

MATHEMATICS Extended Part Module 2 （Algebra and Calculus）

Question－Answer Book

$8.30 \mathrm{am}-11.00 \mathrm{am}$（ $21 / 2$ hours）
This paper must be answered in English

INSTRUCTIONS

1．After the announcement of the start of the examination，you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1，3， 5 and 7 ．

2．This paper consists of Section A and Section B．Answer ALL questions in this paper．

3．Write your answers for Section A in the spaces provided in this Question－Answer Book．Do not write in the margins．Answers written in the margins will not be marked．

4．Write your answers for Section B in the $\operatorname{DSE}(B)$ answer book． Start each question（not part of a question）on a new page．

5．Graph paper and supplementary answer sheets will be supplied on request．Write your Candidate Number，mark the question number box and stick a barcode label on each sheet，and fasten them with string INSIDE the book．

6．The Question－Answer book and the answer book will be collected separately at the end of the examination．

7．Unless otherwise specified，all working must be clearly shown．
8．Unless otherwise specified，numerical answers must be exact．
9．In this paper，vectors may be represented by bold－type letters such as \mathbf{u} ，but candidates are expected to use appropriate symbols such as $\overrightarrow{\mathrm{u}}$ in their working．

10．The diagrams in this paper are not necessarily drawn to scale．
11．No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the ＇Time is up＇announcement．

[^0]
FORMULAS FOR REFERENCE

$$
\begin{array}{l|l}
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B & \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B & \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} & \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
2 \sin A \cos B=\sin (A+B)+\sin (A-B) & \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \\
2 \cos A \cos B=\cos (A+B)+\cos (A-B) & \\
2 \sin A \sin B=\cos (A-B)-\cos (A+B) &
\end{array}
$$

Section A (50 marks)

In this section, write your answers in the spaces provided in this Question-Answer Book.

1. Let $\mathrm{f}(x)=e^{2 x}$. Find $\mathrm{f}^{\prime}(0)$ from first principles.
2. It is given that

$$
(1+a x)^{n}=1+6 x+16 x^{2}+\text { terms involving higher powers of } x,
$$

where n is a positive integer and a is a constant. Find the values of a and n.
\qquad
\qquad

Answers written in the margins will not be marked.

Please stick the barcode label here.

Answers written in the margins will not be marked.
3. Prove, by mathematical induction, that for all positive integers n,

$$
1 \times 2+2 \times 5+3 \times 8+\cdots+n(3 n-1)=n^{2}(n+1)
$$

4. (a) Find $\int \frac{x+1}{x} \mathrm{~d} x$.
(b) Using the substitution $u=x^{2}-1$, find $\int \frac{x^{3}}{x^{2}-1} \mathrm{~d} x$.

Please stick the barcode label here.

Answers written in the margins will not be marked.
5. Find the minimum point(s) and asymptote(s) of the graph of $y=\frac{x^{2}+x+1}{x+1}$.

Figure 1

Figure 2

A frustum of height H is made by cutting off a right circular cone of base radius r from a right circular cone of base radius R (see Figure 1). It is given that the volume of the frustum is $\frac{\pi}{3} H\left(r^{2}+r R+R^{2}\right)$.
An empty glass is in the form of an inverted frustum described above with height 10 cm , the radii of the rim and the base 4 cm and 3 cm respectively. Water is being poured into the glass. Let $h \mathrm{~cm}(0 \leq h \leq 10)$ be the depth of the water inside the glass at time $t \mathrm{~s}$ (see Figure 2).
(a) Show that the volume $V \mathrm{~cm}^{3}$ of water inside the glass at time $t \mathrm{~s}$ is given by

$$
V=\frac{\pi}{300}\left(h^{3}+90 h^{2}+2700 h\right) .
$$

(b) If the volume of water in the glass is increasing at the rate $7 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, find the rate of increase of depth of water at the instant when $h=5$.
(6 marks)
\qquad
\qquad

Please stick the barcode label here.

Answers written in the margins will not be marked.
7.

Figure 3
Figure 3 shows a parallelepiped $O A D B E C F G$. Let $\overrightarrow{O A}=6 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \overrightarrow{O B}=2 \mathbf{i}+\mathbf{j}$ and $\overrightarrow{O C}=5 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
(a) Find the area of the parallelogram $O A D B$.
(b) Find the distance between point C and the plane $O A D B$.
8. (a) Solve the following system of linear equations:

$$
\left\{\begin{array}{c}
x+y+z=0 \\
2 x-y+5 z=6
\end{array} .\right.
$$

(b) Using (a), or otherwise, solve the following system of linear equations:

$$
\left\{\begin{aligned}
x+y+z & =0 \\
2 x-y+5 z & =6, \text { where } \lambda \text { is a constant. } \\
x-y+\lambda z & =4
\end{aligned}\right.
$$

Answers written in the margins will not be marked.
Answers written in the margins will not be marked.

9. (a) Using integration by parts, find $\int x \sin x \mathrm{~d} x$.
(b)

Figure 4
Figure 4 shows the shaded region bounded by the curve $y=\sqrt{x \sin x}$ for $0 \leq x \leq \pi$ and the x-axis. Find the volume of the solid generated by revolving the region about the x-axis.
(4 marks)

Figure 5
In Figure 5, $O A B$ is an isosceles triangle with $O A=O B, A B=1, A Y=y, \angle A O Y=\theta$ and $\angle B O Y=3 \theta$.
(a) Show that $y=\frac{1}{4} \sec ^{2} \theta$.
(b) Find the range of values of y.
[Hint: you may use the identity $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.]

Answers written in the margins will not be marked.

| A |
| :--- | :--- |

Answers written in the margins will not be marked.

Section B (50 marks)
In this section, write your answers in the $\operatorname{DSE}(\mathrm{B})$ answer book.
11. (a) Solve the equation

$$
\left|\begin{array}{cc}
1-x & 4 \\
2 & 3-x
\end{array}\right|=0 \text {----------------------------(*). }
$$

(b) Let $x_{1}, x_{2} \quad\left(x_{1}<x_{2}\right)$ be the roots of $(*)$. Let $P=\left(\begin{array}{ll}a & c \\ b & 1\end{array}\right)$. It is given that

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)\binom{a}{b}=x_{1}\binom{a}{b},\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)\binom{c}{1}=x_{2}\binom{c}{1} \text { and }|P|=1
$$

where a, b and c are constants.
(i) Find P.
(ii) Evaluate $P^{-1}\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right) P$.
(iii) Using (b)(ii), evaluate $\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)^{12}$.
12.

Figure 6
Figure 6 shows an acute angled scalene triangle $A B C$, where D is the mid-point of $A B, G$ is the centroid and O is the circumcentre. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.
(a) Express $\overrightarrow{A G}$ in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}.
(b) It is given that E is a point on $A B$ such that $C E$ is an altitude. Extend $O G$ to meet $C E$ at F.
(i) Prove that $\triangle D O G \sim \triangle C F G$.

Hence find $F G: G O$.
(ii) Show that $\overrightarrow{A F}=\mathbf{b}+\mathbf{c}$.

Hence prove that F is the orthocentre of $\triangle A B C$.
13. (a) (i) Suppose $\tan u=\frac{-1+\cos \frac{2 \pi}{5}}{\sin \frac{2 \pi}{5}}$, where $\frac{-\pi}{2}<u<\frac{\pi}{2}$.

Show that $u=\frac{-\pi}{5}$.
(ii) Suppose $\tan v=\frac{1+\cos \frac{2 \pi}{5}}{\sin \frac{2 \pi}{5}}$.

Find v, where $\frac{-\pi}{2}<v<\frac{\pi}{2}$.
(b) (i) Express $x^{2}+2 x \cos \frac{2 \pi}{5}+1$ in the form $(x+a)^{2}+b^{2}$, where a and b are constants.
(ii) Evaluate $\int_{-1}^{1} \frac{\sin \frac{2 \pi}{5}}{x^{2}+2 x \cos \frac{2 \pi}{5}+1} \mathrm{~d} x$.
(c) Evaluate $\int_{-1}^{1} \frac{\sin \frac{7 \pi}{5}}{x^{2}+2 x \cos \frac{7 \pi}{5}+1} \mathrm{~d} x$.
14. Consider the curve $\Gamma: y=k x^{p}$, where $k>0, p>0$. In Figure 7, the tangent to Γ at $A\left(a, k a^{p}\right)$ cuts the x-axis at $B(-a, 0)$, where $a>0$.

Figure 7
(a) Show that $p=\frac{1}{2}$.
(b) Suppose that $a=1$. As shown in Figure 8, the circle C, with radius 2 and centre on the y-axis, touches Γ at point A.

Figure 8
(i) Show that $k=\frac{2 \sqrt{3}}{3}$.
(ii) Find the area of the shaded region bounded by Γ, C and the y-axis.

END OF PAPER

[^0]: © 香港考試及評核局 保留版權
 Hong Kong Examinations and Assessment Authority
 All Rights Reserved 2012

