1980 A-Level Pure Mathematics Paper I

1. Let V be the set of all 3×1 real matrices. For any $\underline{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right), \underline{y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$ in V and any real number λ, we define $\underline{x}+\underline{y}=\left(\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2} \\ x_{3}+y_{3}\end{array}\right), \underline{x}=\left(\begin{array}{l}\lambda x_{1} \\ \lambda x_{2} \\ \lambda x_{3}\end{array}\right)$. It is known that under this addition and scalar multiplication, V forms a real vector space with zero vector $\underline{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
(a) For a given 3×3 real matrix A , let $\mathrm{E}=\{\mathrm{x} \in \mathrm{V}: \mathrm{Ax}=\underline{0}\}$.
(i) Show that E forms a vector subspace of V .
(ii) For \underline{b} in V, suppose we have \underline{p} in V such that $A \underline{p}=\underline{b}$. Show that, for any \underline{y} in V, $\mathrm{A} \underline{y}=\underline{b}$ if and only if $\mathrm{y}=\underline{p}+\underline{x}$ forsomex in E.
(b) (i) Find all solutions to $\left\{\begin{array}{l}x-y-z=0 \\ 10 x+5 y-4 z=0 \\ 5 x+5 y-z=0\end{array}\right.$
(ii) Suppose $\mathrm{x}=\frac{1}{2}, \mathrm{y}=\frac{4}{3}, \mathrm{z}=\sqrt{2}$ is a solution to the system of equations

$$
\left\{\begin{array}{l}
x-y-z=b_{1} \tag{1980}\\
10 x+5 y-4 z=b_{2} \\
5 x+5 y-z=b_{3}
\end{array}\right.
$$

Find all solutions to the system.
2. Let F denote the set of all positive-valued continuous functions on the set R of all real numbers. For any $\mathrm{f}, \mathrm{g} \in \mathrm{F}$, define $\mathrm{f} * \mathrm{~g}$ by $(\mathrm{f} * \mathrm{~g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{R}$. It is known that F forms a group under the operation *. The identity I of this group and the inverse g of $f \in F$ are given respectively by
$\mathrm{I}(\mathrm{x})=1 \quad \forall \mathrm{x} \in \mathrm{R}, \quad \mathrm{g}(\mathrm{x})=\frac{1}{\mathrm{f}(\mathrm{x})} \quad \forall \mathrm{x} \in \mathrm{R}$.
Define a relation ~ in F as follows:
For $\mathrm{f}, \mathrm{g} \in \mathrm{F}, \mathrm{f} \sim \mathrm{g}$ if there are polynomials p, q in F such that $\mathrm{p} * \mathrm{f}=\mathrm{q} * \mathrm{~g}$.
(a) Show that \sim is an equivalence relation on F.
(b) Let f / \sim be the equivalence class of f with respect to \sim, and let F / \sim be the quotient set consisting of all these equivalence classes. For any $\mathrm{f} / \sim, \mathrm{g} / \sim \in \mathrm{F} / \sim$, define $\mathrm{f} / \sim \otimes \mathrm{g} / \sim$ to be $(\mathrm{f} * \mathrm{~g}) / \sim$.
(i) Show that \otimes is well defined on F / \sim, i.e., if $\mathrm{f} / \sim=\mathrm{f}_{1} / \sim$ and

$$
\begin{equation*}
\mathrm{g} / \sim=\mathrm{g}_{1} / \sim \text {, then } \mathrm{f} / \sim \otimes \mathrm{g} / \sim=\mathrm{f}_{1} / \sim \otimes \mathrm{g}_{1} / \sim . \tag{1980}
\end{equation*}
$$

(ii) Show that F / \sim forms a group under \otimes.
3. (a) If $x>0$ and p is a positive integer, show that $\frac{x^{p+1}-1}{p+1} \geq \frac{x^{p}-1}{p}$, and that the equality holds only if $\mathrm{x}=1$.
(b) Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be positive numbers and $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \geq \mathrm{n}$.
(i) Show that, for any positive integer $m, \sum_{i=1}^{n} x_{i}{ }^{m} \geq n$.
(ii) If $\sum_{i=1}^{n} x_{i}{ }^{m}=n$ for some integer m greater than one, show that $x_{1}=x_{2}=\ldots=x_{n}=1$.
(c) Using (b), or otherwise, show that, for any positive numbers $y_{1}, y_{2}, \ldots, y_{n}$, and positive integer m, $\frac{\mathrm{y}_{1}{ }^{\mathrm{m}}+\mathrm{y}_{2}{ }^{\mathrm{m}}+\ldots+\mathrm{y}_{\mathrm{n}}{ }^{\mathrm{m}}}{\mathrm{n}} \geq\left(\frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\ldots+\mathrm{y}_{\mathrm{n}}}{\mathrm{n}}\right)^{\mathrm{m}}$ and that the equality holds only when $\mathrm{m}=1$ or $\mathrm{y}_{1}=\mathrm{y}_{2}=\ldots=\mathrm{y}_{\mathrm{n}}$.
4. (a) The terms of a sequence $y_{1}, y_{2}, y_{3}, \ldots$ satisfy the relation $y_{k}=A y_{k-1}+B(k \geq 2)$ where A, B are constants independent of k and $A \neq 1$. Guess an expression for $y_{k}(k \geq 2)$ in terms of y_{1}, A, B and k and prove it.
(b) The terms of a sequence $x_{0}, x_{1}, x_{2}, \ldots$ satisfy the relation $x_{k}=(a+b) x_{k-1}-a b x_{k-2} \quad(k \geq 2)$, where a, b are non-zero constants independent of k and $\mathrm{a} \neq \mathrm{b}$.
(i) Express $x_{k}-a x_{k-1}(k \geq 2)$ in terms of $\left(x_{1}-a x_{0}\right)$, b and k.
(ii) Using (a) or otherwise, express $\mathrm{x}_{\mathrm{k}}(\mathrm{k} \geq 2)$ in terms of $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{a}, \mathrm{b}$ and k .
(c) If the terms of the sequence $x_{0}, x_{1}, x_{2}, \ldots$ satisfy the relation $x_{k}=\frac{1}{3} x_{k-1}+\frac{2}{3} x_{k-2} \quad(k \geq 2)$, express $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{x}_{\mathrm{k}}$ in terms of x_{0} and x_{1}.
5. (a) (i) Let $\omega^{3}=1$ and $\omega \neq 1$. Show that the expression $x^{3}-3 u v x-\left(u^{3}+v^{3}\right)=0$ can be factorized as $(x-u-v)\left(x-\omega u-\omega^{2} v\right)\left(x-\omega^{2} u-\omega v\right)$
(ii) Find a solution to the following system of equations

$$
\left\{\begin{array}{l}
u^{3}+v^{3}=6 \\
u v=2
\end{array}\right.
$$

Hence, or otherwise, find the roots of the equations $x^{3}-6 x-6=0$
(b) Given an equation $\mathrm{x}^{3}+\mathrm{px}+\mathrm{q}=0$. \qquad
(i) Show that, if (*) has a multiple root, then $27 \mathrm{q}^{2}+4 \mathrm{p}^{3}=0$
(ii) Using the method indicated in (a) (ii), or otherwise, show that, if $27 \mathrm{q}^{2}+4 \mathrm{p}^{3}=0$, then $\left({ }^{*}\right)$ has a multiple root.
6. Let a, b be real numbers such that $\mathrm{a}<\mathrm{b}$ and let m, n be positive integers.
(a) If for all real numbers $x, u,[(1+u) x-(a u+b)]^{m+n}=\sum_{k=0}^{m+n} A_{k}(x) u^{k}$ \qquad
show that $A_{k}(x)=C_{k}^{m+n}(x-a)^{k}(x-b)^{m+n-k}$ for $k=0,1, \ldots, m+n$,
where C_{k}^{m+n} is the coefficient of t^{k} in the expansion of $(1+t)^{m+n}$.
(b) By integrating both sides of $(*)$ with respect to x, or otherwise, calculate $\int_{a}^{b}(x-a)^{m}(x-b)^{n} d x$.
(c)By differentiating both sides of $\left(^{*}\right)$ with respect to x, or otherwise, find $\frac{d^{r}}{d x^{r}}\left\{(x-a)^{m}(x-b)^{n}\right\}$ at $\mathrm{x}=\mathrm{a}$, where r is a positive integer.
7. Let C be the set of complex numbers. A function $\mathrm{f}: \mathrm{C} \rightarrow \mathrm{C}$ is said to be an isometry if it preserves distance, that is , if $\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|=\left|z_{1}-z_{2}\right|$ for all $z_{1}, z_{2} \in C$.
(a) If f is an isometry, show that $g(z)=\frac{f(z)-f(0)}{f(1)-f(0)}$ is an isometry satisfying $g(1)=1$ and $g(0)=0$.
(b) If g is an isometry satisfying $\mathrm{g}(1)=1, \mathrm{~g}(0)=0$, show that
(i) the real parts of $g(z)$ and z are equal for all $z \in C$,
(ii) $\mathrm{g}(\mathrm{i})=\mathrm{i}$ or -i .
(c) If g is an isometry satisfying $\mathrm{g}(1)=1, \mathrm{~g}(0)=0$ and $\mathrm{g}(\mathrm{i})=\mathrm{i}$ (respectively -i), show that $\mathrm{g}(\mathrm{z})=\mathrm{z}$ (respectively \bar{z}) for all $z \in C$.
(d) Show that any isometry f has the form $f(z)=a z+b$ or $f(z)=a \bar{z}+b$ with a and b constant and $|a|=1$.
8. N balls are distributed randomly among n cells. Each of the n^{N} possible distributions has probability $\mathrm{n}^{-\mathrm{N}}$.
(a) (i) Calculate the probability P_{k} that a given cell contains exactly k balls.
(ii) Show that the most probable number k_{0} satisfies the inequality $\frac{\mathrm{N}-\mathrm{n}+1}{\mathrm{n}} \leq \mathrm{k}_{0} \leq \frac{\mathrm{N}+1}{\mathrm{n}}$.
(iii) Compute the mean number $\sum_{k=0}^{N} k P_{k}$ of balls in a given cell and show that it can differ from k_{0} by at most one.
(b) Let $\mathrm{A}(\mathrm{N}, \mathrm{n})$ be the number of distributions leaving none of the cells empty. Show that $A(N, n+1)=\sum_{k=1}^{N} C_{k}^{N} A(N-k, n)$, where $C_{k}{ }^{N}$ is the coefficient of t^{k} in the expansion of $(1+\mathrm{t})^{\mathrm{N}}$. Hence show by mathematical induction (on n$)$, or otherwise, that

$$
\begin{equation*}
A(N, n)=\sum_{j=0}^{n}(-1)^{i} C_{j}^{n}(n-j)^{N} \tag{1980}
\end{equation*}
$$

1980 A-Level Pure Mathematics Paper II

1. Let $\mathrm{P}(\mathrm{t})=(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))$ be a point on the unit circle with parametric equations $\mathrm{x}(\mathrm{t})=\frac{1-\mathrm{t}^{2}}{1+\mathrm{t}^{2}}, \quad \mathrm{y}(\mathrm{t})=\frac{2 \mathrm{t}}{1+\mathrm{t}^{2}}, \quad \mathrm{Q} \quad$ be the point $\quad(\mathrm{a}, 0), 0<\mathrm{a}<1 . \quad$ An arbitrary line of slope m passing through Q cuts the circle at the points $\mathrm{R}=\mathrm{P}\left(\mathrm{t}_{1}\right)$ and $\mathrm{S}=\mathrm{P}\left(\mathrm{t}_{2}\right)$. Let $\quad \mathrm{T}$ be the point where RO meets the line through Q parallel to SO , where O is the origin.
(a) Show that $\mathrm{t}_{1} \mathrm{t}_{2}=\frac{\mathrm{a}-1}{\mathrm{a}+1}, \mathrm{t}_{1}+\mathrm{t}_{2}=\frac{-2}{\mathrm{~m}(\mathrm{a}+1)}$.
(b) Express the coordinates of T in terms of a, t_{1}, t_{2}
(c) Verify that the locus of T is an ellipse with equation $\left(1-a^{2}\right)\left(x-\frac{a}{2}\right)^{2}+y^{2}=C, \quad$ where C is a constant. What is C ?
2. In a 3-dimensional space with a Cartesian coordinate system, two lines l_{1} and l_{2} are given by the pairs of equations :
$l_{1}:\left\{\begin{array}{l}\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}-3=0 \\ \mathrm{x}+2 \mathrm{y}+2 \mathrm{z}-4=0\end{array} \quad, \quad l_{2}:\left\{\begin{array}{l}\mathrm{x}+\mathrm{y}+\mathrm{z}-1=0 \\ 2 \mathrm{x}+3 \mathrm{y}+5 \mathrm{z}-2=0\end{array}\right.\right.$.
(a) Let P_{α} be the plane $\alpha(\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}-3)+(\mathrm{x}+2 \mathrm{y}+2 \mathrm{z}-4)=0 \quad$ and $\quad \mathrm{Q}_{\beta}$ be the plane
$\beta(x+y+z-1)+(2 x+3 y+5 z-2)=0$.
Show that P_{α} is parallel to Q_{β} if and only if there exists $m \neq 0$ such that

$$
\left(\begin{array}{ccc}
1 & -\mathrm{m} & 1-2 \mathrm{~m} \tag{*}\\
2 & -\mathrm{m} & 2-3 \mathrm{~m} \\
3 & -\mathrm{m} & 2-5 \mathrm{~m}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

(b) Find the value of m for which there are numbers α and β satisfying (*) in (a). Hence find the equations of the two parallel planes $\quad \mathrm{M}_{1}$ and M_{2} containing $\quad l_{1}$ and l_{2} respectively.
(c) Find the equation of the plane N containing l_{1} and perpendicular to M_{2}.
(d) Let $l_{1}{ }^{\prime}$ be the projection of l_{1} on M_{2} (i.e. $l_{1}{ }^{\prime}$ is the intersection of N and M_{2}). Find its equation.
3. (a) Let $f(z)=\sum_{k=0}^{n} a_{k} z^{k}$ be an $n^{\text {th }}$ degree polynomial in the complex variable z with real coefficients. Show that
(i) $|\mathrm{f}(\mathrm{z})|^{2}=\sum_{\mathrm{k}=0}^{\mathrm{n}} \sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{r}^{\mathrm{k}+\mathrm{j}} \mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{j}} \cos (\mathrm{k}-\mathrm{j}) \theta$, where $\mathrm{z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$,
(ii) $\frac{1}{2 \pi} \int_{0}^{2 \pi}|\mathrm{f}(\cos \theta+\mathrm{i} \sin \theta)|^{2} \mathrm{~d} \theta=\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}{ }^{2}$.
(b) If $\mathrm{C}_{\mathrm{k}}^{\mathrm{n}}$ is the coefficient of t^{k} in the binomial expansion of $(1+\mathrm{t})^{\mathrm{n}}$, show that

$$
\sum_{k=0}^{n}\left(C_{k}^{n}\right)^{2}=\frac{2^{n}}{\pi} \int_{0}^{\pi}(1+\cos \theta)^{n} d \theta=\frac{2^{2 n+1}}{\pi} \int_{0}^{\frac{\pi}{2}}(\cos t)^{2 n} d t
$$

(1980)
4. (a) A right circular cone is inscribed in a sphere of radius a as shown in the figure. Determine the height of the cone if it is to have maximum volume.

(b) Two points A and B lie on the circumference of a circle with centre O and radius a such that $\angle \mathrm{AOB}=\frac{2}{3} \pi . \mathrm{X}$ is a point on AO produced with $\mathrm{OX}=\mathrm{x} ; \mathrm{P}$ is a point on arc AB with $\angle \mathrm{AOP}=\theta$. For each $\mathrm{x}>0$, let $g(x)=\int_{0}^{\frac{2 \pi}{3}} \frac{\operatorname{asin} \theta}{\mathrm{r}(\mathrm{x}, \theta)} \mathrm{d} \theta$, where $\mathrm{r}(\mathrm{x}, \theta) \quad$ is the distance between P and X .

(i) Show that $g(x)=\frac{3 a}{x+a+\left(a^{2}+x^{2}-a x\right)^{\frac{1}{2}}}$.
(ii) Prove that on $(0, \infty), 0<g(x)<\frac{3}{2}$.
(1980)
5. (a) Let f and g be two continuous functions defined on the real line R and let $x_{0} \in R$, show that if $f(x)=g(x)$ for all $x \in R \backslash\left\{x_{0}\right\}$, then $f\left(x_{0}\right)=g\left(x_{0}\right)$.
(b) If a real polynomial $p(x)$ can be written as $p(x)=\left(x-x_{0}\right)^{m} q(x)$ for some positive integer m and polynomial $\mathrm{q}(\mathrm{x})$ with $\mathrm{q}\left(\mathrm{x}_{0}\right) \neq 0$, show that the expression is unique, that is, if k is a positive integer and $h(x)$ is a polynomial with $h\left(x_{0}\right) \neq 0$ such that $p(x)=\left(x-x_{0}\right)^{k} h(x)$, then $m=k$ and $q(x)=h(x)$ for all $x \in R$.
(c) Let $\mathrm{p}(\mathrm{x})$ be a real polynomial . Show that for any positive integer $\mathrm{k}, \mathrm{x}_{0}$ is a root of multiplicity $\mathrm{k}+1$ of the equation $\mathrm{p}(\mathrm{x})=0$ if and only if $\mathrm{p}\left(\mathrm{x}_{0}\right)=0 \quad$ and $\mathrm{x}_{0} \quad$ is a root of multiplicity k of $p^{\prime}(x)=0$, where $p^{\prime}(x)$ denotes the derivative of $p(x)$. (1980)
6. (a) Let f and g be real-valued functions defined on the real line \mathbf{R} and possess the following properties :
(1) $f(x+y)=f(x) g(y)+f(y) g(x)$ for all $x, y \in \mathbf{R}$,
(2) $f(0)=0, f^{\prime}(0)=1, g(0)=1, g^{\prime}(0)=0$

Show that $f^{\prime}(x)=g(x) \quad$ for all $x \in \mathbf{R}$.
(b) Let $f(x)$ be a function with continuous first and second derivatives on $[0,1]$ and $f(0)=f(1)=0$.
(i) Show that $\int_{0}^{1} f(x) f^{\prime \prime}(x) d x \leq 0$, where the equality sign holds only if $f(x)=0$ for all x in [0,1].
(ii) Suppose, in addition, $\int_{0}^{1}[f(x)]^{2} d x=1$. Show that $\int_{0}^{1} x f(x) f^{\prime}(x) d x=-\frac{1}{2}$
(1980)
7. (a) It is known that, for any integer $k, \int_{-\pi}^{\pi} \sin k x d x=0$ and $\int_{-\pi}^{\pi} \operatorname{coskxdx}=\left\{\begin{array}{lll}2 \pi & \text { if } & k=0 \\ 0 & \text { if } & k \neq 0\end{array}\right.$ Using the above results, show that if m, n are positive integers,
(i) $\int_{-\pi}^{\pi} \sin m x \cos n x d x=0$,
$\int_{-\pi}^{\pi} \sin m x \sin n x d x= \begin{cases}\pi & \text { if } m=n, \\ 0 & \text { if } m \neq n,\end{cases}$
(iii) $\int_{-\pi}^{\pi} \cos m x \cos n x d x= \begin{cases}\pi & \text { if } m=n, \\ 0 & \text { if } m \neq n\end{cases}$
(b) Define $\quad \phi_{i}(x)= \begin{cases}\frac{1}{\sqrt{2 \pi}} & \text { if } i=0, \\ \frac{\cos m}{\sqrt{\pi}} & \text { if } i=2 m-1, \\ \frac{\operatorname{sinm} x}{\sqrt{\pi}} & \text { if } i=2 m,\end{cases}$
where $\mathrm{m}=1,2,3, \ldots$.
Let f be a continuous real-valued function defined on $[-\pi, \pi]$ and let α_{i} be real constants.
(i) Prove that, for each integer $\mathrm{N} \geq 0$,

$$
\begin{aligned}
& \int_{-\pi}^{\pi}\left[f(x)-\sum_{i=0}^{N} \alpha_{i} \phi_{i}(x)\right]^{2} d x=\int_{-\pi}^{\pi}[f(x)]^{2} d x+\sum_{i=0}^{N} \alpha_{i}^{2}-2 \sum_{i=0}^{N} \alpha_{i} p_{i}, \\
& \text { where } \quad p_{i}=\int_{-\pi}^{\pi} f(x) \phi_{i}(x) d x . \text { Hence prove that } \quad \int_{-\pi}^{\pi}\left[f(x)-\sum_{i=0}^{N} \alpha_{i} \phi_{i}(x)\right]^{2} d x
\end{aligned}
$$

attains its least value for varying α_{i} when $\alpha_{i}=p_{i}$ for each i.
(ii) Show that, for any integer $\quad M \geq 1, \sum_{i=0}^{2 M} p_{i}^{2} \leq \int_{-\pi}^{\pi}[f(x)]^{2} d x$.
(1980)
8. Let $\quad \Gamma$ a $\mathrm{nd} \Gamma^{\prime}$ be two Cartesian coordinate systems on a plane and with the same origin, where Γ ' is obtained from Γ by a rotation through an angle θ. If $\quad(x, y)$ and $\left(x^{\prime}, y^{\prime}\right)$ are the coordinates of an arbitrary point P with respect to Γ and Γ^{\prime} respectively, then it is known that $\quad x^{\prime}=k x+h y, \quad y^{\prime}=-h x+k y$, where $k=\cos \theta$ and $h=\sin \theta$.
(a) The general equation of a conic section in the coordinate system Γ is given by $A x^{2}+B x y+C y^{2}+D x+E y+F=0$.
(i) Show that the same conic section is represented in the coordinate system Γ^{\prime} by $A^{\prime} x^{\prime 2}+B^{\prime} x^{\prime} y^{\prime}+C^{\prime} y^{\prime 2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0$,
where

$$
\begin{aligned}
& \mathrm{A}^{\prime}=\mathrm{Ak}^{2}+\mathrm{Bkh}+\mathrm{Ch}^{2} \\
& \mathrm{~B}^{\prime}=2 \mathrm{kh}(\mathrm{C}-\mathrm{A})+\mathrm{B}\left(\mathrm{k}^{2}-\mathrm{h}^{2}\right), \\
& \mathrm{C}^{\prime}= \mathrm{Ah}^{2}-\mathrm{Bhk}+\mathrm{Ck}^{2}, \\
& \mathrm{D}^{\prime}=\mathrm{Dk}+\mathrm{Eh}, \\
& \mathrm{E}^{\prime}= \mathrm{Ek}-\mathrm{Dh}, \quad \mathrm{~F}^{\prime}=\mathrm{F} .
\end{aligned}
$$

(ii) Show that $4 \mathrm{~A}^{\prime} \mathrm{C}^{\prime}-\mathrm{B}^{\prime 2}=4 \mathrm{AC}-\mathrm{B}^{2}$.
(iii) Show that, by choosing a suitable angle θ of rotation, the coefficient B^{\prime} can be made to vanish.
(b)

By a suitable rotation followed by a translation if necessary, bring the equation of the conic section $x^{2}-2 x y+y^{2}+\frac{7}{2} x-\frac{1}{2} y+\frac{11}{2}=0 \quad$ into the standard form. Write down the equation of its line of symmetry in the original coordinate system.
(1980)

