2. The Binomial Theorem
(1992-CE-A MATH 2 \#02) (5 marks)
3. In the expansion of $(1+3 x)^{2}(1+x)^{n}$, where $n$ is a positive integer, the coefficient of $x$ is 10 .
(a) Find the value of $n$.
(b) Find the coefficient of $x^{2}$.
(1994-CE-A MATH 2 \#03) ( 5 marks)
4. (a) Expand $(1-2 x)^{3}$ and $\left(1+\frac{1}{x}\right)^{5}$.
(b) Find, in the expansion of $(1-2 x)^{3}\left(1+\frac{1}{x}\right)^{5}$,
(1) the constant term, and
(2) the coefficient of $x$.
(1995-CE-A MATH 2 \#04) (6 marks)
5. Given $\left(x^{2}+\frac{1}{x}\right)^{5}-\left(x^{2}-\frac{1}{x}\right)^{5}=a x^{7}+b x+\frac{c}{x^{5}}$, find the values of $a, b$ and $c$.

Hence evaluate $\left(2+\frac{1}{\sqrt{2}}\right)^{5}-\left(2-\frac{1}{\sqrt{2}}\right)^{5}$.

## (1997-CE-A MATH 2 \#08) (7 marks)

8. Expand $(1+x)^{n}(1-2 x)^{4}$ is ascending powers of $x$ up to the term $x^{2}$, where $n$ is a positive integer. If the coefficient of $x^{2}$ is 54 , find the coefficient of $x$.
(1998-CE-A MATH 2 \#01) (4 marks)
9. Find the coefficient of $x^{2}$ in the expansion of $\left(x-\frac{2}{x}\right)^{6}$.
(1999-CE-A MATH 2 \#07) (6 marks)
10. (a) Expand $(1+2 x)^{n}$ in ascending powers of $x$ up to the term $x^{3}$, where $n$ is a positive integer.
(b) In the expansion of $\left(x-\frac{3}{x}\right)^{2}(1+2 x)^{n}$, the constant term is 210 . Find the value of $n$.
(2000-CE-A MATH 2 \#02) ( 5 marks)
11. Expand $(1+2 x)^{7}(2-x)^{2}$ in ascending powers of $x$ up to the term $x^{2}$.
(2001-CE-A MATH \#04) (4 marks)
12. Find the constant term in the expansion of $\left(2 x^{3}+\frac{1}{x}\right)^{8}$.
(2002-CE-A MATH \#01) (4 marks)
13. If $n$ is a positive integer and the coefficient of $x^{2}$ in the expansion of $(1+x)^{n}+(1+2 x)^{n}$ is 75 , find the value(s) of $n$.
(2003-CE-A MATH \#12) (6 marks)
14. Determine whether the expansion of $\left(2 x^{2}+\frac{1}{x}\right)^{9}$ consists of
(a) a constant term,
(b) an $x^{2}$ term.

In each part, find the term if it exists.
(2004-CE-A MATH \#02) (4 marks)
2. (a) Expand $(1+2 x)^{6}$ in ascending powers of $x$ up to the term $x^{3}$.
(b) Find the constant term in the expansion of $\left(1-\frac{1}{x}+\frac{1}{x^{2}}\right)(1+2 x)^{6}$.
(2005-CE-A MATH \#02) (4 marks)
2. (a) Expand $(1+y)^{5}$.
(b) Using (a), or otherwise, expand $\left(1+x+2 x^{2}\right)^{5}$ in ascending powers of $x$ up to the term $x^{2}$.
(2008-CE-A MATH \#02) (4 marks)
2. (a) Expand $\left(2 x+\frac{1}{x}\right)^{3}$.
(b) Find the coefficient of $x$ in the expansion of $\left(3 x^{2}-x-5\right)\left(2 x+\frac{1}{x}\right)^{3}$.
(2009-CE-A MATH \#11) (6 marks)
11. In the expansion of the binomial $\left(x^{2}+\frac{1}{x}\right)^{20}$, find
(a) the coefficient of $x^{16}$,
(b) the constant term.
(2010-CE-A MATH \#05) (5 marks)
5. The sum of the coefficients of $x$ and $x^{2}$ in the expansion of $(1+4 x)^{n}$ is 180 , where $n$ is a positive integer. Find the value of $n$ and the coefficient of $x^{3}$.

## (PP-DSE-MATH-EP(M2) \#01) (4 marks)

1. Find the coefficient of $x^{5}$ in the expansion of $(2-x)^{9}$.
(2012-DSE-MATH-EP(M2) \#02) (5 marks)
2. It is given that

$$
(1+a x)^{n}=1+6 x+16 x^{2}+\text { terms involving higher powers of } x,
$$

where $n$ is a positive integer and $a$ is a constant. Find the values of $a$ and $n$.
(2013-DSE-MATH-EP(M2) \#02) (4 marks)
2. Suppose the coefficients of $x$ and $x^{2}$ in the expansion of $(1+a x)^{n}$ are -20 and 180 respectively. Find the values of $a$ and $n$.
(2014-DSE-MATH-EP(M2) \#01) (4 marks)

1. In the expansion of $(1-4 x)^{2}(1+x)^{n}$, the coefficient of $x$ is 1 .
(a) Find the value of $n$.
(b) Find the coefficient of $x^{2}$.
(2016-DSE-MATH-EP(M2) \#01) (5 marks)
2. Expand $(5+x)^{4}$. Hence, find the constant term in the expansion of $(5+x)^{4}\left(1-\frac{2}{x}\right)^{3}$.
(2017-DSE-MATH-EP(M2) \#02) (5 marks)
3. Let $(1+a x)^{8}=\sum_{k=0}^{8} \lambda_{k} x^{k}$ and $(b+x)^{9}=\sum_{k=0}^{9} \mu_{k} x^{k}$, where $a$ and $b$ are constants. It is given that $\lambda_{2}: \mu_{7}=7: 4$ and $\lambda_{1}+\mu_{8}+6=0$. Find $a$.
(2018-DSE-MATH-EP(M2) \#02) (5 marks)
4. Expand $(x+3)^{5}$. Hence, find the coefficient of $x^{3}$ in the expansion of $(x+3)^{5}\left(x-\frac{4}{x}\right)^{2}$.
(2020-DSE-MATH-EP(M2) \#01) (4 marks)
5. (a) Expand $(1-x)^{4}$.
(b) Find the constant $k$ such that the coefficient of $x^{2}$ in the expansion of $(1+k x)^{9}(1-x)^{4}$ is -3 .
(2021-DSE-MATH-EP(M2) \#03) (6 marks)
6. The coefficient of $x^{2}$ in the expansion of $(1-4 x)^{n}$ is 240 , where $n$ is a positive integer. Find
(a) $n$,
(b) the coefficient of $x^{4}$ in the expansion of $(1-4 x)^{n}\left(1+\frac{2}{x}\right)^{5}$.

## ANSWERS

(1992-CE-A MATH 2 \#02)
2. (a) $n=4$
(b) 39
(1994-CE-A MATH 2 \#03)
3. (a) $(1-2 x)^{3}=1-6 x+12 x^{2}-8 x^{3}$

$$
\left(1+\frac{1}{x}\right)^{5}=1+\frac{5}{x}+\frac{10}{x^{2}}+\frac{10}{x^{3}}+\frac{5}{x^{4}}+\frac{1}{x^{5}}
$$

(b) (1) 11
(2) -26
(1995-CE-A MATH 2 \#04)
4. $a=10, b=20, c=2$

$$
\left(2+\frac{1}{\sqrt{2}}\right)^{5}-\left(2-\frac{1}{\sqrt{2}}\right)^{5}=\frac{401 \sqrt{2}}{4}
$$

(1997-CE-A MATH 2 \#08)
8. $(1+x)^{n}(1-2 x)^{4}$
$=1+(n-8) x+\left[\frac{n(n-1)}{2}-8 n+24\right] x^{2}+\ldots$
Coefficient of $x=12$
(1998-CE-A MATH 2 \#01)

1. 60
(1999-CE-A MATH 2 \#07)
2. (a) $(1+2 x)^{n}$
$=1+2 n x+2 n(n-1) x^{2}+\frac{4}{3} n(n-1)(n-2) x^{3}+\ldots$
(b) $n=4$
(2000-CE-A MATH 2 \#02)
3. $4+52 x+281 x^{2}+\ldots$

## (2001-CE-A MATH \#04)

4. 112
(2002-CE-A MATH \#01)
5. $n=6$
(2003-CE-A MATH \#12)
6. (a) 672
(b) There is no $x^{2}$ term
(2004-CE-A MATH \#02)
7. (a) $(1+2 x)^{6}$

$$
=1+12 x+60 x^{2}+160 x^{3}+\ldots
$$

(b) 49

## (2005-CE-A MATH \#02)

2. (a) $(1+y)^{5}$

$$
=1+5 y+10 y^{2}+10 y^{3}+5 y^{4}+y^{5}
$$

(b) $\left(1+x+2 x^{2}\right)^{5}$
$=1+5 x+20 x^{2}+\ldots$
(2008-CE-A MATH \#02)
2.
(a) $\left(2 x+\frac{1}{x}\right)^{3}=8 x^{3}+12 x+\frac{6}{x}+\frac{1}{x^{3}}$
(b) -42
(2009-CE-A MATH \#11)
11. (a) 125970
(b) There is no constant term

## (2010-CE-A MATH \#05)

5. $n=5$, the coefficient of $x^{3}=640$
(PP-DSE-MATH-EP(M2) \#01)
6. -2016
(2012-DSE-MATH-EP(M2) \#02)
7. $n=9, a=\frac{2}{3}$
(2013-DSE-MATH-EP(M2) \#02)
8. $n=10, a=-2$
(2014-DSE-MATH-EP(M2) \#01)
9. (a) $n=9$
(b) -20

Mathematics - Extended Part (M2)
Past Papers Questions
(2016-DSE-MATH-EP(M2) \#01)

1. $(5+x)^{4}=625+500 x+150 x^{2}+20 x^{3}+x^{4}$

Constant term $=-735$
(2017-DSE-MATH-EP(M2) \#02)
2. $a=-3$ or $\frac{-3}{7}$
(2018-DSE-MATH-EP(M2) \#02)
2. $(x+3)^{5}$
$=x^{5}+15 x^{4}+90 x^{3}+270 x^{2}+405 x+243$
Coefficient of $x^{3}=-299$
(2020-DSE-MATH-EP(M2) \#01)

1. (a) $1-4 x+6 x^{2}-4 x^{3}+x^{4}$
(b) $\frac{1}{2}$
(2021-DSE-MATH-EP(M2) \#03)
2. (a) 6
(b) 106240

## OUT-OF-SYLLABUS

(1991-CE-A MATH 2 \#01) ( 5 marks)

1. Given that $\left(1+x+a x^{2}\right)^{8}=1+8 x+k_{1} x^{2}+k_{2} x^{3}+$ terms involving higher powers of $x$.
(a) Express $k_{1}$ and $k_{2}$ in terms of $a$.
(b) If $k_{1}=4$, find the value of $a$.

Hence find the value of $k_{2}$.
(1993-CE-A MATH 2 \#03) (6 marks)
3. Given $\left(1+4 x+x^{2}\right)^{n}=1+a x+b x^{2}+$ other terms involving higher powers of $x$, where $n$ is a positive integer.
(a) Express $a$ and $b$ in terms of $n$.
(b) If $a=20$, find $n$ and $b$.

## (1996-CE-A MATH 2 \#02) (6 marks)

2. It is given that $\left(1+x+a x^{2}\right)^{6}=1+6 x+k_{1} x^{2}+k_{2} x^{3}+$ terms involving higher powers of $x$.
(a) Express $k_{1}$ and $k_{2}$ in terms of $a$.
(b) If $6, k_{1}$ and $k_{2}$ form an arithmetic sequence, find the value of $a$.
(2006-CE-A MATH \#03) (5 marks)
3. It is given that

$$
\left(1-2 x+3 x^{2}\right)^{n}=1-10 x+k x^{2}+\text { terms involving higher powers of } x
$$

where $n$ is a positive integer and $k$ is a constant. Find the values of $n$ and $k$.
(2007-CE-A MATH \#12) (6 marks)
12. If the coefficient of $x^{2}$ in the expansion of $\left(1-2 x+x^{2}\right)^{n}$ is 66 , find the value of $n$ and the coefficient of $x^{3}$.
(2011-CE-A MATH \#01) ( 5 marks)

1. It is given that $\left(1+x+k x^{2}\right)^{3}=1+a x+b x^{2}+$ terms involving higher powers of $x$.
(a) Express $b$ in terms of $k$.
(b) If $1, a, b$ form a geometric sequence, find the value of $k$.
(1991-CE-A MATH 2 \#01) ( 5 marks)
2. (a) $k_{1}=8 a+28, k_{2}=56 a+56$
(b) $a=-3, k_{2}=-112$

Mathematics - Extended Part (M2)
Past Papers Questions
(1993-CE-A MATH 2 \#03) (6 marks)
3. (a) $a=4 n, b=8 n^{2}-7 n$
(b) $n=5, b=165$
(1996-CE-A MATH 2 \#02) ( 6 marks)
2. (a) $k_{1}=6 a+15, k_{2}=30 a+20$
(b) $\quad a=\frac{2}{9}$
(2006-CE-A MATH \#03) (5 marks)
3. $n=5, k=55$
(2007-CE-A MATH \#12) (6 marks)
12. $n=6$, The coefficient of $x^{3}=-220$
(2011-CE-A MATH \#01) (5 marks)

1. (a) $b=3(k+1)$
(b) $\quad k=2$
