8. Let L_i : $a_i x + b_i y + c_i = 0$ (i = 1, 2, 3) be three distinct straight lines which meet pairwise as shown in Figure 2. Suppose the three points of intersection P_1 , P_2 and P_3 are

For any non-zero real constants λ_1 , λ_2 and λ_3 , consider the equations

$$C(\lambda_1, \lambda_2, \lambda_3) : \lambda_3(a_1x + b_1y + c_1)(a_2x + b_2y + c_2) + \lambda_1(a_2x + b_2y + c_2)(a_3x + b_3y + c_3) + \lambda_2(a_3x + b_3y + c_3)(a_1x + b_1y + c_1) = 0$$

and
$$T_k$$
: $\lambda_i(a_ix + b_iy + c_i) + \lambda_i(a_ix + b_iy + c_i) = 0$,

where (i, j, k) is any permutation of the indices 1, 2 and 3.

Figure 2

- (a) Show that $C(\lambda_1, \lambda_2, \lambda_3)$ represents a conic passing through the points P_1, P_2 and P_3 and that T_k is a tangent to $C(\lambda_1, \lambda_2, \lambda_3)$ at P_k (k = 1, 2, 3).
- (b) Let the three lines L_i now be given by

$$L_1: x+y-2=0$$

$$L_2 : x - y + 2 = 0$$

$$L_3 : 2x - y = 0$$

$$L_3: 2x-y=0$$

Consider all the conics which are of the form $C(\lambda_1, \lambda_2, \lambda_3)$ and whose axes are parallel to the coordinate axes. Find the equation of the locus of the point of intersection of the tangents T_1 and T_2 .

END OF PAPER

純數學 試卷一 PURE MATHEMATICS PAPER I

9.00 am-12.00 noon (3 hours) This paper must be answered in English

This paper consists of eight questions all carrying equal marks. Answer any SIX questions.

- 1. The matrix $A = \begin{pmatrix} a & 0 & 1 \\ 0 & b & 0 \\ 1 & 0 & c \end{pmatrix}$ satisfies the condition a + b + c = 0.
 - (a) A polynomial f(x) is defined by $f(x) = \det (A xI) = c_0 x^3 + c_1 x^2 + c_2 x + c_3$. Write down the polynomial f(x) with coefficients expressed in terms of a, b and c.

 Evaluate the matrix $f(A) = c_0 A^3 + c_1 A^2 + c_2 A + c_3 I$.
 - (b) Using (a), or otherwise, express A^3 in the form $\lambda A + \mu I$, where λ and μ are real numbers.

Hence find
$$A^9$$
 for $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

- 2. A function $f: \mathbb{R}^3 \to \mathbb{R}$ is said to be linear if
 - (1) $f(\alpha u) = \alpha f(u)$ for any $\alpha \in \mathbb{R}$ and $u \in \mathbb{R}^3$;
 - (2) f(u+v) = f(u) + f(v) for any $u, v \in \mathbb{R}^3$.
 - (a) For $a = (a_1, a_2, a_3) \in \mathbb{R}^3$, a function $g : \mathbb{R}^3 \longrightarrow \mathbb{R}$ is defined by the scalar product

$$g(u) = a \cdot u$$
 for any $u \in \mathbb{R}^3$.

Show that g is linear.

- (b) Given a linear function $h: R^3 \longrightarrow R$. Show that $h(u) = \alpha h(x) + \beta h(y) + \gamma h(z) \text{ for } u = \alpha x + \beta y + \gamma z.$ Find a vector $b \in R^3$ so that $h(u) = b \cdot u \text{ for any } u \in R^3.$
- (c) Show that a subset H of \mathbb{R}^3 is a plane passing through the origin if and only if there is a linear function $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ which is not identically zero so that

$$H = \{ u \in \mathbb{R}^3 : f(u) = 0 \}$$
.

(a) Let n be a positive integer and Δ the triangle bounded by

$$x = y$$
,
 $x + y = n$ and
 $x = n$.

Find the number A_n of integral points (i.e. points whose coordinates are integers) in the interior of Δ for both cases where a^n is even and a^n is odd.

(b) Three different numbers y < x < t are taken from the 2k positive integers 1, 2, 3, ..., 2k to form the sides of a triangle (non-degenerate).

Let B_{2k} be the number of all possible triangles formed.

- (i) Show that A_n is the number of triangles with the longest side t = n.
- (ii) Show that

$$B_{2k} = \frac{k(k-1)(4k-5)}{6}$$

[You may use the result $\sum_{i=1}^{k} i^2 = \frac{1}{6} k (k+1) (2k+1)$]

(c) Use the above results to solve the following problem:

Three different numbers are taken at random from the first 2k positive integers. Find the probability p(2k) that they form the sides of a triangle (non-degenerate).

Evaluate the limit $\lim_{k\to\infty} p(2k)$.

- 4. Let $z = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$, where *n* is a positive integer.
 - (a) Prove that $z^m = 1$ if and only if m is divisible by n.

 Hence evaluate $\sum_{r=0}^{n-1} z^{mr}$ for the cases:
 - (i) m is divisible by n,

Show that

- (ii) m is not divisible by n.
- (b) Let $f(x) = \sum_{k=0}^{n-1} a_k x^k$. Use the result of (a) to show that, for any given j $(0 \le j \le n-1)$, $\sum_{r=0}^{n-1} f(z^r) z^{(n-j)r} = na_j.$
- (c) Given a polynomial g(x). Let h(x) and f(x) be polynomials with $\deg f \le n-1$ such that $g(x) = (x^n-1)h(x) + f(x)$.

$$f(x) = \frac{1}{n} \sum_{j=0}^{n-1} \left\{ \sum_{r=0}^{n-1} g(z^r) z^{(n-j)r} \right\} x^j.$$

5. Let A and B be two non-empty sets and let f and g be two mappings from A to B. Define relations R and S in A as follows:

$$xRy$$
 if $f(x) = f(y)$ and $g(x) = g(y)$,
 xSy if $f(x) = f(y)$ or $g(x) = g(y)$.

- (a) (i) Show that R is an equivalence relation.
 - (ii) For $A = B = \{1, 2, 3\}$, find mappings f and g such that S is not an equivalence relation.
- (b) Let u be the natural surjection from A onto the quotient set A/R taking each $a \in A$ to the equivalence class a/R.

Show that there exists a unique mapping $h: A/R \longrightarrow B$ such that $f = h \circ u$.

Furthermore, suppose that g is a constant mapping. Show that if f is surjective then h is bijective.

30

- 6. (a) Let α and β be two complex numbers with $|\alpha| \le 1$ and $|\beta| \le 1$. Show that
 - (i) if $\overline{\alpha}\beta = 1$, then $\alpha = \beta$,
 - (ii) if $|\alpha| < 1$, then

$$\frac{|\alpha-\beta|}{|1-\overline{\alpha}\beta|} < 1,$$

where the equality holds if and only if $|\beta| = 1$.

(b) Let a and b be two complex numbers with $b \neq 0$. Consider the function

$$f(z) = \frac{z-a}{bz-1}$$

defined on the set $D = \mathbb{C} \setminus \left\{ \frac{1}{b} \right\}$. Suppose $1, -1, i \in D$ and |f(1)| = |f(-1)| = |f(i)| = 1.

- (i) Show that $b = \overline{a}$ and |f(z)| = 1 for all $z \in D$ with |z| = 1.
 - (ii) Show that f(z) is a constant function if |a| = 1.

7. Let \mathscr{D} be the set of all 3 \times 3 real matrices, the sum of whose elements in any one row or any one column is 1.

Let
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 be in \mathscr{D} .

Define $S(A) = \left\{ X \in \mathcal{D} : AX = J \right\}$, where $J = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$.

(a) Show that if $(x_1 \ x_2 \ x_3)A = (x_1' \ x_2' \ x_3')$ and

$$A \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} y'_1 \\ y'_2 \\ y'_3 \end{pmatrix} \text{ , then } x_1 + x_2 + x_3 = x'_1 + x'_2 + x'_3$$

and
$$y_1 + y_2 + y_3 = y'_1 + y'_2 + y'_3$$
.

- (b) Show that
 - (i) JB = J = BJ for all $B \in \mathcal{D}$,
 - (ii) $S(B) \neq \phi$ for all $B \in \mathcal{D}$,
 - (iii) $S(J) = \mathcal{D}$.
- (c) If A is invertible, use the above results to show that

$$A^{-1} \in \mathscr{D}$$
 and $S(A) = \{J\}$.

(d) Show that if A is not invertible, then there exists a non-zero matrix C such that the row sums and column sums of C are zero and that AC is the zero matrix.

Hence show that $S(A) \neq \{J\}$.

84-AL-PM I—6

32

- 8. Let f(x) and g(x) be non-zero polynomials with integral coefficients. Suppose for any positive integer n, there exists an integer a_n such that $g(n) = a_n f(n)$, i.e. g(n) is divisible by f(n).
 - (a) Show that $a_n = 0$ for only a finite number of n.

Hence deduce that it is impossible for $\deg f(x) > \deg g(x)$.

(b) Show that there exists a non-zero polynomial h(x) with rational coefficients such that

$$g(x) = f(x) h(x) .$$

(c) If $\deg f(x) = \deg g(x)$, show that h(x) is identically equal to an integer.

END OF PAPER

HONG KONG EXAMINATIONS AUTHORITY
HONG KONG ADVANCED LEVEL EXAMINATION 1984

純數學 試卷二

PURE MATHEMATICS PAPER II

2.00 pm-5.00 pm (3 hours)
This paper must be answered in English

This paper consists of eight questions all carrying equal marks. Answer any SIX questions.

84-AL-PM I—8

1. (a) For any non-negative integer k, let

$$u_k = \int_0^\pi \frac{\sin kx}{\sin x} \, \mathrm{d}x .$$

Express u_{k+2} in terms of u_k .

Hence, or otherwise, evaluate u_k .

(b) For any non-negative integers m and n, let

$$I(m,n) = \int_0^{\frac{\pi}{2}} \cos^m \theta \sin^n \theta \ d\theta.$$

(i) Show that if $m \ge 2$, then

$$I(m, n) = \left(\frac{m-1}{n+1}\right) I(m-2, n+2)$$
.

- (ii) Evaluate I(1, n) for $n \ge 0$.
- (iii) Show that if $n \ge 2$, then

$$I(0, n) = (\frac{n-1}{n}) I(0, n-2)$$
.

(iv) Evaluate 1 (6, 4).

2. Let f be a real-valued function defined on the interval I = (-1, 1) and with n th order continuous derivative $f^{(n)}$. For any 0 < h < 1, let R_m be defined by

$$R_m = \frac{1}{(m-1)!} \int_0^h (h-t)^{m-1} f^{(m)}(t) dt,$$

where $1 \le m \le n$.

(a) Show that

$$R_m = R_{m-1} - \frac{h^{m-1}}{(m-1)!} f^{(m-1)}(0) \quad (2 \le m \le n)$$
.

(b) Evaluate R_1 and R_2 .

Hence show that

$$f(h) = f(0) + hf'(0) + ... + \frac{h^{n-1}}{(n-1)!} f^{(n-1)}(0) + R_n$$

(c) Using (b), or otherwise, show that

$$0 < \ln (1 + h) - h + \frac{1}{2} h^2 - \frac{1}{3} h^3 + \frac{1}{4} h^4 < \frac{h^5}{5}$$

for all 0 < h < 1.

3. A hypocycloid is a curve generated by the motion of a point P on the circumference of a circle which rolls internally without slipping on a larger circle $\{ \text{ see Figures 1 and 2 } \}$.

Let the radius of the larger circle be a and that of the smaller circle be b, where 2b < a. Suppose the initial position of P is at (a, 0) [see Figure 1].

84-AL-PM II-4

(a) Referring to Figure 2, show that the parametric equations of the hypocycloid are given by

$$\begin{cases} x = (a-b)\cos\theta + b\cos\left(\frac{a-b}{b}\right)\theta \\ y = (a-b)\sin\theta - b\sin\left(\frac{a-b}{b}\right)\theta \end{cases}$$

(b) Suppose that $b = \frac{a}{4}$. Show that the equations of the hypocycloid

can be written as
$$\begin{cases} x = a \cos^3 \theta \\ y = a \sin^3 \theta \end{cases} \quad (0 \le \theta \le 2\pi).$$

By eliminating θ , show that x and y satisfy the equation

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$

(c) Compute the length of the curve in (b).

38

4. Given two ellipses

$$(E) : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 ,$$

$$(F) : \frac{x^2}{h^2} + \frac{y^2}{a^2} = 1 ,$$

where 0 < b < a.

- (a) Show that the line $\ell x + my = 1$ is tangent to (E) if and only if $a^2 \ell^2 + b^2 m^2 = 1$.
- (b) Find the equations of the common tangents to (E) and (F).
- (c) R(h, k) is a point outside (E). The two tangents drawn from R to (E) touch (E) at two points S and T. Find the equation of the straight line through S and T.
- (d) It is furthermore given that the line through S and T in (c) is tangent to (F). Find and sketch the locus of R.
- 5. (a) Prove that $\lim_{n \to \infty} \frac{a^n}{n!} = 0$ for any real number a.
 - (b) Define $f(x) = x^n (1 x)^n$, where n is a positive integer.
 - (i) Verify that f(x) = f(1-x) for every $x \in \mathbb{R}$. Hence, or otherwise, show that the k th derivative $f^{(k)}$ satisfies $f^{(k)}(1-x) = (-1)^k f^{(k)}(x)$.
 - (ii) Show that $f^{(k)}(0)$ and $f^{(k)}(1)$ are integers divisible by n!.

- 6. Let $f(x) = e^{-x^2}$, $x \in \mathbb{R}$ and let $I_n = \left\{ \int_{-1}^1 [f(x)]^n dx \right\}^{\frac{1}{n}}$, where n is a positive integer.
 - (a) Show that $0 < f(x) \le 1$ for all x. Hence deduce that $I_n \le 2^{\frac{1}{n}}$.
 - (b) Given any 0 < r < 1, find the range of x such that r < f(x). Hence deduce that $I_n > r \left\{ 2 \sqrt{\ln\left(\frac{1}{r}\right)} \right\}^{\frac{1}{n}}$ for any r in the interval $\left(\frac{1}{e}, 1\right)$.
 - (c) Assume that $\lim_{n\to\infty}I_n$ exists. Using (a) and (b), or otherwise, prove that

$$\lim_{n \to \infty} I_n = 1.$$

- 7. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^{\frac{2}{3}} (x^2 1)^{\frac{1}{3}}$.
 - (a) (i) Show that f(x) is even and that f(x) > 0 for all x.
 - (ii) Evaluate $\lim_{x \to \infty} f(x)$.
 - (b) (i) Evaluate f'(x) at $x \neq 0$, 1 or -1.
 - (ii) Find the sets $\{x: x > 0 \text{ and } f'(x) = 0\}$, $\{x: x > 0 \text{ and } f'(x) > 0\}$ and $\{x: x > 0 \text{ and } f'(x) < 0\}$.
 - (iii) Find the relative maxima and minima of f.
 - (c) Sketch the graph of f.

- 8. Let f be a real-valued function which is continuously differentiable and strictly increasing on the interval $I = [0, \infty)$. Suppose f(0) = 0. Let $a \in I$ and $b \in f[I]$.
 - (a) For any $t \in I$, define $g(t) = bt \int_0^t f(x) dx$.

Prove that g attains its greatest value at $f^{-1}(b)$...

- (b) (i) Show that $\int_0^{f^{-1}(b)} x f'(x) dx = g(f^{-1}(b)).$
 - (ii) By a change of variable, show that

$$\int_0^{f^{-1}(b)} x f'(x) dx = \int_0^b f^{-1}(x) dx.$$

(c) Use (a) and (b) to prove that $\int_0^a f(x) dx + \int_0^b f^{-1}(x) dx \ge ab.$

Referring to Figure 3, what is the geometric meaning of the above inequality if the integrals are interpreted as areas?

Figure 3

(d) Using (c), show that

$$\frac{1}{p}a^p + \frac{1}{q}b^q \geqslant ab ,$$

where p > 2 and $\frac{1}{p} + \frac{1}{q} = 1$.

END OF PAPER

HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION 1985

純數學 試卷一 PURE MATHEMATICS PAPER

9.00 am-12.00 noon (3 hours)
This paper must be answered in English

This paper consists of nine questions all carrying equal marks.

Answer any SEVEN questions.