2. The Binomial Theorem

(1992-CE-A MATH 2 #02) (5 marks)

- 2. In the expansion of $(1 + 3x)^2(1 + x)^n$, where *n* is a positive integer, the coefficient of *x* is 10.
 - (a) Find the value of n.
 - (b) Find the coefficient of x^2 .

(1994-CE-A MATH 2 #03) (5 marks)

3. (a) Expand
$$(1-2x)^3$$
 and $\left(1+\frac{1}{x}\right)^5$.

(b) Find, in the expansion of
$$(1-2x)^3 \left(1+\frac{1}{x}\right)^3$$
,

- (1) the constant term, and
- (2) the coefficient of x.

(1995-CE-A MATH 2 #04) (6 marks)

4. Given
$$\left(x^2 + \frac{1}{x}\right)^5 - \left(x^2 - \frac{1}{x}\right)^5 = ax^7 + bx + \frac{c}{x^5}$$
, find the values of a , b and c .
Hence evaluate $\left(2 + \frac{1}{\sqrt{2}}\right)^5 - \left(2 - \frac{1}{\sqrt{2}}\right)^5$.

(1997-CE-A MATH 2 #08) (7 marks)

8. Expand $(1 + x)^n (1 - 2x)^4$ is ascending powers of x up to the term x^2 , where n is a positive integer. If the coefficient of x^2 is 54, find the coefficient of x.

(1998-CE-A MATH 2 #01) (4 marks)

1. Find the coefficient of x^2 in the expansion of $\left(x - \frac{2}{x}\right)^6$.

(1999-CE-A MATH 2 #07) (6 marks)

7. (a) Expand $(1+2x)^n$ in ascending powers of x up to the term x^3 , where n is a positive integer.

(b) In the expansion of
$$\left(x - \frac{3}{x}\right)^2 (1 + 2x)^n$$
, the constant term is 210. Find the value of n .

(2000-CE-A MATH 2 #02) (5 marks)

2. Expand $(1+2x)^7(2-x)^2$ in ascending powers of x up to the term x^2 .

Provided by dse.life

(2001-CE-A MATH #04) (4 marks)

4. Find the constant term in the expansion of $\left(2x^3 + \frac{1}{x}\right)^8$.

(2002-CE-A MATH #01) (4 marks)

1. If *n* is a positive integer and the coefficient of x^2 in the expansion of $(1 + x)^n + (1 + 2x)^n$ is 75, find the value(s) of *n*.

(2003-CE-A MATH #12) (6 marks)

12. Determine whether the expansion of $\left(2x^2 + \frac{1}{x}\right)^9$ consists of

(a) a constant term,

(b) an x^2 term.

In each part, find the term if it exists.

(2004-CE-A MATH #02) (4 marks)

2. (a) Expand $(1+2x)^6$ in ascending powers of x up to the term x^3 .

(b) Find the constant term in the expansion of $\left(1 - \frac{1}{x} + \frac{1}{x^2}\right)(1 + 2x)^6$.

(2005-CE-A MATH #02) (4 marks)

2. (a) Expand
$$(1 + y)^5$$
.

(b) Using (a), or otherwise, expand $(1 + x + 2x^2)^5$ in ascending powers of x up to the term x^2 .

(2008-CE-A MATH #02) (4 marks)

2. (a) Expand $\left(2x+\frac{1}{x}\right)^3$.

(b) Find the coefficient of x in the expansion of $\left(3x^2 - x - 5\right)\left(2x + \frac{1}{x}\right)^3$.

(2009-CE-A MATH #11) (6 marks)

11. In the expansion of the binomial $\left(x^2 + \frac{1}{x}\right)^{20}$, find

- (a) the coefficient of x^{16} ,
- (b) the constant term.

(2010-CE-A MATH #05) (5 marks)

5. The sum of the coefficients of x and x^2 in the expansion of $(1 + 4x)^n$ is 180, where n is a positive integer. Find the value of n and the coefficient of x^3 .

(PP-DSE-MATH-EP(M2) #01) (4 marks)

1. Find the coefficient of x^5 in the expansion of $(2-x)^9$.

(2012-DSE-MATH-EP(M2) #02) (5 marks)

2. It is given that

 $(1 + ax)^n = 1 + 6x + 16x^2 + \text{ terms involving higher powers of } x$,

where n is a positive integer and a is a constant. Find the values of a and n.

(2013-DSE-MATH-EP(M2) #02) (4 marks)

2. Suppose the coefficients of x and x^2 in the expansion of $(1 + ax)^n$ are -20 and 180 respectively. Find the values of a and n.

(2014-DSE-MATH-EP(M2) #01) (4 marks)

- 1. In the expansion of $(1 4x)^2(1 + x)^n$, the coefficient of x is 1.
 - (a) Find the value of n.
 - (b) Find the coefficient of x^2 .

(2016-DSE-MATH-EP(M2) #01) (5 marks)

1. Expand $(5+x)^4$. Hence, find the constant term in the expansion of $(5+x)^4 \left(1-\frac{2}{x}\right)^3$.

(2017-DSE-MATH-EP(M2) #02) (5 marks)

2. Let $(1 + ax)^8 = \sum_{k=0}^8 \lambda_k x^k$ and $(b + x)^9 = \sum_{k=0}^9 \mu_k x^k$, where *a* and *b* are constants. It is given that $\lambda_2 : \mu_7 = 7 : 4$

and $\lambda_1+\mu_8+6=0$. Find a .

(2018-DSE-MATH-EP(M2) #02) (5 marks)

2. Expand $(x + 3)^5$. Hence, find the coefficient of x^3 in the expansion of $(x + 3)^5 \left(x - \frac{4}{x}\right)^2$.

(2020-DSE-MATH-EP(M2) #01) (4 marks)

1. (a) Expand $(1-x)^4$.

(b) Find the constant k such that the coefficient of x^2 in the expansion of $(1 + kx)^9(1 - x)^4$ is -3.

Provided by dse.life

(2021-DSE-MATH-EP(M2) #03) (6 marks)

- 1. The coefficient of x^2 in the expansion of $(1 4x)^n$ is 240, where *n* is a positive integer. Find
 - (a) *n*,
 - (b) the coefficient of x^4 in the expansion of $(1-4x)^n \left(1+\frac{2}{x}\right)^5$.

ANSWERS

(1992-CE-A MATH 2 #02) 2. (a) n = 4(b) 39

(1994-CE-A MATH 2 #03)
3. (a)
$$(1-2x)^3 = 1 - 6x + 12x^2 - 8x^3$$

 $\left(1 + \frac{1}{x}\right)^5 = 1 + \frac{5}{x} + \frac{10}{x^2} + \frac{10}{x^3} + \frac{5}{x^4} + \frac{1}{x^5}$
(b) (1) 11
(2) -26

(1995-CE-A MATH 2 #04)

4.
$$a = 10$$
, $b = 20$, $c = 2$
 $\left(2 + \frac{1}{\sqrt{2}}\right)^5 - \left(2 - \frac{1}{\sqrt{2}}\right)^5 = \frac{401\sqrt{2}}{4}$

(1997-CE-A MATH 2 #08) 8. $(1+x)^n (1-2x)^4$ $= 1 + (n-8)x + \left[\frac{n(n-1)}{2} - 8n + 24\right] x^2 + \dots$ Coefficient of x = 12

(1998-CE-A MATH 2 #01) 1. 60

(1999-CE-A MATH 2 #07) 7. (a) $(1+2x)^n$ $= 1 + 2nx + 2n(n-1)x^2 + \frac{4}{3}n(n-1)(n-2)x^3 + \dots$ (b) n = 4

(2000-CE-A MATH 2 #02) 2. 4 + 52x + 281x² + ...

(2001-CE-A MATH #04) 4. 112

(2002-CE-A MATH #01) 1. *n* = 6 (2003-CE-A MATH #12)

12. (a) 672

(b) There is no x^2 term

(2004-CE-A MATH #02)

2. (a)
$$(1+2x)^6$$

= $1+12x+60x^2+160x^3+...$
(b) 49

(2005-CE-A MATH #02)

2. (a)
$$(1+y)^5$$

= $1 + 5y + 10y^2 + 10y^3 + 5y^4 + y^5$
(b) $(1+x+2x^2)^5$
= $1 + 5x + 20x^2 + ...$

(2008-CE-A MATH #02)

2. (a)
$$\left(2x + \frac{1}{x}\right)^3 = 8x^3 + 12x + \frac{6}{x} + \frac{1}{x^3}$$

(b) -42

(2009-CE-A MATH #11)

11. (a) 125 970 (b) There is no constant term

(2010-CE-A MATH #05)

5. n = 5, the coefficient of $x^3 = 640$

(PP-DSE-MATH-EP(M2) #01)

1. -2016

(2012-DSE-MATH-EP(M2) #02) 2. n = 9, $a = \frac{2}{3}$

(2013-DSE-MATH-EP(M2) #02) 2. n = 10, a = -2

(2014-DSE-MATH-EP(M2) #01)

1. (a) n = 9(b) -20 (2016-DSE-MATH-EP(M2) #01) $(5+x)^4 = 625 + 500x + 150x^2 + 20x^3 + x^4$ 1. Constant term = -735(2017-DSE-MATH-EP(M2) #02) $a = -3 \text{ or } \frac{-3}{7}$ 2. (2018-DSE-MATH-EP(M2) #02) $(x + 3)^5$ 2. $= x^5 + 15x^4 + 90x^3 + 270x^2 + 405x + 243$ Coefficient of $x^3 = -299$ (2020-DSE-MATH-EP(M2) #01) (a) $1 - 4x + 6x^2 - 4x^3 + x^4$ 1. $\frac{1}{2}$ (b) (2021-DSE-MATH-EP(M2) #03) 3. 6 (a)

(b) 106 240

OUT-OF-SYLLABUS

(1991-CE-A MATH 2 #01) (5 marks)

- 1. Given that $(1 + x + ax^2)^8 = 1 + 8x + k_1x^2 + k_2x^3 + \text{ terms involving higher powers of } x$.
 - (a) Express k_1 and k_2 in terms of a.
 - (b) If $k_1 = 4$, find the value of a. Hence find the value of k_2 .

(1993-CE-A MATH 2 #03) (6 marks)

- 3. Given $(1 + 4x + x^2)^n = 1 + ax + bx^2$ + other terms involving higher powers of x, where n is a positive integer.
 - (a) Express a and b in terms of n.
 - (b) If a = 20, find n and b.

(1996-CE-A MATH 2 #02) (6 marks)

- 2. It is given that $(1 + x + ax^2)^6 = 1 + 6x + k_1x^2 + k_2x^3 + \text{terms involving higher powers of } x$.
 - (a) Express k_1 and k_2 in terms of a.
 - (b) If 6, k_1 and k_2 form an arithmetic sequence, find the value of a.

(2006-CE-A MATH #03) (5 marks)

3. It is given that

 $(1 - 2x + 3x^2)^n = 1 - 10x + kx^2 + \text{ terms involving higher powers of } x$,

where n is a positive integer and k is a constant. Find the values of n and k.

(2007-CE-A MATH #12) (6 marks)

12. If the coefficient of x^2 in the expansion of $(1 - 2x + x^2)^n$ is 66, find the value of *n* and the coefficient of x^3 .

(2011-CE-A MATH #01) (5 marks)

1. It is given that $(1 + x + kx^2)^3 = 1 + ax + bx^2 + \text{ terms involving higher powers of } x$.

- (a) Express b in terms of k.
- (b) If 1, a, b form a geometric sequence, find the value of k.

(1991-CE-A MATH 2 #01) (5 marks)

- 1. (a) $k_1 = 8a + 28$, $k_2 = 56a + 56$
 - (b) a = -3, $k_2 = -112$

(1993-CE-A MATH 2 #03) (6 marks) 3. (a) a = 4n, $b = 8n^2 - 7n$ (b) n = 5, b = 165(1996-CE-A MATH 2 #02) (6 marks) 2. (a) $k_1 = 6a + 15$, $k_2 = 30a + 20$ (b) $a = \frac{2}{9}$ (2006-CE-A MATH #03) (5 marks) 3. n = 5, k = 55(2007-CE-A MATH #12) (6 marks) 12. n = 6, The coefficient of $x^3 = -220$

(2011-CE-A MATH #01) (5 marks)

1. (a) b = 3(k + 1)(b) k = 2