1H

```
2. For n=1,
```

= 1

RHS =
$$\alpha^1 + \beta^1$$

For n=2,

$$RHS = \alpha^2 + \beta^2$$

$$= (\alpha + \beta)^2 - 2\alpha\beta$$

$$= 1^2 - 2(-1)$$

Assume $u_k = \alpha^k + \beta^k$ and $u_{k-1} = \alpha^{k-1} + \beta^{k-1}$ for some $k \ge 2$

Then for n = k + 1;

LHS =
$$u_{k+1}$$

$$= u_k + u_{k-1}$$

$$= \alpha^{k} + \beta^{k} + \alpha^{k-1} + \beta^{k-1}$$

$$= \alpha^{k} + \alpha^{k-1} + \beta^{k} + \beta^{k-1}$$

$$= \alpha^{k-1} (\alpha + 1) + \beta^{k-1} (\beta + 1)$$

$$= \alpha^{k-1}\alpha^2 + \beta^{k-1}\beta^2$$

$$= \alpha^{k+1} + \beta^{k+1}$$

By the principle of mathematical induction, $u_n = \alpha^n + \beta^n \ \forall n \ge 1$.

93-AL-PURE MATHS IA

**Solutions Marks

3. (a) Let $x = \alpha$, $y = \beta$, $z = \gamma$ be a solution.

Then
$$\begin{cases} a\alpha + b\beta + c\gamma = 1\\ b\alpha + c\beta + a\gamma = 1\\ c\alpha + a\beta + b\gamma = 1\\ \alpha + \beta + \gamma = 3 \end{cases}$$

$$- \left\{ \begin{array}{c} (a+b+c)(\alpha+\beta+\gamma)=3 \text{ and} \\ (\alpha+\beta+\gamma)=3 \end{array} \right.$$

$$-(a+b+c)\cdot 3=3$$

$$= a + b + ic = 1$$

(b) (*) is equivalent to

$$(+)' \begin{cases} ax + by + cz = 1 \\ bx + cy + az = 1 \\ cx + ay + bz = 1 \end{cases}$$

Consider
$$\Delta = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ b & c & a \\ c & a & b \end{vmatrix}$$
 (: $a + b + c = 1$

$$= \begin{vmatrix} 1 & 0 & 0 \\ b & c - b & a - b \\ c & a - c & b - c \end{vmatrix}$$

=
$$ac + ab + bc - a^2 - b^2 - c^2$$

$$= -\frac{1}{2} [(a-b)^2 + (b-c)^2 + (c-a)^2]$$

So (*) has a unique solution if and only if a , b , c are not all equal.

(c) We have $\Delta = 0$, and $a = b = c = (-\frac{1}{3})$.

Thus (*) becomes x + y + z = 3.

: general solution = $\{(s, t, 3-s-t) : s, t \in R\}$

. . .

18

1A

1M

1A

1A

$$\frac{1}{4}$$
. (a) $|1+z| = |2-z|$

$$(1 + z)(1 + z) = (2 - z)(2 - z)$$

$$1+z+\overline{z}+z\overline{z}=4-2z-2\overline{z}+z\overline{z}$$

$$3(z+\overline{z})=3$$

$$z + \overline{z} = 1$$

$$Re(z) = \frac{1}{2}$$

(b) Let
$$z = \frac{1}{2} + it$$
.

Substitute it into the 1st equation.

$$\left|\frac{1}{2} + it\right|^2 - \left(\frac{1}{2} + it\right) - \overline{\left(\frac{1}{2} + it\right)} + i\left[\left(\frac{1}{2} + it\right) - \overline{\left(\frac{1}{2} + it\right)}\right] = \frac{1}{2}$$

$$\left(\frac{1}{2} + it\right)\left(\frac{1}{2} - it\right) - \left(\frac{1}{2} + it\right) - \left(\frac{1}{2} - it\right) + i\left(\left(\frac{1}{2} + it\right) - \left(\frac{1}{2} - it\right)\right) = \frac{1}{2}$$

$$(\frac{1}{2} + it)(\frac{1}{2} - it) - 1 + i(2it) = \frac{1}{2}$$

$$\frac{1}{4} - (it)^2 - 1 - 2t = \frac{1}{2}$$

$$\frac{1}{4} + \epsilon^2 - 1 - 2\epsilon = \frac{1}{2}$$

$$1 + 4t^2 - 4 - 8t = 2$$

$$4t^2 - 8t - 5 = 0$$

$$(2t-5)(2t+1)=0$$

$$t = \frac{5}{2} \quad \text{or} \quad -\frac{1}{2}$$

$$z = \frac{1}{2} + \frac{5}{2}i$$
 or $\frac{1}{2} - \frac{1}{2}i$

,	Solutions		- 1	Marks
	/ 3014210/18	Alla		
5.	Let $\frac{x+4}{x^2+3x+2} = \frac{\lambda}{x+1} + \frac{B}{x+2}$		i.	
		e e e sur sur e		
	Then $x + 4 = A(x + 2) + B(x + 1)$			
	$\Rightarrow \qquad \qquad x + 4 = (A + B)x + (2A + B)$			1H
	(A+B=1)		:	•
	$\begin{cases} A+B=1\\ 2A+B=4 \end{cases}$			1
	Solving for A , B , we have $A = 3$,	B = -2 ·		,
• '			1	1.5
	$\therefore \frac{x+4}{x^2+3x+2} = \frac{3}{x+1} - \frac{2}{x+2}$	•		
	W (*	
	$\sum_{k=2}^{N} \left\{ \frac{1}{k-1} - \frac{k+4}{k^2+3k+2} \right\}$	•	•	
	K (1 3 , 2)			
•	$= \sum_{k=2}^{K} \left\{ \frac{1}{k-1} - \frac{3}{k+1} + \frac{2}{k+2} \right\}$		•	
•	$= \sum_{k=2}^{K} \frac{1}{k-1} - 3 \sum_{k=2}^{K} \frac{1}{k+1} + 2 \sum_{k=2}^{K} \frac{1}{k+2}$			
			- 4	:
	$= \sum_{k=1}^{K-1} \frac{1}{k} - 3 \sum_{k=1}^{K-1} \frac{1}{k} + 2 \sum_{k=1}^{K-2} \frac{1}{k}$			114
:	11 1 11 3 3	2 2 2	! :	1A
I	$= \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3}\right) - 3\left(\frac{1}{3}\right) - \frac{3}{N} - \frac{3}{N+1}$	$+\frac{1}{N}+\frac{1}{N+1}+\frac{1}{N+1}$	- 2	1
	5			1A
,	$\rightarrow \frac{5}{6}$ as $N \rightarrow \infty$			1
,				
:		•	1	
		ers ,	:	
·	1		:	

Solutions	Harks <
6. (a) : det A = det (A')	·.
= det (-A)	1H ;
= (-1) ³ det A	114
= -detA	
∴ det A = 0	9 3 1 3
(b) $(I - B)^{c} = \begin{pmatrix} 0 & 2 & -74 \\ -2 & 0 & 67 \\ 74 & -67 & 0 \end{pmatrix}^{c}$	ļ
$= \begin{pmatrix} 0 & -2 & 74 \\ 2 & 0 & -67 \\ -74 & 67 & 0 \end{pmatrix}$	ım
= -(I - B)	,
by (a), $det(I-B) = 0$	111
Alternatively, *	
$\det(I - B) = \det\begin{pmatrix} 0 & 2 & -74 \\ -2 & 0 & 67 \\ 74 & -67 & 0 \end{pmatrix}$	1A
$= -2 \begin{vmatrix} -2 & 67 \\ 74 & 0 \end{vmatrix} - 74 \begin{vmatrix} -2 & 0 \\ 74 & -67 \end{vmatrix}$	114
= -2 (74) (67) + 74(2) (67)	
= 0	
Now $(I-B)(I+B+B^2+B^3) = I+B+B^2+B^3-B-B^2-B^3-B^4$	
= I - B'	114
	114
therefore $\det(I - B^4) = \det((I - B)(I + B + B^4 + B^3))$ = $\det(I - B) \det(I + B + B^2 + B^3)$	114
= det(1 - B) det(1 + B + B + B)	
. 1	-
Alternatively,	
$I - B^4 = (I - B^2)(I + B^2) = (I - B)(I + B)(I + B^2)$	114
$det(I-B^4) = det((I-B)(I+B)(I+B^2)$	1M
$= \det(I - B) \det((I + B) (I + B^2))$ $= 0$	114
	•

· · · · · · · · · · · · · · · · · · ·		1		Mark
•	$\begin{bmatrix} u_1 & v_1 & w_1 \end{bmatrix}$	•	1 1	
>8.	(a) If $u_2 \cdot v_2 \cdot w_2 = 0$, then the following system of	linear		
	ן ניי ני ני ן			
	equations has non-zero solution:	•		ř
	$\int u_1 x + v_1 y + w_1 z = 0$			1M
	$(*) \left\{ u_2 x + v_2 y + w_2 z = 0 \right.$		•	
	$\begin{cases} u_1 X + v_1 y + w_1 z = 0 \\ u_2 X + v_2 y + w_2 z = 0 \\ u_3 X + v_3 y + w_3 z = 0 \end{cases}$		1	
	\Rightarrow $\exists \alpha$, β , γ , not all zero, such that	•		,
	$\int U_1 \alpha + V_1 \beta + W_1 \gamma = 0$			1m /
	$\begin{cases} u_2 \alpha + v_2 \beta + w_2 \gamma = 0 \end{cases}$			
	$\left(u_3 \alpha + v_3 \beta + w_3 \gamma = 0 \right)$,		
	$\alpha (u_1 \ u_2 \ u_3) + \beta (v_1 \ v_2 \ v_3) + \gamma (w_1 \ w_2 \ w_3) = 0$	•		
	→ u , v , w are linearly dependent	:		1M
•	⇒ a contradiction		.	114
		•		
	(b) Let $\mathbf{x} = (s_1, s_2, s_3), \mathbf{u} = (u_1, u_2, u_3), \mathbf{v} = (v_1, u_3, u_3, u_3), \mathbf{v} = (v_1, u_3, u_3, u_3), \mathbf{v} = (v_1, u_3, u_3, u_3, u_3, u_3, u_3, u_3, u_3$, V ₂ , V ₂	, .	.
	and $w = (w_1, w_2, w_3)$.			
	$\begin{cases} u_1 s_1 + u_2 s_2 + u_1 s_3 = 0 \end{cases}$			•
	Then $\begin{cases} v_1 s_1 + v_2 s_2 + v_3 s_3 = 0 \end{cases}$			
	Then $\begin{cases} u_1 s_1 + u_2 s_2 + u_3 s_3 = 0 \\ v_1 s_1 + v_2 s_2 + v_3 s_3 = 0 \\ w_1 s_1 + w_2 s_2 + w_3 s_3 = 0 \end{cases}$. 1
	by (a), $\begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w \end{vmatrix} \neq 0$:
	$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$			114
	→ unique solution exists for (*).		.	•
	→ x = 0		,	1
			:	3
	(c) u × (v × w) = 0			
•	\rightarrow $\mu = \mu(\forall \times \forall)$ for some $\mu \in \mathbb{R}$			1
	$\Rightarrow \begin{cases} u \cdot v = \mu (v \times w)v = \mu 0 = 0 \end{cases}$	·		1
:	$/\pi$. $M = \pi(A \times M)M = \pi_0 = 0$			1 '
:	Similarly, $(u \times v) \times w = 0$			1
	\Rightarrow $w = \lambda(u \times v)$ for some $\lambda \in R$			
;	$\Rightarrow w \cdot \nabla = \lambda((u \times \nabla) \cdot v) = \lambda 0 = 0$			1
	. , 0			

:	Solutions	Marks
•	(d) Let $r = \alpha u + \beta v + \gamma w$ for some α , β , $\gamma \in \mathbb{R}$	114
* \$	then $\mathbf{r} \cdot \mathbf{u} = (\alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}) \cdot \mathbf{u}$ $= \alpha \mathbf{u} \cdot \dot{\mathbf{u}} + \beta \mathbf{v} \cdot \mathbf{u} + \gamma \mathbf{w} \cdot \mathbf{u}$ $= \alpha \mathbf{u} \cdot \mathbf{u} + 0 + 0$	1
	$-\alpha = \frac{\mathbf{r} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} (\because \mathbf{u} \cdot \mathbf{u} \neq 0)$	1
	Similarly, we can show that	[
	$\beta = \frac{\mathbf{r} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$ $\gamma = \frac{\mathbf{r} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}$	1
	hence $r = \frac{r \cdot u}{u \cdot u} u + \frac{r \cdot v}{v \cdot v} v + \frac{r \cdot w}{w \cdot w} w$	4
i	Alternatively, consider $\mathbf{z} = \mathbf{r} - \left(\frac{\mathbf{r} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} + \frac{\mathbf{r} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} + \frac{\mathbf{r} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w} \right)$	1M
	Since $\mathbf{s} \cdot \mathbf{u} = \mathbf{r} \cdot \mathbf{u} - \frac{\mathbf{r} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \cdot \mathbf{u} = 0$	1
	$\mathbf{x} \cdot \mathbf{v} = \mathbf{r} \cdot \mathbf{v} - \frac{\mathbf{r} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \cdot \mathbf{v} = 0$	1
į	$\mathbf{s} \cdot \mathbf{w} = \mathbf{r} \cdot \mathbf{w} - \frac{\mathbf{r} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} = 0$ $\mathbf{by} (b), \mathbf{s} = 0$	1
:	$r = \frac{r \cdot u}{u \cdot u} u + \frac{r \cdot v}{v \cdot v} v + \frac{r \cdot w}{w \cdot w} w$	4
:		:

1	Solutions		l Marks
. (2)	_(i)f(0) = f(0 + 0)		
	$= (1)^{n} = (0) + f(0)$		•
	$\rightarrow f(0) = 0$		i
.1	(ii) $f(-x) + f(x) = f(-x + x)$		
	= f(0)		į.
	= 0		1
	- f(-x) = -f(x)		
	(iii)By (i), we need only to show $f(\pi x) =$	$nf(x)$ for $n = \pm 1, \pm 2$	•••
	Case 1: n > 0		;
	We shall use mathematical induction t	to show that E(nx).	f(x) .
	For n = 1,	· ·	
	$f(1 \cdot x) = f(x)$		
	$= 1 \cdot f(x)$		1
•	Assume $f(kx) = kf(x)$.		
	Then $f((k+1)x) = f(kx+x)$		
	= f(kx) + f(x)	1 1	
	= kf(x) + f(x)	•	1
;	= (k+1) f(x)		
	Case 2: n < 0		:
	f(nx) = f((-n)(-x))		
•	= (-n) f(-x) (by Case 1)		1
	$= -n(-f(x)) \qquad (by (ii))$		
	= nf(x)	i	5
(b) If $\exists x_0 \in \mathbb{R}$ such that $f(x_0) \neq 0$, then f	$(x_0) > 0 \text{ or } f(x_0) < 0$.	
•	Case 1: $ f(x_0) > 0$:	
	Then we can choose a positive integer n	such that	1H
. '	$nf(x_0) > K$:
	$- f(nx_0) > K$	•	
•	<pre>contradicting the fact that f(x) <</pre>	K for all $x \in R$.	1
	Case 2: $f(x_0) < 0$		
	Replace x_0 by $-x_0$ and use the same arguments	ments in Case 1.	1
		; ;	3
! ·			
;		₹ X	

f(x) = f(1) x

·,	Solutions	Harke
•	$\int (1) g(x+y) = f(x+y) - f(1)(x+y)$;
¦	= f(x) + f(y) - f(1)x - f(1)y	1
	= (f(x) - f(1)x) + (f(y) - f(1),y)	
•	= g(x) + g(y)	
<u> </u>	(ii) $g(x+1) = f(x+1) - f(1)(x+1)$	į v
	= f(x) + f(1) - f(1)x - f(1)	1
:	= f(x) - f(1)x	
	= g(x)	
	(iii) $\forall x \in \mathbb{R}$, there exists $h \in [0, 1)$ such that $x - h$	1
	is an integer.	
:	By (b)(ii), $g(x) = g(h)$	1
	= f(h) - f(1) h	•
. !	< K - f(1)h	1
•	< K + f(1) (: 0 ≤ h < 1)	1
	By (b), $g(x) = 0 \forall x \in \mathbb{R}$	1
	$- f(x) - f(1) x = 0 \forall x \in \mathbb{R}$	

		THE RESIDENCE OF THE PROPERTY OF THE PARTY O		
	Solutions		Harks	<u></u>
10. (a) (Ref	lexive)			
10. (a) (Ref.				
	$A = IAI^{-1}$			
	A - A		114	1,
(SY	mmetric)	· !		
	, в є м ,		,	,
	A ~ B			*
	$- \Lambda = PBP^{-1} \text{for some } P$			•
	$P^{-1}AP = B$	•		
· •	$\Rightarrow B = P^{-1}A(P^{-1})^{-1}$. 114	1
	→ B - A			•
Τ)	ransitive)	·		:
. **	A, B, C ∈ M , A ~ B and B ~ C	. •		
	\rightarrow A = PBP ⁻¹ and B = QCQ ⁻¹	for some P , Q		
	$A = P(QCQ^{-1}) P^{-1}$			
	$- A = (PQ)^{\circ}C(PQ)^{-1}$		-	1H
·	- A - C		_	3
(p) I	f A ~ B	•		i
. t	then $A = PBP^{-1}$ for some P			1M
	$A^{k} = (PBP^{-1})^{k}$;
	$= (PBP^{-1}) \dots (PBP^{-1})$	•		1M
. 1	$= PB(P^{-1}P)B B(P^{-1}P)B$	P-1		111
	= PBIB BIBP-1			
	= PB x P-1	î.		
	$-A^{k}-B^{k}$		-	*2;
(c)	(i) If C - 0			1
•	then $C = POP^{-1}$ for sor	ne P		i
	. ∞ 0	·		1
				•
. •				
		EA .		

1H

and
$$B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Then
$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and
$$BA = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

∴
$$\forall$$
 non-singular P , $P(BA)P^{-1} = 0$

If
$$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

then
$$\exists P$$
 such that $A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} P^{-1}$

$$- AP = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

Let
$$P = \begin{pmatrix} x_1 & x_2 & x_1 \\ y_1 & y_2 & y_1 \\ z_1 & z_2 & z_1 \end{pmatrix}$$

then $(x_1 \ y_1 \ z_1)$, $(x_2 \ y_2 \ z_2)$ and $(x_3 \ y_3 \ z_3)$ are linearly independent

(" P is non-singular)

Moreover,

$$A\begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

93-AL-PURE HATH

	"	-:	
Solutions		:	Marks
$\rightarrow \left(\begin{array}{c} A \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{array} \right) A \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{array}) A \begin{pmatrix} x_3 \\ y_3 \\ z_1 \end{array} \right) = \left(\begin{array}{c} \lambda_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{array} \right) \lambda_2 \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{array}) \lambda_3 \begin{pmatrix} x_3 \\ y_3 \\ z_1 \end{array} \right)$			1
$-A\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \lambda_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} , i = 1, 2, 3 .$:
(-)	•		i
Consider $P = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$: · .		
Since (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3)			
are linearly independent, P is non-singular.			1
Furthermore,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
$AP = A \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$		·	
$= \left(A \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} A \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} A \begin{pmatrix} x_1 \\ y_3 \\ z_3 \end{pmatrix} \right) $, , , , , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
$= \left(\begin{array}{c} \lambda_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{array} \right) \lambda_2 \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{array} \right) \lambda_3 \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{array} \right)$			1
$= \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$		i	
$= P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$	•		1
$A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} P^{-1} (\because P \text{ is non-singular})$			
$A = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$	1		
			0

11.		٠.	A 7	7	Z _{3.} -	٨	W.	W.	W.
TT .	(a))	4	1 22	₽3.		" ኒ	"2	"

$$= arg\left(\frac{z_1 - z_1}{z_2 - z_1}\right) = arg\left(\frac{w_1 - w_1}{w_2 - w_1}\right) \text{ and } \frac{|z_1 - z_1|}{|z_2 - z_1|} = \frac{|w_1 - w_1|}{|w_2 - w_1|}$$

$$= arg\left(\frac{z_1 - z_1}{z_2 - z_1}\right) = arg\left(\frac{w_1 - w_1}{w_2 - w_1}\right) \text{ and } \left|\frac{z_1 - z_1}{z_2 - z_1}\right| = \left|\frac{w_1 - w_1}{w_2 - w_1}\right|$$

$$= \frac{z_1 - z_1}{z_2 - z_1} = \frac{\omega_1 - \omega_1}{\omega_2 - \omega_1}$$

(b) Let
$$E_1$$
, E_2 , E_3 be the points representing 1, ϵ , ϵ^2 respectively.

Then, $\Delta Z_1 Z_2 Z_1$ is equilateral

$$= (z_1 - z_1)(\epsilon - 1) = (z_2 - z_1)(\epsilon^2 - 1) \text{ (by (a))}$$

$$(z_1 - z_1) (\epsilon - 1) = (z_2 - z_1), (\epsilon - 1) (\epsilon +$$

$$z_1 - z_1 = (z_2 - z_1) (\epsilon + 1)$$

$$=$$
 $z_1 - z_1 = z_2 (\epsilon + 1) - z_1 (\epsilon + 1)$

$$- (\epsilon + 1 - 1) z_1 - (\epsilon + 1) z_2 + z_1 = 0$$

$$- \epsilon z_1 - (1 + \epsilon) z_2 + z_1 = 0$$

$$- \epsilon z_1 + \epsilon^2 z_2 + z_3 = 0 \quad (\because \quad 1 + \epsilon + \epsilon^2 = 0)$$

$$= \epsilon^{2} (\epsilon z_{1} + \epsilon^{2} z_{2} + z_{3}) = 0$$

$$- \epsilon^1 z_1 + \epsilon^4 z_2 + \epsilon^2 z_3 = 0$$

$$z_1 + \epsilon z_2 + \epsilon^2 z_3 = 0 \quad (: \epsilon^3 = 1)$$

	Solutions of the second of the	Harks
12. (a)	$\forall p \in A$,	
	-Case-1p = 0	
. :	then rp	1 .
!	Case 2 p ≠ 0	
	then by Euclidean Algorithm,	
* · ·	p = qr + s where $s = 0$ or degs < degr	1
	Now $s = p - qr$	ţ
·	= $(mf + ng) - g(m'f + n'g)$ where $p = mf + ng$	
	and $r = m'f + n'g$	
	= (m - qm') f + (n - qn') g	
	€ A	1
	\therefore degr \le degs (by the property of r)	
	→ deg s / deg r	;
	⇒ s = 0	1
£	Hence $p = qr$:
	- ,r p	
	$f = 1 \cdot f + 0 \cdot g \in A$	
	$\mathbf{r} \cdot \mathbf{r} \mathbf{f}$	
	$g = 0 \cdot f + 1 \cdot g \in A$	1
•	· r a	
	Thus r divides both f and g	
	If $\begin{cases} f = th \\ for some t, w \in D \end{cases}$	
i. V	If $\begin{cases} for some t, w \in p \\ g = wh \end{cases}$	
	then $r = m'f + n'g$	
	= m' ch + n' wh	1
•	= (m't + n'w)h	
;	$\rightarrow h r$	
!	Hence r is a G.C.D. of f and g.	
!		
		1

(b) "∀p"∈"A ,

p = mf + ng for some $m, n \in p$

$$\Rightarrow p = m(m'r) + n(n'r) \text{ for some } m', n' \in p \text{ (... r divides both f and g) 1}$$
$$= (mm' + nn') r$$

 $\in B^{\cdot}$

$$\therefore A \subset B$$
.

$$\forall p \in B$$
 , $p = hr$

$$= h(mf + ng) \quad (:: r \in A)$$

$$= (hm) f + (hn) g$$

 $\in A$

$$B \subset A$$

Therefore A = B.

(c) r is a non-zero constant

$$\rightarrow$$
 $r = m'f + n'g$ for some m' , $n' \in p$ ($r \in A$)

$$\rightarrow$$
 1 = $m_0 f + n_0 g$ where $m_0 = \frac{m'}{r}$, $n_0 = \frac{n'}{r} \in \rho$

By (b),
$$A = B$$

$$= \{hr : h \in p\}$$

=
$$\{k : k \in p\}$$
 (r is a non-zero constant)

= 8

93-AL-PURE MATHS ES

			Ja Valar	Solutions	422-		**	Hark	. · · · ·
13.	. (a)	(<u>1</u>)	If $z \in G_p \cap H_p$:	1		:
<i>.</i> , .		· ·	: then—z ^p -= 1' a	nd z ^p =1,	· · · · · · · · · · · · · · · · · · ·				
			a contradicti	•	•	;			
		(ii)	$z \in G_p \cup H_p =$	$z \in G_p$ or $z \in H$, p .			·	
		•	-	$z^p = 1$ or $z^p =$	-1			. 1	9
	•		-	$z^{2p}=1$		•			
: :	: !		-	$z \in G_{2p}$	•.				- ,
	! (b)	Ιf	$z' \in H_p \cap H_q$						
:	· · · ·		$z \in H_p$ and z	€ H _q		,	*		
		•	$z^p = -1$ and					1	
٠		we ha	ave $z^{pq} = (z$	$P)^{q} = (-1)^{q} = 1$	(∵ q is eve	ın)	:	1	
		and	$z^{pq} = (z$	$^{q})^{p} = (-1)^{p} = -1$	(: p is odd		!		ų.
:	. •	⇒ a •	contradiction	ı	,		1		- ;
•	; ; ; (c)	(i)	$z \in G_q$						
	:		$\Rightarrow z^{\sigma} = 1$		1 km				
:	: !	•	$z^p = z$	m-q					;
	!		, = _(z T) m		,		1	
	;	•	= 1	m					
			= 1		•				1
			$z \in G_p$			•			
:		(ii)	$z \in H_q$	$\Rightarrow z^p = z^{mq}$					
	:		1	$= (z^{q})^{pq}$					·
	:		•	= (-1) "	$(\because z \in H_q)$	• .		1	
		.		= '-1 (::	m is odd)		j	,1	
			•	$\Rightarrow z \in H_p$					
1				·					
			•		• .		1		
•			1 1 1	•			•		•
					. and	e esa e ai			

Э.	Since	Q	lies	on OP	,	We	may	let	P =	(I,	8)	and	Ω =	(3,	0)
							_						_		-

1H

$$\therefore r = 2a\cos\theta \dots (2)$$

$$2 sacos \theta = a^2$$

1A

1H

	12 13 19T	Solutions	:	10.0	,	Harks
$\frac{dx}{dt}$	·]sin²tcost					
. = *	-Jcos'tsint					1
	$ds = \sqrt{\left(\frac{dx}{dc}\right)^2 - \left(\frac{dx}{dc}\right)^2}$	$\frac{dy}{dz}$) ² dz		•	1	•
	$=\sqrt{9\sin^2 c\cos^2 \theta}$	3 C d C				· · /
	= 3sintcost	dc			:	ı į
Surf	ace area = $2\int_0^{\frac{x}{2}}$	(2πy) (3 sin t cos	t) dt			114
	= 12π ∫ ₀	Too'tsintdt		` *		
· · · · · · · · · · · · · · · · · · ·	= -12π	$\int_0^{\frac{k}{2}} \cos^k t \mathrm{d} (\cos t)$				1H
	$= -12\pi \bigg[$	$\frac{\cos^{5} C}{5} \bigg]_{0}^{\frac{\pi}{2}}$			1	
	$= -\frac{12\tau}{5}$	(0 - 1)	;			
	$= \frac{12\pi}{5}$				•	1A
	, !	· · · ·				
	: • .				:	
	• • •		·		:	

Therefore, $\int e^{2x} (\sin x + \cos x)^2 dx = \frac{1}{2} e^{2x} + \frac{1}{4} e^{2x} (\sin 2x - \cos 2x) + c$

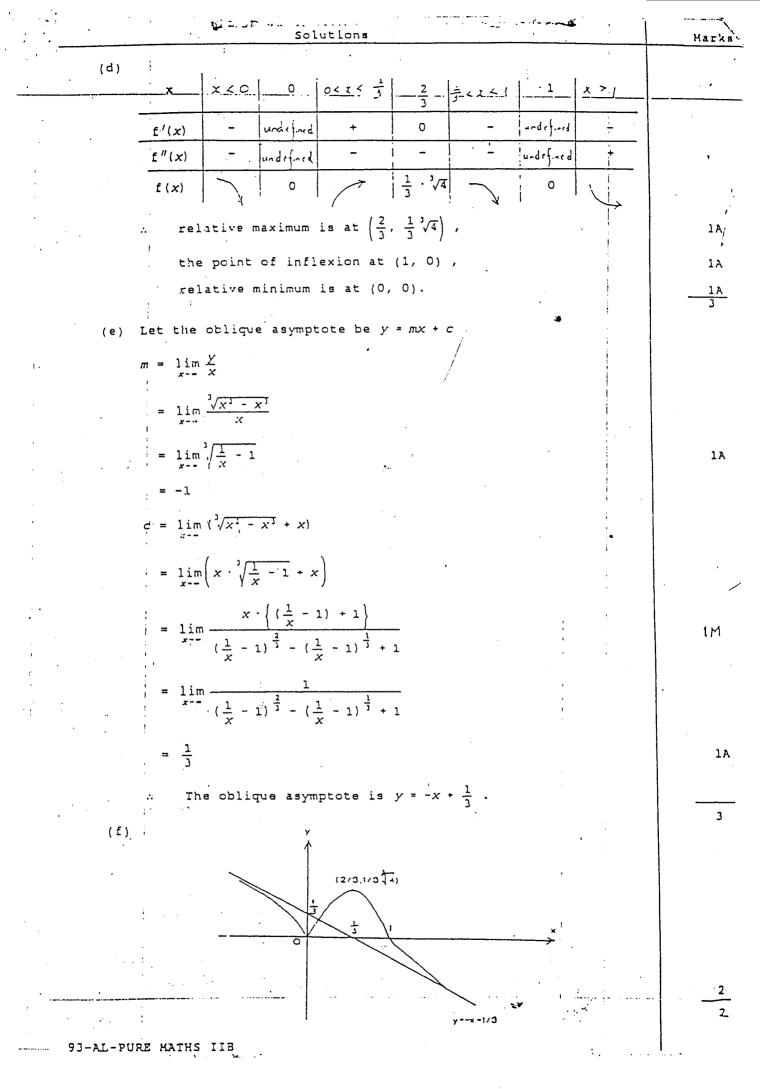
1A

93-AL-PURE MATHS IIA

	Marks
7. (a) By Leibniz's Theorem, $y^{(n)} = \sum_{r=0}^{n} {n \choose r} u^{(r)} (x) \{e^{\alpha x}\}^{(n-r)}$	1H
$= \sum_{r=0}^{n} {n \choose r} u^{(r)}(x) q^{n-r} e^{qx}$ (b) $u^{(r)}(x) = p^{r}e^{\pi x}$	la
$y^{(n)} = \sum_{r=0}^{n} {n \choose r} p^r q^{n-r} e^{(p-q)x}$	11
On the other hand,	1
$y^{(n)} = (u(x) e^{qx})^{(n)} = (e^{px}e^{qx})^{(n)} = (e^{(p+q)x})^{(n)}$ $= (p+q)^n e^{(p+q)x}$	
Hence $(p+q)^n = \sum_{r=0}^n {n \choose r} p^r q^{n-r}$ (: $e^{(p+q)x} \neq 0$)	1 1H

93-AL-PURE HATE

P.7,


C

	Solutions	Harks
<u>8. (a</u>	$\int_{0}^{\infty} f(x) = (x^{2} - x^{2})^{\frac{1}{2}}$	XB
	$f'(x) = \frac{1}{3}(x^2 - x^3)^{-\frac{2}{3}}(2x - 3x^2)$,
4	$= \frac{2 - 3x}{3x^{\frac{1}{3}} (1 - x)^{\frac{2}{3}}}$	14
·	$f''(x)' = -\frac{2}{9}(x^2 - x^3)^{-\frac{5}{3}}(2x - 3x^2)^2 + \frac{1}{3}(x^2 - x^3)^{-\frac{2}{3}}(2 - 6x)$	
·	$= \frac{-2x^2}{9(x^2 - x^3)^{\frac{5}{3}}}$	
·	$= \frac{-2}{9(1-x)(x^2-x^3)^{\frac{2}{3}}}$	1A
(b)	$\frac{f(x) - f(0)}{x} = \frac{1}{x} (x^2 - x^3)^{\frac{1}{3}}$	
	$= \left(\frac{1}{x} - 1\right)^{\frac{1}{3}}$ $\rightarrow \pm \infty \text{ as } x \rightarrow \pm 0$	1
	$f'(0) \text{ does not exist.}$ $\frac{f(x) - f(1)}{x - 1} = \frac{1}{x - 1} (x^2 - x^3)^{\frac{1}{3}}$	
;	$ = \frac{x^{\frac{2}{3}} (1 - x)^{\frac{1}{3}}}{x - 1} $	
	$= \frac{-x^{\frac{2}{3}}}{(x-1)^{\frac{2}{3}}}$	
	$rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}{2}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{1}$ $rac{$	1
. (c)	(i) $f'(x) = 0$ - $x = \frac{2}{3}$	2
	(ii) $f'(x) > C - 0 < x < \frac{2}{3}$	
	(iii) $f'(x) < 0 - x < 0$, $\frac{2}{3} < x < 1$, $1 < x$ (iv) $f''(x) = 0$ for all x	
	(v) f''(x) > 0 -x > 1.	
	(vi) $f''(x) < 0 - x < 0$, $0 < x < 1$	

3-AL-PURE HATHS IIB

mark each)

rovided by dee life

$$-9. \quad (a) \quad (1) \quad \frac{\left[\frac{1}{2}a(c+\frac{1}{c})\right]^2}{a^2} \quad \frac{\left[\frac{1}{2}b(c-\frac{1}{c})\right]^2}{b^2}$$

$$= \frac{1}{4}(c + \frac{1}{c})^2 - \frac{1}{4}(c - \frac{1}{c})^2$$

$$= \frac{1}{4} \left[\left(c + \frac{1}{c} \right) + \left(c - \frac{1}{c} \right) \right] \left[\left(c + \frac{1}{c} \right) - \left(c - \frac{1}{c} \right) \right]$$

$$= \frac{1}{4} [2c] [2(\frac{1}{c})]$$

(ii) Differentiating both sides of the equation of H with respect to x , we have

$$\frac{d}{dx}\left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right) = \frac{d}{dx} 1$$

$$- \frac{2}{d^2} x - \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$-\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y} \left(\frac{b}{a}\right)^2$$

By slope point form, equation of tangent at P is

$$\frac{y - \frac{1}{2}b(c - \frac{1}{c})}{x - \frac{1}{2}a(c + \frac{1}{c})} = \frac{\frac{1}{2}a(c + \frac{1}{c})}{\frac{1}{2}b(c - \frac{1}{c})} (\frac{b}{a})^{2}$$

$$\frac{y - \frac{1}{2}b(c - \frac{1}{c})}{x - \frac{1}{2}a(c + \frac{1}{c})} = \frac{b(c + \frac{1}{c})}{a(c - \frac{1}{c})}$$

$$a(t-\frac{1}{t})y-\frac{1}{2}ab(t-\frac{1}{t})^2=b(t+\frac{1}{t})x-\frac{1}{2}ab(t+\frac{1}{t})^2$$

$$b(t + \frac{1}{c}) \times -a(t - \frac{1}{c}) y = \frac{ab}{2} \left[(t + \frac{1}{c})^2 - (t - \frac{1}{c})^2 \right]$$

$$=\frac{ab}{2}\left[\left(z+\frac{1}{z}\right)+\left(z-\frac{1}{z}\right)\right]\left(\left(z+\frac{1}{z}\right)-\left(z-\frac{1}{z}\right)\right]$$

$$= \frac{ab}{2} (2c) \left(\frac{2}{c}\right)$$

1A

	Solutions	. Marks
(b) (i)	Asymptotes: $y = \pm \frac{b}{a}x$	1A
	Substituting $y = \frac{b}{a}x$ into (*), we have	
	$\frac{x}{2a}\left(z+\frac{1}{c}\right)-\frac{x}{2a}\left(z-\frac{1}{c}\right)=1$. 1
	$\frac{x}{at} = 1$	
•	x = at	
	-y = bt	
	- S = (at, bt)	1A
	Substituting $y = -\frac{b}{a}x$ into (*), we have	
•	$\frac{x}{2a}\left(c+\frac{1}{c}\right)+\frac{x}{2a}\left(c-\frac{1}{c}\right)=1$	
	$\frac{x}{a} = 1$	
	$-x = \frac{a}{c}$, .
₩ - •	$- y = -\frac{b}{c}$	
	$T = \left(\frac{a}{c}, -\frac{b}{c}\right)$	1A
•	Let the equation of circle OST be	
	$x^2 + y^2 + 2gx + 2fy + c = 0$.	
	Substituting $(0, 0)$ into the equation, we have $c = 0$.	1A
	Substituting S , T into the equation, we have	
	$\begin{cases} a^{2}t^{2} + b^{2}t^{2} + 2gat + 2fbt = 0\\ \frac{a^{2}}{t^{2}} + \frac{b^{2}}{t^{2}} + \frac{2ga}{t} - \frac{2fb}{t} = 0 \end{cases}$	
	$\left(\frac{a^2}{c^2} + \frac{b^2}{c^2} + \frac{2ga}{c} - \frac{2fb}{c} = 0\right)$	
	$= \begin{cases} a^2c^2 + b^2c^2 + 2gac + 2fbc = 0 \\ a^2 + b^2 + 2gac + 2fbc = 0 \end{cases}$	
	$= \begin{cases} 4 gat = -(a^2 + b^2)(1 + t^2) \\ 4 fbt = -(a^2 + b^2)(t^2 - 1) \end{cases}$	
	$ \begin{cases} g = -\frac{1}{4at} (a^2 + b^2) (1 + t^2) \\ f = -\frac{1}{4bt} (a^2 + b^2) (t^2 - 1) \end{cases} $	
	$\int_{a}^{b} f = -\frac{1}{4bc} (a^2 + b^2) (c^2 - 1)$	

Thus the centre of the circle is given by

$$\begin{cases} x = \frac{1}{4ac} (a^2 + b^2) (1 + c^2) \\ y = \frac{1}{4bc} (a^2 + b^2) (c^2 - 1) \end{cases}$$

1.A

Eliminate t :

$$\begin{cases} x = \frac{1}{4a} (a^2 + b^2) (\frac{1}{c} + c) \\ y = \frac{1}{4b} (a^2 + b^2) (c - \frac{1}{c}) \end{cases}$$

$$\begin{cases} \frac{4ax}{a^2 + b^2} = c + \frac{1}{c} \\ \frac{4by}{a^2 + b^2} = c - \frac{1}{c} \end{cases}$$

or
$$\frac{x^2}{\left(\frac{a^2+b^2}{2a}\right)^2} - \frac{y^2}{\left(\frac{a^2+b^2}{2b}\right)^2} = 1$$

(ii) OS · OT =
$$[(at)^2 + (bt)^2]^{\frac{1}{2}} \cdot [(\frac{a}{t})^2 + (\frac{b}{t})^2]^{\frac{1}{2}}$$

= $a^2 + b^2$

Let S' = (-at, bt).

Hence S'OT are collinear and

$$OS' \cdot OT = OS \cdot OT = a^2 + b^2$$

Let F , F' be the foci, so

$$OF \cdot OF' = a^2 + b^2 = OS' \cdot OT$$

Therefore $\triangle OFT = \triangle OS'F'$ and the points

F , F' , S' , T are concyclic. Since the centre of such circle lies on the y-axis, S , T and the foci are concyclic.

11

(c) Area of-loop =
$$\frac{1}{2} \int_{0}^{\frac{\pi}{2}} r^{2} d\theta$$
 - $\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{9 a^{2} \cos^{2}\theta \sin^{2}\theta}{(\cos^{3}\theta + \sin^{3}\theta)^{2}} d\theta$ = $\frac{9}{2} a^{2} \int_{0}^{\frac{\pi}{2}} \frac{\tan^{2}\theta \sec^{2}\theta}{(1 + \tan^{3}\theta)^{2}} d\theta$ = $\frac{9}{2} a^{2} \int_{1}^{\infty} \frac{dw}{3w^{2}} where $w = 1 + \tan^{3}\theta$ = $\frac{3}{2} a^{2} \left(-\frac{1}{w} \right)_{1}^{\infty}$ = $\frac{3}{2} (0 + 1) a^{2}$$

(d)
$$A_{+} = \int_{+}^{\pi} \frac{1}{2} r_{1}^{2} - \frac{1}{2} r_{2}^{2} d\theta$$
 where $r_{1} = \frac{-a}{\cos \theta + \sin \theta}$ and $r_{2} = \frac{3a\cos \theta \sin \theta}{\cos^{2} \theta + \sin^{2} \theta}$

 $= \frac{3}{2}a^2$

$$= \frac{a^{2}}{2} \left\{ \int_{+}^{\pi} \frac{d\theta}{(\sin\theta + \cos\theta)^{2}} - \int_{+}^{\pi} \frac{9 \sin^{2}\theta \cos^{2}\theta}{(\sin^{1}\theta + \cos^{1}\theta)^{2}} d\theta \right\}$$
Now
$$\int_{+}^{\pi} \frac{1}{(\sin\theta + \cos\theta)^{2}} d\theta = \int_{+}^{\pi} \frac{\sec^{2}\theta d\theta}{(1 + \tan\theta)^{2}}$$

$$= -\left[\frac{1}{1 + \tan\theta} \right]_{+}^{\pi}$$

$$= \frac{1}{1 + \tan\theta} - 1$$

and
$$\int_{0}^{\pi} \frac{9 \sin^{2}\theta \cos^{2}\theta d\theta}{(\sin^{3}\theta + \cos^{3}\theta)^{2}} = 9 \cdot \left[\frac{1}{-3(1 + \tan^{3}\theta)} \right]_{0}^{\pi}$$

$$= 3 \left(\frac{1}{1 + \tan^{3}\phi} - 1 \right)$$

$$\therefore A_{0} = \frac{a^{2}}{2} \left\{ \left(\frac{1}{1 + \tan\phi} - 1 \right) - 3 \left(\frac{1}{1 + \tan^{3}\phi} - 1 \right) \right\}$$

$$= \frac{a^{3}}{2} \left\{ \frac{1}{1 + \tan \phi} - \frac{3}{1 + \tan^{3} \phi} + 2 \right\}$$

1A

าห

1A

1 A

1 5

•	·	A CONTRACTOR OF THE PROPERTY IS	
		Solutions	Harks
	lim A.	$= \lim_{\substack{4 = 2 \times 10^{-2} \\ 4 = 2 \times 10^{-2}}} \left\{ \frac{1}{1 + \tan \phi} - \frac{3}{1 + \tan^2 \phi} + 2 \right\}$	
		$= a^{2} + \frac{\dot{a}^{2}}{2} \lim_{\frac{4}{4} - \frac{1\pi}{4}} \left\{ \frac{1}{1 + \tan \phi} - \frac{3}{1 + \tan^{3} \phi} \right\}$	
		$= a^{2} + \frac{a^{2}}{2} \lim_{\phi \to \frac{1\pi}{4}} \frac{1 - \tan\phi + \tan^{2}\phi - 3}{1 + \tan^{3}\phi}$;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
		$= a^{2} + \frac{a^{2}}{2} \lim_{\phi \to \frac{1\pi}{4}} \frac{\tan^{2}\phi - \tan\phi - 2}{1 + \tan^{3}\phi}$	•
:		$= a^{2} + \frac{a^{2}}{2} \lim_{\phi = \frac{1\pi}{4}} \frac{(\tan \phi + 1)(\tan \phi - 2)}{1 + \tan^{3} \phi}$	
		$= a^{2} + \frac{a^{2}}{2} \lim_{\phi \to \frac{3\pi}{4}} \frac{\tan \phi - 2}{1 - \tan \phi + \tan^{2} \phi}$	1ห
I .		$= a^{2} + \frac{a^{2}}{2} \left(\frac{(-1) - 2}{1 - (-1) + (-1)^{2}} \right)$	
: :·		$= a^{2} + \frac{a^{2}}{2} \left(\frac{-3}{3} \right)$	

11. (a) (i) By Mean Value Theorem,
$$f(r) = f(n) + f'(\ell)$$
 ($c = n$) for some $f \in (c, n)$ where $c \in (n, n+1]$.

As $f'' \ge 0$, f' is increasing, $f'(n) \le f'(n) \le f'(n+1)$ ($f'(n+1) \le f'(n) \le f'(n) \le f'(n) \le f'(n+1)$ ($f'(n+1) \le f'(n) \le f'(n) \le f'(n+1) \le f'(n+1)$ ($f'(n) \le f'(n) \le f'(n) \le f'(n+1) \le f'(n+1) \le f'(n+1)$ ($f'(n) \le f'(n) \le f'(n) \le f'(n+1) \le$

	Solutions .	Harks
	(iii) $\left \int_{n}^{n^{2}} f(z) dz - \sum_{j=n}^{n^{2}-1} \frac{f(j) + f(j+1)}{2} \right g(n^{2})$	
,	$\leq g(n^2) \cdot \sum_{j=n}^{n^2-1} \left \int_{j}^{j+1} f(z) dz - \left(\frac{f(j) + f(j+1)}{2} \right) \right $	1
	$\leq g(n^2) \cdot \sum_{j=n}^{n^2-1} \frac{f'(j+1) - f'(j)}{2}$	1
	$= g(n^2) - \frac{f'(n^2) - f'(n)}{2}$.v }
1	$= \frac{1}{2} g(n^2) f''(\zeta_n) \text{for some } \zeta_n \in (n, n^2).$	1M
	$ \leq \frac{1}{2} g(\zeta_n) f''(\zeta_n) \text{ as g is decreasing.} $	
1.	As $n - \infty$, $\zeta_n - \infty$. $\lim_{n \to \infty} (\zeta_n) f''(\zeta_n) = 0$ (by Condition C)	
•	$ \lim_{n \to \infty} \left \int_{n}^{n^{2}} f(t) dt - \sum_{j=n}^{n^{2}-1} \frac{f(j) + f(j+1)}{2} \right g(n^{2}) = 0 $	
•	$\lim_{n\to\infty} \left\{ \int_{n}^{n^{2}} f(z) dz - \sum_{j=n}^{n^{2}-1} \frac{f(j) + f(j+1)}{2} \right\} g(n^{2}) = 0$	9
(b)	* Note: marks for this part have been reallocated Put: $f(t) = \frac{1}{\ln t}$ and $g(t) = \frac{\ln t}{t}$	
	then $g'(t) = \frac{1 - \ln t}{t^2}$	
٠ ;	≤ 0 ∀t ∈ (e, ∞)	
: 2	∴ $g(t)$ is decreasing on $(e, ∞)$. — Condition A is satisfied.	1
	Now $f'(c) = -\frac{1}{(\ln c)^2} \cdot \frac{1}{c}$	
;	$f''(c) = \frac{2}{(\ln c)^3} \cdot \frac{1}{c^2} + \frac{1}{(\ln c)^2} \cdot \frac{1}{c^2}$	
	\geq 0 on (e, ∞)	
	$g(t) \ge 0$ on (e, ∞) — Condition B is satisfied.	1
	Also, $\lim_{c \to \infty} g(c) f''(c) = \lim_{c \to \infty} \frac{\ln c}{c} \left\{ \frac{2}{(\ln c)^3} \cdot \frac{1}{c^2} + \frac{1}{(\ln c)^2} \cdot \frac{1}{c^2} \right\}$	
	$= \lim_{\epsilon \to \infty} \left\{ \frac{2}{(\ln \epsilon)^2 \epsilon^3} + \frac{1}{(\ln \epsilon) \epsilon^3} \right\}$	
•	= 0	
	- Condition C is satisfied.	1

- 93-AL-PURE HATHS IIB

Then by (a),

$$\lim_{n\to\infty} \left\{ \int_{n}^{a^{2}} \frac{1}{\ln t} dt - \sum_{j=n}^{a^{2}-1} \frac{1}{2} \left(\frac{1}{\ln j} + \frac{1}{\ln (j+1)} \right) \right\} \frac{\ln n^{2}}{n^{2}} = 0$$

$$= \lim_{n \to \infty} \left\{ \int_{n}^{a^{2}} \frac{1}{\ln c} dc - \sum_{j=n}^{a^{2}-1} \frac{1}{2} \left(\frac{1}{\ln j} + \frac{1}{\ln (j+1)} \right) \right\} \left(\frac{\ln n}{n^{2}} \right) = 0$$

 $\lim_{n \to \infty} \left\{ \frac{(\ln n)}{n^2} \int_{n}^{n^2} \frac{1}{\ln c} dc - \frac{\ln n}{n^2} \int_{j-n}^{n^2-1} \frac{1}{2} \left(\frac{1}{\ln j} + \frac{1}{\ln (j+1)} \right) \right\} = 0$

$$- \lim_{n \to \infty} \frac{\ln n}{n^2} \sum_{j=n}^{n-1} \frac{1}{2} \left(\frac{1}{\ln j} + \frac{1}{\ln (j+1)} \right) = \frac{1}{2}$$

(: given that
$$\lim_{n\to\infty} \frac{\ln n}{n^2} \int_n^{n^2} \frac{1}{\ln t} dt = \frac{1}{2}$$
)

$$\lim_{n \to \infty} \frac{1\pi \cdot n}{n^2} \left\{ \sum_{j \neq n}^{n^2 - 1} \frac{1}{\ln(j+1)} + \frac{1}{2 \ln n} - \frac{1}{2 \ln n^2} \right\} = \frac{1}{2}$$

$$- \lim_{n \to \infty} \left\{ \frac{\ln n}{n^2} \int_{1/n}^{n^2-1} \frac{1}{\ln (j+1)} + \frac{1}{2n^2} - \frac{1}{4n^2} \right\} = \frac{1}{2}$$

$$- \lim_{n \to \infty} \left\{ \frac{\ln n}{n^2} \sum_{j \neq n}^{n^2 - 1} \frac{1}{\ln (j + 1)} - \frac{1}{4n^2} \right\} = \frac{1}{2}$$

$$\lim_{n \to \infty} \frac{\ln n}{n^2} \sum_{j=n}^{n^2-1} \frac{1}{\ln (j+1)} = \frac{1}{2} \left(\because \lim_{n \to \infty} \frac{1}{n^2} = 0 \right)$$

۔

`	The second secon	. 💜
1	Solutions	Harks
12. (a)	Let $S = 1 + (-t^2) + (-t^2)^2 + \cdots + (-t^2)^{n-1}$	1
	then $(-t^2) S = (-t^2) + (-t^2)^2 + \cdots + (-t^2)^{n-1} + (-t^2)^n$	
	hence $S - (-t^2) S = 1 - (-t^2)^n$	•
	$- (1 + t^2) S = 1 - (-1)^n t^{2n}$	1
i i	$S = \frac{1}{1+t^2} - \frac{(-1)^n t^{2n}}{\frac{1}{t^2} + t^2}$,
· ·	$-\frac{1}{1+t^2}=S+\frac{(-1)^nt^{2n}}{1+t^2}$	·
	$-\frac{1}{(1+t^2)} = 1 - t^2 + t^4 - \cdots + (-1)^{n-1} t^{2n-2} + \frac{(-1)^n t^{2n}}{1+t^2}$	
•	Integrating both sides from $t = 0$ to $t = x$,	114
· . ·	we have $\int_0^x \frac{1}{1+t^2} dt = \int_0^x 1 - t^2 + t^4 - \dots + (-1)^{n-1} t^{2n-2} + \frac{(-1)^n t^{2n}}{1+t^2} dt$	ί¢
	$- \left[\left[\tan^{-1} t \right]_0^x = \int_0^x 1 - t^2 + t^4 - \dots + (-1)^{n-1} t^{2n-2} dt + \int_0^x \frac{(-1)^n t^{2n}}{1 + t^2} dt \right]$	1
•	$- \tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^{n-1}}{2n-1} x^{2n-1} + \int_0^x \frac{(-1)^n t^{2n}}{1 + t^2} dt$	
(þ)	$\left \tan^{-1} x - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^{n-1}}{2n-1} x^{2n-1} \right) \right $	
	$= \left \int_0^x \frac{(-1)^n t^{2n}}{1 + t^2} dt \right \text{ (by (a))}$	1
. •	$\leq \int_{0}^{x} \left \frac{(-1)^{n} t^{2n}}{1 + t^{2}} \right dt$	1
1 1 1 1	$= \int_0^x \frac{t^{2n}}{1+t^2} dt (: x \ge 0)$	
	$\leq \int_0^x t^{2a} dt$	1
	$= \frac{1}{2n+1} [z^{2n+1}]_0^x$	
	$= \frac{1}{2n+1} x^{2n+1}$	
•	Putting X = 1 , we have	1H
	$\left \tan^{-1} 1 - \left(1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^{n-1}}{2n-1} \right) \right \le \frac{1}{2n+1}$	
	$- \left \frac{\pi}{4} - \left(1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^{n-1}}{2n-1} \right) \right \le \frac{1}{2n+1}$	
•	Taking $n \to \infty$, we have $\lim_{n \to \infty} \left(1 - \frac{1}{3} + \frac{1}{5} - \dots + \frac{(-1)^{n-1}}{2n-1}\right) = \frac{\pi}{4}$	1H
	$-\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$	1A
		6

	•
THE PARTY WAS A STATE OF THE PARTY OF THE PA	Harks .
Solution.	
tan (tan	$(-1\frac{1}{2}) + \tan(\tan^{-1}\frac{1}{3}),$
(c) tan (tan-1 $\frac{1}{2}$ +- tan-1 $\frac{1}{3}$) = $\frac{1}{1 - \tan(1 + \sin(1 + \tan(1 + \sin(1 + (((((((((($	$\tan^{-1}\frac{1}{2}$) $\tan(\tan^{-1}\frac{1}{3})$
	2
$\frac{1}{2} + \frac{1}{3}$	
$= \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2}}$	1
2	
<u>5</u>	
$=\frac{\frac{5}{6}}{1-\frac{1}{6}}$	
6	
	•
$= \tan \frac{\pi}{4}$	1,
	1
Since $0 < \tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} < \frac{\pi}{2}$,	we have
$\frac{\pi}{4!} = \tan^{-1}\frac{1}{2} + \tan^{\frac{\pi}{2}-1}\frac{1}{3} \text{ because ta}$	n is one-one on $(0, \frac{\pi}{2})$.
$\frac{\lambda}{4!} = \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}$ because	
$ \pi (1+1)-\frac{1}{2}(\frac{1}{2}+\frac{1}{2})+\frac{1}{2}$	$\frac{1}{5}\left(\frac{1}{2^{3}}+\frac{1}{3^{5}}\right)-\cdots+\frac{(-1)^{n-1}}{2n-1}\left(\frac{1}{2^{2n-1}}+\frac{1}{3^{2n-1}}\right)\right]$
$\left(\frac{1}{4}\right)^{2}\left(\frac{1}{2}\right)^{2}$ 3 2 3	5 2 3
$= \left \left(\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} \right) - \left[\left(\frac{1}{2} + \frac{1}{3} \right) \right] \right $	$\frac{1}{1} - \frac{1}{2} \left(\frac{1}{2^3} + \frac{1}{2^3} \right) + \frac{1}{5} \left(\frac{1}{2^5} + \frac{1}{3^5} \right)$
$= \left \left(\tan \frac{\pi}{2} + \tan \frac{\pi}{3} \right) \right = 1$	3 2 3
$\left[-\cdots+\frac{(-1)^{n-1}}{2n-1}\left(\frac{1}{2^{2n-1}}+\frac{1}{3^{2n-1}}\right)\right]$	
	•
$= \frac{1}{2} \left[\tan^{-1} \frac{1}{2} - \left(\frac{1}{2} - \frac{1}{3} \left(\frac{1}{2} \right)^3 + \frac{1}{5} \right) \right]$	$(\frac{1}{2})^5 - \cdots + \frac{(-1)^{n-1}}{2n-1} (\frac{1}{2})^{2n-1}$
$\int_{-1}^{1} \frac{1}{1} = \left(\frac{1}{1} - \frac{1}{1} \left(\frac{1}{1}\right)^{3} + \frac{1}{1}\right)$	$\left(\frac{1}{3}\right)^{5} - \cdots + \frac{(-1)^{n-1}}{2n-1} \left(\frac{1}{3}\right)^{2n-1}\right)$
$\leq \left \tan^{-1} \frac{1}{2} - \left(\frac{1}{2} - \frac{1}{3} \left(\frac{1}{2} \right)^3 + \frac{1}{5} \right) \right $	$\left(\frac{1}{2}\right)^{5} - \cdots + \left(\frac{(-1)^{n-1}}{2n-1}\left(\frac{1}{2}\right)^{2n-1}\right)$
$\leq \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$+ \left \tan^{-1} \frac{1}{3} - \left(\frac{1}{3} - \frac{1}{3} \left(\frac{1}{3} \right)^3 + \frac{1}{5} \right) \right $	$\left(\frac{1}{2}\right)^{5} - \cdots + \frac{\left(-1\right)^{n-1}}{2n-1} \left(\frac{1}{3}\right)^{2n-1}$
·	
$\leq \frac{(\frac{1}{2})^{2a-1}}{2n+1} + \frac{(\frac{1}{3})^{2a-1}}{2n+1}$ (by (b)	1
$\leq \frac{\frac{1}{2}}{2n+1} + \frac{3}{2n+1}$ (by (b)	
$(\frac{1}{2})^{2a-1}$ $(\frac{1}{2})^{2a-1}$	1
$\leq \frac{(\frac{1}{2})^{2n-1}}{2n+1} + \frac{(\frac{1}{2})^{2n-1}}{2n+1}$	
• • • • • • • • • • • • • • • • • • •	
$= \frac{2}{(2n+1)(2^{2n-1})}$	
2	1
$\leq \frac{2}{(2n)(2^{2n-1})}$	
$\leq \frac{1}{n \cdot 2^{2n-1}}$	5
$n \cdot 2^{2n-1}$	

•	Marie and the second se	
. 7	Solutions Solutions	Mark#
. 13. (a) If f'(a) < 0 ,	
	then $f'(x) \le 0 \ \forall x \in (a, b)$ ("f' is decreasing)(*)	1
:	But by Mean Value Theorem, $\exists \zeta \in (a, b)$	
	such that $f'(\zeta) = \frac{f(b) - f(a)}{b - a}$	<u>`</u>
	> 0 ('.' f(b) > 0 , f(a) < 0 , b > a) !	1 ,
	contradicting (*).	•
,	Hence f'(a) > 0	
		2
(b) By (a), $x_1 = a - \frac{f(a)}{f'(a)} > a$	1
•	Rewrite $f(a) = -f'(a)(x_1 - a)$ (**)	
	By HJT, $f(b) - f(a) = f'(c)(b-a)$ for some $c \in (a, b)$,
	< $f'(a)(b-a)$ (: f' is decreasing)	
•••	\rightarrow 0 $\langle f(b) \langle f'(a)(b-a)-f'(a)(x_1-a)$,
	$= f'(a) (b - x_1)$ by (**)	1
!	$x_1 < b$, since $f'(a) > 0$ by (a) .	•
Ti v	By MVT, $f(x_i) - f(a) = f'(c)(x_i - a)$ for some $c \in (a, x_i) \subset (a)$, b)
	< $f'(a)(x_1 - a)$ (f' is strictly decrease	ng) l
	$= f(x_1) < 0 \text{ by } (**)$	1
	If $f'(x_1) \le 0$, then $f(b) - f(x_1) = f'(\eta)(b-x)$ for some $\eta \in (x_1)$	ь)
1	< 0 ("f' is decreasing)	1
	$= f(b) \langle f(x_1) \leq 0$	1
	- a contradiction	
	c) We shall use mathematical induction to show that	1H
. ($x_n \in (a, b)$, $f(x_n) < 0$ and $f'(x_n) > 0 \forall n = 1, 2,$	
		1
,	For $n = 1$, by (a), the result follows.	
	Assume $x_k \in (a, b)$, $f(x_k) < 0$ and $f'(x_k) > 0$ for some $k \ge 1$.	114
	Using the same arguments in (b), we can show that	1
· ·		
1 .	$x_{k-1} \in (a, b)$, $f(x_{k-1}) < 0$ and $f'(x_{k-1}) > 0$.	4
		*
;		

			Solut		. 1		*** · · · · · · · · · · · · · · · · · ·			Mar
	(a)	Since (x_n) is	increasing	and bounded	above,	lim x	n exis	ts.		1
	•	$x_{n+1} = x_n - \frac{f(x)}{f'(x)}$	<u>")</u>							
		i ·		•				· : [
Ť		$- 0 > f(x_n) =$								
	· · · · · ·		$-(x_{n+1}-x_n)$					٠.		1
	•		O as n →	c o						,
•		$\lim_{n\to\infty} f(x_n) = 0$,			
		$- f(\lim_{n\to\infty} x_n) =$	0 (" f is	continuous		•				
							3 3			
				,			١,			3
	,									•
						•	.'			
	•	<u> </u>				•				
							l.			
	•	i :		•				!		
	•	!		•						
		•						;		
••							•	!		, •
								• •		
7			Si					:		
*		t	**					:		
							,	:		
	•						V.			
		•								
		1						. !		
				•	-			;		
	.*									
				, ,/··						
		:		e .				:		
	•	• • •		, ***		٠.		:		
						s _e s .		-		
		,		•	• . •					
٠.	•		<i>1</i> .						•	
- 93.	-AL-PURI	MATHS IIB						200		