

(1993-CE-A MATH 1 #06) (7 marks)

- 6. Given $\overrightarrow{OA} = 3\mathbf{i} 2\mathbf{j}$, $\overrightarrow{OB} = \mathbf{i} + \mathbf{j}$. *C* is a point such that $\angle ABC$ is a right angle.
 - (a) Find \overrightarrow{AB} .
 - (b) Find $\overrightarrow{AB} \cdot \overrightarrow{AB}$ and $\overrightarrow{AB} \cdot \overrightarrow{BC}$. Hence find $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

(1993-CE-A MATH 1 #08) (16 marks)

8.

In Figure 1, *OAB* is a triangle. *P*, *Q* are two points on *AB* such that AP : PB = PQ : QB = r : 1, where r > 0. *T* is a point on *OB* such that OT : TB = 1 : r. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (a) Express \overrightarrow{OP} and \overrightarrow{OQ} in terms of r, **a** and **b**.
- (b) Express \overrightarrow{OT} in terms of r and **b**. Hence show that $\overrightarrow{TQ} = \frac{a + (r^2 + r - 1)b}{(r+1)^2}$.
- (c) Find the value(s) of r such that \overrightarrow{OA} is parallel to \overrightarrow{TQ} .
- (d) Suppose OA = 2, OB = 16 and $\angle AOB = \frac{\pi}{3}$.
 - (i) Find $\mathbf{a} \cdot \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{b}$.
 - (ii) Find the value(s) of r such that \overrightarrow{OA} is perpendicular to \overrightarrow{TQ} .

(1994-CE-A MATH 1 #03) (6 marks)

- 3. *P*, *Q* and *R* are points on a plane such that $\overrightarrow{OP} = \mathbf{i} + 2\mathbf{j}$, $\overrightarrow{OQ} = 3\mathbf{i} + \mathbf{j}$ and $\overrightarrow{PR} = -3\mathbf{i} 2\mathbf{j}$, where *O* is the origin.
 - (a) Find \overrightarrow{PQ} and $|\overrightarrow{PQ}|$.
 - (b) Find the value of $\cos \angle QPR$.

(1994-CE-A MATH 1 #10) (16 marks) 10.

In Figure 2, *D* is the mid-point of *OB* and *C* is a point on *AB* such that AC: CB = 2:1. *OC* is produced to a point *E* such that OC: CE = 1:k. Let $\overrightarrow{OQ} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Express \overrightarrow{OC} and \overrightarrow{DA} in terms of **a** and **b**.

(b) Show that
$$\overrightarrow{BE} = \frac{k+1}{3}\mathbf{a} + \frac{2k-1}{3}\mathbf{b}$$

(c) Find the value of k such that \overrightarrow{BE} is parallel to \overrightarrow{DA} .

(d) Given
$$|\mathbf{a}| = 1$$
, $|\mathbf{b}| = 2$, $\angle BOA = \frac{\pi}{3}$.

- (i) Find $\mathbf{a} \cdot \mathbf{b}$.
- (ii) Find the value of k such that \overrightarrow{BE} is perpendicular to \overrightarrow{OE} . Hence find the distance of B from OC.

(1995-CE-A MATH 1 #07) (8 marks)

- 7. Let $\overrightarrow{OP} = 2\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OQ} = -6\mathbf{i} + 4\mathbf{j}$. Let R be a point on PQ such that PR: RQ = k:1, where k > 0.
 - (a) Express \overrightarrow{OR} in terms of k , i and j .
 - (b) Express $\overrightarrow{OP} \cdot \overrightarrow{OR}$ and $\overrightarrow{OQ} \cdot \overrightarrow{OR}$ in terms of k.
 - (c) Find the value of k such that OR bisects $\angle POQ$.

(1995-CE-A MATH 1 #08) (16 marks)

8.

In Figure 1, *ABCD* is a parallelogram and *F* is a point on *AB*. *DF* meets *AC* at a point *E* such that $DE : EF = \lambda : 1$, where λ is a positive number. Let $\overrightarrow{AB} = \mathbf{p}$, $\overrightarrow{AD} = \mathbf{q}$ and $\overrightarrow{AE} = h\overrightarrow{AC}$, $\overrightarrow{AF} = k\overrightarrow{AB}$, where *h*, *k* are positive numbers.

- (a) (i) Express \overrightarrow{AE} in terms of h, \mathbf{p} and \mathbf{q} . (ii) Express \overrightarrow{AE} in terms of λ , k, \mathbf{p} and \mathbf{q} . Hence show that $\lambda = \frac{1}{k}$.
- (b) It is given that $|\mathbf{p}| = 3$, $|\mathbf{q}| = 2$, $\angle DAB = \frac{\pi}{3}$.
 - (i) Find $\mathbf{p} \cdot \mathbf{q}$.
 - (ii) Suppose DF is perpendicular to AC.
 - (1) By expressing \overrightarrow{DF} in terms of k, \mathbf{p} and \mathbf{q} , find the value of k.
 - (2) Using (a), or otherwise, find the length of AE.

(1996-CE-A MATH 1 #07) (6 marks)

- 7. Given $\overrightarrow{OA} = 4\mathbf{i} + 3\mathbf{j}$ and *C* is a point on *OA* such that $\left|\overrightarrow{OC}\right| = \frac{16}{5}$.
 - (a) Find the unit vector in the direction of \overrightarrow{OA} . Hence find \overrightarrow{OC} .
 - (b) If $\overrightarrow{OB} = \mathbf{i} + 4\mathbf{j}$, show that *BC* is perpendicular to *OA*.

(1996-CE-A MATH 1 #10) (16 marks) 10.

In Figure 2, *D* is the mid-point of *AC* and *E* is a point on *BC* such that BE : EC = 1 : t, where t > 0. *DE* is produced to a point *F* such that DE : EF = 1:7. Let $\overrightarrow{AD} = \mathbf{a}$ and $\overrightarrow{AB} = \mathbf{b}$.

- (a) (i) Express \overrightarrow{AE} in terms of t, **a** and **b**.
 - (ii) Express \overrightarrow{AE} in terms of **a** and \overrightarrow{AF} . Hence, or otherwise, show that $\overrightarrow{AF} = \frac{9-7t}{1+t}\mathbf{a} + \frac{8t}{1+t}\mathbf{b}$.
- (b) Suppose that A, B and F are collinear.
 - (i) Find the value of t.
 - (ii) It is given that $|\mathbf{a}| = 3$, $|\mathbf{b}| = 2$ and $\cos \angle BAC = \frac{1}{3}$.
 - (1) Find $\mathbf{a} \cdot \mathbf{b}$.
 - (2) Find $\overrightarrow{AB} \cdot \overrightarrow{BC}$ and $\overrightarrow{AD} \cdot \overrightarrow{DE}$.
 - (3) Does the circle passing through points B, C and D also pass through point F? Explain your answer.

(1997-CE-A MATH 1 #07) (7 marks)
7. Let a and b be two vectors such that a = 2i + 4j , |b| = √5 and cos θ = 4/5 , where θ is the angle between a and b .
(a) Find |a| .
(b) Find a ⋅ b .
(c) If b = mi + nj , find the values of m and n .

(1997-CE-A MATH 1 #09) (16 marks)

9.

In Figure 2, *ABCD* is a rectangle wilt AB = 1 and AD = 2. *F* is a point on *BC* produced with BC = CF. *P* is a variable point on *AB* produced such that BP = m. *AF* and *DP* intersect at a point *E*. Let $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{AD} = \mathbf{b}$ and $\angle AED = \theta$.

- (a) (i) Express \overrightarrow{AF} in terms of **a** and **b**. (ii) Express \overrightarrow{DP} in terms of *m*, **a** and **b**.
- (b) Suppose $\theta = \frac{\pi}{2}$.
 - (i) Show that m = 7.
 - (ii) Let AE: EF = 1: r and DE: EP = 1: k.
 - (1) Express \overrightarrow{AE} in terms of r, **a** and **b**.
 - (2) Express \overrightarrow{AE} in terms of k, **a** and **b**. Hence find the values of r and k.

(c) As *m* tends to infinity, θ approaches a certain value θ_1 . Find θ_1 correct to the nearest degree.

(1998-CE-A MATH 1 #05) (6 marks)

Figure 1 shows the points A, B and C whose position vectors are $\mathbf{i} - \mathbf{j}$, $4\mathbf{i} + 4\mathbf{j}$ and $-2\mathbf{i} + 7\mathbf{j}$ respectively.

- (a) Find the vectors \overrightarrow{AB} and \overrightarrow{AC} .
- (b) By considering $\overrightarrow{AB} \cdot \overrightarrow{AC}$, find $\angle BAC$ to the nearest degree.

9.

(1998-CE-A MATH 1 #09) (16 marks)

In Figure 2, *OAB* is a triangle with OA = 2, OB = 3 and $\angle AOB = \frac{\pi}{3}$. *C* is a point on *AB* such that AC : CB = t : 1 - t, where 0 < t < 1. *D* and *E* are respectively the feet of perpendicular from *C* to *OA* and OB. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) (i) Find $\mathbf{a} \cdot \mathbf{b}$,

- (ii) Express \overrightarrow{OC} in terms of t, **a** and **b**.
- (iii) Express $\mathbf{a} \cdot \overrightarrow{OC}$ and $\mathbf{b} \cdot \overrightarrow{OC}$ in terms of t.
- (b) (i) Using (a) (iii), show that $\mathbf{a} \cdot \overrightarrow{OD} = 4 t$ and $\mathbf{b} \cdot \overrightarrow{OE} = 3 + 6t$. (ii) If $\overrightarrow{OD} = k \mathbf{a}$ and $\overrightarrow{OE} = s \mathbf{b}$, express k and s in terms of t.
- (c) Find the value of t such that \overrightarrow{DE} is parallel to \overrightarrow{AB} .

(1999-CE-A MATH 1 #07) (6 marks)

7. Let **a**, **b** be two vectors such that $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$ and $|\mathbf{b}| = 4$. The angle between **a** and **b** is $\frac{\pi}{3}$.

- (a) Find $|\mathbf{a}|$.
- (b) Find $\mathbf{a} \cdot \mathbf{b}$.
- (c) If the vector $(m\mathbf{a} + \mathbf{b})$ is perpendicular to \mathbf{b} , find the value of m.

(1999-CE-A MATH 1 #10) (16 marks) 10.

Figure 3

In Figure 3, *OAB* is a triangle. *C* and *D* are points on *AB* and *OB* respectively such that AC : CB = 8 : 7 and OD : DB = 16 : 5. *OC* and *AD* intersect at a point *E*. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Express \overrightarrow{OC} and \overrightarrow{AD} in terms of **a** and **b**.

(b) Let
$$\overrightarrow{OE} = r\overrightarrow{OC}$$
 and $\overrightarrow{AE} = k\overrightarrow{AD}$

(i) Express
$$\overrightarrow{OE}$$
 in terms of r , **a** and **b**

(ii) Express
$$\overrightarrow{OE}$$
 in terms of k , **a** and **b**.
Hence show that $r = \frac{6}{7}$ and $k = \frac{3}{5}$.

(c) It is given that EC: ED = 1:2.

(i) Using (b), or otherwise, find EA : EO.

(ii) Explain why OACD is a cyclic quadrilateral.

(2000-CE-A MATH 1 #08) (7 marks)

In Figure 1, $\overrightarrow{OA} = \mathbf{i}$, $\overrightarrow{OB} = \mathbf{j}$. *C* is a point on *OA* produced such that AC = k, where k > 0. *D* is a point on *BC* such that BD : DC = 1 : 2.

(a) Show that
$$\overrightarrow{OD} = \frac{1+k}{3}\mathbf{i} + \frac{2}{3}\mathbf{j}$$
.

(b) If \overrightarrow{OD} is a unit vector, find

- (i) k,
- (ii) $\angle BOD$, giving your answer correct to the nearest degree.

(2000-CE-A MATH 1 #09) (16 marks)

9.

In Figure 2, *OAC* is a triangle. *B* and *D* are points on *AC* such that AD = DB = BC. *F* is a point on *OD* produced such that OD = DF. *E* is a point on *OB* produced such that OE = k(OB), where k > 1. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (a) (i) Express \overrightarrow{OD} in terms of **a** and **b**.
 - (ii) Show that $\overrightarrow{OC} = \frac{-1}{2}\mathbf{a} + \frac{3}{2}\mathbf{b}$.
 - (iii) Express \overrightarrow{EF} in terms of k, **a** and **b**.

(b) It is given that
$$OA = 3$$
, $OB = 2$ and $\angle AOB = \frac{\pi}{2}$.

- (i) Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{b} \cdot \mathbf{b}$.
- (ii) Suppose that $\angle OEF = \frac{\pi}{2}$
 - (1) Find the value of k.
 - (2) A student states that points C, E and F are collinear. Explain whether the student is correct.

Provided by dse.life

(2001-AL-P MATH 1 #04) (5 marks)

4. A, B, C are the points (a,0,0), (0,b,0), (0,0,c) respectively and O is the origin.

(a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

(b) Let $S_{\Delta XYZ}$ denote the area of the triangle with vertices X, Y and Z. Prove that $S_{\Delta ABC}^2 = S_{\Delta OAB}^2 + S_{\Delta OBC}^2 + S_{\Delta OCA}^2$.

(2001-CE-A MATH #08) (6 marks)

8. Let **a**, **b** be two vectors such that $|\mathbf{a}| = 4$, $|\mathbf{b}| = 3$ and the angle between **a** and **b** is $\frac{\pi}{3}$.

- (a) Find $\mathbf{a} \cdot \mathbf{b}$.
- (b) Find the value of k if the vectors $(\mathbf{a} + k\mathbf{b})$ and $(\mathbf{a} 2\mathbf{b})$ are perpendicular to each other.

(2001-CE-A MATH #14) (12 marks) 14. (a)

In Figure 1 (a), OPQ is a triangle. R is a point on PQ such that PR : RQ = r : s. Express \overrightarrow{OR} in terms of r, s, \overrightarrow{OP} and \overrightarrow{OQ} . Hence show that if $\overrightarrow{OR} = m\overrightarrow{OP} + n\overrightarrow{OQ}$, then m + n = 1.

(b)

In Figure 1 (b), *OAB* is a triangle. X is the mid-point of *OA* and Y is a point on *AB*. *BX* and *OY* intersect at point G where BG: GX = 1:3. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (i) Express \overrightarrow{OG} in terms of **a** and **b**.
- (ii) Using (a), express \overrightarrow{OY} in terms of **a** and **b**. (Hint: Put $\overrightarrow{OY} = k \overrightarrow{OG}$.)

(iii) Moreover, AG is produced to a point Z on OB. Let $\overrightarrow{OZ} = h\overrightarrow{OB}$.

- (1) Find the value of h.
- (2) Explain whether ZY is parallel to OA or not.

(2002-AL-P MATH 1 #04) (6 marks)

4. Let $\mathbf{i}=(1,0,0)$, $\mathbf{j}=(0,1,0)$, $\mathbf{k}=(0,0,1)$ and $\mathbf{a}=\mathbf{i}$, $\mathbf{b}=1+\mathbf{j}$, $\mathbf{c}=\mathbf{j}+\mathbf{k}$.

- (a) Prove that **a** is not perpendicular to $\mathbf{b} \times \mathbf{c}$.
- (b) Find all unit vectors which are perpendicular to both \mathbf{a} and $\mathbf{b} \times \mathbf{c}$.
- (c) If $\theta \in [0,\pi]$ is the angle between **a** and **b** × **c**, prove that $\frac{\pi}{4} < \theta < \frac{\pi}{3}$.

(2002-CE-A MATH #10) (6 marks) 10.

Figure 2 shows a parallelogram *OABC*. The position vectors of the points A and C are $\mathbf{i} + 4\mathbf{j}$ and $5\mathbf{i} + 2\mathbf{j}$ respectively.

- (a) Find \overrightarrow{OB} and \overrightarrow{AC} .
- (b) Let θ be the acute angle between *OB* and *AC*. Find θ correct to the nearest degree.

6.

In Figure 1, point *P* divides both line segments *AB* and *OC* in the same ratio 3:1. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$.

- (a) Express \overrightarrow{OP} in terms of **a** and **b**.
- (b) Express \overrightarrow{OC} in terms of **a** and **b**. Hence show that *OA* is parallel to *BC*.

(2003-CE-A MATH #14) (12 marks) 14.

In Figure 3, *OAB* is a triangle such that OA = 3, OB = 1 and $\angle AOB = \frac{2\pi}{3}$. *C* is a point on *AB* such that AC : CB = 3 : 2. *D* is a point on *OC* produced such that $\overrightarrow{OD} = k\overrightarrow{OC}$ and *AB* is perpendicular to *AD*. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Find $\mathbf{a} \cdot \mathbf{b}$.

(b) Show that
$$\overrightarrow{AD} = \left(\frac{2k}{5} - 1\right)\mathbf{a} + \frac{3k}{5}\mathbf{b}$$

Hence find the value of k.

(c) Determine whether the triangles *OCB* and *ACD* are similar.

(2004-CE-A MATH #06) (5 marks)

In Figure 2, *OAB* is a triangle. *C* is a point on *AB* such that AC: CB = 1:2. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Express \overrightarrow{OC} in terms of **a** and **b**.

(b) If
$$|\mathbf{a}| = 1$$
, $|\mathbf{b}| = 2$ and $\angle AOB = \frac{2\pi}{3}$, find $|\overrightarrow{OC}|$.

(2004-CE-A MATH #13) (12 marks) 13.

In Figure 6, *OABC* and *ODEF* are two squares such that OA = 1, OF = 2 and $\angle COD = \theta$, where $0 < \theta < \frac{\pi}{2}$. Let $\overrightarrow{OD} = 2\mathbf{i}$ and $\overrightarrow{OF} = -2\mathbf{j}$, where \mathbf{i} and \mathbf{j} are two perpendicular unit vectors.

- (a) (i) Express \overrightarrow{OC} and \overrightarrow{OA} in terms of θ , **i** and **j**. (ii) Show that $\overrightarrow{AD} = (2 + \sin \theta)\mathbf{i} - \cos \theta \mathbf{j}$.
- (b) Show that \overrightarrow{AD} is always perpendicular to \overrightarrow{FC} .
- (c) Find the value(s) of θ such that points B, C and E are collinear. Give your answer(s) correct to the nearest degree.

(2005-AL-P MATH 1 #12) (15 marks)

12. (a) Let **a**, **b** and **c** be vectors in \mathbf{R}^3 .

(i) Prove that
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
,

where $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$, $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ and $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$.

Hence deduce that $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$.

(ii) Suppose
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \neq 0$$
. Prove that

$$\mathbf{x} = \left(\frac{\mathbf{x} \cdot (\mathbf{b} \times \mathbf{c})}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}\right) \mathbf{a} + \left(\frac{\mathbf{x} \cdot (\mathbf{c} \times \mathbf{a})}{\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})}\right) \mathbf{b} + \left(\frac{\mathbf{x} \cdot (\mathbf{a} \times \mathbf{b})}{\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})}\right) \mathbf{c}$$

for any vector ${\boldsymbol x}$ in ${\boldsymbol R}^3$.

- (iii) Suppose $\mathbf{a} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{b} = \mathbf{c} \cdot \mathbf{c} = 1$ and $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{c} = \mathbf{c} \cdot \mathbf{a} = 0$.
 - (1) Prove that $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| = 1$.
 - (2) Using (a) (ii), prove that

$$\mathbf{x} = (\mathbf{x} \cdot \mathbf{a})\mathbf{a} + (\mathbf{x} \cdot \mathbf{b})\mathbf{b} + (\mathbf{x} \cdot \mathbf{c})\mathbf{c}$$

for any vector \mathbf{x} in \mathbf{R}^3 .

(b) Let
$$\mathbf{u} = \frac{1}{\sqrt{3}}(\mathbf{i} + \mathbf{j} + \mathbf{k})$$
, $\mathbf{v} = \frac{1}{\sqrt{2}}(\mathbf{i} - \mathbf{k})$, $\mathbf{w} = \frac{1}{\sqrt{6}}(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ and $\mathbf{r} = 6\mathbf{i} - \mathbf{j} + 10\mathbf{k}$.

Find real numbers α , β and γ such that $\mathbf{r} = \alpha \mathbf{u} + \beta \mathbf{v} + \gamma \mathbf{w}$.

Figure 2 shows two vectors **a** and **b**, where $|\mathbf{a}| = 3$, $|\mathbf{b}| = 5$, and the angle between the two vectors is $\frac{2\pi}{3}$.

(a) Find $\mathbf{a} \cdot \mathbf{b}$.

(b) Let **c** be a vector such that $\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$. Find $|\mathbf{c}|$.

14.

In Figure 4, OA = 2, OB = 1 and $\cos \angle AOB = \frac{1}{4}$. C is a point such that CB // OA and $OC \perp OA$. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.

(a) Find CB in terms of **a**. Hence, or otherwise, show that $\mathbf{c} = \mathbf{b} - \frac{1}{8}\mathbf{a}$.

(b)

- *D* is a point such that DA // OB and OD = OA (see Figure 5). Let $\overrightarrow{OD} = \mathbf{d}$.
- By finding DA, or otherwise, express **d** in terms of **a** and **b**. (i)
- *P* is a point on the line segment *CD* such that CP: PD = r: 1. Express \overrightarrow{OP} in terms of *r*, **a** (ii) and **b**.
- If M is the mid-point of AB, find the ratio in which OM divides CD. (iii)

(2006-CE-A MATH #18) (12 marks)

18. Figure 9 shows a triangle OAB. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OA} = \mathbf{b}$ and M be the mid-point of OA.

- (a) Let G be the centroid of $\triangle OAB$ (see Figure 10). It is given that BG: GM = 2:1. Express \overrightarrow{OG} in terms of **a** and **b**.
- (b) Let *T* be the orthocentre of $\triangle OAB$ (see Figure 11). Show that $\overrightarrow{OT} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{a} = 0$ and write down the value of $\overrightarrow{OT} \cdot \mathbf{b} \mathbf{a} \cdot \mathbf{b}$.
- (c) Let *C* be the circumcentre of $\triangle OAB$ (see Figure 12). Show that $2\overrightarrow{OC} \cdot \mathbf{a} = |\mathbf{a}|^2$ and find $\overrightarrow{OC} \cdot \mathbf{b}$ in terms of $|\mathbf{b}|$.
- (d) Consider the points G, T and C described in (a), (b) and (c) respectively.
 - (i) Using the above results, find the values of $(\overrightarrow{GT} 2\overrightarrow{CG}) \cdot \mathbf{a}$ and $(\overrightarrow{GT} 2\overrightarrow{CG}) \cdot \mathbf{b}$.
 - (ii) Show that G, T and C are collinear.

Note: You may use the following property for vectors in the two-dimensional space: If $\mathbf{w} \cdot \mathbf{u} = \mathbf{w} \cdot \mathbf{v} = 0$, where \mathbf{u} and \mathbf{v} are non-parallel, then $\mathbf{w} = 0$.

In Figure 2, *OCA* is a straight line and $BC \perp OA$. It is given that $\overrightarrow{OA} = 6\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OB} = 2\mathbf{i} + 6\mathbf{j}$. Let $\overrightarrow{OC} = k\overrightarrow{OA}$.

- (a) Express \overrightarrow{BC} in terms of k , i and j .
- (b) Find the value of k.

(2007-CE-A MATH #17) (12 marks) 17.

In Figure 10, *OAB* is an equilateral triangle with OA = 1. *M* is the mid-point of *AB* and *P* divides the line segment *OA* in the ratio 2:1. *Q* is a point on *OB* such that *PQ* intersects *OM* at *G* and *PG*: *GQ* = 4:3. Let *OA* and *OB* be **a** and **b** respectively.

(a) Find \overrightarrow{OM} in terms of **a** and **b**.

(b) Let OQ : QB = k : (1 - k).

(i) Find \overrightarrow{OG} in terms of k, **a** and **b**.

(ii) Show that
$$\overrightarrow{PQ} = \frac{1}{2}\mathbf{b} - \frac{2}{3}\mathbf{a}$$

(c) (i) Find $\mathbf{a} \cdot \mathbf{b}$ and hence find \overrightarrow{PQ}

(ii) Find $\angle QGM$ correct to the nearest degree.

(2008-CE-A MATH #07) (5 marks)

7. It is given that $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OB} = 5\mathbf{i} + 6\mathbf{j}$. If *P* is a point on *AB* such that $\overrightarrow{PB} = 2\overrightarrow{AP}$, find the unit vector in the direction of \overrightarrow{OP} .

In Figure 3, **p** and **q** are unit vectors with angle between them 60° . Let $\overrightarrow{OA} = 4\mathbf{p}$, $\overrightarrow{OB} = 3\mathbf{q}$ and $\overrightarrow{OG} = \frac{2}{3}\mathbf{p} + \frac{5}{3}\mathbf{q}$.

- (a) Find $\mathbf{p} \cdot \mathbf{q}$.
- (b) Show that $OG \perp AB$. Hence show that G is the orthocentre of $\triangle OAB$.
- (c)

Figure 4

In Figure 4, *H* is the circumcentre of $\triangle OAB$, *M* and *N* are the mid-points of *AB* and *OA* respectively. Let HM: OG = t: 1.

By expressing \overrightarrow{HM} and \overrightarrow{HN} in terms of t, **p** and **q**, find \overrightarrow{OH} in terms of **p** and **q**.

(2009-CE-A MATH #07) (4 marks)

7.

In Figure 1, AC is an altitude of $\triangle OAB$. Let **a**, **b** and **c** be \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} respectively. It is given that $|\mathbf{a}| = 6$, $|\mathbf{b}| = 8$ and $\mathbf{a} \cdot \mathbf{b} = 24$. Find

- (a) $\angle AOB$,
- (b) **c**.

(2009-CE-A MATH #14) (12 marks) 14.

In Figure 4, *CD* is an altitude of $\triangle ABC$ and *H* is the mid-point of *CD*. *AH* and *BH* are produced to meet *BC* and *AC* at *E* and *F* respectively.

Let **p**, λ **p** ($\lambda > 1$) and **q** be \overrightarrow{AD} , \overrightarrow{AB} and \overrightarrow{DH} respectively. Let $\frac{BE}{EC} = r$.

(a) Find \overrightarrow{AH} in terms of **p** and **q**.

- (b) Express \overrightarrow{AE} in terms of λ , r, \mathbf{p} and \mathbf{q} . Hence show that $r = \lambda$.
- (c) It is given that $|\mathbf{p}| = 1$, $|\mathbf{q}| = 2$ and *H* is the orthocentre of ΔABC .

(i) Find
$$\overrightarrow{AE}$$
 in terms of **p** and **q**.

(ii) Find
$$\frac{AF}{FC}$$
.

237

(2010-CE-A MATH #12) (7 marks)

12. It is given that $\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j}$, $\left|\overrightarrow{OB}\right| = 5\sqrt{2}$ and $\cos \angle AOB = \frac{3}{\sqrt{10}}$.

(a) Evaluate $\overrightarrow{OA} \cdot \overrightarrow{OB}$.

(b) Find \overrightarrow{OB} .

(2010-CE-A MATH #14) (12 marks) 14.

In Figure 5, *OABC* is a parallelogram with OA = 7, OC = 3 and $\angle AOC = \theta$ where $\cos \theta = -\frac{1}{3}$. *D* is a point on *AB* such that $OD \perp AB$ and AD : DB = 1 : r. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$.

- (a) By expressing $\overrightarrow{OD}_{\overrightarrow{OD}}$ in terms of **a**, **c** and *r*, find the value of *r*. (4 marks)
- (b) E is a point on OD produced such that C, B and E are collinear.
 - (i) Express \overrightarrow{OBE} in terms of **a** and **c**.
 - (ii) Are A, O, C and E concyclic? Explain your answer.

(8 marks)

 $\overrightarrow{OA} = \mathbf{i} + \mathbf{j}$ $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j}$

15. In Figure 6, C_1 is a circle with centre (6,5) touching the x-axis. C_2 is a variable circle which touches the y-axis and C_1 internality.

Figure 6

(a) Show that the equation of locus of the centre of C_2 is $x = \frac{1}{2}y^2 - 5y + 18$. 238

(4 marks) Provided by dse.life

P(0, 2) to

(2011-CE-A MATH #12) (12 marks) 12.

Figure 2 shows a triangle *OCD*. *A* and *B* are points on *OC* and *OD* respectively such that OA: AC = OB: BD = 1:h, where h > 0. *AD* and *BC* intersect at *E* such that $AE: ED = \mu : (1 - \mu)$ and $BE: EC = \lambda : (1 - \lambda)$, where $0 < \mu < 1$ and $0 < \lambda < 1$. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (a) By considering \overrightarrow{OE} , show that $\mu = \lambda$.
- (b) F is a point on CD such that O, E and F are collinear. Show that OF is a median of $\triangle OCD$.
- (c) Using the above results, show that in a triangle, the centroid divides every median in 2:1.

(SP-DSE-MATH-EP(M2) #09) (6 marks)

9.

Let $\overrightarrow{OA} = 4\mathbf{i} + 3\mathbf{j}$, $\overrightarrow{OB} = 3\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = 3\mathbf{i} + \mathbf{j} + 5\mathbf{k}$. Figure 2 shows the parallelepiped *OADBECFG* formed by \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} .

- (a) Find the area of the parallelogram *OADB* .
- (b) Find the volume of the parallelepiped *OADBECFG* .
- (c) If C' is a point different from C such that the volume of the parallelepiped formed by \overrightarrow{OA} , \overrightarrow{OB} and $\overrightarrow{OC'}$ is the same as that of *OADBECFG*, find a possible vector of $\overrightarrow{OC'}$.

(SP-DSE-MATH-EP(M2) #14) (10 marks) 14.

In Figure 3, $\triangle ABC$ is an acute-angled triangle, where *O* and *H* are the circumcentre and orthocentre respectively. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OH} = \mathbf{h}$.

- (a) Show that $(\mathbf{h} \mathbf{a}) // (\mathbf{b} + \mathbf{c}) +$
- (b) Let $\mathbf{h} \mathbf{a} = t(\mathbf{b} + \mathbf{c})$, where *t* is a non-zero constant. Show that
 - (i) $t(\mathbf{b} + \mathbf{c}) + \mathbf{a} \mathbf{b} = s(\mathbf{c} + \mathbf{a})$ for some scalars,
 - (ii) $(t-1)(\mathbf{b}-\mathbf{a}) \cdot (\mathbf{c}-\mathbf{a}) = 0$.
- (c) Express **h** in terms of \mathbf{a}^{\cdot} , **b** and \mathbf{c}^{\cdot} .

Provided by dse.life

(PP-DSE-MATH-EP(M2) #12) (13 marks)

Figure 2

Let $\overrightarrow{OA} = \mathbf{i}$, $\overrightarrow{OB} = \mathbf{j}$ and $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (see Figure 2). Let *M* and *N* be points on the straight lines *AB* and *OC* respectively such that AM : MB = a : (1 - a) and ON : NC = b : (1 - b), where 0 < a < 1 and 0 < b < 1. Suppose that *MN* is perpendicular to both *AB* and *OC*.

- (a) (i) Show that $\overrightarrow{MN} = (a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}$.
 - (ii) Find the values of a and b.
 - (iii) Find the shortest distance between the straight lines AB and OC.
- (b) (i) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (ii) Let G be the projection of O on the plane ABC, find the coordinates of the intersecting point of the two straight lines OG and MN.

(2012-DSE-MATH-EP(M2) #07) (5 marks)

7.

Figure 3

Figure 3 shows a parallelepiped *OADBECFG*. Let $\overrightarrow{OA} = 6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j}$ and $\overrightarrow{OC} = 5\mathbf{i} - \mathbf{j} + 2\mathbf{k}$.

- (a) Find the area of the parallelogram *OADB*.
- (b) Find the distance between point C and the plane OADB.

(2012-DSE-MATH-EP(M2) #12) (12 marks)

Figure 6 shows an acute angled scalene triangle *ABC*, where *D* is the mid-point of *AB*, *G* is the centroid and *O* is the circumcentre. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.

(a) Express \overrightarrow{AG} in terms of **a** , **b** and **c** .

- (b) It is given that E is a point on AB such that CE is an altitude. Extend OG to meet CE at F.
 - (i) Prove that $\Delta DOG \sim \Delta CFG$. Hence find FG: GO.
 - (ii) Show that $\overrightarrow{AF} = \mathbf{b} + \mathbf{c}$. Hence prove that *F* is the orthocentre of ΔABC .

(2013-DSE-MATH-EP(M2) #10) (5 marks) 10.

Let $\overrightarrow{OA} = 2\mathbf{i}$ and $\overrightarrow{OB} = \mathbf{i} + 2\mathbf{j}$. *M* is the mid-point of *OA* and *N* lies on *AB* such that BN : NA = k : 1. *BM* intersects *ON* at *P*.

- (a) Express \overrightarrow{ON} in terms of k.
- (b) If A, N, P and M are concyclic, find the value of k.

Provided by dse.life

(2013-DSE-MATH-EP(M2) #14) (12 marks)

Figure 5 shows a fixed tetrahedron *OABC* with $\angle AOB = \angle BOC = \angle COA = \frac{\pi}{2}$. *P* is a variable point such that $\overrightarrow{AP} \cdot \overrightarrow{BP} + \overrightarrow{BP} \cdot \overrightarrow{CP} + \overrightarrow{CP} \cdot \overrightarrow{AP} = 0$. Let *D* be a fixed point such that $\overrightarrow{OD} = \frac{\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}}{3}$. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OD} = \mathbf{d}$.

(a) (i) Show that
$$\overrightarrow{AP} \cdot \overrightarrow{BP} = \mathbf{p} \cdot \mathbf{p} - (\mathbf{a} + \mathbf{b}) \cdot \mathbf{p}$$

- (ii) Using (a)(i), show that $\mathbf{p} \cdot \mathbf{p} = 2\mathbf{p} \cdot \mathbf{d}$.
- (iii) Show that $|\mathbf{p} \mathbf{d}| = |\mathbf{d}|$. hence show that *P* lies on the sphere centred at *D* with fixed radius.
- (b) (i) Alice claims that O lies on the sphere mentioned in (a)(iii). Do you agree? Explain your answer.

(ii) Suppose P_1 , P_2 and P_3 are three distinct points on the sphere in (a)(iii) such that $\overrightarrow{DP_1} \times \overrightarrow{DP_2} = \overrightarrow{DP_2} \times \overrightarrow{DP_3}$. Alice claims that the radius of the circle passing through P_1 , P_2 and P_3 is *OD*. Do you agree? Explain your answer.

(2014-DSE-MATH-EP(M2) #08) (8 marks)

- 8. Let $\overrightarrow{OP} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OQ} = \mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{OR} = 2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}$.
 - (a) Find $\overrightarrow{OP} \times \overrightarrow{OQ}$. Hence find the volume of tetrahedron *OPQR*.
 - (b) Find the acute angle between the plane OPQ and the line OR, correct to the nearest 0.1°.

11.

(

(2014-DSE-MATH-EP(M2) #11) (13 marks)

In Figure 4, *C* and *D* are points on *OB* and *OA* respectively such that AD : DO = OC : CB = t : (1 - t), where 0 < t < 1, *BD* and *AC* intersect at *E* such that AE : EC = m : 1 and BE : ED = n : 1, where *m* and *n* are positive. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

a) (i) By considering
$$\triangle OAC$$
, express \overrightarrow{OE} in terms of m , t , **a** and **b**

(ii) By considering $\triangle OBD$, express \overrightarrow{OE} in terms of n, t, **a** and **b**.

(iii) Show that
$$m = \frac{t}{(1-t)^2}$$
 and $n = \frac{1-t}{t^2}$

(iv) Chris claims that

"if m = n, then E is the centroid of $\triangle OAB$ ". Do you agree? Explain your answer.

(b) It is given that OA = 1 and OB = 2. Francis claims that
"if AC is perpendicular to OB, then BD is always perpendicular to OA".
Do you agree? Explain your answer.

(2015-DSE-MATH-EP(M2) #10) (12 marks)

- 10. *OAB* is a triangle. *P* is the mid-point of *OA*. *Q* is a point lying on *AB* such that AQ: QB = 1:2 while *R* is a point lying on *OB* such that OR: RB = 3:1. *PR* and *OQ* intersect at *C*.
 - (a) (i) Let t be a constant such that PC: CR = t: (1 − t).
 By expressing OQ in terms of OA and OB , find the value of t.
 (ii) Find CQ: OQ.

(b) Suppose that $\overrightarrow{OA} = 20\mathbf{i} - 6\mathbf{j} - 12\mathbf{k}$, $\overrightarrow{OB} = 16\mathbf{i} - 16\mathbf{j}$ and $\overrightarrow{OD} = \mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$, where *O* is the origin. Find

- (i) the area of $\triangle OAB$,
- (ii) the volume of the tetrahedron ABCD.

(2016-DSE-MATH-EP(M2) #12) (13 marks)

- 12. Let $\overrightarrow{OA} = 2\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OB} = 4\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\overrightarrow{OP} = \mathbf{i} + t\mathbf{j}$, where *t* is a constant and *O* is the origin. It is given that *P* is equidistant from *A* and *B*.
 - (a) Find t.
 - (b) Let $\overrightarrow{OC} = 2\mathbf{i} \mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$. Denote the plane which contains A, B and C by Π . (i) Find a unit vector which is perpendicular to Π .
 - (ii) Find the angle between CD and Π .
 - (iii) It is given that E is a point lying on Π such that \overrightarrow{DE} is perpendicular to Π . Let F be a point such that $\overrightarrow{PF} = \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}$. Describe the geometric relationship between D, E and F. Explain your answer.

(2017-DSE-MATH-EP(M2) #03) (5 marks)

- 3. *P* is a point lying on *AB* such that AP : PB = 3 : 2. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$, where *O* is the origin.
 - (a) Express \overrightarrow{OP} in terms of **a** and **b**.
 - (b) It is given that $|\mathbf{a}| = 45$, $|\mathbf{b}| = 20$ and $\cos \angle AOB = \frac{1}{4}$. Find (i) $\mathbf{a} \cdot \mathbf{b}$, (ii) $\left| \overrightarrow{OP} \right|$.

(2017-DSE-MATH-EP(M2) #10) (12 marks)

- 10. *ABC* is a triangle. *D* is the mid-point of *AC*. *E* is a point lying on *BC* such that BE: EC = 1:r. *AB* produced and *DE* produced meet at the point *F*. It is given that DE: EF = 1:10. Let $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, $\overrightarrow{OB} = 4\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ and $\overrightarrow{OC} = 8\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$, where *O* is a the origin.
 - (a) By expressing \overrightarrow{AE} and \overrightarrow{AF} in terms of r, find r.
 - (b) (i) Find $\overrightarrow{AD} \cdot \overrightarrow{DE}$. (ii) Are *B*, *D*, *C* and *F* concyclic? Explain your answer.
 - (c) Let $\overrightarrow{OP} = 3\mathbf{i} + 10\mathbf{j} 4\mathbf{k}$. Denote the circumcenter of ΔBCF by Q. Find the volume of the tetrahedron ABPQ.

(2018-DSE-MATH-EP(M2) #12) (13 marks)

- 12. The position vectors of the points A, B, C and D are $4\mathbf{i} 3\mathbf{j} + \mathbf{k}$, $-\mathbf{i} + 3\mathbf{j} 3\mathbf{k}$, $7\mathbf{i} \mathbf{j} + 5\mathbf{k}$ and $3\mathbf{i} 2\mathbf{j} 5\mathbf{k}$ respectively. Denote the plane which contains A, B and C by Π . Let E be the projection of D on Π .
 - (a) Find
 - (i) $\overrightarrow{AB} \times \overrightarrow{AC}$,
 - (ii) the volume of the tetrahedron *ABCD*.
 - (iii) \overrightarrow{DE} .
 - (b) Let F be a point lying on BC such that DF is perpendicular to BC.
 - (i) Find \overrightarrow{DF} .
 - (ii) Is \overrightarrow{BC} perpendicular to \overrightarrow{EF} ? Explain your answer.
 - (c) Find the angle between ΔBCD and Π .

(2019-DSE-MATH-EP(M2) #12) (13 marks)

- 12. Let $\overrightarrow{OA} = \mathbf{i} 4\mathbf{j} + 2\mathbf{k}$, $\overrightarrow{OB} = -5\mathbf{i} 4\mathbf{j} + 8\mathbf{k}$ and $\overrightarrow{OC} = -5\mathbf{i} 12\mathbf{j} + t\mathbf{k}$, where *O* is the origin and *t* is a constant. It is given that $\left|\overrightarrow{AC}\right| = \left|\overrightarrow{BC}\right|$.
 - (a) Find t.
 - (b) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - (c) Find the volume of the pyramid *OABC*.
 - (d) Denote the plane which contains A, B and C by Π . It is given that P, Q and R are points lying on Π such that $\overrightarrow{OP} = p\mathbf{i}$, $\overrightarrow{OQ} = q\mathbf{j}$ and $\overrightarrow{OR} = r\mathbf{k}$. Let D be the projection of O on Π .
 - (i) Prove that $pqr \neq 0$.
 - (ii) Find \overrightarrow{OD} .
 - (iii) Let *E* be a point such that $\overrightarrow{OE} = \frac{1}{p}\mathbf{i} + \frac{1}{q}\mathbf{j} + \frac{1}{r}\mathbf{k}$. Describe the geometric relationship between *D*,

E and O. Explain your answer.

(2020-DSE-MATH-EP(M2) #12) (12 marks)

- 12. Let $\overrightarrow{OP} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OQ} = 5\mathbf{i} 7\mathbf{j} 4\mathbf{k}$, where *O* is the origin. *R* is a point lying on *PQ* such that PR: RQ = 1:3.
 - (a) Find $\overrightarrow{OP} \times \overrightarrow{OR}$.
 - (b) Define $\overrightarrow{OS} = \overrightarrow{OP} + \overrightarrow{OR}$. Find the area of the quadrilateral *OPSR*.
 - (c) Let N be a point such that $\overrightarrow{ON} = \lambda \left(\overrightarrow{OP} \times \overrightarrow{OR} \right)$, where λ is a real number.
 - (i) Is \overrightarrow{NR} perpendicular to \overrightarrow{PQ} ? Explain your answer.
 - (ii) Let μ be a real number such that \overrightarrow{NQ} is parallel to $11\mathbf{i} + \mu \mathbf{j} 10\mathbf{k}$.
 - (1) Find λ and μ .
 - (2) Denote the angle between $\triangle OPQ$ and $\triangle NPQ$ by θ . Find $\tan \theta$.

(2021-DSE-MATH-EP(M2) #12) (13 marks)

- 12. The position vectors of the points A, B, C and D are $t\mathbf{i} + 14\mathbf{j} + s\mathbf{k}$, $12\mathbf{i} s\mathbf{j} 2\mathbf{k}$ and $(s + 2)\mathbf{i} 16\mathbf{j} + 10\mathbf{k}$ and $-t\mathbf{i} + (s + 2)\mathbf{j} + 14\mathbf{k}$ respectively, where $s, t \in \mathbf{R}$. Suppose that \overrightarrow{AB} is parallel to $5\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$. Denote the plane which contains A, B and C by Π .
 - (a) Find
 - (i) s and t.
 - (ii) the area of ΔABC ,
 - (iii) the volume of the tetrahedron ABCD,
 - (iv) the shortest distance from D to Π .
 - (b) Let E be the projection of D on Π . Is E the circumcentre of ΔABC ? Explain your answer.

ANSWERS

8.

8.

(1991-CE-A MATH 1 #08) (16 marks) (a) $\overrightarrow{CA} = (3-x)\mathbf{i} - (y+1)\mathbf{j}$ $\overrightarrow{OB} = (x - 7)\mathbf{i} + (y - 1)\mathbf{j}$ $\overrightarrow{AB} = (x - 1)\mathbf{i} + y\mathbf{j}$ (b) (ii) (1) x = 4, y = 2(1992-CE-A MATH 1 #08) (16 marks) $\mathbf{a} \cdot \mathbf{a} = 4$ (a) $\mathbf{a} \cdot \mathbf{b} = 3$ (b) OD = 1 $\overrightarrow{OD} = \frac{1}{3}\mathbf{b}$ (i) $\overrightarrow{OH} = \frac{k}{k+1}\mathbf{a} + \frac{1}{3(k+1)}\mathbf{b}$ (c) *k* = 2 (ii) (1) $\overrightarrow{OC} = \frac{m}{m+1}\mathbf{a} + \frac{1}{m+1}\mathbf{b}$ (2) $\overrightarrow{OC} = \frac{2(n+1)}{3}\mathbf{a} + \frac{(n+1)}{9}\mathbf{b}$ (3) $m = 6, n = \frac{2}{7}$

(1993-CE-A MATH 1 #06) (7 marks)

6. (a)
$$A\overrightarrow{B} = -2\mathbf{i} + 3\mathbf{j}$$

(b) $\overrightarrow{AB} \cdot \overrightarrow{AB} = 13$
 $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$
 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 13$

(1993-CE-A MATH 1 #08) (16 marks)

8. (a)
$$\overrightarrow{OP} = \frac{1}{1+r}\mathbf{a} + \frac{r}{1+r}\mathbf{b}$$

 $\overrightarrow{OQ} = \frac{1}{(1+r)^2}\mathbf{a} + \frac{r(r+2)}{(1+r)^2}\mathbf{b}$
(b) $\overrightarrow{OT} = \frac{1}{1+r}\mathbf{b}$
(c) $r = \frac{-1+\sqrt{5}}{2}$
(d) (i) $\mathbf{a} \cdot \mathbf{a} = 4$
 $\mathbf{a} \cdot \mathbf{b} = 16$
(ii) $r = \frac{1}{2}$

(1994-CE-A MATH 1 #03) (6 marks)

3. (a)
$$\overrightarrow{PQ} = 2\mathbf{i} - \mathbf{j}$$

 $\left| \overrightarrow{PQ} \right| = \sqrt{5}$
(b) $\cos \angle QPR = \frac{-4}{\sqrt{63}}$

(1994-CE-A MATH 1 #10) (16 marks)

10. (a)
$$\overrightarrow{OC} = \frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$$

 $\overrightarrow{DA} = \mathbf{a} - \frac{1}{2}\mathbf{b}$
(c) $k = \frac{1}{5}$
(d) (i) 1
(ii) $k = \frac{2}{7}$
Distance $=\frac{\sqrt{7}}{7}$

(1995-CE-A MATH 1 #07) (8 marks)

7. (a)
$$\overrightarrow{OR} = \frac{2-6k}{k+1}\mathbf{i} + \frac{3+4k}{k+1}\mathbf{j}$$

(b) $\overrightarrow{OP} \cdot \overrightarrow{OR} = \frac{13}{k+1}$
 $\overrightarrow{OQ} \cdot \overrightarrow{OR} = \frac{52k}{k+1}$
(c) $k = \frac{1}{2}$

(1995-CE-A MATH 1 #08) (16 marks)

8. (a) (i)
$$\overrightarrow{AE} = h\mathbf{p} + h\mathbf{q}$$

(ii) $\overrightarrow{AE} = \frac{\lambda k}{1+\lambda}\mathbf{p} + \frac{1}{1+\lambda}\mathbf{q}$
(b) (i) 3
(ii) (1) $\overrightarrow{DF} = k\mathbf{p} - \mathbf{q}$
 $k = \frac{7}{12}$
(2) $\frac{7}{\sqrt{19}}$

Provided by dse.life

(1996-CE-A MATH 1 #07) (6 marks)							
7.	(a)	Unit vector $=$ $\frac{4}{5}\mathbf{i} + \frac{3}{5}\mathbf{j}$					
		$\overrightarrow{OC} =$	$=\frac{64}{25}i+$	$-\frac{48}{25}\mathbf{j}$			
(1996-CE-A MATH 1 #10) (16 marks)							
10.	(a)	(i)	$\overrightarrow{AE} =$	$\frac{2}{1+t}\mathbf{a} + \frac{t}{1+t}\mathbf{b}$			
		(ii)	$\overrightarrow{AE} =$	$\frac{9-7t}{1+t}\mathbf{a} + \frac{8t}{1+t}\mathbf{b}$			
	(b)	(i)	$\frac{9}{7}$				
		(ii)	(1)	2			
			(2)	$\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$			
				$\overrightarrow{AD} \cdot \overrightarrow{DE} = 0$			
(1997-CE-A MATH 1 #07) (7 marks)							
7	(a)	a =	$= 2\sqrt{5}$				

7. (a)
$$|\mathbf{a}| = 2\sqrt{5}$$

(b) $\mathbf{a} \cdot \mathbf{b} = 8$
(c) $n = \frac{11}{5}, m = \frac{-2}{5}$

(1997-CE-A MATH 1 #09) (16 marks)

9. (a) (i)
$$\overrightarrow{AF} = \mathbf{a} + 2\mathbf{b}$$

(ii) $\overrightarrow{DP} = (m+1)\mathbf{a} - \mathbf{b}$
(b) (ii) (1) $\overrightarrow{AE} = \frac{1}{r+1}\mathbf{a} + \frac{2}{r+1}\mathbf{b}$
(2) $\overrightarrow{AE} = \frac{8}{k+1}\mathbf{a} + \frac{k}{k+1}\mathbf{b}$
 $r = \frac{9}{8}, k = 16$
(c) $\theta_1 = 76^\circ$

(1998-CE-A MATH 1 #05) (6 marks)

5. (a)
$$\overrightarrow{AB} = 3\mathbf{i} + 5\mathbf{j}$$

 $\overrightarrow{AC} = -3\mathbf{i} + 8\mathbf{j}$
(b) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 31$
 $\angle BAC = 52^{\circ}$

(1998-CE-A MATH 1 #09) (16 marks)
9. (a) (i)
$$\mathbf{a} \cdot \mathbf{b} = 3$$

(ii) $\overrightarrow{OC} = (1 - t)\mathbf{a} + t\mathbf{b}$
(iii) $\mathbf{a} \cdot \overrightarrow{OC} = 4 - t$
 $\mathbf{b} \cdot \overrightarrow{OC} = 3 + 6t$
(b) (ii) $k = \frac{4 - t}{4}, s = \frac{1 + 2t}{3}$
(c) $t = \frac{8}{11}$

(1999-CE-A MATH 1 #07) (6 marks)

7. (a) 5 (b) 10 (c) -1.6

(1999-CE-A MATH 1 #10) (16 marks)

10. (a)
$$\overrightarrow{OC} = \frac{7}{15}\mathbf{a} + \frac{8}{15}\mathbf{b}$$

 $\overrightarrow{AD} = \frac{16}{21}\mathbf{b} - \mathbf{a}$
(b) (i) $\overrightarrow{OE} = \frac{7r}{15}\mathbf{a} + \frac{8r}{15}\mathbf{b}$
(ii) $\overrightarrow{OE} = (1-k)\mathbf{a} + \frac{16k}{21}\mathbf{b}$
(c) (i) 1:2

(2000-CE-A MATH 1 #08) (7 marks)

8. (b) (i)
$$\sqrt{5} - 1$$

(ii) $\angle BOD = 48^{\circ}$

(2000-CE-A MATH 1 #09) (16 marks)

9. (a) (i)
$$\overrightarrow{OD} = \frac{\mathbf{a} + \mathbf{b}}{2}$$

(iii) $\overrightarrow{EF} = \mathbf{a} + (1 - k)\mathbf{b}$
(b) (i) $\mathbf{a} \cdot \mathbf{b} = 3$
 $\mathbf{b} \cdot \mathbf{b} = 4$
(ii) (1) $\frac{7}{4}$

 $(2001-AL-P MATH 1 \#04) (5 marks) \longrightarrow \longrightarrow$

4. (a)
$$A \dot{B} \times A \dot{C} = b c \mathbf{i} + a c \mathbf{j} + a b \mathbf{k}$$

(2001-CE-A MATH #08) (6 marks) 8. 6 (a) 1 (b) 3 (2001-CE-A MATH #14) (12 marks) (a) $\overrightarrow{OR} = \frac{\overrightarrow{sOP} + \overrightarrow{rOQ}}{r+s}$ 14. (b) (i) $\overrightarrow{OG} = \frac{1}{8}\mathbf{a} + \frac{3}{4}\mathbf{b}$ (ii) $\overrightarrow{OY} = \frac{k}{8}\mathbf{a} + \frac{3k}{8}\mathbf{b}$ (iii) (1) $\frac{6}{7}$ (2) parallel (2002-AL-P MATH 1 #04) (6 marks) (b) $\mathbf{u} = \frac{1}{\sqrt{2}}(\mathbf{j} + \mathbf{k}), \mathbf{u} = -\frac{1}{\sqrt{2}}(\mathbf{j} + \mathbf{k})$ 4.

(2002-CE-A MATH #10) (6 marks)

10. (a) $\overrightarrow{OB} = 6\mathbf{i} + 6\mathbf{j}$ $\overrightarrow{AC} = 4\mathbf{i} - 2\mathbf{j}$ (b) $\theta = 72^{\circ}$

(2002-CE-A MATH #13) (12 marks) 13. (a) 3 (b) $\overrightarrow{OE} = t \mathbf{a} + (1 - t)\mathbf{b}$ (c) $\overrightarrow{BA} \cdot \overrightarrow{BF} = 1$

(2003-AL-P MATH 1 #05) (6 marks) 5. (b) (i) $|\mathbf{m} \times \mathbf{n}| = 6$ (ii) 4

(2003-CE-A MATH #06) (5 marks)

6. (a)
$$\overrightarrow{OP} = \frac{\mathbf{a} + 3\mathbf{b}}{4}$$

(b) $\overrightarrow{OC} = \frac{1}{3}\mathbf{a} + \mathbf{b}$

(2003-CE-A MATH #14) (12 marks) 14. (a) $\frac{-3}{2}$

(b)
$$k = \frac{35}{9}$$

(2004-CE-A MATH #06) (5 marks)

6. (a)
$$\overrightarrow{OC} = \frac{2\mathbf{a} + \mathbf{b}}{3}$$

(b) $\left| \overrightarrow{OC} \right| = \frac{2}{3}$

13. (a) (i)
$$\overrightarrow{OC} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}$$

 $\overrightarrow{OA} = -\sin\theta \mathbf{i} + \cos\theta \mathbf{j}$
(c) $\theta = 24^{\circ}$

(2005-AL-P MATH 1 #12) (15 marks)
12. (b)
$$\alpha = 5\sqrt{3}, \beta = -2\sqrt{2}, \gamma = 3\sqrt{6}$$

(2005-CE-A MATH #11) (6 marks)

11. (a)
$$\frac{-15}{2}$$

(b) $\sqrt{19}$

(2005-CE-A MATH #14) (12 marks)

14. (a)
$$\overrightarrow{CB} = \frac{1}{8}\mathbf{a}$$

(b) (i) $DA = 1$
 $\mathbf{d} = \mathbf{a} - \mathbf{b}$
(ii) $\overrightarrow{OP} = \frac{8r - 1}{8(r + 1)}\mathbf{a} + \frac{1 - r}{1 + r}\mathbf{b}$
(iii) 9 : 16

(2006-CE-A MATH #07) (5 marks)

7. (a)
$$-3$$

(b) $\sqrt{7}$

(2006	6-CE-A	MATH	I #18) (12 marks)
18.	(a)	\overrightarrow{OG} :	$=\frac{\mathbf{a}+\mathbf{b}}{3}$
	(b)	\overrightarrow{OT} .	$\mathbf{b} - \mathbf{a} \cdot \mathbf{b} = 0$
	(c)	\overrightarrow{OC} .	$\mathbf{b} = \frac{\left \mathbf{b}\right ^2}{2}$
	(d)	(i)	$(\overrightarrow{GT} - 2\overrightarrow{CG}) \cdot \mathbf{a} = 0$
			$(\overrightarrow{GT} - 2\overrightarrow{CG}) \cdot \mathbf{b} = 0$
(2007	-CE-A	MATH	I #08) (5 marks)
8.	(a)	\overrightarrow{BC} =	$= (6k - 2)\mathbf{i} + (3k - 6)\mathbf{j}$
	(b)	$\frac{2}{3}$	
(2007	-CE-A	MATH	I #17) (12 marks)
17.	(a)	\overrightarrow{OM}	$=\frac{\mathbf{a}+\mathbf{b}}{2}$
	(b)	(i)	$\overrightarrow{OG} = \frac{2\mathbf{a} + 4k\mathbf{b}}{7}$
	(c)	(i)	$\mathbf{a} \cdot \mathbf{b} = \frac{1}{2}$
			$\left \overrightarrow{PQ}\right = \frac{\sqrt{13}}{6}$
		(ii)	$\angle QGM = 104^{\circ}$
(2008	3-CE-A	MATH	I #07) (5 marks)

(2008-CE-A MATH #07) (5 marks) 7. $\frac{3i + 4j}{5}$

(2008-CE-A MATH #15) (12 marks) 15. (a) $\frac{1}{2}$ (c) $\overrightarrow{HM} = \frac{2t}{3}\mathbf{p} + \frac{5t}{3}\mathbf{q}$ $\overrightarrow{HN} = \frac{2t}{3}\mathbf{p} + \left(\frac{5t}{3} - \frac{3}{2}\right)\mathbf{q}$ $\overrightarrow{OH} = \frac{5}{3}\mathbf{p} + \frac{2}{3}\mathbf{q}$

(2009-CE-A MATH #07) (4 marks)

7. (a)
$$\angle AOB = 60^{\circ}$$

(b) $|\mathbf{c}| = 3$

(2009-CE-A MATH #14) (12 marks) 14. (a) $\overrightarrow{AH} = \mathbf{p} + \mathbf{q}$ (b) $\overrightarrow{AE} = \frac{(r+\lambda)\mathbf{p} + 2r\mathbf{q}}{r+1}$ (c) (i) $\frac{9}{5}(\mathbf{p} + \mathbf{q})$ (ii) $\frac{AF}{FC} = \frac{9}{8}$

(2010-CE-A MATH #12) (7 marks)

12. (a) 15 (b) $\overrightarrow{OB} = 5\mathbf{i} + 5\mathbf{j} \text{ or } \mathbf{i} + 7\mathbf{j}$

(2010-CE-A MATH #14) (12 marks)

14. (a)
$$\overrightarrow{OD} = \mathbf{a} + \frac{1}{1+r}\mathbf{c}$$

 $r = \frac{2}{7}$
(b) (i) $\overrightarrow{OE} = \frac{9}{7}\mathbf{a} + \mathbf{c}$

(2011-CE-A MATH #09) (6 marks)

9. (a)
$$\cos \angle AOB = \frac{3}{\sqrt{10}}$$

(b) 7

(2011-CE-A MATH #12) (12 marks)

12. (a)
$$\overrightarrow{OE} = (1 + \mu)\mathbf{a} + \mu(1 + h)\mathbf{b}$$

 $\overrightarrow{OE} = (1 - \lambda)\mathbf{b} + \lambda(1 + h)\mathbf{a}$

(SP-DSE-MATH-EP(M2) #09) (6 marks)

- 9. (a) 13
 - (b) 65
 - (c) $\overrightarrow{OC'} = (3+4s)\mathbf{i} + (1+3s+3t)\mathbf{j} + (5+t)\mathbf{k}$ where *s* and *t* are not both zero.

(SP-DSE-MATH-EP(M2) #14) (10 marks)

14. (c) h = a + b + c

Provided by dse.life

(2013-DSE-MATH-EP(M2) #14) (12 marks)

(2014-DSE-MATH-EP(M2) #08) (8 marks)

8. (a)
$$\overrightarrow{OP} \times \overrightarrow{OQ} = 6\mathbf{i} + 4\mathbf{j} - \mathbf{k}$$
.
Volume = 1
(b) 6.8°

(2014-DSE-MATH-EP(M2) #11) (13 marks)

11. (a) (i)
$$\overrightarrow{OE} = \frac{\mathbf{a} + mt\mathbf{b}}{1+n}$$

(ii) $\overrightarrow{OE} = \frac{n(1-t)\mathbf{a} + \mathbf{b}}{1+n}$
(iv) $t = \frac{1}{2}$
(b) $\overrightarrow{BD} \cdot \overrightarrow{OA} \neq 0$

(2015-DSE-MATH-EP(M2) #10) (12 marks)					
10.	(a)	(i)	$\overrightarrow{OQ} = \frac{1-t}{2}\overrightarrow{OA} + \frac{3t}{4}\overrightarrow{OB}$		
		(ii)	7:16		
	(b)	(i)	176		
		(ii)	42		

(2016-DSE-MATH-EP(M2) #12) (13 marks)

12.

(a) -1
(b) (i)
$$\frac{-1}{3}\mathbf{i} - \frac{2}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}$$

(ii) $\sin^{-1}\left(\frac{3\sqrt{11}}{11}\right)$

(iii) *D* is the mid-point of the line segment joining *E* and *F*.

(2017-DSE-MATH-EP(M2) #03) (5 marks)

3. (a)
$$\overrightarrow{OP} = \frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$$

(b) (i) 225
(ii) 24

(2017-DSE-MATH-EP(M2) #10) (12 marks)

10. (a)
$$\overrightarrow{AE} = \frac{2r+6}{r+1}\mathbf{i} + \frac{r-6}{r+1}\mathbf{j} + \frac{r}{r+1}\mathbf{k}$$

 $\overrightarrow{AF} = \frac{-8r+36}{r+1}\mathbf{i} + \frac{41r-36}{r+1}\mathbf{j} + \frac{11r}{r+1}\mathbf{k}$
 $r = \frac{6}{5}$
(b) (i) 0
(c) 7

(2018-DSE-MATH-EP(M2) #12) (13 marks)

12. (a) (i)
$$32\mathbf{i} + 8\mathbf{j} - 28\mathbf{k}$$

(ii) 24
(iii) $-\frac{32}{13}\mathbf{i} - \frac{8}{13}\mathbf{j} + \frac{28}{13}\mathbf{k}$
(b) (i) $-2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$
(ii) $\overrightarrow{BC} \cdot \overrightarrow{EF} = 0$
(c) $\cos^{-1}\left(\frac{3\sqrt{13}}{13}\right)$

Provided by dse.life

(2019-DSE-MATH-EP(M2) #12) (13 marks)

2 12. (a) (b) 48i - 36j + 48k48 cubic units (c) p = 6, q = -8, r = 6(d) (i) (ii) $\frac{24}{41}(4i - 3j + 4k)$ (iii) D, E and O are collinear (2020-DSE-MATH-EP(M2) #12) (12 marks) 6i + 6j - 3k12. (a) (b) 9 (c) (i) ... Yes (ii) (1) $\lambda = \frac{2}{9}$, $\mu = -25$ (2) $\frac{2}{3}$ (2021-DSE-MATH-EP(M2) #12) (13 marks)

12. (a) (i) s = 10, t = 18

(ii) 270

(iii) 2 160,

(iv) 24

(b) E is not the circumcentre of ΔABC