3. Introduction to Vectors

5.

In Figure 1, OAD is a triangle and B is the mid-point of OD. The line OE cuts the line AB at C such that AC: CB = 3:1.

Let
$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OB} = \mathbf{b}$

- (a) Express \overrightarrow{OC} in terms of **a** and **b**.
- (b) (i) Let OC: CE = k: 1. Express \overrightarrow{OE} in terms of k, **a** and **b**.
 - (ii) Let AE : ED = m : 1. Express \overrightarrow{OE} in terms of m, **a** and **b**. Hence find k and m.

(1992-CE-A MATH 1 #01) (5 marks)

1. Given $\overrightarrow{OA} = 5\mathbf{i} - \mathbf{j}$, $\overrightarrow{OB} = -3\mathbf{i} + 5\mathbf{j}$ and *APB* is a straight line.

(a) Find
$$\overrightarrow{AB}$$
 and $\left|\overrightarrow{AB}\right|$.
(b) If $\left|\overrightarrow{AP}\right| = 4$, find \overrightarrow{AP} .

(1999-CE-A MATH 1 #10) (16 marks) 10.

Figure 3

In Figure 3, *OAB* is a triangle. *C* and *D* are points on *AB* and *OB* respectively such that AC : CB = 8 : 7 and OD : DB = 16 : 5. *OC* and *AD* intersect at a point *E*. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Express \overrightarrow{OC} and \overrightarrow{AD} in terms of **a** and **b**.

(b) Let $\overrightarrow{OE} = r \overrightarrow{OC}$ and $\overrightarrow{AE} = k \overrightarrow{AD}$.

- (i) Express \overrightarrow{OE} in terms of r, **a** and **b**.
- (ii) Express \overrightarrow{OE} in terms of k, **a** and **b**. Hence show that $r = \frac{6}{7}$ and $k = \frac{3}{5}$.

(c) It is given that EC: ED = 1:2.

- (i) Using (b), or otherwise, find *EA* : *EO* .
- (ii) Explain why OACD is a cyclic quadrilateral.

(2001-CE-A MATH #14) (12 marks)

In Figure 1 (a), OPQ is a triangle. R is a point on PQ such that PR : RQ = r : s. Express \overrightarrow{OR} in terms of r, s, \overrightarrow{OP} and \overrightarrow{OQ} .

Hence show that if $\overrightarrow{OR} = m\overrightarrow{OP} + n\overrightarrow{OQ}$, then m + n = 1.

(b)

In Figure 1 (b), *OAB* is a triangle. X is the mid-point of *OA* and Y is a point on *AB*. *BX* and *OY* intersect at point G where BG: GX = 1:3. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (i) Express \overrightarrow{OG} in terms of **a** and **b**.
- (ii) Using (a), express \overrightarrow{OY} in terms of **a** and **b**. (Hint: Put $\overrightarrow{OY} = k\overrightarrow{OG}$.)

(iii) Moreover, AG is produced to a point Z on OB. Let $\overrightarrow{OZ} = h\overrightarrow{OB}$.

- (1) Find the value of h.
- (2) Explain whether ZY is parallel to OA or not.

(2003-CE-A MATH #06) (5 marks)

6.

In Figure 1, point *P* divides both line segments *AB* and *OC* in the same ratio 3:1. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$.

(a) Express \overrightarrow{OP} in terms of **a** and **b**.

(b) Express \overrightarrow{OC} in terms of **a** and **b**. Hence show that OA is parallel to BC.

- (ii) *P* is a point on the line segment *CD* such that CP: PD = r: 1. Express \overrightarrow{OP} in terms of *r*, **a** and **b**.
- (iii) If M is the mid-point of AB, find the ratio in which OM divides CD.

(2008-CE-A MATH #07) (5 marks)

7. It is given that $\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OB} = 5\mathbf{i} + 6\mathbf{j}$. If *P* is a point on *AB* such that $\overrightarrow{PB} = 2\overrightarrow{AP}$, find the unit vector in the direction of \overrightarrow{OP} .

(2011-CE-A MATH #12) (12 marks) 12.

Figure 2 shows a triangle OCD. A and B are points on OC and OD respectively such that OA: AC = OB: BD = 1:h, where h > 0. AD and BC intersect at E such that $AE: ED = \mu: (1 - \mu)$ and $BE: EC = \lambda: (1 - \lambda)$, where $0 < \mu < 1$ and $0 < \lambda < 1$. Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (a) By considering \overrightarrow{OE} , show that $\mu = \lambda$.
- (b) F is a point on CD such that O, E and F are collinear. Show that OF is a median of $\triangle OCD$.
- (c) Using the above results, show that in a triangle, the centroid divides every median in 2:1.

ANSWERS

(1991-CE-A MATH 1 #05) (7 marks) (a) $\overrightarrow{OC} = \frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ 5. (b) (i) $\overrightarrow{OE} = \frac{k+1}{4k}\mathbf{a} + \frac{3(k+1)}{4k}\mathbf{b}$ (ii) $\overrightarrow{OE} = \frac{1}{1+m}\mathbf{a} + \frac{2m}{1+m}\mathbf{b}$ $m = \frac{3}{2}, k = \frac{5}{3}$

(1992-CE-A MATH 1 #01) (5 marks)

1. (a)
$$\overrightarrow{AB} = -8\mathbf{i} + 6\mathbf{j}$$

 $\left|\overrightarrow{AB}\right| = 10$
(b) $\frac{-16}{5}\mathbf{i} + \frac{12}{5}\mathbf{j}$

(1999-CE-A MATH 1 #10) (16 marks)

10. (a)
$$\overrightarrow{OC} = \frac{7\mathbf{a} + 8\mathbf{b}}{15}$$

 $\overrightarrow{AD} = \frac{16}{21}\mathbf{b} - \mathbf{a}$
(b) (i) $\frac{r}{15}(7\mathbf{a} + 8\mathbf{b})$
(ii) $(1 - k)\mathbf{a} + \frac{16k}{21}\mathbf{b}$
(c) (i) $1:2$

(2001-CE-A MATH #14) (12 marks)

14. (a)
$$\overrightarrow{OR} = \frac{s\overrightarrow{OP} + r\overrightarrow{OQ}}{r+s}$$

(b) (i) $\overrightarrow{OG} = \frac{1}{8}\mathbf{a} + \frac{3}{4}\mathbf{b}$
(ii) $\overrightarrow{OY} = \frac{1}{7}\mathbf{a} + \frac{6}{7}\mathbf{b}$
(iii) (1) $\frac{6}{7}$

(2003-CE-A MATH #06) (5 marks)

6. (a)
$$\overrightarrow{OP} = \frac{\mathbf{a} + 3\mathbf{b}}{4}$$

(b) $\overrightarrow{OC} = \frac{1}{3}\mathbf{a} + \mathbf{b}$

(2005-CE-A MATH #14) (12 marks)

14. (a)
$$\overrightarrow{CB} = \frac{1}{8}\mathbf{a}$$

(b) (i) $DA = 1$, $\mathbf{d} = \mathbf{a} - \mathbf{b}$
(ii) $\frac{8r - 1}{8(r + 1)}\mathbf{a} + \frac{1 - r}{1 + r}\mathbf{b}$
(iii) 9 : 16

(2008-CE-A MATH #07) (5 marks) 7. $\frac{3\mathbf{i}+4\mathbf{j}}{5}$

(2011-CE-A MATH #12) (12 marks)

(a) $\overrightarrow{OE} = (1 + \mu)\mathbf{a} + \mu(1 + h)\mathbf{b}$ 12. $\overrightarrow{OE} = (1 - \lambda)\mathbf{b} + \lambda(1 + h)\mathbf{a}$