## 4. Product of Vectors

(1991-CE-A MATH 1 \#08) ( 16 marks)
8. $A, B$ and $C$ are three points on a plane such that

$$
\begin{aligned}
& \overrightarrow{O A}=3 \mathbf{i}-\mathbf{j}, \\
& \overrightarrow{B C}=7 \mathbf{i}+\mathbf{j},
\end{aligned}
$$

and $\quad \overrightarrow{O C}=x \mathbf{i}+y \mathbf{j}$,
where $O$ is the origin.
(a) Find $\overrightarrow{C A}, \overrightarrow{O B}$ and $\overrightarrow{A B}$ in terms of $x, y, \mathbf{i}$ and $\mathbf{j}$.
(b) Given $\overrightarrow{A B} \cdot \overrightarrow{B C}=4 \overrightarrow{B C} \cdot \overrightarrow{C A}$.
(i) Show that $y=30-7 x$.
(ii) If $|\overrightarrow{B C}|=\sqrt{5}|\overrightarrow{C A}|$ and $x, y$ are positive,
(1) find $x$ and $y$,
(2) show that $C A$ is perpendicular to $A B$,
(3) show that $O$ lies on $A B$.
(1992-CE-A MATH 1 \#08) (16 marks) (Modified - No figure given)
8. Given $\triangle O A B$ where $O A=2, O B=3$ and $\angle A O B=\frac{\pi}{3}$. D is a point on $O B$ such that $A D$ is perpendicular to $O B$. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$.
(a) Find $\mathbf{a} \cdot \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{b}$.
(b) Find the length of $O D$.

Hence express $\overrightarrow{O D}$ in terms of $\mathbf{b}$.
(c) Let $H$ be a point on $A D$ such that $A H: H D=1: k$ and $\overrightarrow{O H}$ is perpendicular to $\overrightarrow{A B}$.
(i) Express $\overrightarrow{O H}$ in terms of $k$, a and $\mathbf{b}$.

Hence find the value of $k$.
(ii) $O H$ produced meets $A B$ at a point $C$. Let $A C: C B=1: m$ and $O H: H C=1: n$.
(1) Express $\overrightarrow{O C}$ in terms of $m$, a and $\mathbf{b}$.
(2) Express $\overrightarrow{O C}$ in terms of $n$, a and $\mathbf{b}$.
(3) Hence find $m$ and $n$.
(1993-CE-A MATH 1 \#06) (7 marks)
6. Given $\overrightarrow{O A}=3 \mathbf{i}-2 \mathbf{j}, \overrightarrow{O B}=\mathbf{i}+\mathbf{j} . C$ is a point such that $\angle A B C$ is a right angle.
(a) Find $\overrightarrow{A B}$.
(b) Find $\overrightarrow{A B} \cdot \overrightarrow{A B}$ and $\overrightarrow{A B} \cdot \overrightarrow{B C}$.

Hence find $\overrightarrow{A B} \cdot \overrightarrow{A C}$.
(1993-CE-A MATH 1 \#08) (16 marks)
8.


Figure 1

In Figure 1, $O A B$ is a triangle. $P, Q$ are two points on $A B$ such that $A P: P B=P Q: Q B=r: 1$, where $r>0$.
$T$ is a point on $O B$ such that $O T: T B=1: r$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O P}$ and $\overrightarrow{O Q}$ in terms of $r$, a and $\mathbf{b}$.
(b) Express $\overrightarrow{O T}$ in terms of $r$ and $\mathbf{b}$.

Hence show that $\overrightarrow{T Q}=\frac{a+\left(r^{2}+r-1\right) b}{(r+1)^{2}}$.
(c) Find the value(s) of $r$ such that $\overrightarrow{O A}$ is parallel to $\overrightarrow{T Q}$.
(d) Suppose $O A=2, O B=16$ and $\angle A O B=\frac{\pi}{3}$.
(i) Find $\mathbf{a} \cdot \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{b}$.
(ii) Find the value(s) of $r$ such that $\overrightarrow{O A}$ is perpendicular to $\overrightarrow{T Q}$.
(1994-CE-A MATH 1 \#03) (6 marks)
3. $\quad P, Q$ and $R$ are points on a plane such that $\overrightarrow{O P}=\mathbf{i}+2 \mathbf{j}, \overrightarrow{O Q}=3 \mathbf{i}+\mathbf{j}$ and $\overrightarrow{P R}=-3 \mathbf{i}-2 \mathbf{j}$, where $O$ is the origin.
(a) Find $\overrightarrow{P Q}$ and $|\overrightarrow{P Q}|$.
(b) Find the value of $\cos \angle Q P R$.

## (1994-CE-A MATH 1 \#10) (16 marks)

10. 



Figure 2
In Figure 2, D is the mid-point of $O B$ and $C$ is a point on $A B$ such that $A C: C B=2: 1 . O C$ is produced to a point $E$ such that $O C: C E=1: k$. Let $\overrightarrow{O Q}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O C}$ and $\overrightarrow{D A}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(b) Show that $\overrightarrow{B E}=\frac{k+1}{3} \mathbf{a}+\frac{2 k-1}{3} \mathbf{b}$.
(c) Find the value of $k$ such that $\overrightarrow{B E}$ is parallel to $\overrightarrow{D A}$.
(d) Given $|\mathbf{a}|=1,|\mathbf{b}|=2, \angle B O A=\frac{\pi}{3}$.
(i) Find $\mathbf{a} \cdot \mathbf{b}$.
(ii) Find the value of $k$ such that $\overrightarrow{B E}$ is perpendicular to $\overrightarrow{O E}$.

Hence find the distance of $B$ from $O C$.
(1995-CE-A MATH 1 \#07) (8 marks)
7. Let $\overrightarrow{O P}=2 \mathbf{i}+3 \mathbf{j}$ and $\overrightarrow{O Q}=-6 \mathbf{i}+4 \mathbf{j}$. Let $R$ be a point on $P Q$ such that $P R: R Q=k: 1$, where $k>0$.
(a) Express $\overrightarrow{O R}$ in terms of $k, \mathbf{i}$ and $\mathbf{j}$.
(b) Express $\overrightarrow{O P} \cdot \overrightarrow{O R}$ and $\overrightarrow{O Q} \cdot \overrightarrow{O R}$ in terms of $k$.
(c) Find the value of $k$ such that $O R$ bisects $\angle P O Q$.
(1995-CE-A MATH 1 \#08) (16 marks)
8.


## Figure 1

In Figure $1, A B C D$ is a parallelogram and $F$ is a point on $A B . D F$ meets $A C$ at a point $E$ such that $D E: E F=\lambda: 1$, where $\lambda$ is a positive number. Let $\overrightarrow{A B}=\mathbf{p}, \overrightarrow{A D}=\mathbf{q}$ and $\overrightarrow{A E}=h \overrightarrow{A C}, \overrightarrow{A F}=k \overrightarrow{A B}$, where $h, k$ are positive numbers.
(a) (i) Express $\overrightarrow{A E}$ in terms of $h, \mathbf{p}$ and $\mathbf{q}$.
(ii) Express $\overrightarrow{A E}$ in terms of $\lambda, k, \mathbf{p}$ and $\mathbf{q}$. Hence show that $\lambda=\frac{1}{k}$.
(b) It is given that $|\mathbf{p}|=3,|\mathbf{q}|=2, \angle D A B=\frac{\pi}{3}$.
(i) Find $\mathbf{p} \cdot \mathbf{q}$.
(ii) Suppose $D F$ is perpendicular to $A C$.
(1) By expressing $\overrightarrow{D F}$ in terms of $k, \mathbf{p}$ and $\mathbf{q}$, find the value of $k$.
(2) Using (a), or otherwise, find the length of $A E$.
(1996-CE-A MATH 1 \#07) (6 marks)
7. Given $\overrightarrow{O A}=4 \mathbf{i}+3 \mathbf{j}$ and $C$ is a point on $O A$ such that $|\overrightarrow{O C}|=\frac{16}{5}$.
(a) Find the unit vector in the direction of $\overrightarrow{O A}$.

Hence find $\overrightarrow{O C}$.
(b) If $\overrightarrow{O B}=\mathbf{i}+4 \mathbf{j}$, show that $B C$ is perpendicular to $O A$.
(1996-CE-A MATH 1 \#10) (16 marks)
10.


Figure 2

In Figure $2, D$ is the mid-point of $A C$ and $E$ is a point on $B C$ such that $B E: E C=1: t$, where $t>0 . D E$ is produced to a point $F$ such that $D E: E F=1: 7$. Let $\overrightarrow{A D}=\mathbf{a}$ and $\overrightarrow{A B}=\mathbf{b}$.
(a) (i) Express $\overrightarrow{A E}$ in terms of $t$, a and $\mathbf{b}$.
(ii) Express $\overrightarrow{A E}$ in terms of a and $\overrightarrow{A F}$.

Hence, or otherwise, show that $\overrightarrow{A F}=\frac{9-7 t}{1+t} \mathbf{a}+\frac{8 t}{1+t} \mathbf{b}$.
(b) Suppose that $A, B$ and $F$ are collinear.
(i) Find the value of $t$.
(ii) It is given that $|\mathbf{a}|=3,|\mathbf{b}|=2$ and $\cos \angle B A C=\frac{1}{3}$.
(1) Find $\mathbf{a} \cdot \mathbf{b}$.
(2) Find $\overrightarrow{A B} \cdot \overrightarrow{B C}$ and $\overrightarrow{A D} \cdot \overrightarrow{D E}$.
(3) Does the circle passing through points $B, C$ and $D$ also pass through point $F$ ?

Explain your answer.
(1997-CE-A MATH 1 \#07) (7 marks)
7. Let $\mathbf{a}$ and $\mathbf{b}$ be two vectors such that $\mathbf{a}=2 \mathbf{i}+4 \mathbf{j},|\mathbf{b}|=\sqrt{5}$ and $\cos \theta=\frac{4}{5}$, where $\theta$ is the angle between $\mathbf{a}$ and $\mathbf{b}$.
(a) Find $|\mathbf{a}|$.
(b) Find $\mathbf{a} \cdot \mathbf{b}$.
(c) If $\mathbf{b}=m \mathbf{i}+n \mathbf{j}$, find the values of $m$ and $n$.
(1997-CE-A MATH 1 \#09) (16 marks)
9.


Figure 2

In Figure 2, $A B C D$ is a rectangle wilt $A B=1$ and $A D=2 . F$ is a point on $B C$ produced with $B C=C F . P$ is a variable point on $A B$ produced such that $B P=m . A F$ and $D P$ intersect at a point $E$. Let $\overrightarrow{A B}=\mathbf{a}, \overrightarrow{A D}=\mathbf{b}$ and $\angle A E D=\theta$.
(a) (i) Express $\overrightarrow{A F}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(ii) Express $\overrightarrow{D P}$ in terms of $m$, a and $\mathbf{b}$.
(b) Suppose $\theta=\frac{\pi}{2}$.
(i) Show that $m=7$.
(ii) Let $A E: E F=1: r$ and $D E: E P=1: k$.
(1) Express $\overrightarrow{A E}$ in terms of $r$, a and $\mathbf{b}$.
(2) Express $\overrightarrow{A E}$ in terms of $k$, $\mathbf{a}$ and $\mathbf{b}$.

Hence find the values of $r$ and $k$.
(c) As $m$ tends to infinity, $\theta$ approaches a certain value $\theta_{1}$. Find $\theta_{1}$ correct to the nearest degree.
(1998-CE-A MATH 1 \#05) (6 marks)
5.


Figure 1

Figure 1 shows the points $A, B$ and $C$ whose position vectors are $\mathbf{i}-\mathbf{j}, 4 \mathbf{i}+4 \mathbf{j}$ and $-2 \mathbf{i}+7 \mathbf{j}$ respectively.
(a) Find the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(b) By considering $\overrightarrow{A B} \cdot \overrightarrow{A C}$, find $\angle B A C$ to the nearest degree.
(1998-CE-A MATH 1 \#09) (16 marks)
9.


## Figure 2

In Figure 2, $O A B$ is a triangle with $O A=2, O B=3$ and $\angle A O B=\frac{\pi}{3} . C$ is a point on $A B$ such that $A C: C B=t: 1-t$, where $0<t<1 . D$ and $E$ are respectively the feet of perpendicular from $C$ to $O A$ and $O B$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) (i) Find $\mathbf{a} \cdot \mathbf{b}$,
(ii) Express $\overrightarrow{O C}$ in terms of $t$, $\mathbf{a}$ and $\mathbf{b}$.
(iii) Express $\mathbf{a} \cdot \overrightarrow{O C}$ and $\mathbf{b} \cdot \overrightarrow{O C}$ in terms of $t$.
(b) (i) Using (a) (iii), show that $\mathbf{a} \cdot \overrightarrow{O D}=4-t$ and $\mathbf{b} \cdot \overrightarrow{O E}=3+6 t$.
(ii) If $\overrightarrow{O D}=k \mathbf{a}$ and $\overrightarrow{O E}=s \mathbf{b}$, express $k$ and $s$ in terms of $t$.
(c) Find the value of $t$ such that $\overrightarrow{D E}$ is parallel to $\overrightarrow{A B}$.
(1999-CE-A MATH 1 \#07) (6 marks)
7. Let $\mathbf{a}, \mathbf{b}$ be two vectors such that $\mathbf{a}=3 \mathbf{i}+4 \mathbf{j}$ and $|\mathbf{b}|=4$. The angle between $\mathbf{a}$ and $\mathbf{b}$ is $\frac{\pi}{3}$.
(a) Find $|\mathbf{a}|$.
(b) Find $\mathbf{a} \cdot \mathbf{b}$.
(c) If the vector $(m \mathbf{a}+\mathbf{b})$ is perpendicular to $\mathbf{b}$, find the value of $m$.
(1999-CE-A MATH 1 \#10) (16 marks)
10.


Figure 3
In Figure 3, $O A B$ is a triangle. $C$ and $D$ are points on $A B$ and $O B$ respectively such that $A C: C B=8: 7$ and $O D: D B=16: 5 . O C$ and $A D$ intersect at a point $E$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O C}$ and $\overrightarrow{A D}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(b) Let $\overrightarrow{O E}=r \overrightarrow{O C}$ and $\overrightarrow{A E}=k \overrightarrow{A D}$.
(i) Express $\overrightarrow{O E}$ in terms of $r$, $\mathbf{a}$ and $\mathbf{b}$.
(ii) Express $\overrightarrow{O E}$ in terms of $k$, a and $\mathbf{b}$.

Hence show that $r=\frac{6}{7}$ and $k=\frac{3}{5}$.
(c) It is given that $E C: E D=1: 2$.
(i) Using (b), or otherwise, find $E A: E O$.
(ii) Explain why $O A C D$ is a cyclic quadrilateral.
(2000-CE-A MATH 1 \#08) (7 marks)
8.


Figure 1

In Figure $1, \overrightarrow{O A}=\mathbf{i}, \overrightarrow{O B}=\mathbf{j} . C$ is a point on $O A$ produced such that $A C=k$, where $k>0 . D$ is a point on $B C$ such that $B D: D C=1: 2$.
(a) Show that $\overrightarrow{O D}=\frac{1+k}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}$.
(b) If $\overrightarrow{O D}$ is a unit vector, find
(i) $k$,
(ii) $\angle B O D$, giving your answer correct to the nearest degree.
(2000-CE-A MATH 1 \#09) (16 marks)
9.


In Figure 2, $O A C$ is a triangle. $B$ and $D$ are points on $A C$ such that $A D=D B=B C . F$ is a point on $O D$ produced such that $O D=D F . E$ is a point on $O B$ produced such that $O E=k(O B)$, where $k>1$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) (i) Express $\overrightarrow{O D}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(ii) Show that $\overrightarrow{O C}=\frac{-1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}$.
(iii) Express $\overrightarrow{E F}$ in terms of $k$, a and $\mathbf{b}$.
(b) It is given that $O A=3, O B=2$ and $\angle A O B=\frac{\pi}{3}$.
(i) Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{b} \cdot \mathbf{b}$.
(ii) Suppose that $\angle O E F=\frac{\pi}{2}$.
(1) Find the value of $k$.
(2) A student states that points $C, E$ and $F$ are collinear. Explain whether the student is correct.
(2001-AL-P MATH 1 \#04) (5 marks)
4. $A, B, C$ are the points $(a, 0,0),(0, b, 0),(0,0, c)$ respectively and $O$ is the origin.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Let $S_{\triangle X Y Z}$ denote the area of the triangle with vertices $X, Y$ and $Z$. Prove that

$$
S_{\triangle A B C}^{2}=S_{\triangle O A B}^{2}+S_{\triangle O B C}^{2}+S_{\triangle O C A}^{2}
$$

## (2001-CE-A MATH \#08) (6 marks)

8. Let $\mathbf{a}, \mathbf{b}$ be two vectors such that $|\mathbf{a}|=4,|\mathbf{b}|=3$ and the angle between $\mathbf{a}$ and $\mathbf{b}$ is $\frac{\pi}{3}$.
(a) Find $\mathbf{a} \cdot \mathbf{b}$.
(b) Find the value of $k$ if the vectors $(\mathbf{a}+k \mathbf{b})$ and $(\mathbf{a}-2 \mathbf{b})$ are perpendicular to each other.
(2001-CE-A MATH \#14) (12 marks)
9. (a)


Figure 1(a)

In Figure 1 (a), $O P Q$ is a triangle. $R$ is a point on $P Q$ such that $P R: R Q=r: s$.
Express $\overrightarrow{O R}$ in terms of $r, s, \overrightarrow{O P}$ and $\overrightarrow{O Q}$. Hence show that if $\overrightarrow{O R}=m \overrightarrow{O P}+n \overrightarrow{O Q}$, then $m+n=1$.
(b)


## Figure 1(b)

In Figure 1 (b), $O A B$ is a triangle. $X$ is the mid-point of $O A$ and $Y$ is a point on $A B . B X$ and $O Y$ intersect at point $G$ where $B G: G X=1: 3$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(i) Express $\overrightarrow{O G}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(ii) Using (a), express $\overrightarrow{O Y}$ in terms of a and $\mathbf{b}$.
(Hint: Put $\overrightarrow{O Y}=k \overrightarrow{O G}$.)
(iii) Moreover, $A G$ is produced to a point $Z$ on $O B$. Let $\overrightarrow{O Z}=h \overrightarrow{O B}$.
(1) Find the value of $h$.
(2) Explain whether $Z Y$ is parallel to $O A$ or not.
(2002-AL-P MATH 1 \#04) ( 6 marks)
4. Let $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$ and $\mathbf{a}=\mathbf{i}, \mathbf{b}=1+\mathbf{j}, \mathbf{c}=\mathbf{j}+\mathbf{k}$.
(a) Prove that $\mathbf{a}$ is not perpendicular to $\mathbf{b} \times \mathbf{c}$.
(b) Find all unit vectors which are perpendicular to both $\mathbf{a}$ and $\mathbf{b} \times \mathbf{c}$.
(c) If $\theta \in[0, \pi]$ is the angle between $\mathbf{a}$ and $\mathbf{b} \times \mathbf{c}$, prove that $\frac{\pi}{4}<\theta<\frac{\pi}{3}$.
(2002-CE-A MATH \#10) (6 marks)
10.


Figure 2
Figure 2 shows a parallelogram $O A B C$. The position vectors of the points $A$ and $C$ are $\mathbf{i}+4 \mathbf{j}$ and $5 \mathbf{i}+2 \mathbf{j}$ respectively.
(a) Find $\overrightarrow{O B}$ and $\overrightarrow{A C}$.
(b) Let $\theta$ be the acute angle between $O B$ and $A C$. Find $\theta$ correct to the nearest degree.
(2002-CE-A MATH \#13) (12 marks)
13.


Figure 4
In Figure 4, $O A B$ is a triangle. Point $E$ is the foot of perpendicular from $O$ to $A B$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$. It is given that $O A=3, O B=2$ and $\angle A O B=\frac{\pi}{3}$.
(a) Find $\mathbf{a} \cdot \mathbf{b}$.
(b) Find $\overrightarrow{O E}$ in terms of a and $\mathbf{b}$.
(Hint : Let $B E: E A=t:(1-t)$.
(c) $\quad F$ is a variable point on $O E$. A student says that $\overrightarrow{B A} \cdot \overrightarrow{B F}$ is always a constant. Explain whether the student is correct or not.

If you agree with the student, find the value of that constant.
If you do not agree with the student, find two possible values of $\overrightarrow{B A} \cdot \overrightarrow{B F}$.
(2003-AL-P MATH 1 \#05) (6 marks)
5. Let $\mathbf{m}$ and $\mathbf{n}$ be vectors in $\mathbf{R}^{3}$ and $\lambda \in \mathbf{R}$. It is given that

$$
\left\{\begin{array}{l}
\mathbf{u}=\lambda \mathbf{n}+(1-\lambda) \mathbf{m} \\
\mathbf{v}=2(1-\lambda) \mathbf{n}-\lambda \mathbf{m}
\end{array}\right.
$$

(a) Prove that $\mathbf{u} \times \mathbf{v}=\left(3 \lambda^{2}-4 \lambda+2\right) \mathbf{m} \times \mathbf{n}$.
(b) Suppose $|\mathbf{m}|=4,|\mathbf{n}|=3$ and the angle between $\mathbf{m}$ and $\mathbf{n}$ is $\frac{\pi}{6}$.
(i) Evaluate $|\mathbf{m} \times \mathbf{n}|$.
(ii) Find the smallest area of the parallelogram with adjacent sides $\mathbf{u}$ and $\mathbf{v}$ as $\lambda$ varies.
(2003-CE-A MATH \#06) (5 marks)
6.


In Figure 1, point $P$ divides both line segments $A B$ and $O C$ in the same ratio $3: 1$. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O P}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(b) Express $\overrightarrow{O C}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.

Hence show that $O A$ is parallel to $B C$.
(2003-CE-A MATH \#14) (12 marks)
14.


Figure 3
In Figure 3, $O A B$ is a triangle such that $O A=3, O B=1$ and $\angle A O B=\frac{2 \pi}{3} . C$ is a point on $A B$ such that $A C: C B=3: 2 . D$ is a point on $O C$ produced such that $\overrightarrow{O D}=k \overrightarrow{O C}$ and $A B$ is perpendicular to $A D$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Find $\mathbf{a} \cdot \mathbf{b}$.
(b) Show that $\overrightarrow{A D}=\left(\frac{2 k}{5}-1\right) \mathbf{a}+\frac{3 k}{5} \mathbf{b}$.

Hence find the value of $k$.
(c) Determine whether the triangles $O C B$ and $A C D$ are similar.
(2004-CE-A MATH \#06) (5 marks)
6.


Figure 2

In Figure 2, $O A B$ is a triangle. $C$ is a point on $A B$ such that $A C: C B=1: 2$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O C}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(b) If $|\mathbf{a}|=1,|\mathbf{b}|=2$ and $\angle A O B=\frac{2 \pi}{3}$, find $|\overrightarrow{O C}|$.
(2004-CE-A MATH \#13) (12 marks)
13.


Figure 6

In Figure 6, $O A B C$ and $O D E F$ are two squares such that $O A=1, O F=2$ and $\angle C O D=\theta$, where $0<\theta<\frac{\pi}{2}$.
Let $\overrightarrow{O D}=2 \mathbf{i}$ and $\overrightarrow{O F}=-2 \mathbf{j}$, where $\mathbf{i}$ and $\mathbf{j}$ are two perpendicular unit vectors.
(a) (i) Express $\overrightarrow{O C}$ and $\overrightarrow{O A}$ in terms of $\theta$, i and $\mathbf{j}$.
(ii) Show that $\overrightarrow{A D}=(2+\sin \theta) \mathbf{i}-\cos \theta \mathbf{j}$.
(b) Show that $\overrightarrow{A D}$ is always perpendicular to $\overrightarrow{F C}$.
(c) Find the value(s) of $\theta$ such that points $B, C$ and $E$ are collinear. Give your answer(s) correct to the nearest degree.
(2005-AL-P MATH 1 \#12) (15 marks)
12. (a) Let $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ be vectors in $\mathbf{R}^{3}$.
(i) Prove that $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$,
where $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ and $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$.
Hence deduce that $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})$.
(ii) Suppose $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \neq 0$. Prove that

$$
\mathbf{x}=\left(\frac{\mathbf{x} \cdot(\mathbf{b} \times \mathbf{c})}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}\right) \mathbf{a}+\left(\frac{\mathbf{x} \cdot(\mathbf{c} \times \mathbf{a})}{\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})}\right) \mathbf{b}+\left(\frac{\mathbf{x} \cdot(\mathbf{a} \times \mathbf{b})}{\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})}\right) \mathbf{c}
$$

for any vector $\mathbf{x}$ in $\mathbf{R}^{3}$.
(iii) Suppose $\mathbf{a} \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{b}=\mathbf{c} \cdot \mathbf{c}=1$ and $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{c}=\mathbf{c} \cdot \mathbf{a}=0$.
(1) Prove that $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|=1$.
(2) Using (a) (ii), prove that

$$
\mathbf{x}=(\mathbf{x} \cdot \mathbf{a}) \mathbf{a}+(\mathbf{x} \cdot \mathbf{b}) \mathbf{b}+(\mathbf{x} \cdot \mathbf{c}) \mathbf{c}
$$

for any vector $\mathbf{x}$ in $\mathbf{R}^{3}$.
(b) Let $\mathbf{u}=\frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k}), \mathbf{v}=\frac{1}{\sqrt{2}}(\mathbf{i}-\mathbf{k}), \mathbf{w}=\frac{1}{\sqrt{6}}(\mathbf{i}-2 \mathbf{j}+\mathbf{k})$ and $\mathbf{r}=6 \mathbf{i}-\mathbf{j}+10 \mathbf{k}$.

Find real numbers $\alpha, \beta$ and $\gamma$ such that $\mathbf{r}=\alpha \mathbf{u}+\beta \mathbf{v}+\gamma \mathbf{w}$.
(2005-CE-A MATH \#11) (6 marks)
11.


Figure 2 shows two vectors $\mathbf{a}$ and $\mathbf{b}$, where $|\mathbf{a}|=3,|\mathbf{b}|=5$, and the angle between the two vectors is $\frac{2 \pi}{3}$.
(a) Find $\mathbf{a} \cdot \mathbf{b}$.
(b) Let $\mathbf{c}$ be a vector such that $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$. Find $|\mathbf{c}|$.
(2005-CE-A MATH \#14) (12 marks)
14.


Figure 4
In Figure 4, $O A=2, O B=1$ and $\cos \angle A O B=\frac{1}{4} . C$ is a point such that $C B / / O A$ and $O C \perp O A$. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.
(a) Find $C B$ in terms of a .

Hence, or otherwise, show that $\mathbf{c}=\mathbf{b}-\frac{1}{8} \mathbf{a}$.
(b)


Figure 5
$D$ is a point such that $D A / / O B$ and $O D=O A$ (see Figure 5). Let $\overrightarrow{O D}=\mathbf{d}$.
(i) By finding $D A$, or otherwise, express $\mathbf{d}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(ii) $\quad P$ is a point on the line segment $C D$ such that $C P: P D=r: 1$. Express $\overrightarrow{O P}$ in terms of $r$, a and $\mathbf{b}$.
(iii) If $M$ is the mid-point of $A B$, find the ratio in which $O M$ divides $C D$.
(2006-CE-A MATH \#07) (5 marks)
7. Let $\mathbf{a}$ and $\mathbf{b}$ be two vectors such that $|\mathbf{a}|=\sqrt{3},|\mathbf{b}|=2$ and the angle between them is $\frac{5 \pi}{6}$.
(a) Find $\mathbf{a} \cdot \mathbf{b}$.
(b) Find $|\mathbf{a}+2 \mathbf{b}|$.
(2006-CE-A MATH \#18) (12 marks)
18. Figure 9 shows a triangle $O A B$. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O A}=\mathbf{b}$ and $M$ be the mid-point of $O A$.


Figure 9


Figure 11


Figure 10


Figure 12
(a) Let $G$ be the centroid of $\triangle O A B$ (see Figure 10). It is given that $B G: G M=2: 1$. Express $\overrightarrow{O G}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(b) Let $T$ be the orthocentre of $\triangle O A B$ (see Figure 11). Show that $\overrightarrow{O T} \cdot \mathbf{a}-\mathbf{b} \cdot \mathbf{a}=0$ and write down the value of $\overrightarrow{O T} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{b}$.
(c) Let $C$ be the circumcentre of $\triangle O A B$ (see Figure 12). Show that $2 \overrightarrow{O C} \cdot \mathbf{a}=|\mathbf{a}|^{2}$ and find $\overrightarrow{O C} \cdot \mathbf{b}$ in terms of $|\mathbf{b}|$.
(d) Consider the points $G, T$ and $C$ described in (a), (b) and (c) respectively.
(i) Using the above results, find the values of $(\overrightarrow{G T}-2 \overrightarrow{C G}) \cdot \mathbf{a}$ and $(\overrightarrow{G T}-2 \overrightarrow{C G}) \cdot \mathbf{b}$.
(ii) Show that $G, T$ and $C$ are collinear.

Note: You may use the following property for vectors in the two-dimensional space:
If $\mathbf{w} \cdot \mathbf{u}=\mathbf{w} \cdot \mathbf{v}=0$, where $\mathbf{u}$ and $\mathbf{v}$ are non-parallel, then $\mathbf{w}=0$.
(2007-CE-A MATH \#08) (5 marks)
8.


In Figure 2, $O C A$ is a straight line and $B C \perp O A$. It is given that $\overrightarrow{O A}=6 \mathbf{i}+3 \mathbf{j}$ and $\overrightarrow{O B}=2 \mathbf{i}+6 \mathbf{j}$. Let $\overrightarrow{O C}=k \overrightarrow{O A}$.
(a) Express $\overrightarrow{B C}$ in terms of $k, \mathbf{i}$ and $\mathbf{j}$.
(b) Find the value of $k$.
(2007-CE-A MATH \#17) (12 marks)
17.


Figure 10
In Figure 10, $O A B$ is an equilateral triangle with $O A=1 . M$ is the mid-point of $A B$ and $P$ divides the line segment $O A$ in the ratio $2: 1 . Q$ is a point on $O B$ such that $P Q$ intersects $O M$ at $G$ and $P G: G Q=4: 3$. Let $O A$ and $O B$ be a and bespectively.
(a) Find $\overrightarrow{O M}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(b) Let $O Q: Q B=k:(1-k)$.
(i) Find $\overrightarrow{O G}$ in terms of $k$, $\mathbf{a}$ and $\mathbf{b}$.
(ii) Show that $\overrightarrow{P Q}=\frac{1}{2} \mathbf{b}-\frac{2}{3} \mathbf{a}$.
(c) (i) Find $\mathbf{a} \cdot \mathbf{b}$ and hence find $|\overrightarrow{P Q}|$.
(ii) Find $\angle Q G M$ correct to the nearest degree.
(2008-CE-A MATH \#07) (5 marks)
7. It is given that $\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}$ and $\overrightarrow{O B}=5 \mathbf{i}+6 \mathbf{j}$. If $P$ is a point on $A B$ such that $\overrightarrow{P B}=2 \overrightarrow{A P}$, find the unit vector in the direction of $\overrightarrow{O P}$.
(2008-CE-A MATH \#15) (12 marks)
15.


Figure 3
In Figure 3, $\mathbf{p}$ and $\mathbf{q}$ are unit vectors with angle between them $60^{\circ}$. Let $\overrightarrow{O A}=4 \mathbf{p}, \overrightarrow{O B}=3 \mathbf{q}$ and $\overrightarrow{O G}=\frac{2}{3} \mathbf{p}+\frac{5}{3} \mathbf{q}$.
(a) Find $\mathbf{p} \cdot \mathbf{q}$.
(b) Show that $O G \perp A B$.

Hence show that $G$ is the orthocentre of $\triangle O A B$.
(c)


Figure 4
In Figure 4, H is the circumcentre of $\triangle O A B, M$ and $N$ are the mid-points of $A B$ and $O A$ respectively. Let $H M: O G=t: 1$.

By expressing $\overrightarrow{H M}$ and $\overrightarrow{H N}$ in terms of $t, \mathbf{p}$ and $\mathbf{q}$, find $\overrightarrow{O H}$ in terms of $\mathbf{p}$ and $\mathbf{q}$.
(2009-CE-A MATH \#07) (4 marks)
7.


Figure 1
In Figure $1, A C$ is an altitude of $\triangle O A B$. Let a , band be $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ respectively. It is given that $|\mathbf{a}|=6,|\mathbf{b}|=8$ and $\mathbf{a} \cdot \mathbf{b}=24$. Find
(a) $\angle A O B$,
(b) $|c|$.
(2009-CE-A MATH \#14) (12 marks)
14.


Figure 4
In Figure 4, CD is an altitude of $\triangle A B C$ and $H$ is the mid-point of $C D . A H$ and $B H$ are produced to meet $B C$ and $A C$ at $E$ and $F$ respectively.
Let $\mathbf{p}, \lambda \mathbf{p}(\lambda>1)$ and $\mathbf{q}$ be $\overrightarrow{A D}, \overrightarrow{A B}$ and $\overrightarrow{D H}$ respectively. Let $\frac{B E}{E C}=r$.
(a) Find $\overrightarrow{A H}$ in terms of $\mathbf{p}$ and $\mathbf{q}$.
(b) Express $\overrightarrow{A E}$ in terms of $\lambda, r, \mathbf{p}$ and $\mathbf{q}$. Hence show that $r=\lambda$.
(c) It is given that $|\mathbf{p}|=1,|\mathbf{q}|=2$ and $H$ is the orthocentre of $\triangle A B C$.
(i) Find $\overrightarrow{A E}$ in terms of $\mathbf{p}$ and $\mathbf{q}$.
(ii) Find $\frac{A F}{F C}$.
(2010-CE-A MATH \#12) (7 marks)
12. It is given that $\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j},|\overrightarrow{O B}|=5 \sqrt{2}$ and $\cos \angle A O B=\frac{3}{\sqrt{10}}$.
(a) Evaluate $\overrightarrow{O A} \cdot \overrightarrow{O B}$.
(b) Find $\overrightarrow{O B}$.
(2010-CE-A MATH \#14) (12 marks)
14.


Figure 5
In Figure 5, $O A B C$ is a parallelogram with $O A=7, O C=3$ and $\angle A O C=\theta$ where $\cos \theta=-\frac{1}{3} . D$ is a point on $A B$ such that $O D \perp A B$ and $A D: D B=1: r$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
(a) By expressing $\overrightarrow{O D}$ in terms of $\mathbf{a}$, $\mathbf{c}$ and $r$, find the value of $r$.
(b) $E$ is a point on $O D$ produced such that $C, B$ and $E$ are collinear.
(i) Express $\overrightarrow{O E}$ in terms of $\mathbf{a}$ and $\mathbf{c}$.
(ii) Are $A, O, C$ and $E$ concyclic? Explain your answer.
(2011-CE-A MATH \#09) (6 marks)
9. It is given that $\overrightarrow{O A}=\mathbf{i}+\mathbf{j}$ and $\overrightarrow{O B}=2 \mathbf{i}+\mathbf{j}$.
(a) Find the value of $\cos \angle A O B$.
(b) Let $\overrightarrow{O C}=k \mathbf{i}+\mathbf{j}$. If $O B$ is the angle bisector of $\triangle A O C$, find the value of $k$.
(2011-CE-A MATH \#12) (12 marks)
12.


Figure 2
Figure 2 shows a triangle $O C D . A$ and $B$ are points on $O C$ and $O D$ respectively such that $O A: A C=O B: B D=1: h$, where $h>0 . A D$ and $B C$ intersect at $E$ such that $A E: E D=\mu:(1-\mu)$ and $B E: E C=\lambda:(1-\lambda)$, where $0<\mu<1$ and $0<\lambda<1$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) By considering $\overrightarrow{O E}$, show that $\mu=\lambda$.
(b) $\quad F$ is a point on $C D$ such that $O, E$ and $F$ are collinear. Show that $O F$ is a median of $\triangle O C D$.
(c) Using the above results, show that in a triangle, the centroid divides every median in $2: 1$.
(SP-DSE-MATH-EP(M2) \#09) (6 marks)
9.


Figure 2
Let $\overrightarrow{O A}=4 \mathbf{i}+3 \mathbf{j}, \overrightarrow{O B}=3 \mathbf{j}+\mathbf{k}$ and $\overrightarrow{O C}=3 \mathbf{i}+\mathbf{j}+5 \mathbf{k}$. Figure 2 shows the parallelepiped $O A D B E C F G$ formed by $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$.
(a) Find the area of the parallelogram $O A D B$.
(b) Find the volume of the parallelepiped $O A D B E C F G$.
(c) If $C^{\prime}$ is a point different from $C$ such that the volume of the parallelepiped formed by $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C^{\prime}}$ is the same as that of $O A D B E C F G$, find a possible vector of $\overrightarrow{O C^{\prime}}$.
(SP-DSE-MATH-EP(M2) \#14) (10 marks)
14.


Figure 3
In Figure 3, $\Delta A B C$ is an acute-angled triangle, where $O$ and $H$ are the circumcentre and orthocentre respectively.
Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{O H}=\mathbf{h}$.
(a) Show that $(\mathbf{h}-\mathbf{a}) / /(\mathbf{b}+\mathbf{c})$.
(b) Let $\mathbf{h}-\mathbf{a}=t(\mathbf{b}+\mathbf{c})$, where $t$ is a non-zero constant.

Show that
(i) $t(\mathbf{b}+\mathbf{c})+\mathbf{a}-\mathbf{b}=s(\mathbf{c}+\mathbf{a})$ for some scalars,
(ii) $\quad(t-1)(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{c}-\mathbf{a})=0$.
(c) Express $\mathbf{h}$ in terms of $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$.
(PP-DSE-MATH-EP(M2) \#12) (13 marks)
12.


Figure 2

Let $\overrightarrow{O A}=\mathbf{i}, \overrightarrow{O B}=\mathbf{j}$ and $\overrightarrow{O C}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ (see Figure 2). Let $M$ and $N$ be points on the straight lines $A B$ and $O C$ respectively such that $A M: M B=a:(1-a)$ and $O N: N C=b:(1-b)$, where $0<a<1$ and $0<b<1$. Suppose that $M N$ is perpendicular to both $A B$ and $O C$.
(a) (i) Show that $\overrightarrow{M N}=(a+b-1) \mathbf{i}+(b-a) \mathbf{j}+b \mathbf{k}$.
(ii) Find the values of $a$ and $b$.
(iii) Find the shortest distance between the straight lines $A B$ and $O C$.
(b) (i) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(ii) Let $G$ be the projection of $O$ on the plane $A B C$, find the coordinates of the intersecting point of the two straight lines $O G$ and $M N$.
(2012-DSE-MATH-EP(M2) \#07) (5 marks)
7.


Figure 3

Figure 3 shows a parallelepiped $O A D B E C F G$. Let $\overrightarrow{O A}=6 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \overrightarrow{O B}=2 \mathbf{i}+\mathbf{j}$ and $\overrightarrow{O C}=5 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$.
(a) Find the area of the parallelogram $O A D B$.
(b) Find the distance between point $C$ and the plane $O A D B$.
(2012-DSE-MATH-EP(M2) \#12) (12 marks)
12.


Figure 6

Figure 6 shows an acute angled scalene triangle $A B C$, where $D$ is the mid-point of $A B, G$ is the centroid and $O$ is the circumcentre. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.
(a) Express $\overrightarrow{A G}$ in terms of $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$.
(b) It is given that $E$ is a point on $A B$ such that $C E$ is an altitude. Extend $O G$ to meet $C E$ at $F$.
(i) Prove that $\triangle D O G \sim \triangle C F G$.

Hence find $F G: G O$.
(ii) Show that $\overrightarrow{A F}=\mathbf{b}+\mathbf{c}$.

Hence prove that $F$ is the orthocentre of $\triangle A B C$.
(2013-DSE-MATH-EP(M2) \#10) (5 marks)
10.


Figure 2
Let $\overrightarrow{O A}=2 \mathbf{i}$ and $\overrightarrow{O B}=\mathbf{i}+2 \mathbf{j} . M$ is the mid-point of $O A$ and $N$ lies on $A B$ such that $B N: N A=k: 1$. $B M$ intersects $O N$ at $P$.
(a) Express $\overrightarrow{O N}$ in terms of $k$.
(b) If $A, N, P$ and $M$ are concyclic, find the value of $k$.
(2013-DSE-MATH-EP(M2) \#14) (12 marks)
14.


Figure 5
Figure 5 shows a fixed tetrahedron $O A B C$ with $\angle A O B=\angle B O C=\angle C O A=\frac{\pi}{2} . P$ is a variable point such that $\overrightarrow{A P} \cdot \overrightarrow{B P}+\overrightarrow{B P} \cdot \overrightarrow{C P}+\overrightarrow{C P} \cdot \overrightarrow{A P}=0$. Let $D$ be a fixed point such that $\overrightarrow{O D}=\frac{\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}}{3}$.

Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \overrightarrow{O C}=\mathbf{c}, \overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O D}=\mathbf{d}$.
(a) (i) Show that $\overrightarrow{A P} \cdot \overrightarrow{B P}=\mathbf{p} \cdot \mathbf{p}-(\mathbf{a}+\mathbf{b}) \cdot \mathbf{p}$.
(ii) Using (a)(i), show that $\mathbf{p} \cdot \mathbf{p}=2 \mathbf{p} \cdot \mathbf{d}$.
(iii) Show that $|\mathbf{p}-\mathbf{d}|=|\mathbf{d}|$. hence show that $P$ lies on the sphere centred at $D$ with fixed radius.
(b) (i) Alice claims that $O$ lies on the sphere mentioned in (a)(iii). Do you agree? Explain your answer.
(ii) Suppose $P_{1}, P_{2}$ and $P_{3}$ are three distinct points on the sphere in (a)(iii) such that $\overrightarrow{D P_{1}} \times \overrightarrow{D P_{2}}=\overrightarrow{D P_{2}} \times \overrightarrow{D P_{3}}$. Alice claims that the radius of the circle passing through $P_{1}, P_{2}$ and $P_{3}$ is $O D$. Do you agree? Explain your answer.
(2014-DSE-MATH-EP(M2) \#08) (8 marks)
8. Let $\overrightarrow{O P}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}, \overrightarrow{O Q}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ and $\overrightarrow{O R}=2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$.
(a) Find $\overrightarrow{O P} \times \overrightarrow{O Q}$.

Hence find the volume of tetrahedron $O P Q R$.
(b) Find the acute angle between the plane $O P Q$ and the line $O R$, correct to the nearest $0.1^{\circ}$.
(2014-DSE-MATH-EP(M2) \#11) (13 marks)
11.


Figure 4
In Figure 4, C and $D$ are points on $O B$ and $O A$ respectively such that $A D: D O=O C: C B=t:(1-t)$, where $0<t<1, B D$ and $A C$ intersect at $E$ such that $A E: E C=m: 1$ and $B E: E D=n: 1$, where $m$ and $n$ are positive. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) (i) By considering $\triangle O A C$, express $\overrightarrow{O E}$ in terms of $m, t$, a and $\mathbf{b}$.
(ii) By considering $\triangle O B D$, express $\overrightarrow{O E}$ in terms of $n, t$, a and $\mathbf{b}$.
(iii) Show that $m=\frac{t}{(1-t)^{2}}$ and $n=\frac{1-t}{t^{2}}$.
(iv) Chris claims that
"if $m=n$, then $E$ is the centroid of $\triangle O A B "$.
Do you agree? Explain your answer.
(b) It is given that $O A=1$ and $O B=2$. Francis claims that
"if $A C$ is perpendicular to $O B$, then $B D$ is always perpendicular to $O A$ ".
Do you agree? Explain your answer.
(2015-DSE-MATH-EP(M2) \#10) (12 marks)
10. $O A B$ is a triangle. $P$ is the mid-point of $O A . Q$ is a point lying on $A B$ such that $A Q: Q B=1: 2$ while $R$ is a point lying on $O B$ such that $O R: R B=3: 1 . P R$ and $O Q$ intersect at $C$.
(a) (i) Let $t$ be a constant such that $P C: C R=t:(1-t)$.

By expressing $\overrightarrow{O Q}$ in terms of $\overrightarrow{O A}$ and $\overrightarrow{O B}$, find the value of $t$.
(ii) Find $C Q: O Q$.
(b) Suppose that $\overrightarrow{O A}=20 \mathbf{i}-6 \mathbf{j}-12 \mathbf{k}, \overrightarrow{O B}=16 \mathbf{i}-16 \mathbf{j}$ and $\overrightarrow{O D}=\mathbf{i}+3 \mathbf{j}-6 \mathbf{k}$, where $O$ is the origin. Find
(i) the area of $\triangle O A B$,
(ii) the volume of the tetrahedron $A B C D$.
(2016-DSE-MATH-EP(M2) \#12) (13 marks)
12. Let $\overrightarrow{O A}=2 \mathbf{j}+2 \mathbf{k}, \overrightarrow{O B}=4 \mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\overrightarrow{O P}=\mathbf{i}+t \mathbf{j}$, where $t$ is a constant and $O$ is the origin. It is given that $P$ is equidistant from $A$ and $B$.
(a) Find $t$.
(b) Let $\overrightarrow{O C}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$ and $\overrightarrow{O D}=3 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}$. Denote the plane which contains $A, B$ and $C$ by $\Pi$.
(i) Find a unit vector which is perpendicular to $\Pi$.
(ii) Find the angle between $C D$ and $\Pi$.
(iii) It is given that $E$ is a point lying on $\Pi$ such that $\overrightarrow{D E}$ is perpendicular to $\Pi$. Let $F$ be a point such that $\overrightarrow{P F}=\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}$. Describe the geometric relationship between $D, E$ and $F$. Explain your answer.
(2017-DSE-MATH-EP(M2) \#03) (5 marks)
3. $\quad P$ is a point lying on $A B$ such that $A P: P B=3: 2$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$, where $O$ is the origin.
(a) Express $\overrightarrow{O P}$ in terms of $\mathbf{a}$ and $\mathbf{b}$.
(b) It is given that $|\mathbf{a}|=45,|\mathbf{b}|=20$ and $\cos \angle A O B=\frac{1}{4}$. Find
(i) $\mathbf{a} \cdot \mathbf{b}$,
(ii) $|\overrightarrow{O P}|$.
(2017-DSE-MATH-EP(M2) \#10) (12 marks)
10. $A B C$ is a triangle. $D$ is the mid-point of $A C . E$ is a point lying on $B C$ such that $B E: E C=1: r . A B$ produced and $D E$ produced meet at the point $F$. It is given that $D E: E F=1: 10$. Let $\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$,
$\overrightarrow{O B}=4 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$ and $\overrightarrow{O C}=8 \mathbf{i}-3 \mathbf{j}-2 \mathbf{k}$, where $O$ is a the origin.
(a) By expressing $\overrightarrow{A E}$ and $\overrightarrow{A F}$ in terms of $r$, find $r$.
(b) (i) Find $\overrightarrow{A D} \cdot \overrightarrow{D E}$.
(ii) Are $B, D, C$ and $F$ concyclic? Explain your answer.
(c) Let $\overrightarrow{O P}=3 \mathbf{i}+10 \mathbf{j}-4 \mathbf{k}$. Denote the circumcenter of $\triangle B C F$ by $Q$. Find the volume of the tetrahedron $A B P Q$.
(2018-DSE-MATH-EP(M2) \#12) (13 marks)
12. The position vectors of the points $A, B, C$ and $D$ are $4 \mathbf{i}-3 \mathbf{j}+\mathbf{k},-\mathbf{i}+3 \mathbf{j}-3 \mathbf{k}, 7 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$ and $3 \mathbf{i}-2 \mathbf{j}-5 \mathbf{k}$ respectively. Denote the plane which contains $A, B$ and $C$ by $\Pi$. Let $E$ be the projection of $D$ on $\Pi$.
(a) Find
(i) $\overrightarrow{A B} \times \overrightarrow{A C}$,
(ii) the volume of the tetrahedron $A B C D$.
(iii) $\overrightarrow{D E}$.
(b) Let $F$ be a point lying on $B C$ such that $D F$ is perpendicular to $B C$.
(i) Find $\overrightarrow{D F}$.
(ii) Is $\overrightarrow{B C}$ perpendicular to $\overrightarrow{E F}$ ? Explain your answer.
(c) Find the angle between $\triangle B C D$ and $\Pi$.
(2019-DSE-MATH-EP(M2) \#12) (13 marks)
12. Let $\overrightarrow{O A}=\mathbf{i}-4 \mathbf{j}+2 \mathbf{k}, \overrightarrow{O B}=-5 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}$ and $\overrightarrow{O C}=-5 \mathbf{i}-12 \mathbf{j}+t \mathbf{k}$, where $O$ is the origin and $t$ is a constant. It is given that $|\overrightarrow{A C}|=|\overrightarrow{B C}|$.
(a) Find $t$.
(b) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(c) Find the volume of the pyramid $O A B C$.
(d) Denote the plane which contains $A, B$ and $C$ by $\Pi$. It is given that $P, Q$ and $R$ are points lying on $\Pi$ such that $\overrightarrow{O P}=p \mathbf{i}, \overrightarrow{O Q}=q \mathbf{j}$ and $\overrightarrow{O R}=r \mathbf{k}$. Let $D$ be the projection of $O$ on $\Pi$.
(i) Prove that $p q r \neq 0$.
(ii) Find $\overrightarrow{O D}$.
(iii) Let $E$ be a point such that $\overrightarrow{O E}=\frac{1}{p} \mathbf{i}+\frac{1}{q} \mathbf{j}+\frac{1}{r} \mathbf{k}$. Describe the geometric relationship between $D$, $E$ and $O$. Explain your answer.
(2020-DSE-MATH-EP(M2) \#12) (12 marks)
12. Let $\overrightarrow{O P}=\mathbf{i}+\mathbf{j}+4 \mathbf{k}$ and $\overrightarrow{O Q}=5 \mathbf{i}-7 \mathbf{j}-4 \mathbf{k}$, where $O$ is the origin. $R$ is a point lying on $P Q$ such that $P R: R Q=1: 3$.
(a) Find $\overrightarrow{O P} \times \overrightarrow{O R}$.
(b) Define $\overrightarrow{O S}=\overrightarrow{O P}+\overrightarrow{O R}$. Find the area of the quadrilateral $O P S R$.
(c) Let $N$ be a point such that $\overrightarrow{O N}=\lambda(\overrightarrow{O P} \times \overrightarrow{O R})$, where $\lambda$ is a real number.
(i) Is $\overrightarrow{N R}$ perpendicular to $\overrightarrow{P Q}$ ? Explain your answer.
(ii) Let $\mu$ be a real number such that $\overrightarrow{N Q}$ is parallel to $11 \mathbf{i}+\mu \mathbf{j}-10 \mathbf{k}$.
(1) Find $\lambda$ and $\mu$.
(2) Denote the angle between $\triangle O P Q$ and $\triangle N P Q$ by $\theta$. Find $\tan \theta$.
(2021-DSE-MATH-EP(M2) \#12) (13 marks)
12. The position vectors of the points $A, B, C$ and $D$ are $t \mathbf{i}+14 \mathbf{j}+s \mathbf{k}, 12 \mathbf{i}-s \mathbf{j}-2 \mathbf{k}$ and $(s+2) \mathbf{i}-16 \mathbf{j}+10 \mathbf{k}$ and $-t \mathbf{i}+(s+2) \mathbf{j}+14 \mathbf{k}$ respectively, where $s, t \in \mathbf{R}$. Suppose that $\overrightarrow{A B}$ is parallel to $5 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$. Denote the plane which contains $A, B$ and $C$ by $\Pi$.
(a) Find
(i) $s$ and $t$.
(ii) the area of $\triangle A B C$,
(iii) the volume of the tetrahedron $A B C D$,
(iv) the shortest distance from $D$ to $\Pi$.
(b) Let $E$ be the projection of $D$ on $\Pi$. Is $E$ the circumcentre of $\triangle A B C$ ? Explain your answer.
(1991-CE-A MATH 1 \#08) (16 marks)
8. (a) $\overrightarrow{C A}=(3-x) \mathbf{i}-(y+1) \mathbf{j}$
$\overrightarrow{O B}=(x-7) \mathbf{i}+(y-1) \mathbf{j}$
$\overrightarrow{A B}=(x-1) \mathbf{i}+y \mathbf{j}$
(b) (ii) (1) $x=4, y=2$
(1992-CE-A MATH 1 \#08) ( 16 marks)
8. (a) $\mathbf{a} \cdot \mathbf{a}=4$
$\mathbf{a} \cdot \mathbf{b}=3$
(b) $O D=1$
$\overrightarrow{O D}=\frac{1}{3} \mathbf{b}$
(c) (i) $\overrightarrow{O H}=\frac{k}{k+1} \mathbf{a}+\frac{1}{3(k+1)} \mathbf{b}$

$$
k=2
$$

(ii) (1) $\quad \overrightarrow{O C}=\frac{m}{m+1} \mathbf{a}+\frac{1}{m+1} \mathbf{b}$
(2) $\quad \overrightarrow{O C}=\frac{2(n+1)}{3} \mathbf{a}+\frac{(n+1)}{9} \mathbf{b}$
(3) $m=6, n=\frac{2}{7}$
(1993-CE-A MATH 1 \#06) (7 marks)
6. (a) $\overrightarrow{A B}=-2 \mathbf{i}+3 \mathbf{j}$
(b) $\overrightarrow{A B} \cdot \overrightarrow{A B}=13$
$\overrightarrow{A B} \cdot \overrightarrow{B C}=0$
$\overrightarrow{A B} \cdot \overrightarrow{A C}=13$
(1993-CE-A MATH 1 \#08) (16 marks)
8. (a) $\overrightarrow{O P}=\frac{1}{1+r} \mathbf{a}+\frac{r}{1+r} \mathbf{b}$

$$
\overrightarrow{O Q}=\frac{1}{(1+r)^{2}} \mathbf{a}+\frac{r(r+2)}{(1+r)^{2}} \mathbf{b}
$$

(b) $\quad \overrightarrow{O T}=\frac{1}{1+r}$ b
(c) $r=\frac{-1+\sqrt{5}}{2}$
(d) (i) $\mathbf{a} \cdot \mathbf{a}=4$

$$
\mathbf{a} \cdot \mathbf{b}=16
$$

(ii) $\quad r=\frac{1}{2}$
(1994-CE-A MATH 1 \#03) ( 6 marks)
3. (a) $\overrightarrow{P Q}=2 \mathbf{i}-\mathbf{j}$

$$
|\overrightarrow{P Q}|=\sqrt{5}
$$

(b) $\cos \angle Q P R=\frac{-4}{\sqrt{63}}$
(1994-CE-A MATH 1 \#10) (16 marks)
10. (a) $\overrightarrow{O C}=\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$

$$
\overrightarrow{D A}=\mathbf{a}-\frac{1}{2} \mathbf{b}
$$

(c) $k=\frac{1}{5}$
(d) (i) 1
(ii) $k=\frac{2}{7}$

Distance $=\frac{\sqrt{7}}{7}$
(1995-CE-A MATH 1 \#07) (8 marks)
7. (a) $\overrightarrow{O R}=\frac{2-6 k}{k+1} \mathbf{i}+\frac{3+4 k}{k+1} \mathbf{j}$
(b) $\overrightarrow{O P} \cdot \overrightarrow{O R}=\frac{13}{k+1}$
$\overrightarrow{O Q} \cdot \overrightarrow{O R}=\frac{52 k}{k+1}$
(c) $\quad k=\frac{1}{2}$
(1995-CE-A MATH 1 \#08) (16 marks)
8. (a)
(i) $\overrightarrow{A E}=h \mathbf{p}+h \mathbf{q}$
(ii) $\overrightarrow{A E}=\frac{\lambda k}{1+\lambda} \mathbf{p}+\frac{1}{1+\lambda} \mathbf{q}$
(b) (i) 3
(ii) (1) $\overrightarrow{D F}=k \mathbf{p}-\mathbf{q}$
$k=\frac{7}{12}$
(2) $\frac{7}{\sqrt{19}}$
(1996-CE-A MATH 1 \#07) (6 marks)
7. (a) Unit vector $=\frac{4}{5} \mathbf{i}+\frac{3}{5} \mathbf{j}$

$$
\overrightarrow{O C}=\frac{64}{25} \mathbf{i}+\frac{48}{25} \mathbf{j}
$$

(1996-CE-A MATH 1 \#10) (16 marks)
10. (a)
(i) $\overrightarrow{A E}=\frac{2}{1+t} \mathbf{a}+\frac{t}{1+t} \mathbf{b}$
(ii) $\overrightarrow{A E}=\frac{9-7 t}{1+t} \mathbf{a}+\frac{8 t}{1+t} \mathbf{b}$
(b) (i) $\frac{9}{7}$
(ii) (1) 2
(2) $\overrightarrow{A B} \cdot \overrightarrow{B C}=0$

$$
\overrightarrow{A D} \cdot \overrightarrow{D E}=0
$$

(1997-CE-A MATH 1 \#07) (7 marks)
7. (a) $\quad|\mathbf{a}|=2 \sqrt{5}$
(b) $\quad \mathbf{a} \cdot \mathbf{b}=8$
(c) $n=\frac{11}{5}, m=\frac{-2}{5}$
(1997-CE-A MATH 1 \#09) (16 marks)
9. (a) (i) $\overrightarrow{A F}=\mathbf{a}+2 \mathbf{b}$
(ii) $\quad \overrightarrow{D P}=(m+1) \mathbf{a}-\mathbf{b}$
(b) (ii)

$$
\begin{aligned}
& \text { (1) } \overrightarrow{A E}=\frac{1}{r+1} \mathbf{a}+\frac{2}{r+1} \mathbf{b} \\
& \text { (2) } \overrightarrow{A E}=\frac{8}{k+1} \mathbf{a}+\frac{k}{k+1} \mathbf{b} \\
& r=\frac{9}{8}, k=16
\end{aligned}
$$

(c) $\theta_{1}=76^{\circ}$
(1998-CE-A MATH 1 \#05) (6 marks)
5. (a) $\overrightarrow{A B}=3 \mathbf{i}+5 \mathbf{j}$
$\overrightarrow{A C}=-3 \mathbf{i}+8 \mathbf{j}$
(b) $\overrightarrow{A B} \cdot \overrightarrow{A C}=31$
$\angle B A C=52^{\circ}$
(1998-CE-A MATH 1 \#09) (16 marks)
9. (a) (i) $\mathbf{a} \cdot \mathbf{b}=3$
(ii) $\overrightarrow{O C}=(1-t) \mathbf{a}+t \mathbf{b}$
(iii) $\mathbf{a} \cdot \overrightarrow{O C}=4-t$
b $\cdot \overrightarrow{O C}=3+6 t$
(b) $\quad$ (ii) $k=\frac{4-t}{4}, s=\frac{1+2 t}{3}$
(c) $\quad t=\frac{8}{11}$
(1999-CE-A MATH 1 \#07) (6 marks)
7. (a) 5
(b) 10
(c) -1.6
(1999-CE-A MATH 1 \#10) (16 marks)
10. (a) $\overrightarrow{O C}=\frac{7}{15} \mathbf{a}+\frac{8}{15} \mathbf{b}$
$\overrightarrow{A D}=\frac{16}{21} \mathbf{b}-\mathbf{a}$
(b) $\quad$ (i) $\quad \overrightarrow{O E}=\frac{7 r}{15} \mathbf{a}+\frac{8 r}{15} \mathbf{b}$
(ii) $\quad \overrightarrow{O E}=(1-k) \mathbf{a}+\frac{16 k}{21} \mathbf{b}$
(c) (i) $1: 2$
(2000-CE-A MATH 1 \#08) (7 marks)
8.
(b) (i) $\sqrt{5}-1$
(ii) $\angle B O D=48^{\circ}$
(2000-CE-A MATH 1 \#09) (16 marks)
9. (a)
(i) $\overrightarrow{O D}=\frac{\mathbf{a}+\mathbf{b}}{2}$
(iii) $\overrightarrow{E F}=\mathbf{a}+(1-k) \mathbf{b}$
(b) (i) $\mathbf{a} \cdot \mathbf{b}=3$
$\mathbf{b} \cdot \mathbf{b}=4$
(ii) (1) $\frac{7}{4}$
(2001-AL-P MATH 1 \#04) (5 marks)
4. (a) $\overrightarrow{A B} \times \overrightarrow{A C}=b c \mathbf{i}+a c \mathbf{j}+a b \mathbf{k}$.
(2001-CE-A MATH \#08) (6 marks)
8. (a) 6
(b) $\frac{1}{3}$
(2001-CE-A MATH \#14) (12 marks)
14. (a) $\overrightarrow{O R}=\frac{s \overrightarrow{O P}+r \overrightarrow{O Q}}{r+s}$
(b) (i) $\overrightarrow{O G}=\frac{1}{8} \mathbf{a}+\frac{3}{4} \mathbf{b}$
(ii) $\quad \overrightarrow{O Y}=\frac{k}{8} \mathbf{a}+\frac{3 k}{8} \mathbf{b}$
(iii) (1) $\frac{6}{7}$
(2) parallel
(2002-AL-P MATH 1 \#04) (6 marks)
4. (b)

$$
\mathbf{u}=\frac{1}{\sqrt{2}}(\mathbf{j}+\mathbf{k}), \mathbf{u}=-\frac{1}{\sqrt{2}}(\mathbf{j}+\mathbf{k})
$$

(2002-CE-A MATH \#10) (6 marks)
10. (a) $\overrightarrow{O B}=6 \mathbf{i}+6 \mathbf{j}$

$$
\overrightarrow{A C}=4 \mathbf{i}-2 \mathbf{j}
$$

(b) $\theta=72^{\circ}$
(2002-CE-A MATH \#13) (12 marks)
13. (a) 3
(b) $\overrightarrow{O E}=t \mathbf{a}+(1-t) \mathbf{b}$
(c) $\overrightarrow{B A} \cdot \overrightarrow{B F}=1$
(2003-AL-P MATH 1 \#05) ( 6 marks)
5. (b)
(i) $|\mathbf{m} \times \mathbf{n}|=6$
(ii) 4
(2003-CE-A MATH \#06) (5 marks)
6. (a) $\overrightarrow{O P}=\frac{\mathbf{a}+3 \mathbf{b}}{4}$
(b) $\quad \overrightarrow{O C}=\frac{1}{3} \mathbf{a}+\mathbf{b}$
(2003-CE-A MATH \#14) (12 marks)
14. (a) $\frac{-3}{2}$
(b) $k=\frac{35}{9}$
(2004-CE-A MATH \#06) (5 marks)
6. (a) $\overrightarrow{O C}=\frac{2 \mathbf{a}+\mathbf{b}}{3}$
(b) $|\overrightarrow{O C}|=\frac{2}{3}$
(2004-CE-A MATH \#13) (12 marks)
13. (a)
(i) $\overrightarrow{O C}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$

$$
\overrightarrow{O A}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}
$$

(c) $\theta=24^{\circ}$
(2005-AL-P MATH 1 \#12) (15 marks)
12.
(b) $\quad \alpha=5 \sqrt{3}, \beta=-2 \sqrt{2}, \gamma=3 \sqrt{6}$
(2005-CE-A MATH \#11) (6 marks)
11. (a) $\frac{-15}{2}$
(b) $\sqrt{19}$
(2005-CE-A MATH \#14) (12 marks)
14. (a) $\overrightarrow{C B}=\frac{1}{8} \mathbf{a}$
(b) (i) $D A=1$

$$
\mathbf{d}=\mathbf{a}-\mathbf{b}
$$

(ii) $\quad \overrightarrow{O P}=\frac{8 r-1}{8(r+1)} \mathbf{a}+\frac{1-r}{1+r} \mathbf{b}$
(iii) $9: 16$
(2006-CE-A MATH \#07) (5 marks)
7. (a) -3
(b) $\sqrt{7}$
(2006-CE-A MATH \#18) (12 marks)
18. (a) $\overrightarrow{O G}=\frac{\mathbf{a}+\mathbf{b}}{3}$
(b) $\overrightarrow{O T} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{b}=0$
(c) $\overrightarrow{O C} \cdot \mathbf{b}=\frac{|\mathbf{b}|^{2}}{2}$
(d) (i) $(\overrightarrow{G T}-2 \overrightarrow{C G}) \cdot \mathbf{a}=0$

$$
(\overrightarrow{G T}-2 \overrightarrow{C G}) \cdot \mathbf{b}=0
$$

(2007-CE-A MATH \#08) (5 marks)
8. (a) $\overrightarrow{B C}=(6 k-2) \mathbf{i}+(3 k-6) \mathbf{j}$
(b) $\frac{2}{3}$
(2007-CE-A MATH \#17) (12 marks)
17. (a) $\overrightarrow{O M}=\frac{\mathbf{a}+\mathbf{b}}{2}$
(b) (i) $\overrightarrow{O G}=\frac{2 \mathbf{a}+4 k \mathbf{b}}{7}$
(c) $\quad$ (i) $\mathbf{a} \cdot \mathbf{b}=\frac{1}{2}$

$$
|\overrightarrow{P Q}|=\frac{\sqrt{13}}{6}
$$

(ii) $\angle Q G M=104^{\circ}$
(2008-CE-A MATH \#07) ( 5 marks)
7. $\frac{3 \mathbf{i}+4 \mathbf{j}}{5}$
(2008-CE-A MATH \#15) (12 marks)
15. (a) $\frac{1}{2}$
(c) $\overrightarrow{H M}=\frac{2 t}{3} \mathbf{p}+\frac{5 t}{3} \mathbf{q}$

$$
\begin{aligned}
& \overrightarrow{H N}=\frac{2 t}{3} \mathbf{p}+\left(\frac{5 t}{3}-\frac{3}{2}\right) \mathbf{q} \\
& \overrightarrow{O H}=\frac{5}{3} \mathbf{p}+\frac{2}{3} \mathbf{q}
\end{aligned}
$$

(2009-CE-A MATH \#14) (12 marks)
14. (a) $\overrightarrow{A H}=\mathbf{p}+\mathbf{q}$
(b) $\overrightarrow{A E}=\frac{(r+\lambda) \mathbf{p}+2 r \mathbf{q}}{r+1}$
(c) (i) $\frac{9}{5}(\mathbf{p}+\mathbf{q})$
(ii) $\frac{A F}{F C}=\frac{9}{8}$
(2010-CE-A MATH \#12) (7 marks)
12. (a) 15
(b) $\overrightarrow{O B}=5 \mathbf{i}+5 \mathbf{j}$ or $\mathbf{i}+7 \mathbf{j}$
(2010-CE-A MATH \#14) (12 marks)
14.
(a) $\overrightarrow{O D}=\mathbf{a}+\frac{1}{1+r} \mathbf{c}$

$$
r=\frac{2}{7}
$$

(b) (i) $\overrightarrow{O E}=\frac{9}{7} \mathbf{a}+\mathbf{c}$
(2011-CE-A MATH \#09) (6 marks)
9. (a) $\cos \angle A O B=\frac{3}{\sqrt{10}}$
(b) 7
(2011-CE-A MATH \#12) (12 marks)
12.
(a) $\overrightarrow{O E}=(1+\mu) \mathbf{a}+\mu(1+h) \mathbf{b}$ $\overrightarrow{O E}=(1-\lambda) \mathbf{b}+\lambda(1+h) \mathbf{a}$

## (SP-DSE-MATH-EP(M2) \#09) (6 marks)

9. (a) 13
(b) 65
(c) $\overrightarrow{O C^{\prime}}=(3+4 s) \mathbf{i}+(1+3 s+3 t) \mathbf{j}+(5+t) \mathbf{k}$ where $s$ and $t$ are not both zero.
(SP-DSE-MATH-EP(M2) \#14) (10 marks)
10. (c) $\mathbf{h}=\mathbf{a}+\mathbf{b}+\mathbf{c}$
(2009-CE-A MATH \#07) (4 marks)
11. (a) $\angle A O B=60^{\circ}$
(b) $|\mathbf{c}|=3$
(PP-DSE-MATH-EP(M2) \#12) (13 marks)
12. (a)
(ii) $a=\frac{1}{2}, b=\frac{1}{3}$
(iii) $\frac{\sqrt{6}}{6}$
(b) (i) $\overrightarrow{A B} \times \overrightarrow{A C}=\mathbf{i}+\mathbf{j}-\mathbf{k}$
(ii) $P=(1,1,-1)$
(2012-DSE-MATH-EP(M2) \#07) (5 marks)
13. (a) 3
(b) $\frac{11}{3}$
(2012-DSE-MATH-EP(M2) \#12) (12 marks)
14. (a) $\overrightarrow{A G}=\frac{-2 \mathbf{a}+\mathbf{b}+\mathbf{c}}{3}$
(b) (i) $F G: G O=2: 1$
(2013-DSE-MATH-EP(M2) \#10) (5 marks)
15. (a) $\overrightarrow{O N}=\frac{2(k+1) \mathbf{i}+2 \mathbf{j}}{k+1}$
(b) $\quad k=\frac{3}{2}$
(2013-DSE-MATH-EP(M2) \#14) (12 marks)
(2014-DSE-MATH-EP(M2) \#08) (8 marks)
16. (a) $\overrightarrow{O P} \times \overrightarrow{O Q}=6 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$.

Volume $=1$
(b) $6.8^{\circ}$
(2014-DSE-MATH-EP(M2) \#11) (13 marks)
11. (a)
(i) $\overrightarrow{O E}=\frac{\mathbf{a}+m t \mathbf{b}}{1+n}$
(ii) $\quad \overrightarrow{O E}=\frac{n(1-t) \mathbf{a}+\mathbf{b}}{1+n}$
(iv) $\quad t=\frac{1}{2}$
(b) $\overrightarrow{B D} \cdot \overrightarrow{O A} \neq 0$
(2015-DSE-MATH-EP(M2) \#10) (12 marks)
10. (a)
(i) $\overrightarrow{O Q}=\frac{1-t}{2} \overrightarrow{O A}+\frac{3 t}{4} \overrightarrow{O B}$
(ii) $7: 16$
(b) (i) 176
(ii) 42
(2016-DSE-MATH-EP(M2) \#12) (13 marks)
12. (a) -1
(b) (i) $\frac{-1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}-\frac{2}{3} \mathbf{k}$
(ii) $\sin ^{-1}\left(\frac{3 \sqrt{11}}{11}\right)$
(iii) $D$ is the mid-point of the line segment joining $E$ and $F$.
(2017-DSE-MATH-EP(M2) \#03) (5 marks)
3. (a) $\overrightarrow{O P}=\frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b}$
(b) (i) 225
(ii) 24
(2017-DSE-MATH-EP(M2) \#10) (12 marks)
10.
(a) $\quad \overrightarrow{A E}=\frac{2 r+6}{r+1} \mathbf{i}+\frac{r-6}{r+1} \mathbf{j}+\frac{r}{r+1} \mathbf{k}$
$\overrightarrow{A F}=\frac{-8 r+36}{r+1} \mathbf{i}+\frac{41 r-36}{r+1} \mathbf{j}+\frac{11 r}{r+1} \mathbf{k}$ $r=\frac{6}{5}$
(b) (i) 0
(c) 7
(2018-DSE-MATH-EP(M2) \#12) (13 marks)
12. (a)
(i) $32 \mathbf{i}+8 \mathbf{j}-28 \mathbf{k}$
(ii) 24
(iii) $-\frac{32}{13} \mathbf{i}-\frac{8}{13} \mathbf{j}+\frac{28}{13} \mathbf{k}$
(b) (i) $-2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k}$
(ii) $\overrightarrow{B C} \cdot \overrightarrow{E F}=0$
(c) $\cos ^{-1}\left(\frac{3 \sqrt{13}}{13}\right)$
(2019-DSE-MATH-EP(M2) \#12) (13 marks)
12. (a) 2
(b) $48 \mathbf{i}-36 \mathbf{j}+48 \mathbf{k}$
(c) 48 cubic units
(d) (i) $p=6, q=-8, r=6$
(ii) $\frac{24}{41}(4 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k})$
(iii) $D, E$ and $O$ are collinear
(2020-DSE-MATH-EP(M2) \#12) (12 marks)
12. (a) $6 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$
(b) 9
(c) (i) ... Yes
(ii) (1) $\lambda=\frac{2}{9}, \mu=-25$
(2) $\frac{2}{3}$
(2021-DSE-MATH-EP(M2) \#12) (13 marks)
12. (a) (i) $s=10, t=18$
(ii) 270
(iii) 2160 ,
(iv) 24
(b) $E$ is not the circumcentre of $\triangle A B C$

