1980 A-Level Pure Mathematics Paper I

1. Let V be the set of all 3×1 real matrices. For any $\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $\underline{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ in V and any real number λ ,

we define $\underline{x} + \underline{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix}$, $\lambda \underline{x} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix}$. It is known that under this addition and scalar multiplication,

V forms a real vector space with zero vector $\underline{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

- (a) For a given 3×3 real matrix A, let $E = \{x \in V : Ax = \underline{0}\}.$
 - (i) Show that E forms a vector subspace of V.
 - (ii) For \underline{b} in V, suppose we have \underline{p} in V such that $A\underline{p} = \underline{b}$. Show that , for any \underline{y} in V, $A\underline{y} = \underline{b}$ if and only if $\underline{y} = \underline{p} + \underline{x}$ for some \underline{x} in E.
- (b) (i) Find all solutions to $\begin{cases} x-y-z=0\\ 10x+5y-4z=0\\ 5x+5y-z=0 \end{cases}$
 - (ii) Suppose $x = \frac{1}{2}$, $y = \frac{4}{3}$, $z = \sqrt{2}$ is a solution to the system of equations

$$\begin{cases} x - y - z = b_1 \\ 10x + 5y - 4z = b_2 \\ 5x + 5y - z = b_3. \end{cases}$$

Find all solutions to the system.

(1980)

2. Let F denote the set of all positive-valued continuous functions on the set R of all real numbers. For any $f, g \in F$, define f * g by $(f * g)(x) = f(x)g(x) \quad \forall x \in R$. It is known that F forms a group under the operation *. The identity I of this group and the inverse g of $f \in F$ are given respectively by

$$I(x)=1 \quad \forall x \in R, \quad g(x)=\frac{1}{f(x)} \quad \forall x \in R.$$

Define a relation ~ in F as follows:

For $f, g \in F$, $f \sim g$ if there are polynomials p, q in F such that p * f = q * g.

- (a) Show that ~ is an equivalence relation on F.
- (b) Let f/\sim be the equivalence class of f with respect to \sim , and let F/\sim be the quotient set consisting of all these equivalence classes. For any f/\sim , $g/\sim\in F/\sim$, define $f/\sim\otimes g/\sim$ to be $(f*g)/\sim$.
 - (i) Show that \otimes is well defined on F/~, i.e., if $f / \sim = f_1 / \sim$ and $g / \sim = g_1 / \sim$, then $f / \sim \otimes g / \sim = f_1 / \sim \otimes g_1 / \sim$.
 - (ii) Show that F/\sim forms a group under \otimes . (1980)

- 3. (a) If x>0 and p is a positive integer , show that $\frac{x^{p+1}-1}{p+1} \geq \frac{x^p-1}{p}$, and that the equality holds only if x=1 .
 - (b) Let $x_1, x_2,..., x_n$ be positive numbers and $\sum_{i=1}^n x_i \ge n$.
 - (i) Show that , for any positive integer $\,m\,\,,\,\,\,\sum\limits_{i=1}^n \,x_i^{\,\,m} \geq n.$
 - (ii) If $\sum_{i=1}^{n} x_i^m = n$ for some integer m greater than one, show that $x_1 = x_2 = ... = x_n = 1$.
 - (c) Using (b), or otherwise, show that, for any positive numbers $y_1, y_2, ..., y_n$, and positive integer m, $\frac{y_1^m + y_2^m + ... + y_n^m}{n} \ge \left(\frac{y_1 + y_2 + ... + y_n}{n}\right)^m \text{ and that the equality holds only when } m = 1 \text{ or } y_1 = y_2 = ... = y_n.$ (1980)
- 4. (a) The terms of a sequence $y_1, y_2, y_3,...$ satisfy the relation $y_k = Ay_{k-1} + B$ $(k \ge 2)$ where A, B are constants independent of k and $A \ne 1$. Guess an expression for y_k $(k \ge 2)$ in terms of y_1 , A, B and k and prove it.
 - (b) The terms of a sequence x_0 , x_1 , x_2 ,... satisfy the relation $x_k = (a+b)x_{k-1} abx_{k-2}$ $(k \ge 2)$, where a, b are non-zero constants independent of k and $a \ne b$.
 - (i) Express $x_k ax_{k-1}$ $(k \ge 2)$ in terms of $(x_1 ax_0)$, b and k.
 - (ii) Using (a) or otherwise , express x_k ($k \ge 2$) in terms of x_0, x_1, a, b and k.
 - (c) If the terms of the sequence x_0 , x_1 , x_2 ,... satisfy the relation $x_k = \frac{1}{3}x_{k-1} + \frac{2}{3}x_{k-2}$ ($k \ge 2$), express $\lim_{k \to \infty} x_k$ in terms of x_0 and x_1 . (1980)
- 5. (a) (i) Let $\omega^3 = 1$ and $\omega \neq 1$. Show that the expression $x^3 3uvx (u^3 + v^3) = 0$ can be factorized as $(x u v)(x \omega u \omega^2 v)(x \omega^2 u \omega v)$
 - (ii) Find a solution to the following system of equations

$$\begin{cases} u^3 + v^3 = 6 \\ uv = 2 \end{cases}$$

Hence, or otherwise, find the roots of the equations $x^3 - 6x - 6 = 0$

- (b) Given an equation $x^3 + px + q = 0$(*)
 - (i) Show that, if (*) has a multiple root, then $27q^2 + 4p^3 = 0$
 - (ii) Using the method indicated in (a) (ii) , or otherwise , show that , if $27q^2 + 4p^3 = 0$, then (*) has a multiple root. (1980)
- 6. Let a, b be real numbers such that a < b and let m, n be positive integers.

where $\,C_k^{m+n}\,$ is the coefficient of $\,t^k\,$ in the expansion of $\,\left(1+t\right)^{m+n}\,$.

- (b) By integrating both sides of (*) with respect to x , or otherwise , calculate $\int_a^b (x-a)^m (x-b)^n dx$.
- (c)By differentiating both sides of (*) with respect to x , or otherwise , find $\frac{d^r}{dx^r}\{(x-a)^m(x-b)^n\}$ at x=a , where r is a positive integer. (1980)
- 7. Let C be the set of complex numbers. A function $f: C \to C$ is said to be an isometry if it preserves distance, that is, if $|f(z_1) f(z_2)| = |z_1 z_2|$ for all $z_1, z_2 \in C$.
 - (a) If f is an isometry, show that $g(z) = \frac{f(z) f(0)}{f(1) f(0)}$ is an isometry satisfying g(1) = 1 and g(0) = 0.
 - (b) If g is an isometry satisfying g(1)=1, g(0)=0, show that (i) the real parts of g(z) and z are equal for all $z \in C$, (ii) g(i)=i or -i.
 - (c) If g is an isometry satisfying g(1) = 1, g(0) = 0 and g(i) = i (respectively -i), show that g(z) = z (respectively \bar{z}) for all $z \in C$.
 - (d) Show that any isometry f has the form f(z) = az + b or $f(z) = a\overline{z} + b$ with a and b constant and |a| = 1. (1980)
- 8. N balls are distributed randomly among n cells. Each of the n^N possible distributions has probability n^{-N} .
 - (a) (i) Calculate the probability P_k that a given cell contains exactly k balls.
 - (ii) Show that the most probable number k_0 satisfies the inequality $\frac{N-n+1}{n} \le k_0 \le \frac{N+1}{n}$.
 - (iii) Compute the mean number $\sum\limits_{k=0}^{N} kP_k$ of balls in a given cell and show that it can differ from k_0 by at most one.
 - (b) Let A(N, n) be the number of distributions leaving none of the cells empty. Show that $A(N, n+1) = \sum_{k=1}^{N} C_k^{N} A(N-k, n), \text{ where } C_k^{N} \text{ is the coefficient of } t^k \text{ in the expansion of } (1+t)^N. \text{ Hence show by mathematical induction (on n), or otherwise, that}$

$$A(N, n) = \sum_{j=0}^{n} (-1)^{i} C_{j}^{n} (n-j)^{N}.$$
 (1980)

1980 A-Level Pure Mathematics Paper II

Let P(t) = (x(t), y(t)) be a point on the unit circle with parametric equations 1.

$$x(t) = \frac{1-t^2}{1+t^2}$$
, $y(t) = \frac{2t}{1+t^2}$, Q be the point (a, 0), $0 < a < 1$. An arbitrary line of slope m passing

through Q cuts the circle at the points $R = P(t_1)$ and $S = P(t_2)$. Let T be the point where RO meets the line through Q parallel to SO, where O is the origin.

- (a) Show that $t_1 t_2 = \frac{a-1}{a+1}$, $t_1 + t_2 = \frac{-2}{m(a+1)}$.
- (b) Express the coordinates of T in terms of a, t_1 , t_2
- (c) Verify that the locus of T is an ellipse with equation $(1-a^2)(x-\frac{a}{2})^2+y^2=C$, where C is a constant. What is C? (1980)
- 2. In a 3-dimensional space with a Cartesian coordinate system, two lines l_1 and l_2 are given by the pairs of equations

$$\begin{array}{l} \text{rs of equations:} \\ l_1 \colon \begin{cases} x + 2y + 3z - 3 = 0 \\ x + 2y + 2z - 4 = 0 \end{cases}, \quad l_2 \colon \begin{cases} x + y + z - 1 = 0 \\ 2x + 3y + 5z - 2 = 0 \end{cases} \\ \text{Let } P_{\alpha} \quad \text{be the plane} \quad \alpha \ (x + 2y + 3z - 3) \ + \ (x + 2y + 2z - 4) = 0 \quad \text{and} \quad Q_{\beta} \ \text{be the} \end{cases}$$

(a) Let P_{α} be the plane $\alpha (x+2y+3z-3) + (x+2y+3z-3)$ plane

$$\beta(x + y + z - 1) + (2x + 3y + 5z - 2) = 0.$$

Show that P_{α} is parallel to Q_{β} if and only if there exists $m\neq 0$ such that

$$\begin{pmatrix} 1 & -m & 1-2m \\ 2 & -m & 2-3m \\ 3 & -m & 2-5m \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \dots$$
 (*)

- Find the value of m for which there are numbers α and β satisfying (*) in (a). Hence (b) find the equations of the two parallel planes M_1 and M_2 containing l_1 and l_2 respectively.
- Find the equation of the plane N containing l_1 and perpendicular to M_2 .
- Let l_1 ' be the projection of l_1 on M_2 (i.e. l_1 ' is the intersection of N and M_2). Find its equation.

(1980)

(a) Let $f(z) = \sum_{k=0}^{n} a_k z^k$ be an n^{th} degree polynomial in the complex variable z with real coefficients. Show that

$$(i) \qquad \left|f(z)\right|^2 = \sum_{k=0}^n \sum_{j=0}^n r^{k+j} a_k \, a_j \cos(k-j)\theta, \quad \text{ where } \quad z = r \, (\cos\!\theta \, + \, i \sin\!\theta) \; ,$$

(ii)
$$\frac{1}{2\pi} \int_0^{2\pi} |f(\cos\theta + i\sin\theta)|^2 d\theta = \sum_{k=0}^n a_k^2.$$

(b) If C_k^n is the coefficient of t^k in the binomial expansion of $\left(1+t\right)^n$, show that

$$\sum_{k=0}^{n} \left(C_k^n \right)^2 = \frac{2^n}{\pi} \int_0^{\pi} (1 + \cos\theta)^n d\theta = \frac{2^{2n+1}}{\pi} \int_0^{\frac{\pi}{2}} (\cos t)^{2n} dt.$$
(1980)

4. (a) A right circular cone is inscribed in a sphere of radius a as shown in the figure. Determine the height of the cone if it is to have maximum volume.

(b) Two points A and B lie on the circumference of a circle with centre O and radius a such that $\angle AOB = \frac{2}{3}\pi$. X is a point on AO produced with OX = x; P is a point on arc AB with $\angle AOP = \theta$. For each x > 0, let $g(x) = \int_0^{2\pi} \frac{a\sin\theta}{r(x,\theta)} \, d\theta$, where $r(x,\theta)$ is the distance between P and X.

- (i) Show that $g(x) = \frac{3a}{x + a + (a^2 + x^2 ax)^{\frac{1}{2}}}$.
- (ii) Prove that on $(0, \infty)$, $0 < g(x) < \frac{3}{2}$. (1980)
- 5. (a) Let f and g be two continuous functions defined on the real line R and let $x_0 \in R$, show that if f(x) = g(x) for all $x \in R \setminus \{x_0\}$, then $f(x_0) = g(x_0)$.
 - (b) If a real polynomial p(x) can be written as $p(x) = (x-x_0)^m q(x)$ for some positive integer m and polynomial q(x) with $q(x_0) \neq 0$, show that the expression is unique, that is, if k is a positive integer and h(x) is a polynomial with $h(x_0) \neq 0$ such that $p(x) = (x-x_0)^k h(x)$, then m=k and q(x) = h(x) for all $x \in R$.

- (c) Let p(x) be a real polynomial . Show that for any positive integer k, x_0 is a root of multiplicity k+1 of the equation p(x)=0 if and only if $p(x_0)=0$ and x_0 is a root of multiplicity k of p'(x)=0, where p'(x) denotes the derivative of p(x). (1980)
- 6. (a) Let f and g be real-valued functions defined on the real line \mathbf{R} and possess the following properties:
 - (1) f(x + y) = f(x) g(y) + f(y)g(x) for all $x, y \in \mathbf{R}$,
 - (2) f(0) = 0, f'(0) = 1, g(0) = 1, g'(0) = 0

Show that f'(x) = g(x) for all $x \in \mathbb{R}$.

- (b) Let f(x) be a function with continuous first and second derivatives on [0,1] and f(0) = f(1) = 0.
 - (i) Show that $\int_0^1 f(x)f''(x)dx \le 0$, where the equality sign holds only if f(x) = 0 for all x in [0,1].
- (ii) Suppose , in addition , $\int_0^1 [f(x)]^2 dx = 1$. Show that $\int_0^1 x f(x) f'(x) dx = -\frac{1}{2}$ (1980)
- 7. (a) It is known that, for any integer k, $\int_{-\pi}^{\pi} \sin kx dx = 0$ and $\int_{-\pi}^{\pi} \cos kx dx = \begin{cases} 2\pi & \text{if } k = 0 \\ 0 & \text{if } k \neq 0 \end{cases}$ Using the above results, show that if m, n are positive integers,
 - (i) $\int_{-\pi}^{\pi} \sin mx \cos n x \, dx = 0,$ (ii)

 $\int_{-\pi}^{\pi} \sin m x \sin n x dx = \begin{cases} \pi & \text{if } m = n, \\ 0 & \text{if } m \neq n, \end{cases}$

- (iii) $\int_{-\pi}^{\pi} \cos m x \cos n x \, dx = \begin{cases} \pi & \text{if } m = n, \\ 0 & \text{if } m \neq n. \end{cases}$
- $(b) \quad \text{Define} \quad \phi_i(x) = \begin{cases} \dfrac{1}{\sqrt{2\pi}} & \text{if } i=0,\\ \dfrac{c \, osmx}{\sqrt{\pi}} & \text{if } i=2m-1\\ \dfrac{sinmx}{\sqrt{\pi}} & \text{if } i=2m, \end{cases}$

where m = 1, 2, 3, ...

Let $\ f$ be a continuous real-valued function defined on $\ [-\pi,\pi]$ and $\ let \ \alpha_i$ be real constants.

(i) Prove that, for each integer $N \ge 0$,

$$\int_{-\pi}^{\pi} [f(x) - \sum_{i=0}^{N} \alpha_i \phi_i(x)]^2 dx = \int_{-\pi}^{\pi} [f(x)]^2 dx + \sum_{i=0}^{N} \alpha_i^2 - 2 \sum_{i=0}^{N} \alpha_i p_i,$$

where $p_i = \int_{-\pi}^{\pi} f(x)\phi_i(x)dx$. Hence prove that $\int_{-\pi}^{\pi} [f(x) - \sum_{i=0}^{N} \alpha_i \phi_i(x)]^2 dx$

attains its least value for varying α_i when $\alpha_i = p_i$ for each i.

(ii) Show that , for any integer
$$M \ge 1$$
, $\sum_{i=0}^{2M} {p_i}^2 \le \int_{-\pi}^{\pi} [f(x)]^2 dx$.

(1980)

- 8. Let Γ a n d Γ' be two Cartesian coordinate systems on a plane and with the same origin, where Γ is obtained from Γ by a rotation through an angle θ . If (x, y) and (x', y') are the coordinates of an arbitrary point P with respect to Γ and Γ' respectively, then it is known that x' = kx + hy, y' = -hx + ky, where $k = \cos\theta$ and $h = \sin\theta$.
 - (a) The general equation of a conic section in the coordinate system Γ is given by $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$.
 - (i) Show that the same conic section is represented in the coordinate system Γ' by $A'x'^2 + B'x'y' + C'y'^2 + D'x' + E'y' + F' = 0$,

where
$$A' = Ak^2 + Bkh + Ch^2$$
,
 $B' = 2kh(C - A) + B(k^2 - h^2)$,
 $C' = Ah^2 - Bhk + Ck^2$,
 $D' = Dk + Eh$,
 $E' = Ek - Dh$, $F' = F$.

- (ii) Show that $4A'C'-B'^2 = 4AC-B^2$.
- (iii) Show that, by choosing a suitable angle θ of rotation, the coefficient B' can be made to vanish.
- (b) By a suitable rotation followed by a translation if necessary, bring the equation of the conic section $x^2 2xy + y^2 + \frac{7}{2}x \frac{1}{2}y + \frac{11}{2} = 0$ into the standard form. Write down the equation of its line of symmetry in the original coordinate system. (1980)