3. Introduction to Vectors

(1991-CE-A MATH 1 \#05) (7 marks)
5.

In Figure $1, O A D$ is a triangle and B is the mid-point of $O D$. The line $O E$ cuts the line $A B$ at C such that $A C: C B=3: 1$.

Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O C}$ in terms of \mathbf{a} and \mathbf{b}.
(b) (i) Let $O C: C E=k: 1$. Express $\overrightarrow{O E}$ in terms of k, a and \mathbf{b}.
(ii) Let $A E: E D=m: 1$. Express $\overrightarrow{O E}$ in terms of m, \mathbf{a} and \mathbf{b}.

Hence find k and m.

(1992-CE-A MATH 1 \#01) (5 marks)

1. Given $\overrightarrow{O A}=5 \mathbf{i}-\mathbf{j}, \overrightarrow{O B}=-3 \mathbf{i}+5 \mathbf{j}$ and $A P B$ is a straight line.
(a) Find $\overrightarrow{A B}$ and $|\overrightarrow{A B}|$.
(b) If $|\overrightarrow{A P}|=4$, find $\overrightarrow{A P}$.
(1999-CE-A MATH 1 \#10) (16 marks)
2.

Figure 3

In Figure 3, $O A B$ is a triangle. C and D are points on $A B$ and $O B$ respectively such that $A C: C B=8: 7$ and $O D: D B=16: 5 . O C$ and $A D$ intersect at a point E. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O C}$ and $\overrightarrow{A D}$ in terms of \mathbf{a} and \mathbf{b}.
(b) Let $\overrightarrow{O E}=r \overrightarrow{O C}$ and $\overrightarrow{A E}=k \overrightarrow{A D}$.
(i) Express $\overrightarrow{O E}$ in terms of r, a and \mathbf{b}.
(ii) Express $\overrightarrow{O E}$ in terms of k, \mathbf{a} and \mathbf{b}.

Hence show that $r=\frac{6}{7}$ and $k=\frac{3}{5}$.
(c) It is given that $E C: E D=1: 2$.
(i) Using (b), or otherwise, find $E A: E O$.
(ii) Explain why $O A C D$ is a cyclic quadrilateral.
(2001-CE-A MATH \#14) (12 marks)
14. (a)

Figure 1(a)

In Figure 1 (a), $O P Q$ is a triangle. R is a point on $P Q$ such that $P R: R Q=r: s$. Express $\overrightarrow{O R}$ in terms of $r, s, \overrightarrow{O P}$ and $\overrightarrow{O Q}$
Hence show that if $\overrightarrow{O R}=m \overrightarrow{O P}+n \overrightarrow{O Q}$, then $m+n=1$.
(b)

Figure 1(b)

In Figure 1 (b), $O A B$ is a triangle. X is the mid-point of $O A$ and Y is a point on $A B . B X$ and $O Y$ intersect at point G where $B G: G X=1: 3$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(i) Express $\overrightarrow{O G}$ in terms of \mathbf{a} and \mathbf{b}.
(ii) Using (a), express $\overrightarrow{O Y}$ in terms of \mathbf{a} and \mathbf{b}.
(Hint: Put $\overrightarrow{O Y}=k \overrightarrow{O G}$.)
(iii) Moreover, $A G$ is produced to a point Z on $O B$. Let $\overrightarrow{O Z}=h \overrightarrow{O B}$.
(1) Find the value of h.
(2) Explain whether $Z Y$ is parallel to $O A$ or not.
(2003-CE-A MATH \#06) (5 marks)
6.

In Figure 1, point P divides both line segments $A B$ and $O C$ in the same ratio $3: 1$. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$.
(a) Express $\overrightarrow{O P}$ in terms of \mathbf{a} and \mathbf{b}.
(b) Express $\overrightarrow{O C}$ in terms of \mathbf{a} and \mathbf{b}.

Hence show that $O A$ is parallel to $B C$.
(2005-CE-A MATH \#14) (12 marks)
14.

Figure 4

In Figure 4, $O A=2, O B=1$ and $\cos \angle A O B=\frac{1}{4} . C$ is a point such that $C B / / O A$ and $O C \perp O A$.
Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.
(a) Find $\overrightarrow{C B}$ in terms of \mathbf{a}.

Hence, or otherwise, show that $\mathbf{c}=\mathbf{b}-\frac{1}{8} \mathbf{a}$.
(b)

Figure 5
D is a point such that $D A / / O B$ and $O D=O A$ (see Figure 5). Let $\overrightarrow{O D}=\mathbf{d}$.
(i) By finding $D A$, or otherwise, express \mathbf{d} in terms of \mathbf{a} and \mathbf{b}.
(ii) $\quad P$ is a point on the line segment $C D$ such that $C P: P D=r: 1$. Express $\overrightarrow{O P}$ in terms of r, a and \mathbf{b}.
(iii) If M is the mid-point of $A B$, find the ratio in which $O M$ divides $C D$.
(2008-CE-A MATH \#07) (5 marks)
7. It is given that $\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}$ and $\overrightarrow{O B}=5 \mathbf{i}+6 \mathbf{j}$. If P is a point on $A B$ such that $\overrightarrow{P B}=2 \overrightarrow{A P}$, find the unit vector in the direction of $\overrightarrow{O P}$.
(2011-CE-A MATH \#12) (12 marks)
12.

Figure 2

Figure 2 shows a triangle $O C D . A$ and B are points on $O C$ and $O D$ respectively such that $O A: A C=O B: B D=1: h$, where $h>0 . A D$ and $B C$ intersect at E such that $A E: E D=\mu:(1-\mu)$ and $B E: E C=\lambda:(1-\lambda)$, where $0<\mu<1$ and $0<\lambda<1$. Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(a) By considering $\overrightarrow{O E}$, show that $\mu=\lambda$.
(b) $\quad F$ is a point on $C D$ such that O, E and F are collinear. Show that $O F$ is a median of $\triangle O C D$.
(c) Using the above results, show that in a triangle, the centroid divides every median in $2: 1$.

ANSWERS

(1991-CE-A MATH 1 \#05) (7 marks)
5. (a) $\overrightarrow{O C}=\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}$
(b) \quad (i) $\quad \overrightarrow{O E}=\frac{k+1}{4 k} \mathbf{a}+\frac{3(k+1)}{4 k} \mathbf{b}$
(ii) $\quad \overrightarrow{O E}=\frac{1}{1+m} \mathbf{a}+\frac{2 m}{1+m} \mathbf{b}$

$$
m=\frac{3}{2}, k=\frac{5}{3}
$$

(1992-CE-A MATH 1 \#01) (5 marks)

1. (a) $\overrightarrow{A B}=-8 \mathbf{i}+6 \mathbf{j}$

$$
|\overrightarrow{A B}|=10
$$

(b) $\frac{-16}{5} \mathbf{i}+\frac{12}{5} \mathbf{j}$
(1999-CE-A MATH 1 \#10) (16 marks)
10. (a) $\overrightarrow{O C}=\frac{7 \mathbf{a}+8 \mathbf{b}}{15}$

$$
\overrightarrow{A D}=\frac{16}{21} \mathbf{b}-\mathbf{a}
$$

(b) (i) $\frac{r}{15}(7 \mathbf{a}+8 \mathbf{b})$
(ii) $\quad(1-k) \mathbf{a}+\frac{16 k}{21} \mathbf{b}$
(c) (i) $1: 2$
(2001-CE-A MATH \#14) (12 marks)
14. (a) $\overrightarrow{O R}=\frac{s \overrightarrow{O P}+r \overrightarrow{O Q}}{r+s}$
(b) (i) $\overrightarrow{O G}=\frac{1}{8} \mathbf{a}+\frac{3}{4} \mathbf{b}$
(ii) $\quad \overrightarrow{O Y}=\frac{1}{7} \mathbf{a}+\frac{6}{7} \mathbf{b}$
(iii) (1) $\frac{6}{7}$
(2003-CE-A MATH \#06) (5 marks)
6. (a) $\overrightarrow{O P}=\frac{\mathbf{a}+3 \mathbf{b}}{4}$
(b) $\quad \overrightarrow{O C}=\frac{1}{3} \mathbf{a}+\mathbf{b}$
(2005-CE-A MATH \#14) (12 marks)
14. (a) $\overrightarrow{C B}=\frac{1}{8} \mathbf{a}$
(b) (i) $D A=1, \mathbf{d}=\mathbf{a}-\mathbf{b}$
(ii) $\frac{8 r-1}{8(r+1)} \mathbf{a}+\frac{1-r}{1+r} \mathbf{b}$
(iii) $9: 16$
(2008-CE-A MATH \#07) (5 marks)
7. $\frac{3 \mathbf{i}+4 \mathbf{j}}{5}$
(2011-CE-A MATH \#12) (12 marks)
12. (a) $\overrightarrow{O E}=(1+\mu) \mathbf{a}+\mu(1+h) \mathbf{b}$ $\overrightarrow{O E}=(1-\lambda) \mathbf{b}+\lambda(1+h) \mathbf{a}$

