This document was prepared for markers' reference. It should not be regarded as a set of model answers.
Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

General Marking Instructions

1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
2. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept / technique had been used.
3. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
4. Unless the form of the answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they are correct.
5. In the marking scheme, marks are classified into the following three categories:
'M' marks -- awarded for applying correct methods
' A ' marks - awarded for the accuracy of the answers
Marks without ' M ' or ' Λ ' - awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, ' M ' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. (I.e. Markers should follow through candidates' work in awarding ' M ' marks.) However, ' A ' marks for the corresponding answers should NOT be awarded, unless otherwise specified.
6. In the marking scheme, steps which can be skipped are enclosed by dotted rectangles , whereas alternative answers are enclosed by solid rectangles.
7. (a) Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.
(b) In case a certain degree of accuracy had been specified in the question, answers not accurate up to that degree should not be accepted.

Solution	Marks	Remarks
$\text { 1. } \begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}(\sin 2 x) & =\lim _{h \rightarrow 0} \frac{\sin 2(x+h)-\sin 2 x}{h} \\ & =\lim _{h \rightarrow 0}\left(\frac{2}{h} \cos \frac{2 x+2 h+2 x}{2} \sin \frac{2 x+2 h-2 x}{2}\right) \\ & =\lim _{h \rightarrow 0}\left[2 \cos (2 x+h) \frac{\sin h}{h}\right] \\ & =2 \lim _{h \rightarrow 0} \cos (2 x+h) \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \end{aligned}$	1M 1 M 1M	
Alternative Solution $\begin{aligned} & =\lim _{h \rightarrow 0} \frac{\sin 2 h \cos 2 x+\cos 2 h \sin 2 x-\sin 2 x}{h} \\ & =\lim _{h \rightarrow 0} \frac{\sin 2 h \cos 2 x-\sin 2 x \cdot 2 \sin ^{2} h}{h} \\ & =2 \cos 2 x \cdot \lim _{h \rightarrow 0} \frac{\sin 2 h}{2 h}-2 \sin 2 x \cdot \lim _{h \rightarrow 0} \sin h \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h} \end{aligned}$	1M $1 \mathrm{M}$,
$=2 \cos 2 x$	1A (4)	

2. $(1+a x)^{n}=1+C_{1}^{n} a x+C_{2}^{n}(a x)^{2}+\cdots$
$\left\{\begin{array}{l}n a=-20 \\ \frac{n(n-1)}{2} a^{2}=180\end{array}\right.$
(2) $\div(1)^{2}$:
$\frac{n-1}{2 n}=\frac{180}{400}$
1M
$n=10$
1A
$\therefore \quad a=-2$
3. For $n=1$,
L.H.S. $1+\frac{1}{1 \times 4}=\frac{5}{4}$ and R.H.S. $=\frac{4(1)+1}{3(1)+1}=\frac{5}{4}$
\therefore L.H.S. $=$ R.H.S. and the statement is true for $n=1$.
Assume $1+\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\frac{1}{7 \times 10}+\cdots+\frac{1}{(3 k-2)(3 k+1)}=\frac{4 k+1}{3 k+1}$, where k is a positive integer. $\quad 1$
$1+\frac{1}{1 \times 4}+\frac{1}{4 \times 7}+\frac{1}{7 \times 10}+\cdots+\frac{1}{(3 k-2)(3 k+1)}+\frac{1}{[3(k+1)-2][3(k+1)+1]}$
$=\frac{4 k+1}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)} \quad$ by the assumption
$=\frac{\left(12 k^{2}+19 k+4\right)+1}{(3 k+1)(3 k+4)}$
$=\frac{(3 k+1)(4 k+5)}{(3 k+1)(3 k+4)}$
$=\frac{4(k+1)+1}{3(k+1)+1}$
Hence the statement is truf for $n=k+1$.
By the principle of mathematical induction, the statement is true for all positive integers n.

Follow through

OR general term $=C_{r}^{n}(a x)^{r}$

(5) | Follow through |
| :---: |
| 1 |
| 1 |
| 1 |

. Marks
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=e^{x}-1$
$y=\int\left(e^{x}-1\right) \mathrm{d} x$

$$
=e^{x}-x+C
$$

Since the curve passes through the point $(1, e), e=e^{1}-1+C$.
i.e. $C=1$
$\therefore y=e^{x}-x+1$
(b) The curve cuts the y-axis at $(0,2)$.

When $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$.
1A
1M
1 A

Hence the equation of tangent to the curve at $(0,2)$ is
$y-2=0(x-0)$
$y=2$
$y=2$
1 A

Marks Remarks
(5)

1A
1A
For both

OR $f(x)=\frac{\frac{3}{x^{2}}-3}{\frac{3}{x^{2}}+1}$

1A
Hence $y=-3$ is a horizontal asymptote.
(c)

For shape of $y=\mathbf{f}(x)$
For all correct
Solution \quad Marks
6. (a) Area $=\int_{0}^{4}\left[\left(\frac{-x^{2}}{2}+2 x+4\right)-4\right] \mathrm{d} x+\int_{4}^{5}\left[4-\left(\frac{-x^{2}}{2}+2 x+4\right)\right] \mathrm{d} x$

$$
\begin{aligned}
& =\int_{0}^{4}\left(\frac{-x^{2}}{2}+2 x\right) \mathrm{d} x+\int_{4}^{5}\left(\frac{x^{2}}{2}-2 x\right) \mathrm{d} x \\
& =\left[\frac{-x^{3}}{6}+x^{2}\right]_{0}^{4}+\left[\frac{x^{3}}{6}-x^{2}\right]_{4}^{5} \\
& =\frac{13}{2}
\end{aligned}
$$

(b) Volume $=\pi \int_{0}^{5}\left(\frac{-x^{2}}{2}+2 x+4-4\right)^{2} \mathrm{~d} x$.

$$
\begin{aligned}
& =\pi \int_{0}^{5}\left(\frac{x^{4}}{4}-2 x^{3}+4 x^{2}\right) \mathrm{d} x \\
& =\pi\left[\frac{x^{5}}{20}-\frac{x^{4}}{2}+\frac{4 x^{3}}{3}\right]_{0}^{5} \\
& =\frac{125 \pi}{12}
\end{aligned}
$$

7. (a) R.H.S. $=\frac{\sin 2 x}{1+\cos 2 x}$

$$
\begin{aligned}
& =\frac{2 \sin x \cos x}{1+2 \cos ^{2} x-1} \\
& =\frac{\sin x}{\cos x} \\
& =\tan x \\
& =\text { L.H.S. }
\end{aligned}
$$

(b) R.H.S. $=\frac{\sin 8 y \cos 4 y \cos 2 y}{(1+\cos 8 y)(1+\cos 4 y)(1+\cos 2 y)}$

$\begin{aligned} & =\tan 4 y \cdot \frac{\cos 4 y \cos 2 y}{(1+\cos 4 y)(1+\cos 2 y)} \\ & =\frac{\sin 4 y \cos 2 y}{(1+\cos 4 y)(1+\cos 2 y)} \\ & =\tan 2 y \cdot \frac{\cos 2 y}{1+\cos 2 y} \quad \text { by (a) } \\ & =\frac{\sin 2 y}{1+\cos 2 y} \\ & =\tan y \quad \text { by (a) } \end{aligned}$	1M 1M 1	
Alternative Solution $\begin{aligned} & =\frac{\sin 8 y \cos 4 y \cos 2 y}{\left(\frac{\sin 8 y}{\tan 4 y}\right)\left(\frac{\sin 4 y}{\tan 2 y}\right)\left(\frac{\sin 2 y}{\tan y}\right)} \quad \text { by (a) } \\ & =\frac{\sin 8 y}{\sin 8 y} \cdot \frac{\tan 4 y \cos 4 y}{\sin 4 y} \cdot \frac{\tan 2 y \cos 2 y}{\sin 2 y} \cdot \tan y \\ & =\tan y \end{aligned}$	1M $1 \mathrm{M}+1$	1M for $\tan x \cos x=\sin x$
$=$ L.H.S.	(5)	

Solution	Marks	Remarks

8. (a) $\left(\begin{array}{lll}1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0\end{array}\right)^{-1}=\frac{1}{\left|\begin{array}{lll}1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0\end{array}\right|}\left(\begin{array}{ccc}0 & k & -k \\ 0 & 0 & k^{2} \\ k & -1 & 1\end{array}\right)^{T}$ $=\frac{1}{k^{2}}\left(\begin{array}{ccc}0 & 0 & k \\ k & 0 & -1 \\ -k & k^{2} & 1\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ 1 \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$
$\left(\begin{array}{l}x \\ 1 \\ z\end{array}\right)=\frac{1}{k^{2}}\left(\begin{array}{ccc}0 & 0 & k \\ k & 0 & -1 \\ -k & k^{2} & 1\end{array}\right)\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right) \quad$ by (a)
$=\frac{1}{k^{2}}\left(\begin{array}{c}k \\ 2 k-1 \\ 2 k^{2}-2 k+1\end{array}\right)$
From the second row, we have $\frac{2 k-1}{k^{2}}=1$.

Alternative Solution

$\left(\begin{array}{c}x+k \\ 1+z \\ k x\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$
From the first and third rows, we have $x+k=2$ and $x=\frac{1}{k}$.
$\therefore \frac{1}{k}+k=2$.
i.e. $k^{2}-2 k+1=0$ $k=1$
(a) The augmented matrix is $\left(\begin{array}{ccc|c}1 & -a & 1 & 2 \\ 2 & 1-2 a & 2-b & a+4 \\ 3 & 1-3 a & 3-a b & 4\end{array}\right)$

$$
\begin{aligned}
& \sim\left(\begin{array}{ccc|c}
1 & -a & 1 & 2 \\
0 & 1 & -b & a \\
0 & 1 & -a b & -2
\end{array}\right) \\
& \sim\left(\begin{array}{ccc|c}
1 & -a & 1 & 2 \\
0 & 1 & -b & a \\
0 & 0 & a b-b & a+2
\end{array}\right)
\end{aligned}
$$

Hence the system has infinitely many solutions when

$$
\left\{\begin{array}{c}
b(a-1)=0 \\
a+2=0
\end{array}\right.
$$

i.e. $a=-2$ and $b=0$

Solution
(b) The system becomes $\left\{\begin{array}{l}x+2 y+z=2 \\ 2 x+5 y+2 z=2 \\ 3 x+7 y+3 z=4\end{array}\right.$
i.e. $\left\{\begin{array}{l}x+z=6 \\ y=-2\end{array}\right.$ $(x, y, z)=(6-t,-2, t)$ for any real number t

10. (a) $\overrightarrow{O N}=\frac{k \overrightarrow{O A}+\overrightarrow{O B}}{k+1}$

$$
\begin{aligned}
& =\frac{k(2 \mathbf{i})+(\mathbf{i}+2 \mathbf{j})}{k+1} \\
& =\frac{(2 k+1) \mathbf{i}+2 \mathbf{j}}{k+1}
\end{aligned}
$$

(b) $\because \overrightarrow{M B}=2 \mathbf{j}, \quad \therefore \quad B M \perp O A$

Since A, N, P and M are concyclic, $O N \perp A B$.
$\therefore \overrightarrow{O N} \cdot \overrightarrow{A B}=0$
1M
$\frac{(2 k+1) \mathbf{i}+2 \mathbf{j}}{k+1} \cdot(\mathbf{i}+2 \mathbf{j}-2 \mathbf{i})=0$
$-(2 k+1)+2 \cdot 2=0$
$k=\frac{3}{2}$
11. (a) $\frac{\mathrm{d}}{\mathrm{d} \theta} \ln (\sec \theta+\tan \theta)=\frac{\sec \theta \tan \theta+\sec ^{2} \theta}{\sec \theta+\tan \theta}$

Hence $\int \sec \theta \mathrm{d} \theta=\int \frac{\mathrm{d}}{\mathrm{d} \theta} \ln (\sec \theta+\tan \theta) \mathrm{d} \theta$

$$
=\ln (\sec \theta+\tan \theta)+C
$$

Alternative Solution
$\int \sec \theta \mathrm{d} \theta=\int \frac{\sec \theta(\sec \theta+\tan \theta)}{\sec \theta+\tan \theta} \mathrm{d} \theta$
Let $u=\sec \theta+\tan \theta$ which gives $\mathrm{d} u=\left(\sec \theta \tan \theta+\sec ^{2} \theta\right) \mathrm{d} \theta$.
$\therefore \quad \int \sec \theta \mathrm{d} \theta=\int \frac{\mathrm{d} u}{u}$

$$
=\ln |u|+C
$$

$$
=\sec \theta
$$

1A

$$
=\ln (\sec \theta+\tan \theta)+C \text { since } \sec \theta+\tan \theta>0 \text { for } 0<\theta<\frac{\pi}{2}
$$

(b) (i) Let $u=\sec \theta$, where $0<\theta<\frac{\pi}{2}$.

1 M
$\therefore \mathrm{d} u=\sec \theta \tan \theta \mathrm{d} \theta$

$$
\begin{aligned}
\int \frac{\mathrm{d} u}{\sqrt{u^{2}-1}} & =\int \frac{\sec \theta \tan \theta \mathrm{d} \theta}{\sqrt{\sec ^{2} \theta-1}} \\
& =\int \sec \theta \mathrm{d} \theta \quad \text { since } \tan \theta>0 \text { for } 0<\theta<\frac{\pi}{2} \\
& =\ln (\sec \theta+\tan \theta)+C \quad \text { by (a) } \\
& =\ln \left(\sec \theta+\sqrt{\sec ^{2} \theta-1}\right)+C \quad \text { since } \tan \theta>0 \text { for } 0<\theta<\frac{\pi}{2} \\
& =\ln \left(u+\sqrt{u^{2}-1}\right)+C
\end{aligned}
$$

(ii) $\int_{0}^{1} \frac{2 x}{\sqrt{x^{4}+4 x^{2}+3}} \mathrm{~d} x=\int_{0}^{1} \frac{2 x}{\sqrt{\left(x^{2}+2\right)^{2}-1}} \mathrm{~d} x$

Let $u=x^{2}+2$ which gives $\mathrm{d} u=2 x \mathrm{~d} x$.
When $x=0, u=2$; when $x=1, u=3$.

$$
\begin{aligned}
\therefore \int_{0}^{1} \frac{2 x}{\sqrt{x^{4}+4 x^{2}+3}} \mathrm{~d} x & =\int_{2}^{3} \frac{\mathrm{~d} u}{\sqrt{u^{2}-1}} \\
& =\left[\ln \left(u+\sqrt{u^{2}-1}\right)\right]_{2}^{3} \quad \text { by (i) } \\
& =\ln (3+\sqrt{8})-\ln (2+\sqrt{3}) \\
& =\ln \left(\frac{3+2 \sqrt{2}}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}}\right) \\
& =\ln (6+4 \sqrt{2}-3 \sqrt{3}-2 \sqrt{6})
\end{aligned}
$$

(c) $t=\tan \phi$

$$
\begin{aligned}
& \frac{\mathrm{d} t}{\mathrm{~d} \phi}=\sec ^{2} \phi \\
& \\
& =1+\tan ^{2} \phi \\
& \begin{aligned}
& \therefore \frac{\mathrm{d} \phi}{\mathrm{~d} t}=\frac{1}{1+t^{2}} \\
& \cos ^{2} \phi=\frac{1}{\sec ^{2} \phi} \\
&=\frac{1}{1+t^{2}} \\
& \begin{aligned}
\int_{0}^{\frac{\pi}{4}} \frac{\tan \phi}{\sqrt{1+2 \cos ^{2} \phi}} \mathrm{~d} \phi & =\int_{0}^{1} \frac{t}{\sqrt{1+\frac{2}{1+t^{2}}} \cdot \frac{1}{1+t^{2}}} \mathrm{~d} t \quad \text { where } t=\tan \phi
\end{aligned} \\
&=\int_{0}^{1} \frac{t}{\sqrt{\left(3+t^{2}\right)\left(1+t^{2}\right)}} \mathrm{d} t \\
&=\frac{1}{2} \int_{0}^{1} \frac{2 t}{\sqrt{t^{4}+4 t^{2}+3}} \mathrm{~d} t \\
&=\frac{1}{2} \ln (6+4 \sqrt{2}-3 \sqrt{3}-2 \sqrt{6})
\end{aligned}
\end{aligned}
$$

1

For primitive function
12. (a) (i) $T=\frac{P Q}{7}+\frac{Q B}{1.4}$
$=\frac{x}{7}+\frac{5 \sqrt{30^{2}+(40-x)^{2}}}{7}$
$=\frac{x+5 \sqrt{x^{2}-80 x+2500}}{7}$
(ii) When T is minimum, $\frac{\mathrm{d} T}{\mathrm{~d} x}=0$.
$\frac{1}{7}\left[1+\frac{5(2 x-80)}{2 \sqrt{x^{2}-80 x+2500}}\right]=0$
$5(x-40)=-\sqrt{x^{2}-80 x+2500}$
$25 x^{2}-2000 x+40000=x^{2}-80 x+2500$
$2 x^{2}-160 x+3125=0$
$\therefore x=40-\frac{5 \sqrt{6}}{2}$ or $40+\frac{5 \sqrt{6}}{2}$ (rejected by checking)

x	$0<x<40-\frac{5 \sqrt{6}}{2}$	$x=40-\frac{5 \sqrt{6}}{2}$	$x>40-\frac{5 \sqrt{6}}{2}$
$\frac{\mathrm{~d} T}{\mathrm{~d} x}$	-	0	+

So, when T is minimum, $x=40-\frac{5 \sqrt{6}}{2}$.

$$
\begin{aligned}
Q B & =\sqrt{30^{2}+\left[40-\left(40-\frac{5 \sqrt{6}}{2}\right)\right]^{2}} \\
& =\frac{25 \sqrt{6}}{2} \mathrm{~m}
\end{aligned}
$$

(b) (i) $\sin \beta=\frac{30}{\frac{25 \sqrt{6}}{2}}=\frac{2 \sqrt{6}}{5}$

$$
\cos \beta=\frac{40-\left(40-\frac{5 \sqrt{6}}{2}\right)}{\frac{25 \sqrt{6}}{2}}=\frac{1}{5}
$$

In $\triangle M A B, \frac{M B}{\sin \alpha}=\frac{A B}{\sin (\pi-\alpha-\beta)}$.

$$
\begin{aligned}
M B & =\frac{40 \sin \alpha}{\sin (\alpha+\beta)} \\
& =\frac{40 \sin \alpha}{\sin \alpha \cos \beta+\cos \alpha \sin \beta} \\
& =\frac{40 \sin \alpha}{\frac{1}{5} \sin \alpha+\frac{2 \sqrt{6}}{5} \cos \alpha} \\
& =\frac{200 \tan \alpha}{\tan \alpha+2 \sqrt{6}}
\end{aligned}
$$

Marks	Remarks
1M	
1A	OR $\frac{x}{7}+\frac{\sqrt{x^{2}-80 x+2500}}{1.4}$
	$A \quad 40 \mathrm{~m} \quad B$
1M	
1	
1 M	
1	
(6)	
1 A	
1A	$A \quad 40 \mathrm{~m} \quad B$
1 M	
1	

(ii) $\frac{\mathrm{d} M B}{\mathrm{~d} t}=200 \cdot \frac{(\tan \alpha+2 \sqrt{6}) \sec ^{2} \alpha-\tan \alpha \sec ^{2} \alpha}{(\tan \alpha+2 \sqrt{6})^{2}} \cdot \frac{\mathrm{~d} \alpha}{\mathrm{~d} t}$

$$
\begin{gathered}
=\frac{400 \sqrt{6} \sec ^{2} \alpha}{(\tan \alpha+2 \sqrt{6})^{2}} \cdot \frac{\mathrm{~d} \alpha}{\mathrm{~d} t} \\
\therefore \quad-1.4=\frac{400 \sqrt{6} \mathrm{sec}^{2} 0.2}{(\tan 0.2+2 \sqrt{6})^{2}} \cdot \frac{\mathrm{~d} \alpha}{\mathrm{~d} t}
\end{gathered}
$$

$$
\frac{\mathrm{d} \alpha}{\mathrm{~d} t} \approx-0.0357 \mathrm{rad} \mathrm{~s}^{-1}
$$

13. (a) (i) $M N=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$

$$
\begin{aligned}
&=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right) \\
& \operatorname{tr}(M N)=a e+b g+c f+d h \\
& N M=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
&=\left(\begin{array}{ll}
e a+f c & e b+f d \\
g a+h c & g b+h d
\end{array}\right) \\
& \operatorname{tr}(N M)=e a+f c+g b+h d \\
& \therefore \quad \operatorname{tr}(M N)=\operatorname{tr}(N M)
\end{aligned}
$$

(ii) $\operatorname{tr}\left(B A B^{-1}\right)=1+3$
$\operatorname{tr}\left(A B^{-1} B\right)=4 \quad$ by $(\mathrm{a})(\mathrm{i})$
$\operatorname{tr}(A)=4$
(iii) $B A B^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$

$$
\begin{aligned}
& \left|B A B^{-1}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right| \\
& |B| \cdot|A| \cdot\left|B^{-1}\right|=1 \cdot 3-0 \cdot 0 \\
& |B| \cdot|A| \cdot|B|^{-1}=3 \\
& |A|=3
\end{aligned}
$$

1A
(b) (i) $C\binom{x}{y}=\lambda_{1}\binom{x}{y}$

$$
\begin{aligned}
& \binom{p x+q y}{r x+s y}=\binom{\lambda_{1} x}{\lambda_{1} y} \\
& \left\{\begin{array}{l}
\left(p-\lambda_{1}\right) x+q y=0 \\
r x+\left(s-\lambda_{1}\right) y=0
\end{array}\right.
\end{aligned}
$$

Since this system of equations has non-zero solutions $\binom{x}{y},\left|\begin{array}{cc}p-\lambda_{1} & q \\ r & s-\lambda_{1}\end{array}\right|=0$.
Similarly, $C\binom{x}{y}=\lambda_{2}\binom{x}{y}$ gives $\left|\begin{array}{cc}p-\lambda_{2} & q \\ r & s-\lambda_{2}\end{array}\right|=0$.
(ii) $\mathrm{By}(\mathrm{b})(\mathrm{i}), \lambda_{1}$ and λ_{2} are the roots of the equation

$$
\begin{aligned}
& \left|\begin{array}{cc}
p-\lambda & q \\
r & s-\lambda
\end{array}\right|=0 \\
& (p-\lambda)(s-\lambda)-q r=0 \\
& \lambda^{2}-(p+s) \lambda+p s-q r=0 \\
& \lambda^{2}-\operatorname{tr}(C) \cdot \lambda+|C|=0
\end{aligned}
$$

(c) $A\binom{x}{y}=\lambda\binom{x}{y}$ for some non-zero matrices $\binom{x}{y}$
$\lambda^{2}-\operatorname{tr}(A) \cdot \lambda+|A|=0 \quad$ by (b)(ii)
$\lambda^{2}-4 \lambda+3=0 \quad$ by (a)(ii) \& (a)(iii)
$\lambda=1$ or 3

(ii) Yes. Since $\overrightarrow{D P_{1}} \times \overrightarrow{D P_{2}}=\overrightarrow{D P_{2}} \times \overrightarrow{D P_{3}}$, the normal vector of the plane containing
D, P_{1} and P_{2} equals the normal vector of the plane containing D, P_{2} and P_{3}. Thus the plane containing D, P_{1} and P_{2} is parallel to the plane containing D, P_{2} and P_{3}.
Since D and P_{2} are common points of the planes, D, P_{1}, P_{2} and P_{3} are on the same plane.
Since D is the centre of the sphere and P_{1}, P_{2} and P_{3} lie on the largest circle on the sphere, the radius of the circle equals the radius of the sphere, which is $O D$.
equal to the radius of the sphere, ..."

Follow through

