SECTION A (40 marks)

Answer ALL questions in this section.

Write your answers in the AL(C1) answer book.

- 1. (a) Let $A = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$ where $a, b \in \mathbb{R}$ and $a \neq b$.

 Prove that $A^n = \begin{pmatrix} a^n & \frac{a^n b^n}{a b} \\ 0 & b^n \end{pmatrix}$ for all positive integers n.
 - (b) Hence, or otherwise, evaluate $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}^{95}$.

(6 marks)

- 2. Let n be an integer and n > 1. By considering the binomial expansion of $(1 + x)^n$, or otherwise,
 - (a) show that $C_1^n + 2C_2^n + 3C_3^n + ... + nC_n^n = 2^{n-1}n$;
 - (b) evaluate $\frac{1}{(n-1)!} + \frac{-2}{2!(n-2)!} + \frac{3}{3!(n-3)!} + \dots + \frac{(-1)^{n-1}n}{n!}$. (5 marks)

3. (a) If a_1 , a_2 , a_3 , a_4 , p, q, α , β are real numbers such that $x^4 + a_1x^3 + a_2x^2 + a_3x + a_4 = (x^2 + px + q)^2 - (\alpha x + \beta)^2$ for all x,

show that
$$\begin{cases} \alpha^2 = \frac{{a_1}^2}{4} + 2q - a_2 \\ \alpha \beta = \frac{1}{2}(a_1q - a_3) \\ \beta^2 = q^2 - a_4 \end{cases}$$

- (b) Find the possible real values of p, q, α , β such that $x^4 + 4x^3 12x^2 + 24x 9 = (x^2 + px + q)^2 (\alpha x + \beta)^2$ for all x.
- (c) Solve $x^4 + 4x^3 12x^2 + 24x 9 = 0$. (7 marks)
- 4. Let $f: [-1, 1] \to [0, \pi]$, $f(x) = \arccos x$ and $g: R \to R$, $g(x) = f(\cos x)$.
 - (a) Show that g(x) is even and periodic.
 - (b) Find g(x) for $x \in [0, \pi]$. Hence sketch the graph of g(x) for $x \in [-2\pi, 2\pi]$. (5 marks)
- 5. (a) For x>0, prove that $\ln x \le x-1$ where the equality holds if and only if x=1.
 - (b) Prove that $\ln \frac{r}{r-1} < \frac{1}{r-1}$ for r > 1. Hence deduce that $\ln n < \sum_{k=1}^{n-1} \frac{1}{k}$ for n = 2, 3, 4, ...

(7 marks)

40

6. Let $\{a_n\}$ be a sequence of non-negative integers such that $n \le \sum_{k=1}^{n} a_k^2 \le n+1+(-1)^n \quad \text{for} \quad n=1,2,3,\dots$

Prove that $a_n = 1$ for $n \ge 1$.

(4 marks)

- 7. Let $a \in \mathbb{C}$ and $a \neq 0$.
 - (a) Show that if |z| = |z a|, then $Re\left(\frac{z}{a}\right) = \frac{1}{2}$.
 - (b) If |z| = |z a| = |a|, express z in terms of a.

(6 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Each question carries 15 marks. Write your answers in the AL(C2) answer book.

- 8. Let M_{mn} be the set of all $m \times n$ matrices.
 - (a) Let $A = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \in M_{22}$.
 - (i) Show that if $A = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} (s_1 s_2)$, where $u_1, u_2, s_1, s_2 \in \mathbb{R}$, then $\det A = 0$.
 - (ii) Conversely, show that if $\det A = 0$, then A = BC for some $B \in M_{21}$ and $C \in M_{12}$. (5 marks)

(b) Let
$$D = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \in M_{33}$$
.

- (i) Show that if $D = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \begin{pmatrix} s_1 & s_2 & s_3 \\ t_1 & t_2 & t_3 \end{pmatrix}$, where $u_i, v_i, s_i, t_i \in \mathbb{R}$ (i = 1, 2, 3), then $\det D = 0$.
- (ii) Suppose there are α , $\beta \in \mathbb{R}$ such that $c_i = \alpha a_i + \beta b_i$ for i = 1, 2, 3. Find $S \in M_{32}$ and $T \in M_{23}$ such that D = ST.
- (iii) Show that if $\det D = 0$, then D = PQ for some $P \in M_{32}$ and $Q \in M_{23}$.

(10 marks)

9. Consider the following systems of linear equations

(S):
$$\begin{cases} 2x + 2y - z = k \\ hx - 3y - z = 0 \\ -3x + hy + z = 0 \end{cases}$$

and

(T):
$$\begin{cases} 6x + 6y - 3z = 2 \\ hx - 3y - z = 0 \\ -3x + hy + z = 0 \\ -5x - 2y + 6z = h \end{cases}$$

(a) Show that (S) has a unique solution if and only if $h^2 \neq 9$. Solve (S) in this case.

(3 marks)

- (b) For each of the following cases, find the value(s) of k for which (S) is consistent, and solve (S):
 - (i) h = 3,
 - (ii) h = -3.

(7 marks)

(c) Find the values of h for which (T) is consistent. Solve (T) for each of these values of h.

(5 marks)

- 10. Let α , β and γ be real and distinct and $(x-\alpha)(x-\beta)(x-\gamma) = x^3 + px^2 + qx + r$.
 - (a) Show that

(i)
$$\frac{1}{x-\alpha} + \frac{1}{x-\beta} + \frac{1}{x-\gamma} = \frac{3x^2 + 2px + q}{x^3 + px^2 + qx + r}$$
;

(ii)
$$3\alpha^2 + 2p\alpha + q = (\alpha - \beta)(\alpha - \gamma)$$
.

(4 marks)

- (b) Let f(x) be a real polynomial. Suppose $Ax^2 + Bx + C$ is the remainder when $(3x^2 + 2px + q)f(x)$ is divided by $x^3 + px^2 + qx + r$.
 - (i) Prove that $\frac{f(\alpha)}{x-\alpha} + \frac{f(\beta)}{x-\beta} + \frac{f(\gamma)}{x-\gamma} = \frac{Ax^2 + Bx + C}{x^3 + px^2 + qx + r}.$
 - (ii) Express A, B and C in terms of α , β , γ , $f(\alpha)$, $f(\beta) \text{ and } f(\gamma) . \tag{11 marks}$

- Let P, Q be two points on a circle with centre C such that P, Q, C are non-collinear and taken anti-clockwise. $\angle PCQ = \alpha$ and M is the mid-point of PQ. Let z_P , z_Q , z_C and z_M be the complex numbers represented by P, Q, C and M respectively.
 - Show that $z_C z_M = i(z_M z_P) \cot \frac{\alpha}{2}$. (a)

(5 marks)

Express z_c and the radius r of the circle in terms of z_p , z_0 and α .

(4 marks)

- (i) Show that any circle in the complex plane can be represented (c) by an equation of the form $z\overline{z} + az + b\overline{z} + c = 0$ where $a, b \in \mathbb{C}$ and $c \in \mathbb{R}$.
 - Let $\mathscr{E}: z\overline{z} + az + b\overline{z} + c = 0$ be a circle passing through the points representing 1+i and -i. If the chord joining these two points subtends an angle $\frac{\pi}{3}$ at the centre, find the values of a, b and c.

(6 marks)

- Let p > 0 and $p \ne 1$. $\{a_n\}$ is a sequence of positive numbers defined by $\begin{cases} a_0 = 2 \\ a_n = \frac{1}{\sqrt[p]{n}} + \frac{1}{p} a_{n-1}, & n = 1, 2, 3, \dots \end{cases}$
 - Prove that $\lim a_n = 0$ if the limit exists. (2 marks) (a)
 - If $2 = a_0 < a_1 < a_2 < \dots$, show that $\lim_{n \to \infty} a_n$ does not (b) exist.
 - If $a_{k-1} \ge a_k$ for some $k \ge 1$, show that $a_{n-1} \ge a_n$ for $n \ge k$ and deduce that $\lim_{n \to \infty} a_n = 0$. (4 marks)
 - If $0 , show that <math>\lim_{n \to \infty} a_n$ does not exist.
 - (ii) If $p \ge 2$, show that $\lim_{n \to \infty} a_n = 0$. (4 marks)
 - Suppose 1 .
 - Prove by mathematical induction that $a_n < \frac{2}{p-1}$ for $n \geq 0$.
 - Prove that $\lim_{n \to \infty} a_n = 0$. (5 marks)

- 13. Let a and b be positive numbers.
 - (a) Prove that

$$a^ab^b \geq a^bb^a$$

where, if the equality holds, then a = b.

(4 marks)

(b) Using (a), or otherwise, prove that

$$\left(\frac{a+b}{2}\right)^{a+b} \geq a^b b^a$$

where, if the equality holds, then a = b.

(3 marks)

(c) Show that $x^{x}(1-x)^{1-x} \ge \frac{1}{2}$ for 0 < x < 1 where, if the equality holds, then $x = \frac{1}{2}$.

Deduce that $a^a b^b \ge \left(\frac{a+b}{2}\right)^{a+b}$

where, if the equality holds, then a = b.

(8 marks)

END OF PAPER

2.00 pm-5.00 pm (3 hours)
This paper must be answered in English

- 1. This paper consists of Section A and Section B.
- 2. Answer ALL questions in Section A, using the AL(C1) answer book.
- 3. Answer any FOUR questions in Section B, using the AL(C2) answer book.

SECTION A (40 marks)

Answer ALL questions in this section.

Write your answers in the AL(C1) answer book.

- 1. (a) Evaluate $\lim_{x\to 0} \left(\frac{a^x+b^x+1}{3}\right)^{\frac{1}{x}}$ where a,b>0.
 - (b) By considering a suitable definite integral, evaluate

$$\lim_{n\to\infty}\left(\frac{1^2}{n^3+1^3}+\frac{2^2}{n^3+2^3}+\ldots+\frac{n^2}{n^3+n^3}\right).$$

(6 marks)

- 2. (a) Using the substitution $x = \sin^2\theta$ ($0 < \theta < \frac{\pi}{2}$), prove that $\int \frac{f(x)}{\sqrt{x(1-x)}} dx = 2 \int f(\sin^2\theta) d\theta$.
 - (b) Hence, or otherwise, evaluate

$$\int \frac{\mathrm{d}x}{\sqrt{x(1-x)}} \quad \text{and} \quad \int \sqrt{\frac{x}{1-x}} \, \mathrm{d}x \ .$$

(5 marks)

- 3. Consider the parabola $y^2 = 4ax$.
 - (a) Prove that the equation of the normal at $P(at^2, 2at)$ is $y + tx = 2at + at^3$(*)
 - (b) $P_i(at_i^2, 2at_i)$, i = 1, 2, 3, are three distinct points on the parabola. Suppose the normals at these points are concurrent. By considering (*) as a cubic equation in t, or otherwise, show that $t_1 + t_2 + t_3 = 0$.

(5 marks)

- 4. For $x \ge 0$, define $F(x) = \int_0^x \frac{\sin t}{t+1} dt$.
 - (a) Find the value of x_0 for which $F(x) \le F(x_0)$ for all $x \in [0, 2\pi]$.
 - (b) By considering F(0) and $F(2\pi)$, show that F(x) > 0 for all $x \in (0, 2\pi)$.

(7 marks)

Figure 1 shows the graphs of the circle Γ_1 : $r = -2\cos\theta$ and the cardioid Γ_2 : $r = 2 + 2\cos\theta$.

Figure 1

- (a) Find the polar coordinates of all the intersecting points of Γ_1 and Γ_2 other than the pole.
- (b) Find the area of the shaded region.

(6 marks)

- 6. Let r be a real number. Define $y = \left(\frac{x+1}{x-1}\right)^r$ for x > 1.
 - (a) Show that $\frac{dy}{dx} = \frac{-2ry}{r^2 1}$.
 - (b) For n = 1, 2, 3, ..., show that $(x^2 1)y^{(n+1)} + 2(nx + r)y^{(n)} + (n^2 n)y^{(n-1)} = 0 ,$ where $y^{(0)} = y$ and $y^{(k)} = \frac{d^k y}{dx^k}$ for $k \ge 1$.

(5 marks)

- 7. Let $f: \mathbb{R} \to (-1, \infty)$ be a differentiable function.
 - (a) Differentiate $\ln [1 + f(x)]$.
 - (b) If $f(x) = x^3 + \int_0^x 3t^2 f(t) dt$ for all $x \in \mathbb{R}$, by considering f'(x), find f(x).

(6 marks)

SECTION B (60 marks)

Answer any FOUR questions from this section. Each question carries 15 marks. Write your answers in the AL(C2) answer book.

8. Let
$$I_k = \int_0^1 \frac{(-1)^k (1-x) x^{3k}}{1+x^3} dx$$
, $k = 0, 1, 2, ...$

a) Evaluate I_0 .

- (4 marks)
- (b) Prove that $-\frac{1}{3k+1} \le I_k \le \frac{1}{3k+1}$. (3 marks)
- (c) Express $I_{k+1} I_k$ in terms of k. (3 marks)
- (d) For n = 0, 1, 2, ..., let $b_n = \sum_{k=0}^n \frac{(-1)^k}{(3k+1)(3k+2)}$.

Using (a) and (c), express I_{n+1} in terms of b_n .

Hence use (b) to evaluate $\lim_{n\to\infty} b_n$. (5 marks)

- Let $f(x) = \frac{|x|}{(x+1)^2}$, where $x \neq -1$.
 - Find f'(x) and f''(x) for x > 0. (i) (a)
 - Find f'(x) and f''(x) for x < 0.
 - Show that f'(0) does not exist. (iii)

(4 marks)

- (b) Determine the values of x for each of the following cases:
 - - f'(x) < 0, (ii) f'(x) > 0,
 - (iii) f''(x) < 0, (iv) f''(x) > 0.

(4 marks)

- (c) Find the relative extreme point(s) and point(s) of inflexion of f(x). (3 marks)
- (d) Find the asymptote(s) and sketch the graph of f(x). (4 marks)

For any $\beta > 0$, define a sequence of real numbers as follows:

$$a_1 = \beta + 1$$
, $a_n = a_{n-1} + \frac{\beta}{a_{n-1}}$ for $n > 1$.

- Prove that
 - (i) $a_n^2 \ge a_{n-1}^2 + 2\beta$ for $n \ge 2$;
 - (ii) $a_{-}^{2} \ge \beta^{2} + 2n\beta + 1$ for $n \ge 1$.

(2 marks)

Using (a), show that for $n \ge 2$,

$$a_n^2 \le \beta^2 + 2n\beta + 1 + \sum_{k=1}^{n-1} \frac{\beta^2}{\beta^2 + 2k\beta + 1}$$
.

(3 marks)

Prove that for $k \ge 1$,

$$\frac{1}{\beta^2 + 2k\beta + 1} \le \int_{k-1}^k \frac{1}{\beta^2 + 2\beta x + 1} \, \mathrm{d}x \; .$$

(2 marks)

Using the above results, show that $\lim_{n \to \infty} \frac{a_n^2}{n}$ exists and find the limit.

State with reasons whether $\lim_{n\to\infty} \frac{a_n^2}{\sqrt{n}}$ exists.

(8 marks)

11. (a) Evaluate
$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{2\sin\theta + \cos\theta + 2}$$
.

(5 marks)

(b) Let
$$f(\theta) = a \sin \theta + b \cos \theta + c$$
 and $g(\theta) = A \sin \theta + B \cos \theta + C$ where A, B are not both zero.

Show that there exist real numbers p, q and r such that $f(\theta) = p g(\theta) + q g'(\theta) + r$

for all real numbers θ .

(5 marks)

(c) Hence, or otherwise, evaluate

$$\int_0^{\frac{\pi}{2}} \frac{7\sin\theta - 4\cos\theta + 3}{2\sin\theta + \cos\theta + 2} d\theta.$$

(5 marks)

12. Consider the lines

$$L_1: \frac{x-5}{2} = \frac{y-1}{2} = \frac{z}{-1}$$
and
$$L_2: \frac{x-4}{2} = \frac{y+8}{5} = \frac{z-1}{2}.$$

- (a) Show that L_1 and L_2 do not intersect. (2 marks)
- (b) Let L be the line perpendicular to L_1 and L_2 intersecting L_1 at A and L_2 at B.
 - (i) Find the coordinates of A and B.
 - (ii) Find the equations of L. (7 marks)
- (c) Let π be the plane containing the point A and perpendicular to L_1 .
 - (i) Find the equation of π .
 - (ii) Show that B lies on π .
 - (iii) Find the equations of the projection of L_2 on π . (6 marks)

- 13. (a) Suppose f(x), g(x) are continuously differentiable functions such that $f'(x) \ge 0$ for $a \le x \le b$.
 - (i) Let $\mathbf{w}(x) = \int_a^x \mathbf{g}(t) dt$. Show that $\int_a^b \mathbf{f}(x) \mathbf{g}(x) dx = \mathbf{f}(b) \int_a^b \mathbf{g}(x) dx \int_a^b \mathbf{f}'(x) \mathbf{w}(x) dx$.
 - (ii) Using the Theorem (*) below, show that $\int_a^b f(x)g(x) dx = f(b) \int_c^b g(x) dx + f(a) \int_a^c g(x) dx$ for some $c \in [a, b]$.

[Theorem (*): If w(x), u(x) are continuous functions and $u(x) \ge 0$ for $a \le x \le b$, then $\int_a^b w(x)u(x) dx = w(c) \int_a^b u(x) dx \text{ for some } c \in [a, b].$ (5 marks)

- (b) Let F(x) be a function with a continuous second derivative such that $F''(x) \ge 0$ and $F'(x) \ge m > 0$ for $a \le x \le b$. Using (a) with $f(x) = -\frac{1}{F'(x)}$ and $g(x) = -F'(x) \cos F(x)$, show that $\left| \int_a^b \cos F(x) \, dx \right| \le \frac{4}{m}.$ (5 marks)
- (c) (i) Show that $\int_0^1 \cos(x^n) dx \le \int_0^1 \cos(x^{n+1}) dx$. Hence show that $\lim_{n\to\infty} \int_0^1 \cos(x^n) dx$ exists.
 - (ii) Using (b), or otherwise, show that $\lim_{n\to\infty} \int_0^{2\pi} \cos(x^n) dx$ exists.

(5 marks)

END OF PAPER

PURE MATHEMATICS A-LEVEL PAPER I

9.00 am-12.00 noon (3 hours)

This paper must be answered in English

- 1. This paper consists of Section A and Section B.
- 2. Answer ALL questions in Section A, using the AL(C1) answer book.
- 3. Answer any FOUR questions in Section B, using the AL(C2) answer book.