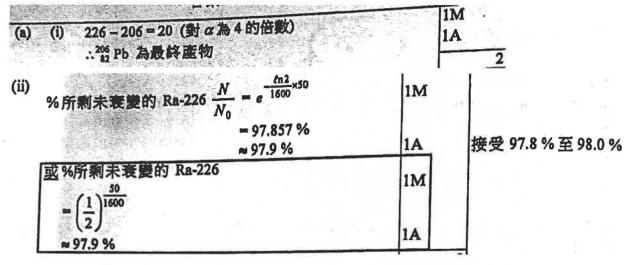
= $\frac{5.0 \times 10^3}{0.1}$
= 50 000 V m⁻¹ 或 N C⁻¹ = 50 kV m⁻¹ 或 kN C⁻¹

(iii)
$$E = \frac{F}{Q}$$

$$Q = \frac{F}{E} = \frac{2.0 \times 10^{-5}}{5.0 \times 10^{4}}$$

$$= 4.0 \times 10^{-10} \text{ C}$$

1M	
1A	


1M

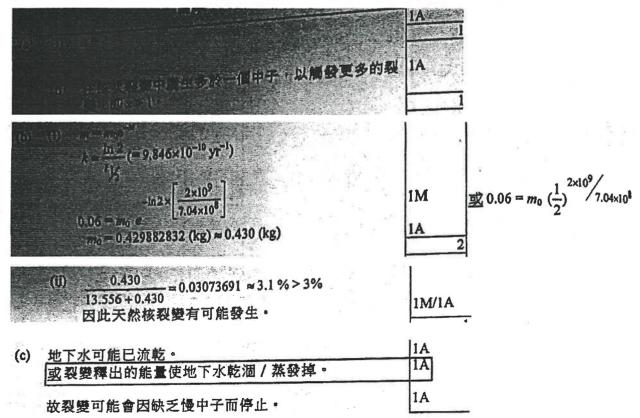
1A

1.	А	2.	С	3.	В	4.	Α	5.	С				
6.	С	7.	D	8.	D	9.	В	10.	Α				
11.	С	12.	В	13.	С	14.	D	15.	D				
16.	С	17.	В	18.	Α	19.	А	20.	С				
21.	В	22.	С	23.	D	24.	D	25.	С				

5 放射現象和核能

1. DSE 2018, Q10

(b) (i) :隨機過程


1A

- (ii) 有些 Ra-226 的子核仍具有放射性,所以可發射 β IA 粒子。
- (iii) 原因: β 及 γ 輻射的電離能力較弱。

IA IA

- -升高放射源達至距離大於 α的射程-(數 cm),火花便停止產生。
- · 在放射源與金屬網之間加插一張 紙· 火花便停止產生。

2. DSE 2019, Q10

任何

3. DSE 2020, Q10

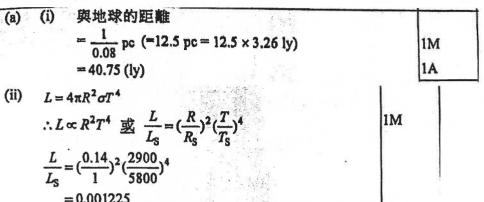
(a) 質子/H/p/氫原子核

(b) 質量改變

1A 1M 1A 接受: 1.10 (MeV)至1.12 (MeV)

(c) 根據動量守恆, 因為發生核反應前 a 粒子是具有動量,那麼所有產物的 總動量 (= a 粒子的動量) 必定不為零, 即所有產物的總動能必定大於零,因此 a 粒子的動能須 較((b) 所求得的)大。

7	1A	[a 粒子的動能
1	1A	=(b)所求得的能 量 +所有產物的總動能]


1.	D	2.	В	3.	Α	4.	D	5.	В
6.	С	7.	В	8.	D	9.	В	10.	С

1 天文學和航天科學

≈ 0.00123

區域 D

1. DSE 2018, Q1

(b) (i) 行星不會發光/只會反射光,所以容易被母恆星的(焰)光掩蓋,黯然失色。

1A 1

1A

(ii) 重力/萬有引力(引力)/地心吸力。 監測(由恆星 X 的徑向速度變化所導致)其某特定 譜線的多普勒頻移,便可求得週期 T。 1A 1A 2

(iii)
$$I = \frac{L}{4\pi d^2}$$

 $\therefore I \propto \frac{L}{d^2}$ 或 $\frac{I_Y}{I_E} = (\frac{L_X}{L_S})(\frac{d_E}{d_Y})^2$
 $\frac{I_Y}{I_E} = (\frac{0.001225}{1})(\frac{1}{0.04})^2$
 $= 0.765625$
 $\approx 0.766 \; (介乎 0.5 至 2)$
行星滿足有利生物存活的條件。

1M 1A

2. DSE 2019, Q1

(a) (i)
$$\frac{1}{2} m (v_B^2 - v_A^2) = GMm(\frac{1}{r_B} - \frac{1}{r_A})$$

 $v_B^2 - 8.02^2 = 2(4 \times 10^5)(\frac{1}{6400 + 400} - \frac{1}{6400})$
 $v_B = 7.547679036 \text{ km s}^{-1} \approx 7.55 \text{ km s}^{-1}$

1M 1A 接受;(7.50~7.60) km s⁻¹

(ii)
$$T = \frac{2\pi a}{v} \quad \text{fil} \quad \frac{GMm}{a^2} = \frac{mv^2}{a}$$
$$\therefore T^2 = \frac{4\pi^2 a^3}{GM}$$

1M

$$T = 2\pi \sqrt{\frac{a^3}{GM}}$$
 其中 $a = \frac{r_A + r_B}{2}$ 對於橢圓軌道

$$a = \frac{r_A + r_B}{2} = \frac{(6400) + (400 + 6400)}{2} = 6600 \text{ km}$$

$$T_{AB} = \frac{T}{2} = \frac{1}{2} \left\{ 2\pi \sqrt{\frac{6600^3}{4 \times 10^5}} \right\} = 2663.3962 \text{ s} \approx 2663 \text{ s}$$

- (iii) 作用於太空人的重力/引力(重量)(全部) 用於向心力 / 太空人的加速。
 - 太空人和太空船同樣以重力加速度運動,

$$\theta = \frac{\frac{5570}{2} - 2663}{\frac{5570}{5570}} \times 360^{\circ}$$

$$= 7.8850987^{\circ} \approx 7.89^{\circ}$$

$$\boxed{\cancel{\cancel{2}} \frac{2663}{5570} = \frac{180^{\circ} - \theta}{360^{\circ}}}$$

$$\boxed{1M}$$

$$1A$$

- (ii) 如果在 A 的發射速率略高 (或略低),橢圓軌道的 |1A|長軸長度則較大(或較小),即軌道改變了。 1A 因此, 兩軌道不會在 B 相接(相交)。
- (iii) 太空船須在 B 處短暫 (瞬間) 燃點其火箭引擎, 以將其速率提升至所需的值。 (即由 7.55 km s⁻¹ 至 7.67 km s⁻¹)

3. DSE 2020, Q1

(b) (i)

- 距離 50 kpc = 50000 × 3.26 ly = 163000 ly
 - 注意:可忽略 2020-1987=33 年 1A 因此恆星爆炸於 163000 年之前發生。 接受:163000年~164000年

1A

1M

IM

任何

1M

- 如果將位於 50 kpc 即比 10 pc 距離遠很多之 SN 1987A IA (b) 置在 10 pc 時, 其亮度會更高 (比+2.9 對應的亮度)。 因此, 其絕對星等(的值) 遠小於 +2.9 / 視星等。
- 取 Ls、Rs 和 Ts 分別為太陽的光度、半徑和表面溫 (c) 度,而 L_X 、 R_X 和 T_X 則分別為 X的各項。 根據斯特藩定律: $L_{\rm S} = \sigma (4\pi R_{\rm S}^2) T_{\rm S}^4 \ {\rm ftl} \ L_{\rm X} = \sigma (4\pi R_{\rm X}^2) T_{\rm X}^4$

所以
$$\frac{L_{\rm X}}{L_{\rm S}} = \left[\frac{R_{\rm X}}{R_{\rm S}}\right]^2 \left[\frac{T_{\rm X}}{T_{\rm S}}\right]^4$$

$$40000 = \left[\frac{R_{\rm X}}{R_{\rm S}}\right]^2 [3.1]^4$$

$$\frac{R_{\rm X}}{R_{\rm S}} = 20.81165 \approx 20.8$$

1A 因恆星X的溫度(遠)較太陽為高,故不屬於「紅 1A (ii) 万星· 或紅巨星是在區域B

注意:恆星 X實際上是一顆藍超

1.	В	2.	Α	3.	С	4.	Α	5.	В	6.	С	7.	D	8.	D	9.	D	10.	В
11.	В	12.	Α	13.	D	14.	Α	15.	С	16.	С	17.	D	18.	D	19.	С	20.	В
21.	С	22.	В	23.	С	24.	А							***************************************	•			.Tp	

2 原子世界

1. DSE 2018, Q2

(a) 增加/調高電壓直至剛好沒有電流通過電路(沒有光電 IA 子形成閉合電路), 記錄電壓 V。以求得光電子的最大動能 = eV。

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{10.8 \times 10^{14}} \approx 277.8 \,\text{nm}$$

(ii) 線圖的斜率=
$$\frac{3.3-0}{(13.4-5.4)\times10^{14}}$$

= 4.125×10^{-15} eV s (= 6.6×10^{-34} J s)

斜率即為普朗克常數h·

(iii) 臨閾頻率
$$f_0 = 5.4 \times 10^{14} \text{ Hz}$$

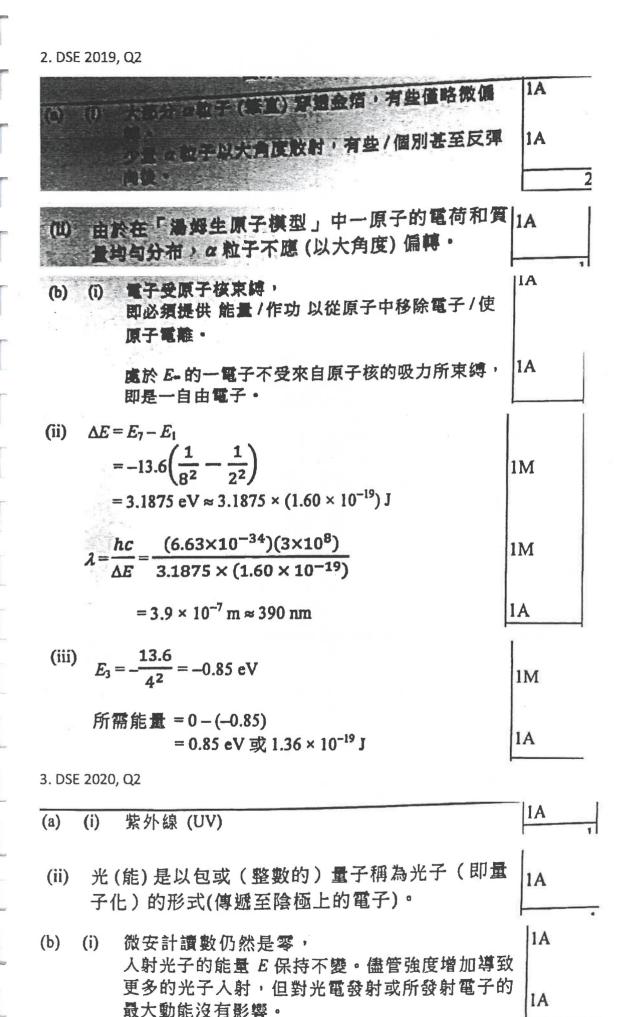
鈉的功函數 = hf_0
= $(6.6 \times 10^{-34}) \times (5.4 \times 10^{14})$
= $3.564 \times 10^{-19} \text{ J}$
= $2.2275 \text{ (eV)} \approx 2.23 \text{ (eV)}$

接受 2,20 eV 至 2,40 eV

或
$$hf_0 = (4.125 \times 10^{-15}) \times (5.4 \times 10^{14})$$
 1M = 2.2275 (eV) \approx 2.23 (eV)

(c) 不變,即同樣的線圖。

IA D


1A

(最大)動能取決於每一光子的能量,並跟電磁輻射的頻率成正比。

或

光電子的最大動能 / 光子的能量不會受影響。

860

(ii) 光子的能量=
$$\frac{hc}{\lambda}$$

$$= \frac{(6.63 \times 10^{-34})(3 \times 10^{8})}{300 \times 10^{-9}}$$

$$= 6.63 \times 10^{-19} \text{ J}$$

$$= 4.14375 \text{ (eV)} \approx 4.14 \text{ (eV)}$$

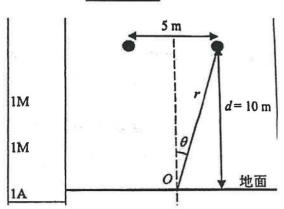
1M

接受: 4.10 (eV) 至 4.14 (eV)

(c) (i) 每秒鐘到達電極
$$A$$
 的光電子數目
$$= \frac{0.4 \times 10^{-6}}{1.6 \times 10^{-19}} = 2.5 \times 10^{12}$$

(ii) 1.7-0.8=0.9 (eV) <u>或</u> 4.14-2.4-0.8=0.94 (eV) 陰極 C 內(不在表面上)的電子,需要比功函數 更多的能量才能從 C 逃逸/發射。

												-							
1.	С	2.	D	3.	D	4.	Α	5.	С	6.	В	7.	С	8.	В	9.	С	10.	D
11.	Α	12.	В	13.	Α	14.	D	15.	В	16.	Α	17.	С	18.	С	19.	В	20.	D
21.	Α	22.	Α	23.	В	24.	D				71.5								


3 能量和能源的使用

1. DSE 2018, Q3

- (a) (i) 白嫩燈:(以電流)以焦耳加熱把(錦絲)燈絲加 IA 熱至高溫/紅熱, 大部份能量成為熱能/熱,或只有一小部份轉換 IA
- (ii) 由於眼睛對綠色光最為鹽敏, 所以(具有相同光輸出功率的)綠色光源看起來 較白光(包含不同顏色)光亮。

(b) (i) 每邀燈的光通量: E = 10000 流明 $\tan \theta = \frac{2.5}{10}$ (或 $\cos \theta = \frac{10}{\sqrt{10^2 + 2.5^2}}$) $\theta = 14.036243^\circ \approx 14.0^\circ$ $I = \frac{E \times \cos^3 \theta \times 2}{4\pi d^2}$ = 14.532045 lux ≈ 14.5 lux 或 lx

效能 (A) = $\frac{11000}{150}$ = 73.333333 lm W⁻¹ (ii) 效能 (B) = $\frac{10000}{135}$ = 74.074074 lm W⁻¹ 建議選用燈 B。

1A

1A

1A

- (iii) 優點:

 - ▶ 照明度的變化較小▶ 個別燈發生故障所導致的影響較少
 - 較少刺眼強光
 - 缺點:
 - ▶ 更換 / 替換燈較頻繁
 - > 隨安裝成本增加而較昂貴▶ 會有更多的接線

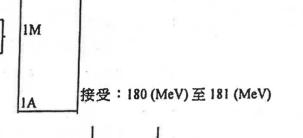
 - > 安裝時間較長

2. DSE 2019, Q3

- 每單位面積接收到太陽輻射的功率為 $P_0 = \frac{P_S}{4\pi R_0^2} = \frac{3.86 \times 10^{26} \text{ W}}{4\pi (1.50 \times 10^{11})^2 \text{ m}^2}$ IM = $1.365195734 \times 10^3 \text{ W m}^{-2} \approx 1365 \text{ W m}^{-2}$ 接受: (1360~1370) W m⁻²
- 由於被大氣所吸收而導致散失 (損失)。 (ii)
- 1A
- (b) (i) 太陽能 → 電能 → 化學能

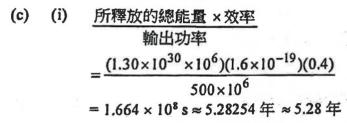
1A+1A

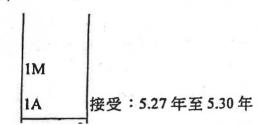
(ii) η= 輸出功率 太陽能輸入功率 ×100% $=\frac{300}{1000\times1.65}\times100\%$ = 18.1818 % ≈ 18.2 %


1M

(iii) t=總能量儲存 輸入功率 $=\frac{100\,\mathrm{Ah}\times12\,\mathrm{V}}{300\,\mathrm{W}\times0.8}$ =5 小時

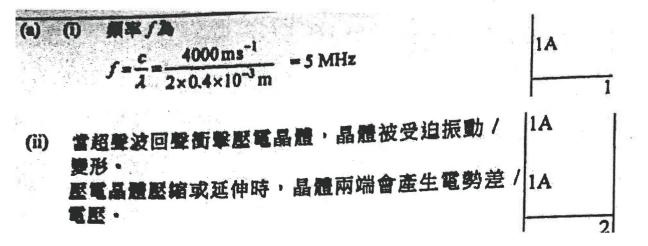
- **1M** 1A
- 太陽光線 (總是) 垂直 / 正向 / 法向太陽能板 或 晴天 / 無雲

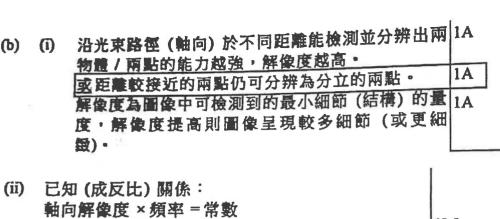

3. DSE 2020, Q3

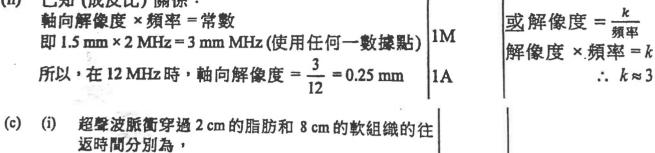

- (a) 裂變產物 /核紊的每個核子結合能較鈾-235 為高·所 IA 以裂變會釋出能量,而所產生的核素較為穩定。 IA
- (b) (i) 這表示把鈾-235 所有的核子(質子和中子) 分離 IA 接受:質子和中子(核子) 形成至無限遠/相距遙遠/完全分離 所需的能量。 單一個原子核所釋出的能量。
- (ii) ²³⁵₉₂U原子核的結合能=1783 MeV ¹⁴⁴₅₆Ba原子核的結合能=8.27 × 144 = 1190.88 MeV] ⁹⁰₃₆Kr原子核的結合能=8.59 × 90 = 773.1 MeV 故裂變所釋出的能量 = (1190.88 + 773.1) – 1783 = 180.98 (MeV) ≈ 181 (MeV)

IIA

1A

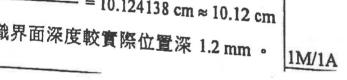


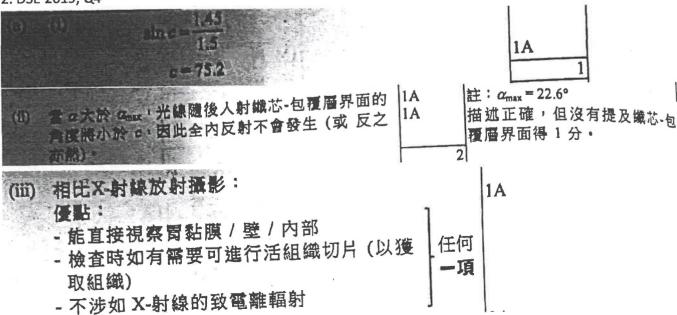

- (ii) 鈾-235 原子核的濃度會隨時間降低,當濃度太低時,便無法維持連鎖反應。
- (d) (i) 減速劑: 減慢裂變所產生的快速中子的速度。
- (ii) 控制棒: 透過吸收中子 來控制核裂變 / 反應的速率 或 在緊急情況下關閉反應堆。


													1							
1.	Α	2.	В	3.	С	4.	D	5.	Α	6.	D	7.	С	8.	В	9.	В	10.	В	
11.	Α	12.	D	13.	D	14.	А	15.	С	16.	С	17.	В	18.	Α	19.	D	20.	С	
						24.			-		4	-	J				_			

4 醫學物理學

1. DSE 2018, Q4

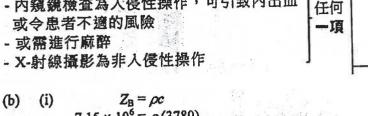




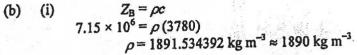
(c) (1) 超聲波脈衝穿過 2 cm 的脂肪和 8 cm 的軟組織的往返時間分別為,
$$t_1 = \frac{2 \times 2 \text{ cm}}{1.45 \times 10^5 \text{ cm s}^{-1}} = 27.5862069 \text{ } \mu \text{s} \approx 27.6 \text{ } \mu \text{s}$$

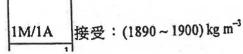
$$t_2 = \frac{2 \times 8 \text{ cm}}{1.54 \times 10^5 \text{ cm s}^{-1}} = 103.896104 \text{ } \mu \text{s} \approx 103.9 \text{ } \mu \text{s}$$
 回聲時間 $T = (27.59 + 103.90) \text{ } \mu \text{s}$
$$= 131.482311 \text{ } \mu \text{s} \approx 131 \text{ } \mu \text{s}$$
 IA 接受 131 $\mu \text{s} \cong 132 \text{ } \mu \text{s}$

(ii) 計算出的深度為
$$\frac{1.54\times10^5~{\rm cm~s^{-1}}\times131.48~{\mu s}}{2}=10.124138~{\rm cm}\approx10.12~{\rm cm}$$
 即計算出的組織界面深度較實際位置深 $1.2~{\rm mm}$ 。 $1M/1A$

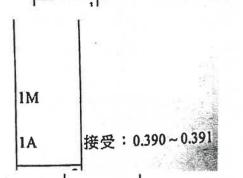


2. DSE 2019, Q4

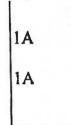



缺點:

- -檢查前須禁食(數小時)
- 內窺鏡檢查為人侵性操作,可引致內出血

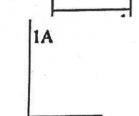


IIA

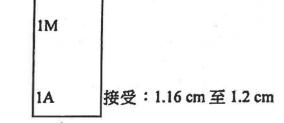


(ii)
$$\alpha_b = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$$
$$= \frac{(7.15 - 1.65)^2}{(7.15 + 1.65)^2}$$
$$\alpha_b = \frac{I}{I_0} = 0.390625 \approx 0.391 = 39.1\%$$

(iii) 於「肌肉-骨」界面 (兩) 聲阻抗的相差較在 「肌肉-脂肪」界面的大(或 反之亦然)。 因此得出較大的反射聲強係數 a。(~39%)/較大反 射聲強的比值 (或 反之亦然) 故更清晰/更容易區分。



3. DSE 2020, Q4


(a) X 射線是當高速電子撞擊重金屬 (例如鎢) 靶時所產 牛。

(b) (i) 骨的密度較高/ 骨含有高原子序數的元素 / 骨骼中的鈣等重元素會阻擋 X 射線 (接受其他合理的答案)

 $I = I_0 e^{-\mu_{\rm s} t_{\rm s}} = I_0 e^{-0.51 \times 5.6}$ (ii) $I = I_0 e^{-\mu_0 t_0} = I_0 e^{-2.46 \times t_0}$ $0.51 \times 5.6 = 2.46 \times t_b$ 4 = 1.16097561 cm ≈ 1.2 cm (2 位有效數字)

(iii) 乳房造影只涉及軟組織,因此只需較長波長/較 | 1A 低頻率/較低貫穿能力的 X 射線

提供更好的軟組織對比度/對於軟組織的密度改變

對於含骨骼的結構,則需要較短波長/較高頻率 | 1A / 較高貫穿能力 的 X 射線。

(c) (i) 誘發癌症/遺傳突變/遺傳或基因相關的疾病 (接受其他合理的答案)

(ii) CT 掃描(使用旋轉的 X 射線源)通過多次照射/曝光,以得到身體部位的二維截面圖像。由於相對較長的照射/曝光時間,等效劑量較高。

1A

1A

(iii) 宇宙射線/氣氣(來自建築物)/土壤/岩石/食物和水所含放射性物質。 (接受其他合理的答案)

1.	D	2.	D	3.	А	4.	С	5.	В	6.	Α	7.	В	8.	Α	9.	С	10.	В
11.	Α	12.	D	13.	Α	14.	С	15.	D	16.	В	17.	D	18.	С	19.	D	20.	А
21.	В	22.	С	23.	В	24.	Α						All of the second						