3. ALGEBRA AREA
4. Matrices and Determinants
(1991-AL-P MATH 1 \#01) (4 marks)
5. Factorize the determinant $\left|\begin{array}{ccc}a^{3} & b^{3} & c^{3} \\ a & b & c \\ 1 & 1 & 1\end{array}\right|$.
(1992-AL-P MATH 1 \#03) (7 marks)
6. Let $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 3\end{array}\right), B=\left(\begin{array}{cc}-2 & 0 \\ 1 & \lambda\end{array}\right)$.

If B^{-1} exists and $B^{-1} A B=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, find λ, a and b.
Hence find A^{100}.
(1993-AL-P MATH 1 \#06) (7 marks)
6. (a) Show that if A is a 3×3 matrix such that $A^{T}=-A$, then $\operatorname{det} A=0$.
(b) Given that

$$
B=\left(\begin{array}{ccc}
1 & -2 & 74 \\
2 & 1 & -67 \\
-74 & 67 & 1
\end{array}\right)
$$

use (a), or otherwise, to show $\operatorname{det}(I-B)=0$.
Hence deduce that $\operatorname{det}\left(I-B^{4}\right)=0$.
(1994-AL-P MATH 1 \#01) (6 marks)

1. Let $A=\left(\begin{array}{ll}3 & 8 \\ 1 & 5\end{array}\right)$ and $P=\left(\begin{array}{cc}2 & -4 \\ 1 & 1\end{array}\right)$.

Find $P^{-1} A P$.
Find A^{n}, where n is a positive integer.
(1995-AL-P MATH 1 \#01) (6 marks)

1. (a) Let $A=\left(\begin{array}{ll}a & 1 \\ 0 & b\end{array}\right)$ where $a, b \in \mathbf{R}$ and $a \neq b$.

Prove that $A^{n}=\left(\begin{array}{cc}a^{n} & \frac{a^{n}-b^{n}}{a-b} \\ 0 & b^{n}\end{array}\right)$ for all positive integers n.
(b) Hence, or otherwise, evaluate $\left(\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right)^{95}$.
(1996-AL-P MATH 1 \#01) (6 marks)

1. Let $A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right)$.

Evaluate $A^{3}-5 A^{2}+8 A-4 I$.
Hence, or otherwise, find A^{-1}.
(1997-AL-P MATH 1 \#07) (7 marks)
7. (a) Let A be a 3×3 non-singular matrix. Show that

$$
\operatorname{det}\left(A^{-1}-x I\right)=-\frac{x^{3}}{\operatorname{det} A} \operatorname{det}\left(A-x^{-1} I\right)
$$

(b) Let $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8\end{array}\right)$.

Show that 4 is a root of $\operatorname{det}(A-x I)=0$ and hence find the other roots in surd form.
Solve $\operatorname{det}\left(A^{-1}-x I\right)=0$.

(1998-AL-P MATH 1 \#09) (15 marks)

9. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a, b, c, d \in \mathbf{R}, a \neq 0$ and $\operatorname{det} A=0$.
(a) Show that $A=\left(\begin{array}{cc}a & b \\ k a & k b\end{array}\right)$ for some $k \in \mathbf{R}$.
(b) Find P in the form of $\left(\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right)$ such that $P A=\left(\begin{array}{ll}\alpha & \beta \\ 0 & 0\end{array}\right)$ for some $\alpha, \beta \in \mathbf{R}$.

If $a+d \neq 0$, find Q in the form of $\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)$ such that $P Q P^{-1} Q=\left(\begin{array}{ll}\gamma & 0 \\ 0 & 0\end{array}\right)$ for some $\gamma \in \mathbf{R}$.
(c) Find S such that $S\left(\begin{array}{cc}3 & 7 \\ 6 & 14\end{array}\right) S^{-1}=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 0\end{array}\right)$ for some $\lambda \in \mathbf{R}$.

Hence, or otherwise, evaluate $\left(\begin{array}{cc}3 & 7 \\ 6 & 14\end{array}\right)^{n}$ where n is a positive integer.
(1999-AL-P MATH 1 \#09) (15 marks)
9. (a) Let A and B be two square matrices of the same order. If $A B=B A=0$, show that $(A+B)^{n}=A^{n}+B^{n}$ for any positive integer n.
(b) Let $A=\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)$ where a, b are not both zero. If $B=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$, show that $A B=B A=0$ if and only if $p=r=0$ and $a q+b s=0$.
(c) Let $C=\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)$ where x, z are non-zero and distinct. Find non-zero matrices D and E such that $C=D+E$ and $D E=E D=0$.
(d) Evaluate $\left(\begin{array}{ll}2 & 5 \\ 0 & 1\end{array}\right)^{99}$.
(2000-AL-P MATH 1 \#01) (5 marks)

1. Let $M=\left(\begin{array}{ccc}1 & 0 & 0 \\ \lambda & b & a \\ \mu & c & -b\end{array}\right)$ where $b^{2}+a c=1$. Show by induction that
$M^{2 n}=\left(\begin{array}{ccc}1 & 0 & 0 \\ n[\lambda(1+b)+\mu a] & 1 & 0 \\ n[\lambda c+\mu(1-b)] & 0 & 1\end{array}\right)$ for all positive integers n.
Hence or otherwise, evaluate $\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 3 & 2 \\ 1 & -4 & -3\end{array}\right)^{2000}$.
(2002-AL-P MATH 1 \#12) (15 marks)
2. (a) Let A be a 3×3 matrix such that

$$
A^{3}+A^{2}+A+I=0
$$

where I is the 3×3 identity matrix.
(i) Prove that A has an inverse, and find A^{-1} in terms of A.
(ii) Prove that $A^{4}=I$.
(iii) Prove that $\left(A^{-1}\right)^{3}+\left(A^{-1}\right)^{2}+A^{-1}+I=0$.
(iv) Find a 3×3 invertible matrix B such that $B^{3}+B^{2}+B+I \neq 0$.
(b) Let $X=\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1\end{array}\right)$.
(i) Using (a)(i) or otherwise, find X^{-1}.
(ii) Let n be a positive integer. Find X^{n}.
(iii) Find two 3×3 matrices Y and Z, other than X, such that $Y^{3}+Y^{2}+Y+I=0$, $Z^{3}+Z^{2}+Z+I=0$.
(2003-AL-P MATH 1 \#08) (15 marks)
8. (a) If $\operatorname{det}\left(\begin{array}{cc}-2-\alpha & \sqrt{3} \\ \sqrt{3} & -\alpha\end{array}\right)=0$, find the two values of α.
(b) Let α_{1} and α_{2} be the values obtained in (a), where $\alpha_{1}<\alpha_{2}$. Find θ_{1} and θ_{2} such that

$$
\begin{aligned}
& \left(\begin{array}{cc}
-2-\alpha_{1} & \sqrt{3} \\
\sqrt{3} & -\alpha_{1}
\end{array}\right)\binom{\cos \theta_{1}}{\sin \theta_{1}}=\binom{0}{0}, 0 \leq \theta_{1}<\pi \\
& \left(\begin{array}{cc}
-2-\alpha_{2} & \sqrt{3} \\
\sqrt{3} & -\alpha_{2}
\end{array}\right)\binom{\cos \theta_{2}}{\sin \theta_{2}}=\binom{0}{0}, 0 \leq \theta_{2}<\pi
\end{aligned}
$$

Let $P=\left(\begin{array}{cc}\cos \theta_{1} & \cos \theta_{2} \\ \sin \theta_{1} & \sin \theta_{2}\end{array}\right)$. Evaluate P^{n}, where n is a positive integer.
Prove that $P^{-1}\left(\begin{array}{cc}-2 & \sqrt{3} \\ \sqrt{3} & 0\end{array}\right) P$ is a matrix of the form $\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$.
(c) Evaluate $\left(\begin{array}{cc}-2 & \sqrt{3} \\ \sqrt{3} & 0\end{array}\right)^{n}$, where n is a positive integer.
(2004-AL-P MATH 1 \#08) (15 marks)
8. Let $A=\left(\begin{array}{cc}\alpha-k & \alpha-\beta-k \\ k & \beta+k\end{array}\right)$, where $\alpha, \beta, k \in \mathbf{R}$ with $\alpha \neq \beta$.

Define $X=\frac{1}{\alpha-\beta}(A-\beta I)$ and $Y=\frac{1}{\beta-\alpha}(A-\alpha I)$, where I is the 2×2 identity matrix.
(a) Evaluate $X Y, Y X, X+Y, X^{2}$ and Y^{2}.
(b) Prove that $A^{n}=\alpha^{n} X+\beta^{n} Y$ for all positive integers n.
(c) Evaluate $\left(\begin{array}{ll}5 & 4 \\ 2 & 3\end{array}\right)^{2004}$.
(d) If α and β are non-zero real numbers, guess an expression for A^{-1} in terms of α, β, X and Y, and verify it.
(2007-AL-P MATH 1 \#05) (6 marks)
5. Let P be a non-singular 2×2 real matrix and $Q=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$, where α and β are two distinct real numbers.

Define $M=P^{-1} Q P$ and denote the 2×2 identity matrix by I.
(a) Find real numbers λ and μ, in terms of α and β, such that $M^{2}=\lambda M+\mu I$.
(b) Prove that $\operatorname{det}\left(M^{2}+\alpha \beta I\right)=\alpha \beta(\alpha+\beta)^{2}$.
(2011-AL-P MATH 1 \#08) (15 marks)
8. (a) Let $A=\left(\begin{array}{cc}4-b & a \\ b & 4-a\end{array}\right)$ be a real matrix and $P=\left(\begin{array}{cc}a & -1 \\ b & 1\end{array}\right)$, where $a b>0$.
(i) Prove that P is a non-singular matrix.
(ii) Evaluate $P^{-1} A P$.
(iii) For any positive integer n, find d_{1} and d_{2} such that $A^{n}=P\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right) P^{-1}$.
(b) Let $B=\left(\begin{array}{ll}3 & 4 \\ 1 & 0\end{array}\right)$. For any positive integer n, find $B+B^{3}+B^{5}+\ldots+B^{2 n-1}$.
(SP-DSE-MATH-EP(M2) \#10) (8 marks)
10. Let $0^{\circ}<\theta<180^{\circ}$ and define $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.
(a) Prove, by mathematical induction, that

$$
A^{n}=\left(\begin{array}{cc}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right)
$$

for all positive integers n.
(b) Solve $\sin 3 \theta+\sin 2 \theta+\sin \theta=0$.
(c) It is given that $A^{3}+A^{2}+A=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.

Find the value(s) of a.
(SP-DSE-MATH-EP(M2) \#11) (12 marks)
11. Let $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right), P=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ and $D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
(a) Let I and O be the 3×3 identity matrix and zero matrix respectively.
(i) Prove that $P^{3}-2 P^{2}-P+I=\mathbf{0}$.
(ii) Using the result of (i), or otherwise, find P^{-1}.
(b) (i) Prove that $D=P^{-1} A P$.
(ii) Prove that D and A are non-singular.
(iii) Find $\left(D^{-1}\right)^{100}$.

Hence, or otherwise, find $\left(A^{-1}\right)^{100}$
(PP-DSE-MATH-EP(M2) \#05) (6 marks)
5. (a) It is given that $\cos (x+1)+\cos (x-1)=k \cos x$ for any real x. Find the value of k.
(b) Without using a calculator, find the value of $\left|\begin{array}{lll}\cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9\end{array}\right|$.
(PP-DSE-MATH-EP(M2) \#11) (14 marks)
11. Let $A=\left(\begin{array}{cc}\alpha+\beta & -\alpha \beta \\ 1 & 0\end{array}\right)$ where α and β are distinct real numbers. Let I be the 2×2 identity matrix.
(a) Show that $A^{2}=(\alpha+\beta) A-\alpha \beta I$.
(b) Using (a), or otherwise, show that $(A-\alpha l)^{2}=(\beta-\alpha)(A-\alpha l)$ and $(A-\beta I)^{2}=(\alpha-\beta)(A-\beta I)$.
(c) Let $X=s(A-\alpha l)$ and $Y=t(A-\beta I)$ where s and t are real numbers.

Suppose $A=X+Y$.
(i) Find s and t in terms of α and β.
(ii) For any positive integer n, prove that

$$
X^{n}=\frac{\beta^{n}}{\beta-\alpha}(A-\alpha l) \text { and } Y^{n}=\frac{\alpha^{n}}{\alpha-\beta}(A-\beta I)
$$

(iii) For any positive integer n, express A^{n} in the form of $p A+q l$, where p and q are real numbers. (Note: It is known that for any 2×2 matrices H and K,

$$
\text { if } \left.H K=K H=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \text {, then }(H+K)^{n}=H^{n}+K^{n} \text { for any positive integer } n .\right)
$$

(2012-DSE-MATH-EP(M2) \#11) (13 marks)
11. (a) Solve the equation

$$
\left|\begin{array}{cc}
1-x & 4 \tag{}\\
2 & 3-x
\end{array}\right|=0
$$

\qquad
(b) Let $x_{1}, x_{2}\left(x_{1}<x_{2}\right)$ be the roots of $(*)$. Let $P=\left(\begin{array}{ll}a & c \\ b & 1\end{array}\right)$. It is given that

$$
\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)\binom{a}{b}=x_{1}\binom{a}{b},\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)\binom{c}{1}=x_{2}\binom{c}{1} \text { and }|P|=1 .
$$

where a, b and c are constants.
(i) Find P.
(ii) Evaluate $P^{-1}\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right) P$.
(iii) Using (b)(ii), evaluate $\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)^{12}$.
(2013-AL-P MATH 1 \#11) (15 marks)
11. (a) Define $A=\left(\begin{array}{cc}a & -2 \\ -2 & a+3\end{array}\right)$, where $a \in \mathbf{R}$.

Let $\lambda, \mu \in \mathbf{R}$ and $b>0$ such that $A\binom{1}{-2}=\lambda\binom{1}{-2}$ and $A\binom{b}{1}=\mu\binom{b}{1}$.
(i) Express λ in terms of a.
(ii) Prove that $b=2$ and express μ in terms of a.
(iii) Define $M=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$. Denote the transpose of M by M^{T}.
(1) Evaluate $M^{T} M$.
(2) Using mathematical induction, prove that $A^{n}=\frac{1}{5} M D^{n} M^{T}$ for any $n \in \mathbf{N}$, where $D=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right)$.
(b) Let $x, y \in \mathbf{R}$.
(i) Prove that if $\left(\begin{array}{ll}x & y\end{array}\right)\left(\begin{array}{cc}3 & -2 \\ -2 & 6\end{array}\right)^{2013}\binom{x}{y}=0$, then $x=y=0$.
(ii) Someone claims that if $\left(\begin{array}{ll}x & y\end{array}\right)\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right)^{2013}\binom{x}{y}=0$, then $x=y=0$. Do you agree? Explain your answer.
(2013-DSE-MATH-EP(M2) \#08) (5 marks)
8. Let M be the matrix $\left(\begin{array}{ccc}1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0\end{array}\right)$, where $k \neq 0$.
(a) Find M^{-1}.
(b) If $M\left(\begin{array}{l}x \\ 1 \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)$, find the value of k.
(2013-DSE-MATH-EP(M2) \#13) (13 marks)
13. For any matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, define $\operatorname{tr}(M)=a+d$.

Let A and B be 2×2 matrices such that $B A B^{-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$.
(a) (i) For any matrix $N=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$, prove that $\operatorname{tr}(M N)=\operatorname{tr}(N M)$.
(ii) Show that $\operatorname{tr}(A)=4$.
(iii) Find the value of $|A|$.
(b) Let $C=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$. It is given that $C\binom{x}{y}=\lambda_{1}\binom{x}{y}$ and $C\binom{x}{y}=\lambda_{2}\binom{x}{y}$ for some non-zero matrices $\binom{x}{y}$ and distinct scalars λ_{1} and λ_{2}.
(i) Prove that $\left|\begin{array}{cc}p-\lambda_{1} & q \\ r & s-\lambda_{1}\end{array}\right|=0$ and $\left|\begin{array}{cc}p-\lambda_{2} & q \\ r & s-\lambda_{2}\end{array}\right|=0$.
(ii) Prove that λ_{1} and λ_{2} are the roots of the equation $\lambda^{2}-\operatorname{tr}(C) \cdot \lambda+|C|=0$.
(c) Find the two values of λ such that $A\binom{x}{y}=\lambda\binom{x}{y}$ for some non-zero matrices $\binom{x}{y}$.
(2014-DSE-MATH-EP(M2) \#07) (7 marks)
7. Let $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right)$.
(a) Prove, by mathematical induction, that for all positive integer $n, A^{n+1}=2^{n} A$.
(b) Using the result of (a), Willy proceeds in the following way:

$$
\begin{aligned}
& A^{2}=2 A \\
& A^{2} A^{-1}=2 A A^{-1} \\
& A=2 I
\end{aligned}
$$

Explain why Willy arrives at a wrong conclusion.
(2014-DSE-MATH-EP(M2) \#12) (11 marks)
12. Let $M=\left(\begin{array}{cc}k-1 & k \\ 1 & 0\end{array}\right)$ and $A=\left(\begin{array}{cc}1 & p \\ -1 & 1\end{array}\right)$, where k and p are real numbers and $p \neq-1$.
(a) (i) Find A^{-1} in terms of p.
(ii) Show that $A^{-1} M A=\left(\begin{array}{cc}-1 & k-p \\ 0 & k\end{array}\right)$.
(iii) Suppose $p=k$. Using (ii), find M^{n} in terms of k and n, where n is a positive integer.
(b) A sequence is defined by

$$
x_{1}=0, x_{2}=1 \text { and } x_{n}=x_{n-1}+2 x_{n-2} \text { for } n=3,4,5 \ldots
$$

It is known that this sequence can be expressed in the matrix form $\binom{x_{n}}{x_{n-1}}=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)\binom{x_{n-1}}{x_{n-2}}$.
Using the result of (a)(iii), express x_{n} in terms of n.
(2015-DSE-MATH-EP(M2) \#06) (6 marks)
6. (a) Let M be a 3×3 real matrix such that $M^{T}=-M$, where M^{T} is the transpose of M. Prove that $|M|=0$.
(b) Let $A=\left(\begin{array}{ccc}-1 & a & b \\ -a & -1 & -8 \\ -b & 8 & -1\end{array}\right)$, where a and b are real numbers. Denote that 3×3 identity matrix by I.
(i) Using (a), or otherwise, prove that $|A+I|=0$.
(ii) Someone claims that $A^{3}+I$ is a singular matrix. Do you agree: Explain your answer.
(2015-DSE-MATH-EP(M2) \#11) (12 marks)
11. (a) Let λ and μ be real numbers such that $\mu-\lambda \neq 2$. Denote the 2×2 identity matrix by I.

Define $A=\frac{1}{\lambda-\mu+2}(I-\mu I+M)$ and $B=\frac{1}{\lambda-\mu+2}(I+\lambda I-M)$, where $M=\left(\begin{array}{cc}\lambda & 1 \\ \lambda-\mu+1 & \mu\end{array}\right)$.
(i) Evaluate $A B, B A$ and $A+B$.
(ii) Prove that $A^{2}=A$ and $B^{2}=B$.
(iii) Prove that $M^{n}=(\lambda+1)^{n} A+(\mu-1)^{n} B$ for all positive integers n.
(b) Using (a), or otherwise, evaluate $\left(\begin{array}{ll}4 & 2 \\ 0 & 6\end{array}\right)^{315}$.
(2016-DSE-MATH-EP(M2) \#08) (8 marks)
8. Let n be a positive integer.
(a) Define $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Evaluate
(i) A^{2},
(ii) A^{n},
(iii) $\left(A^{-1}\right)^{n}$.
(b) Evaluate
(i) $\sum_{k=0}^{n-1} 2^{k}$,
(ii) $\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)^{n}$.
(2017-DSE-MATH-EP(M2) \#12) (12 marks)
12. Let $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$. Denote the 2×2 identity matrix by I.
(a) Using mathematical induction, prove that $A^{n}=3^{n} I+3^{n-1} n\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ for all positive integers n.
(b) Let $B=\left(\begin{array}{cc}5 & 1 \\ -4 & 1\end{array}\right)$.
(i) Define $P=\left(\begin{array}{cc}-1 & 0 \\ 2 & -1\end{array}\right)$. Evaluate $P^{-1} B P$.
(ii) Prove that $B^{n}=3^{n} I+3^{n-1} n\left(\begin{array}{cc}2 & 1 \\ -4 & -2\end{array}\right)$ for any positive integer n.
(iii) Does there exist a positive integer m such that $\left|A^{m}-B^{m}\right|=4 m^{2}$? Explain your answer.
(2018-DSE-MATH-EP(M2) \#7) (8 marks)
7. Define $M=\left(\begin{array}{cc}7 & 3 \\ -1 & 5\end{array}\right)$. Let $X=\left(\begin{array}{cc}a & 6 a \\ b & c\end{array}\right)$ be a non-zero real matrix such that $M X=X M$.
(a) Express b and c in terms of a.
(b) Prove that X is a non-singular matrix.
(c) Denote the transpose of X be X^{T}. Express $\left(X^{T}\right)^{-1}$ in terms of a.
(2019-DSE-MATH-EP(M2) \#02) (5 marks)
2. Let $\mathrm{P}(x)=\left|\begin{array}{ccc}x+\lambda & 1 & 2 \\ 0 & (x+\lambda)^{2} & 3 \\ 4 & 5 & (x+\lambda)^{3}\end{array}\right|$, where $\lambda \in \mathbf{R}$. It is given that the coefficient of x^{3} in the expansion of $\mathrm{P}(x)$ is 160 . Find
(a) λ,
(b) $\quad \mathrm{P}^{\prime}(0)$.
(2019-DSE-MATH-EP(M2) \#11) (12 marks)
11. Let $M=\left(\begin{array}{cc}2 & 7 \\ -1 & -6\end{array}\right)$. Denote the 2×2 identity matrix by I.
(a) Find a pair of real numbers a and b such that $M^{2}=a M+b I$.
(b) Prove that $6 M^{n}=\left(1-(-5)^{n}\right) M+\left(5+(-5)^{n}\right) I$ for all positive integers n.
(c) Does there exist a pair of 2×2 real matrices A and B such that $\left(M^{n}\right)^{-1}=A+\frac{1}{(-5)^{n}} B$ for all positive integers n ? Explain your answer.
(2020-DSE-MATH-EP(M2) \#08) (8 marks)
8. Define $P=\left(\begin{array}{cc}-5 & -2 \\ 15 & 6\end{array}\right)$ and $Q=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Let $M=\left(\begin{array}{ll}1 & a \\ b & c\end{array}\right)$ such that $|M|=1$ and $P M=M Q$, where a, b and c are real numbers.
(a) Find a, b and c.
(b) Define $R=\left(\begin{array}{cc}6 & 2 \\ -15 & -5\end{array}\right)$.
(i) Evaluate $M^{-1} R M$.
(ii) Using the result of $(\mathrm{b})(\mathrm{i})$, prove that $(\alpha P+\beta R)^{99}=\alpha^{99} P+\beta^{99} R$ for any real numbers α and β.
(2021-DSE-MATH-EP(M2) \#11) (12 marks)
11. Define $P=\left(\begin{array}{cc}\sin \theta & \cos \theta \\ -\cos \theta & \sin \theta\end{array}\right)$, where $\frac{\pi}{2}<\theta<\pi$.
(a) Let $A=\left(\begin{array}{cc}\alpha & \beta \\ \beta & -\alpha\end{array}\right)$, where $\alpha, \beta \in \mathbf{R}$.

Prove that $P A P^{-1}=\left(\begin{array}{cc}-\alpha \cos 2 \theta+\beta \sin 2 \theta & -\beta \cos 2 \theta-\alpha \sin 2 \theta \\ -\beta \cos 2 \theta-\alpha \sin 2 \theta & \alpha \cos 2 \theta-\beta \sin 2 \theta\end{array}\right)$.
(b) Let $B=\left(\begin{array}{cc}1 & \sqrt{3} \\ \sqrt{3} & -1\end{array}\right)$.
(i) Find θ such that $P B P^{-1}=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right)$, where $\lambda, \mu \in \mathbf{R}$.
(ii) Using the result of (b)(i), prove that $B^{n}=2^{n-2}\left(\begin{array}{cc}(-1)^{n}+3 & \sqrt{3}(-1)^{n+1}+\sqrt{3} \\ \sqrt{3}(-1)^{n+1}+\sqrt{3} & 3(-1)^{n}+1\end{array}\right)$ for any positive integer n.
(iii) Evaluate $\left(B^{-1}\right)^{555}$.

ANSWERS

(1991-AL-P MATH 1 \#01) (4 marks)

1. $(a-c)(b-c)(a-b)(a+b+c)$
(1992-AL-P MATH 1 \#03) (7 marks)
2. λ can be any non-zero number.

$$
a=1, b=3
$$

$$
A^{100}=\left(\begin{array}{cc}
1 & 0 \\
\frac{3^{100}-1}{2} & 3^{100}
\end{array}\right)
$$

(1993-AL-P MATH 1 \#06) (7 marks)
(1994-AL-P MATH 1 \#01) (6 marks)

1. $P^{-1} A P=\left(\begin{array}{ll}7 & 0 \\ 0 & 1\end{array}\right)$

$$
A^{n}=\frac{1}{6}\left(\begin{array}{cc}
2 \cdot 7^{n}+4 & 8 \cdot 7^{n}-8 \\
7^{n}-1 & 4 \cdot 7^{n}+2
\end{array}\right)
$$

(1995-AL-P MATH 1 \#01) (6 marks)

1. (b) $\left(\begin{array}{cc}1 & 3^{95}-1 \\ 0 & 3^{95}\end{array}\right)$
(1996-AL-P MATH 1 \#01) (6 marks)
2. $A^{3}-5 A^{2}+8 A-4 I=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

$$
A^{-1}=\frac{1}{4}\left(\begin{array}{ccc}
6 & 0 & 4 \\
-2 & 2 & -2 \\
-2 & 0 & 0
\end{array}\right)
$$

(1997-AL-P MATH 1 \#07) (7 marks)

7. (b) The other roots $=2 \pm \sqrt{3}$

$$
x=\frac{1}{4} \text { or } 2 \pm \sqrt{3}
$$

(1998-AL-P MATH 1 \#09) (15 marks)
9.
(b) $\quad P=\left(\begin{array}{cc}1 & 0 \\ -k & 1\end{array}\right), Q=\left(\begin{array}{cc}1 & \frac{-b}{a+k b} \\ 0 & 1\end{array}\right)$
(c) $\quad S=\left(\begin{array}{cc}\frac{3}{17} & \frac{7}{17} \\ -2 & 1\end{array}\right)$

$$
A^{n}=\left(\begin{array}{cc}
3 \cdot 17^{n-1} & 7 \cdot 17^{n-1} \\
6 \cdot 17^{n-1} & 14 \cdot 17^{n-1}
\end{array}\right)
$$

(1999-AL-P MATH 1 \#09) (15 marks)
9. (c) $D=\left(\begin{array}{cc}x & \frac{x y}{x-z} \\ 0 & 0\end{array}\right), E=\left(\begin{array}{cc}0 & \frac{-y z}{x-z} \\ 0 & z\end{array}\right)$
(d) $\quad\left(\begin{array}{cc}2^{99} & 5\left(2^{99}-1\right) \\ 0 & 1\end{array}\right)$
(2000-AL-P MATH 1 \#01) (5 marks)

1. $\left(\begin{array}{ccc}1 & 0 & 0 \\ -6000 & 1 & 0 \\ 6000 & 0 & 1\end{array}\right)$
(2002-AL-P MATH 1 \#12) (15 marks)
2. (a) (i) $A^{-1}=-\left(A^{2}+A+I\right)$
(iv) I
(b) (i) $\quad\left(\begin{array}{ccc}-1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
(ii) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right),\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1\end{array}\right)$,
$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$,
$\left(\begin{array}{ccc}-1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
(iii) $-I$ or X^{3}
(2003-AL-P MATH 1 \#08) (15 marks)
3. (a) $\alpha=1$ or $\alpha=-3$
(b) $\quad P^{n}=\left(\begin{array}{cc}\frac{-\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$ if n is odd.

$$
\begin{aligned}
& P^{n}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { if } n \text { is even. } \\
& P^{-1}\left(\begin{array}{cc}
-2 & \sqrt{3} \\
\sqrt{3} & 0
\end{array}\right) P=\left(\begin{array}{cc}
-3 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(c)

$$
\left(\begin{array}{cc}
\frac{1+(-1)^{n} 3^{n+1}}{4} & \frac{3^{\frac{1}{2}}\left(1+(-1)^{n+1} 3^{n}\right)}{4} \\
\frac{3^{\frac{1}{2}}\left(1+(-1)^{n+1} 3^{n}\right)}{4} & \frac{3\left(1+(-1)^{n} 3^{n-1}\right)}{4}
\end{array}\right)
$$

(2004-AL-P MATH 1 \#08) (15 marks)
8.

> (a) $X Y=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), Y X=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ $X+Y=I, X^{2}=X, Y^{2}=Y$ (c) $\quad\left(\begin{array}{cc}\frac{2\left(7^{2004}\right)+1}{3} & \frac{2\left(7^{2004}\right)-2}{3} \\ \frac{7^{2004}-1}{3} & \frac{7^{2004}+2}{3}\end{array}\right)$
(d) $\quad A^{-1}=\frac{1}{\alpha} X+\frac{1}{\beta} Y$
(2007-AL-P MATH 1 \#05) (6 marks)
5. (a) $\lambda=\alpha+\beta, \mu=-\alpha \beta$
(2011-AL-P MATH 1 \#08) (15 marks)
8. (a)
(ii) $\left(\begin{array}{cc}4 & 0 \\ 0 & 4-a-b\end{array}\right)$
(iii) $d_{1}=4^{n}, d_{2}=(4-a-b)^{n}$
(b)

$$
\frac{1}{75}\left(\begin{array}{cc}
4^{2 n+2}-15 n-16 & 4^{2 n+2}+60 n-16 \\
4^{2 n+1}+15 n-4 & 4^{2 n+1}-60 n-4
\end{array}\right)
$$

(SP-DSE-MATH-EP(M2) \#10) (8 marks)
10. (b) $\frac{\pi}{2}, \frac{2 \pi}{3}$
(c) $a=-1$ or 0
(SP-DSE-MATH-EP(M2) \#11) (12 marks)
11. (a)
(ii) $\quad P^{-1}=\left(\begin{array}{ccc}0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
(b) (iii) $\quad\left(D^{-1}\right)^{100}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2^{100}}\end{array}\right)$

$$
\left(A^{-1}\right)^{100}=\left(\begin{array}{ccc}
\frac{1}{2^{100}} & 0 & 0 \\
\frac{1}{2^{100}}-1 & 1 & 0 \\
\frac{1}{2^{100}}-1 & 0 & 1
\end{array}\right)
$$

(PP-DSE-MATH-EP(M2) \#05) (6 marks)
5. (a) $k=2 \cos 1$
(b) 0
(PP-DSE-MATH-EP(M2) \#11) (14 marks)
11. (c)
(i) $s=\frac{\beta}{\beta-\alpha}, t=\frac{\alpha}{\alpha-\beta}$
(iii) $\quad A^{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} A+\frac{\alpha \beta^{n}-\alpha^{n} \beta}{\alpha-\beta} I$
(2012-DSE-MATH-EP(M2) \#11) (13 marks)
11. (a) $x=-1$ or 5
(b) (i) $\quad\left(\begin{array}{cc}\frac{2}{3} & 1 \\ \frac{-1}{3} & 1\end{array}\right)$
(ii) $\left(\begin{array}{cc}-1 & 0 \\ 0 & 5\end{array}\right)$
(iii) $\left(\begin{array}{ll}\frac{5^{12}+2}{3} & \frac{2 \cdot 5^{12}-2}{3} \\ \frac{5^{12}-1}{3} & \frac{2 \cdot 5^{12}+1}{3}\end{array}\right)$
(2013-AL-P MATH 1 \#11) (15 marks)
11. (a)
(i) $\lambda=a+4$
(iii) (1) $5 I$
(2013-DSE-MATH-EP(M2) \#08) (5 marks)
8.
(a) $\quad M^{-1}=\frac{1}{k^{2}}\left(\begin{array}{ccc}0 & 0 & k \\ k & 0 & -1 \\ -k & k^{2} & 1\end{array}\right)$
(b) 1
(2013-DSE-MATH-EP(M2) \#13) (13 marks)
13. (a) (iii) 3
(c) 1 or 3
(2014-DSE-MATH-EP(M2) \#07) (7 marks)
7. (b) $|A|=0$
(2014-DSE-MATH-EP(M2) \#12) (11 marks)
12. (a)
(i) $\quad A^{-1}=\frac{1}{1+p}\left(\begin{array}{cc}1 & -p \\ 1 & 1\end{array}\right)$
(iii)
$M^{n}=\frac{1}{1+k}\left(\begin{array}{cc}k^{n+1}+(-1)^{n} & k^{n+1}+(-1)^{n+1} k \\ k^{n}+(-1)^{n+1} & k^{n}+(-1)^{n} k\end{array}\right)$
(b) $\quad x_{n}=\frac{2^{n-1}+(-1)^{n-2}}{3}$
(2015-DSE-MATH-EP(M2) \#06) (6 marks)
6. (b) (ii) $\left|A^{3}+I\right|=0$, agreed.
(2015-DSE-MATH-EP(M2) \#11) (12 marks)
11. (a)
(i) $\quad A B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), B A=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$

$$
A+B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(b) $\quad\left(\begin{array}{cc}2^{630} & 6^{315}-2^{630} \\ 0 & 6^{315}\end{array}\right)$
(2016-DSE-MATH-EP(M2) \#08) (8 marks)
8. (a)
(i) $\quad\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$
(ii) $\quad\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right)$
(iii) $\quad\left(\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right)$
(b) (i) $2^{n}-1$
(ii) $\left(\begin{array}{cc}1 & 0 \\ 2^{n}-1 & 2^{n}\end{array}\right)$
(2017-DSE-MATH-EP(M2) \#12) (12 marks)
12. (b) (i) A
(2018-DSE-MATH-EP(M2) \#7) (8 marks)
7. (a) $b=-2 a, c=-3 a$
(c) $\frac{1}{9 a}\left(\begin{array}{ll}-3 & 2 \\ -6 & 1\end{array}\right)$
(2019-DSE-MATH-EP(M2) \#02) (5 marks)
2. (a) 2
(b) 145
(2019-DSE-MATH-EP(M2) \#11) (12 marks)
11. (a) $a=-4, b=5$
(c) Yes

$$
A=\frac{1}{6}\left(\begin{array}{cc}
7 & 7 \\
-1 & -1
\end{array}\right), B=\frac{1}{6}\left(\begin{array}{cc}
-1 & -7 \\
1 & 7
\end{array}\right)
$$

(2020-DSE-MATH-EP(M2) \#08) (8 marks)
8. (a) $a=2, b=-3, c=-5$
(b) (i) $\quad M^{-1} R M=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
(2021-DSE-MATH-EP(M2) \#11) (12 marks)
11. (b)
(i) $\frac{5 \pi}{6}$
(iii) $\frac{1}{2^{556}}\left(\begin{array}{cc}1 & \sqrt{3} \\ \sqrt{3} & -1\end{array}\right)$

