3. ALGEBRA AREA

1. Matrices and Determinants

(1991-AL-P MATH 1 #01) (4 marks)

1. Factorize the determinant $\begin{vmatrix} a^3 & b^3 & c^3 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix}$.

(1992-AL-P MATH 1 #03) (7 marks)

3. Let
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 0 \\ 1 & \lambda \end{pmatrix}$.
If B^{-1} exists and $B^{-1}AB = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, find λ , a and b .

Hence find A^{100} .

(1993-AL-P MATH 1 #06) (7 marks)

6. (a) Show that if A is a 3×3 matrix such that $A^T = -A$, then det A = 0.

(b) Given that

$$B = \begin{pmatrix} 1 & -2 & 74 \\ 2 & 1 & -67 \\ -74 & 67 & 1 \end{pmatrix} \,,$$

use (a), or otherwise, to show det(I - B) = 0. Hence deduce that $det(I - B^4) = 0$.

(1994-AL-P MATH 1 #01) (6 marks)

1. Let
$$A = \begin{pmatrix} 3 & 8 \\ 1 & 5 \end{pmatrix}$$
 and $P = \begin{pmatrix} 2 & -4 \\ 1 & 1 \end{pmatrix}$.

Find $P^{-1}AP$.

Find A^n , where *n* is a positive integer.

(1995-AL-P MATH 1 #01) (6 marks)

1. (a) Let
$$A = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$$
 where a , $b \in \mathbf{R}$ and $a \neq b$.

Prove that
$$A^n = \begin{pmatrix} a^n & \frac{a^n - b^n}{a - b} \\ 0 & b^n \end{pmatrix}$$
 for all positive integers n .

(b) Hence, or otherwise, evaluate $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}^{95}$.

(1996-AL-P MATH 1 #01) (6 marks)

1. Let
$$A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$$
.

Evaluate $A^3 - 5A^2 + 8A - 4I$.

Hence, or otherwise, find A^{-1} .

(1997-AL-P MATH 1 #07) (7 marks)

7. (a) Let A be a
$$3 \times 3$$
 non-singular matrix. Show that

$$\det \left(A^{-1} - xI \right) = -\frac{x^3}{\det A} \det \left(A - x^{-1}I \right) \ .$$
Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

(b) Let $A = \begin{pmatrix} 0 & 0 & 1 \\ 4 & -17 & 8 \end{pmatrix}$.

Show that 4 is a root of det(A - xI) = 0 and hence find the other roots in surd form. Solve $det(A^{-1} - xI) = 0$.

(1998-AL-P MATH 1 #09) (15 marks)

(1999-AL-P MATH 1 #09) (15 marks)

9.

(a) Let A and B be two square matrices of the same order. If AB = BA = 0, show that $(A + B)^n = A^n + B^n$ for any positive integer n.

(b) Let $A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ where a, b are not both zero. If $B = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$, show that AB = BA = 0 if and

only if p = r = 0 and aq + bs = 0.

(c) Let $C = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$ where x, z are non-zero and distinct. Find non-zero matrices D and E such that C = D + E and DE = ED = 0. (d) Evaluate $\begin{pmatrix} 2 & 5 \\ 0 & 1 \end{pmatrix}^{99}$. (2000-AL-P MATH 1 #01) (5 marks)

1. Let
$$M = \begin{pmatrix} 1 & 0 & 0 \\ \lambda & b & a \\ \mu & c & -b \end{pmatrix}$$
 where $b^2 + ac = 1$. Show by induction that

$$M^{2n} = \begin{pmatrix} 1 & 0 & 0 \\ n \left[\lambda (1+b) + \mu a \right] & 1 & 0 \\ n \left[\lambda c + \mu (1-b) \right] & 0 & 1 \end{pmatrix}$$
for all positive integers *n*.

Hence or otherwise, evaluate
$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 2 \\ 1 & -4 & -3 \end{pmatrix}^{2000}$$

(2002-AL-P MATH 1 #12) (15 marks)

12. (a) Let A be a
$$3 \times 3$$
 matrix such that

$$A^3 + A^2 + A + I = 0$$

where *I* is the 3×3 identity matrix.

- (i) Prove that A has an inverse, and find A^{-1} in terms of A.
- (ii) Prove that $A^4 = I$.
- (iii) Prove that $(A^{-1})^3 + (A^{-1})^2 + A^{-1} + I = 0$.

(iv) Find a 3×3 invertible matrix B such that $B^3 + B^2 + B + I \neq 0$.

(b) Let
$$X = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$
.

- (i) Using (a)(i) or otherwise, find X^{-1} .
- (ii) Let *n* be a positive integer. Find X^n .
- (iii) Find two 3×3 matrices Y and Z, other than X, such that $Y^3 + Y^2 + Y + I = 0$, $Z^3 + Z^2 + Z + I = 0$.

(2003-AL-P MATH 1 #08) (15 marks)

8. (a) If det
$$\begin{pmatrix} -2 - \alpha & \sqrt{3} \\ \sqrt{3} & -\alpha \end{pmatrix} = 0$$
, find the two values of α .

(b) Let α_1 and α_2 be the values obtained in (a), where $\alpha_1 < \alpha_2$. Find θ_1 and θ_2 such that

$$\begin{pmatrix} -2 - \alpha_1 & \sqrt{3} \\ \sqrt{3} & -\alpha_1 \end{pmatrix} \begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} , \ 0 \le \theta_1 < \pi ,$$
$$\begin{pmatrix} -2 - \alpha_2 & \sqrt{3} \\ \sqrt{3} & -\alpha_2 \end{pmatrix} \begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} , \ 0 \le \theta_2 < \pi .$$

Let
$$P = \begin{pmatrix} \cos \theta_1 & \cos \theta_2 \\ \sin \theta_1 & \sin \theta_2 \end{pmatrix}$$
. Evaluate P^n , where *n* is a positive integer.

Prove that
$$P^{-1} \begin{pmatrix} -2 & \sqrt{3} \\ \sqrt{3} & 0 \end{pmatrix} P$$
 is a matrix of the form $\begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$.

(c) Evaluate
$$\begin{pmatrix} -2 & \sqrt{3} \\ \sqrt{3} & 0 \end{pmatrix}^n$$
, where *n* is a positive integer.

(2004-AL-P MATH 1 #08) (15 marks)

8. Let
$$A = \begin{pmatrix} \alpha - k & \alpha - \beta - k \\ k & \beta + k \end{pmatrix}$$
, where α , β , $k \in \mathbf{R}$ with $\alpha \neq \beta$.

Define $X = \frac{1}{\alpha - \beta} (A - \beta I)$ and $Y = \frac{1}{\beta - \alpha} (A - \alpha I)$, where *I* is the 2×2 identity matrix.

- (a) Evaluate XY, YX, X + Y, X^2 and Y^2 .
- (b) Prove that $A^n = \alpha^n X + \beta^n Y$ for all positive integers n.
- (c) Evaluate $\begin{pmatrix} 5 & 4 \\ 2 & 3 \end{pmatrix}^{2004}$.
- (d) If α and β are non-zero real numbers, guess an expression for A^{-1} in terms of α , β , X and Y, and verify it.

(2007-AL-P MATH 1 #05) (6 marks)

5. Let *P* be a non-singular 2 × 2 real matrix and $Q = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, where α and β are two distinct real numbers.

Define $M = P^{-1}QP$ and denote the 2 × 2 identity matrix by I.

- (a) Find real numbers λ and μ , in terms of α and β , such that $M^2 = \lambda M + \mu I$.
- (b) Prove that det $(M^2 + \alpha\beta I) = \alpha\beta(\alpha + \beta)^2$.

(2011-AL-P MATH 1 #08) (15 marks)

8. (a) Let
$$A = \begin{pmatrix} 4-b & a \\ b & 4-a \end{pmatrix}$$
 be a real matrix and $P = \begin{pmatrix} a & -1 \\ b & 1 \end{pmatrix}$, where $ab > 0$.

- (i) Prove that *P* is a non-singular matrix.
- (ii) Evaluate $P^{-1}AP$.

(iii) For any positive integer
$$n$$
, find d_1 and d_2 such that $A^n = P\begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} P^{-1}$.

(b) Let
$$B = \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix}$$
. For any positive integer n , find $B + B^3 + B^5 + \dots + B^{2n-1}$

(SP-DSE-MATH-EP(M2) #10) (8 marks)

10. Let
$$0^{\circ} < \theta < 180^{\circ}$$
 and define $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

(a) Prove, by mathematical induction, that

$$A^{n} = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}$$

for all positive integers n.

(b) Solve $\sin 3\theta + \sin 2\theta + \sin \theta = 0$.

(c) It is given that
$$A^3 + A^2 + A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$
.

Find the value(s) of a.

(SP-DSE-MATH-EP(M2) #11) (12 marks)

11. Let
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

(a) Let I and O be the 3×3 identity matrix and zero matrix respectively.

- (i) Prove that $P^3 2P^2 P + I = 0$.
- (ii) Using the result of (i), or otherwise, find P^{-1} .
- (b) (i) Prove that $D = P^{-1}AP$.

(iii) Find
$$\left(D^{-1}\right)^{100}$$
.

Hence, or otherwise, find $(A^{-1})^{100}$.

(PP-DSE-MATH-EP(M2) #05) (6 marks)

5. (a) It is given that
$$\cos(x + 1) + \cos(x - 1) = k \cos x$$
 for any real x. Find the value of k

(b) Without using a calculator, find the value of $\begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix}$

(PP-DSE-MATH-EP(M2) #11) (14 marks)

11. Let
$$A = \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix}$$
 where α and β are distinct real numbers. Let I be the 2 × 2 identity matrix.

- (a) Show that $A^2 = (\alpha + \beta)A \alpha\beta I$.
- (b) Using (a), or otherwise, show that $(A \alpha l)^2 = (\beta \alpha)(A \alpha l)$ and $(A \beta I)^2 = (\alpha \beta)(A \beta I)$.
- (c) Let $X = s(A \alpha l)$ and $Y = t(A \beta I)$ where s and t are real numbers. Suppose A = X + Y.
 - (i) Find s and t in terms of α and β .
 - (ii) For any positive integer n, prove that

$$X^n = \frac{\beta^n}{\beta - \alpha} (A - \alpha l)$$
 and $Y^n = \frac{\alpha^n}{\alpha - \beta} (A - \beta I)$.

(iii) For any positive integer n, express A^n in the form of pA + ql, where p and q are real numbers. (Note: It is known that for any 2×2 matrices H and K,

if
$$HK = KH = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, then $(H + K)^n = H^n + K^n$ for any positive integer *n*.)

(2012-DSE-MATH-EP(M2) #11) (13 marks)

11. (a) Solve the equation

$$\begin{vmatrix} 1 - x & 4 \\ 2 & 3 - x \end{vmatrix} = 0 \dots (*)$$

(b) Let x_1 , x_2 ($x_1 < x_2$) be the roots of (*). Let $P = \begin{pmatrix} a & c \\ b & 1 \end{pmatrix}$. It is given that

$$\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = x_1 \begin{pmatrix} a \\ b \end{pmatrix}$$
, $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} c \\ 1 \end{pmatrix} = x_2 \begin{pmatrix} c \\ 1 \end{pmatrix}$ and $|P| = 1$.

where a, b and c are constants.

(i) Find
$$P$$
.

(ii) Evaluate
$$P^{-1}\begin{pmatrix} 1 & 4\\ 2 & 3 \end{pmatrix}P$$
.

(iii) Using (b)(ii), evaluate
$$\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}^{12}$$

(2013-AL-P MATH 1 #11) (15 marks)

11. (a) Define
$$A = \begin{pmatrix} a & -2 \\ -2 & a+3 \end{pmatrix}$$
, where $a \in \mathbf{R}$.
Let λ , $\mu \in \mathbf{R}$ and $b > 0$ such that $A \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and $A \begin{pmatrix} b \\ 1 \end{pmatrix} = \mu \begin{pmatrix} b \\ 1 \end{pmatrix}$.
(i) Express λ in terms of a .
(ii) Prove that $b = 2$ and express μ in terms of a .
(iii) Define $M = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$. Denote the transpose of M by M^T .
(1) Evaluate $M^T M$.
(2) Using mathematical induction, prove that $A^n = \frac{1}{5}MD^nM^T$ for any $n \in \mathbf{N}$,
where $D = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$.
(b) Let x , $y \in \mathbf{R}$.
(i) Prove that if $(x \ y) \begin{pmatrix} 3 & -2 \\ -2 & 6 \end{pmatrix}^{2013} \begin{pmatrix} x \\ y \end{pmatrix} = 0$, then $x = y = 0$.
(ii) Someone claims that if $(x \ y) \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}^{2013} \begin{pmatrix} x \\ y \end{pmatrix} = 0$, then $x = y = 0$. Do you agree? Explain

your answer.

(2013-DSE-MATH-EP(M2) #08) (5 marks)

8. Let *M* be the matrix
$$\begin{pmatrix} 1 & k & 0 \\ 0 & 1 & 1 \\ k & 0 & 0 \end{pmatrix}$$
, where $k \neq 0$.

(a) Find
$$M^{-1}$$
.
(b) If $M\begin{pmatrix}x\\1\\z\end{pmatrix} = \begin{pmatrix}2\\2\\1\end{pmatrix}$, find the value of k .

(2013-DSE-MATH-EP(M2) #13) (13 marks)

13. For any matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, define tr(M) = a + d.

Let A and B be 2 × 2 matrices such that $BAB^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$.

(a) (i) For any matrix
$$N = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$
, prove that $tr(MN) = tr(NM)$.

- (ii) Show that tr(A) = 4.
- (iii) Find the value of |A|.

(b) Let $C = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$. It is given that $C \begin{pmatrix} x \\ y \end{pmatrix} = \lambda_1 \begin{pmatrix} x \\ y \end{pmatrix}$ and $C \begin{pmatrix} x \\ y \end{pmatrix} = \lambda_2 \begin{pmatrix} x \\ y \end{pmatrix}$ for some

non-zero matrices $\begin{pmatrix} x \\ y \end{pmatrix}$ and distinct scalars λ_1 and λ_2 .

(i) Prove that
$$\begin{vmatrix} p - \lambda_1 & q \\ r & s - \lambda_1 \end{vmatrix} = 0$$
 and $\begin{vmatrix} p - \lambda_2 & q \\ r & s - \lambda_2 \end{vmatrix} = 0$.

(ii) Prove that λ_1 and λ_2 are the roots of the equation $\lambda^2 - \text{tr}(C) \cdot \lambda + |C| = 0$.

(c) Find the two values of λ such that $A\begin{pmatrix}x\\y\end{pmatrix} = \lambda\begin{pmatrix}x\\y\end{pmatrix}$ for some non-zero matrices $\begin{pmatrix}x\\y\end{pmatrix}$.

(2014-DSE-MATH-EP(M2) #07) (7 marks)

7. Let $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

- (a) Prove, by mathematical induction, that for all positive integer n, $A^{n+1} = 2^n A$.
- (b) Using the result of (a), Willy proceeds in the following way:

$$A^{2} = 2A$$
$$A^{2}A^{-1} = 2AA^{-1}$$
$$A = 2I$$

Explain why Willy arrives at a wrong conclusion.

(2014-DSE-MATH-EP(M2) #12) (11 marks)

12. Let
$$M = \begin{pmatrix} k-1 & k \\ 1 & 0 \end{pmatrix}$$
 and $A = \begin{pmatrix} 1 & p \\ -1 & 1 \end{pmatrix}$, where k and p are real numbers and $p \neq -1$

(a) (i) Find
$$A^{-1}$$
 in terms of p .
(ii) Show that $A^{-1}MA = \begin{pmatrix} -1 & k-p \\ 0 & k \end{pmatrix}$.

(iii) Suppose p = k. Using (ii), find M^n in terms of k and n, where n is a positive integer.

(b) A sequence is defined by

 $x_1=0$, $x_2=1$ and $x_n=x_{n-1}+2x_{n-2}$ for n=3 , 4 , $5\ldots$

It is known that this sequence can be expressed in the matrix form $\begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n-1} \\ x_{n-2} \end{pmatrix}$.

Using the result of (a)(iii), express x_n in terms of n.

(2015-DSE-MATH-EP(M2) #06) (6 marks)

6.

(a)

Let M be a 3×3 real matrix such that $M^T = -M$, where M^T is the transpose of M. Prove that |M| = 0.

(b) Let
$$A = \begin{pmatrix} -1 & a & b \\ -a & -1 & -8 \\ -b & 8 & -1 \end{pmatrix}$$
, where *a* and *b* are real numbers. Denote that 3×3 identity matrix by *I*.

(i) Using (a), or otherwise, prove that |A + I| = 0.

(ii) Someone claims that $A^3 + I$ is a singular matrix. Do you agree: Explain your answer.

(2015-DSE-MATH-EP(M2) #11) (12 marks)

11. (a) Let λ and μ be real numbers such that $\mu - \lambda \neq 2$. Denote the 2 × 2 identity matrix by I.

Define
$$A = \frac{1}{\lambda - \mu + 2}(I - \mu I + M)$$
 and $B = \frac{1}{\lambda - \mu + 2}(I + \lambda I - M)$, where $M = \begin{pmatrix} \lambda & 1 \\ \lambda - \mu + 1 & \mu \end{pmatrix}$

- (i) Evaluate AB, BA and A+B.
- (ii) Prove that $A^2 = A$ and $B^2 = B$.
- (iii) Prove that $M^n = (\lambda + 1)^n A + (\mu 1)^n B$ for all positive integers n.

(b) Using (a), or otherwise, evaluate $\begin{pmatrix} 4 & 2 \\ 0 & 6 \end{pmatrix}^{315}$.

8.

(2016-DSE-MATH-EP(M2) #08) (8 marks)

Let *n* be a positive integer. (a) Define $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Evaluate (i) A^2 , (ii) A^n , (iii) $(A^{-1})^n$. (b) Evaluate (i) $\sum_{k=0}^{n-1} 2^k$, (ii) $(\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}^n$.

(2017-DSE-MATH-EP(M2) #12) (12 marks)

- 12. Let $A = \begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$. Denote the 2 × 2 identity matrix by I.
 - (a) Using mathematical induction, prove that $A^n = 3^n I + 3^{n-1} n \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ for all positive integers n.
 - (b) Let $B = \begin{pmatrix} 5 & 1 \\ -4 & 1 \end{pmatrix}$. (i) Define $P = \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$. Evaluate $P^{-1}BP$. (ii) Prove that $B^n = 3^n I + 3^{n-1}n \begin{pmatrix} 2 & 1 \\ -4 & -2 \end{pmatrix}$ for any positive integer n.
 - (iii) Does there exist a positive integer m such that $|A^m B^m| = 4m^2$? Explain your answer.

(2018-DSE-MATH-EP(M2) #7) (8 marks)

- 7. Define $M = \begin{pmatrix} 7 & 3 \\ -1 & 5 \end{pmatrix}$. Let $X = \begin{pmatrix} a & 6a \\ b & c \end{pmatrix}$ be a non-zero real matrix such that MX = XM.
 - (a) Express b and c in terms of a.
 - (b) Prove that X is a non-singular matrix.
 - (c) Denote the transpose of X be X^T . Express $(X^T)^{-1}$ in terms of a.

(2019-DSE-MATH-EP(M2) #02) (5 marks)

2.

Let $P(x) = \begin{vmatrix} x + \lambda & 1 & 2 \\ 0 & (x + \lambda)^2 & 3 \\ 4 & 5 & (x + \lambda)^3 \end{vmatrix}$, where $\lambda \in \mathbf{R}$. It is given that the coefficient of x^3 in the

expansion of P(x) is 160. Find

- (a) λ,
- (b) P'(0).

(2019-DSE-MATH-EP(M2) #11) (12 marks)

Let $M = \begin{pmatrix} 2 & 7 \\ -1 & -6 \end{pmatrix}$. Denote the 2 × 2 identity matrix by *I*. 11.

- Find a pair of real numbers a and b such that $M^2 = aM + bI$. (a)
- Prove that $6M^n = (1 (-5)^n)M + (5 + (-5)^n)I$ for all positive integers n. (b)
- Does there exist a pair of 2 × 2 real matrices A and B such that $(M^n)^{-1} = A + \frac{1}{(-5)^n}B$ for all positive (c)

integers n? Explain your answer.

(2020-DSE-MATH-EP(M2) #08) (8 marks)

8. Define
$$P = \begin{pmatrix} -5 & -2 \\ 15 & 6 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Let $M = \begin{pmatrix} 1 & a \\ b & c \end{pmatrix}$ such that $|M| = 1$ and $PM = MQ$, where a ,

b and c are real numbers.

- (a) Find a, b and c.
- (b) Define $R = \begin{pmatrix} 6 & 2 \\ -15 & -5 \end{pmatrix}$.
 - Evaluate $M^{-1}RM$. (i)
 - Using the result of (b)(i), prove that $(\alpha P + \beta R)^{99} = \alpha^{99}P + \beta^{99}R$ for any real numbers α and β . (ii)

(2021-DSE-MATH-EP(M2) #11) (12 marks)

11. Define
$$P = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix}$$
, where $\frac{\pi}{2} < \theta < \pi$.
(a) Let $A = \begin{pmatrix} \alpha & \beta \\ \beta & -\alpha \end{pmatrix}$, where $\alpha, \beta \in \mathbf{R}$.
Prove that $PAP^{-1} = \begin{pmatrix} -\alpha \cos 2\theta + \beta \sin 2\theta & -\beta \cos 2\theta - \alpha \sin 2\theta \\ -\beta \cos 2\theta - \alpha \sin 2\theta & \alpha \cos 2\theta - \beta \sin 2\theta \end{pmatrix}$.
(b) Let $B = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$.
(i) Find θ such that $PBP^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, where $\lambda, \mu \in \mathbf{R}$.

(ii) Using the result of (b)(i), prove that
$$B^n = 2^{n-2} \begin{pmatrix} (-1)^n + 3 & \sqrt{3}(-1)^{n+1} + \sqrt{3} \\ \sqrt{3}(-1)^{n+1} + \sqrt{3} & 3(-1)^n + 1 \end{pmatrix}$$
 for any

positive integer n.

(iii) Evaluate $(B^{-1})^{555}$.

ANSWERS

(1991-AL-P MATH 1 #01) (4 marks) 1. (a - c)(b - c)(a - b)(a + b + c)

(1992-AL-P MATH 1 #03) (7 marks)

3. λ can be any non-zero number.

$$a = 1 , b = 3$$

$$A^{100} = \begin{pmatrix} 1 & 0 \\ \frac{3^{100} - 1}{2} & 3^{100} \end{pmatrix}$$

(1993-AL-P MATH 1 #06) (7 marks)

(1994-AL-P MATH 1 #01) (6 marks)

1.
$$P^{-1}AP = \begin{pmatrix} 7 & 0 \\ 0 & 1 \end{pmatrix}$$
$$A^{n} = \frac{1}{6} \begin{pmatrix} 2 \cdot 7^{n} + 4 & 8 \cdot 7^{n} - 8 \\ 7^{n} - 1 & 4 \cdot 7^{n} + 2 \end{pmatrix}$$

(1995-AL-P MATH 1 #01) (6 marks)

1. (b) $\begin{pmatrix} 1 & 3^{95} - 1 \\ 0 & 3^{95} \end{pmatrix}$

(1996-AL-P MATH 1 #01) (6 marks)

1.
$$A^{3} - 5A^{2} + 8A - 4I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$A^{-1} = \frac{1}{4} \begin{pmatrix} 6 & 0 & 4 \\ -2 & 2 & -2 \\ -2 & 0 & 0 \end{pmatrix}$$

(1997-AL-P MATH 1 #07) (7 marks)

7. (b) The other roots $= 2 \pm \sqrt{3}$ $x = \frac{1}{4}$ or $2 \pm \sqrt{3}$ (1998-AL-P MATH 1 #09) (15 marks)

9. (b)
$$P = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix}$$
, $Q = \begin{pmatrix} 1 & \frac{-b}{a+kb} \\ 0 & 1 \end{pmatrix}$
(c) $S = \begin{pmatrix} \frac{3}{17} & \frac{7}{17} \\ -2 & 1 \end{pmatrix}$
 $A^n = \begin{pmatrix} 3 \cdot 17^{n-1} & 7 \cdot 17^{n-1} \\ 6 \cdot 17^{n-1} & 14 \cdot 17^{n-1} \end{pmatrix}$

(1999-AL-P MATH 1 #09) (15 marks)

9. (c)
$$D = \begin{pmatrix} x & \frac{xy}{x-z} \\ 0 & 0 \end{pmatrix}$$
, $E = \begin{pmatrix} 0 & \frac{-yz}{x-z} \\ 0 & z \end{pmatrix}$
(d) $\begin{pmatrix} 2^{99} & 5(2^{99}-1) \\ 0 & 1 \end{pmatrix}$

(2000-AL-P MATH 1 #01) (5 marks)

 $1. \qquad \begin{pmatrix} 1 & 0 & 0 \\ -6000 & 1 & 0 \\ 6000 & 0 & 1 \end{pmatrix}$

(2002-AL-P MATH 1 #12) (15 marks)

12. (a) (i)
$$A^{-1} = -(A^2 + A + I)$$

(iv) I
(b) (i) $\begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
(ii) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1 \end{pmatrix}$,
 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
(iii) $-I$ or X^3

Provided by dse.life

(2003-AL-P MATH 1 #08) (15 marks)
8. (a)
$$\alpha = 1$$
 or $\alpha = -3$
(b) $P^n = \begin{pmatrix} -\sqrt{3} & \frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$ if *n* is odd.
 $P^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ if *n* is even.
 $P^{-1} \begin{pmatrix} -2 & \sqrt{3} \\ \sqrt{3} & 0 \end{pmatrix} P = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$

(c)

$$\begin{pmatrix} \frac{1+(-1)^n 3^{n+1}}{4} & \frac{3^{\frac{1}{2}} \left(1+(-1)^{n+1} 3^n\right)}{4} \\ \frac{3^{\frac{1}{2}} \left(1+(-1)^{n+1} 3^n\right)}{4} & \frac{3 \left(1+(-1)^n 3^{n-1}\right)}{4} \end{pmatrix}$$

(2004-AL-P MATH 1 #08) (15 marks)

8. (a)
$$XY = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, $YX = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $X + Y = I$, $X^2 = X$, $Y^2 = Y$
(c) $\begin{pmatrix} \frac{2(7^{2004}) + 1}{3} & \frac{2(7^{2004}) - 2}{3} \\ \frac{7^{2004} - 1}{3} & \frac{7^{2004} + 2}{3} \end{pmatrix}$
(d) $A^{-1} = \frac{1}{\alpha}X + \frac{1}{\beta}Y$

(2007-AL-P MATH 1 #05) (6 marks) 5. (a) $\lambda = \alpha + \beta$, $\mu = -\alpha\beta$

(2011-AL-P MATH 1 #08) (15 marks)

8. (a) (ii)
$$\begin{pmatrix} 4 & 0 \\ 0 & 4-a-b \end{pmatrix}$$

(iii) $d_1 = 4^n$, $d_2 = (4-a-b)^n$
(b) $\frac{1}{75} \begin{pmatrix} 4^{2n+2} - 15n - 16 & 4^{2n+2} + 60n - 16 \\ 4^{2n+1} + 15n - 4 & 4^{2n+1} - 60n - 4 \end{pmatrix}$

(SP-DSE-MATH-EP(M2) #10) (8 marks)

10. (b) $\frac{\pi}{2}$, $\frac{2\pi}{3}$ (c) a = -1 or 0

(SP-DSE-MATH-EP(M2) #11) (12 marks)

11. (a) (ii)
$$P^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(b) (iii) $\left(D^{-1}\right)^{100} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2^{100}} \end{pmatrix}$
 $\left(\frac{1}{2^{100}} & 0 & 0\right)$

$$\left(A^{-1}\right)^{100} = \begin{bmatrix} \frac{1}{2^{100}} - 1 & 1 & 0\\ \frac{1}{2^{100}} - 1 & 0 & 1 \end{bmatrix}$$

(PP-DSE-MATH-EP(M2) #05) (6 marks)

5. (a) $k = 2\cos 1$ (b) 0

(PP-DSE-MATH-EP(M2) #11) (14 marks)

11. (c) (i)
$$s = \frac{\beta}{\beta - \alpha}$$
, $t = \frac{\alpha}{\alpha - \beta}$
(iii) $A^n = \frac{\alpha^n - \beta^n}{\alpha - \beta}A + \frac{\alpha\beta^n - \alpha^n\beta}{\alpha - \beta}I$

(2012-DSE-MATH-EP(M2) #11) (13 marks)

11. (a)
$$x = -1$$
 or 5
(b) (i) $\begin{pmatrix} \frac{2}{3} & 1\\ \frac{-1}{3} & 1 \end{pmatrix}$
(ii) $\begin{pmatrix} -1 & 0\\ 0 & 5 \end{pmatrix}$
(iii) $\begin{pmatrix} \frac{5^{12}+2}{3} & \frac{2 \cdot 5^{12}-2}{3}\\ \frac{5^{12}-1}{3} & \frac{2 \cdot 5^{12}+1}{3} \end{pmatrix}$

Provided by dse.life

(2013-AL-P MATH 1 #11) (15 marks)	
11. (a)	(i) $\lambda = a + 4$
	(iii) (1) 5 <i>I</i>
(2013-DSE-MATH-EP(M2) #08) (5 marks)	
8. (a)	$M^{-1} = \frac{1}{k^2} \begin{pmatrix} 0 & 0 & k \\ k & 0 & -1 \\ -k & k^2 & 1 \end{pmatrix}$
(b)) 1
(2013-DS	E-MATH-EP(M2) #13) (13 marks)
13. (a)	(iii) 3
(c)	1 or 3
(2014-DS	E-MATH-EP(M2) #07) (7 marks)
	A = 0
(2014-DS	E-MATH-EP(M2) #12) (11 marks)
12. (a)	(i) $A^{-1} = \frac{1}{1+p} \begin{pmatrix} 1 & -p \\ 1 & 1 \end{pmatrix}$
	(iii)
M^{2}	${}^{n} = \frac{1}{1+k} \begin{pmatrix} k^{n+1} + (-1)^{n} & k^{n+1} + (-1)^{n+1}k \\ k^{n} + (-1)^{n+1} & k^{n} + (-1)^{n}k \end{pmatrix}$
(b)	$x_n = \frac{2^{n-1} + (-1)^{n-2}}{3}$
(2015-DSE-MATH-EP(M2) #06) (6 marks)	
6. (b)	(ii) $\left A^3 + I \right = 0$, agreed.
. (*)	
(2015 DS	E MATH EP(M2) #11) (12 marks)

(2015-DSE-MATH-EP(M2) #11) (12 marks)

11. (a) (i)
$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, $BA = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
 $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
(b) $\begin{pmatrix} 2^{630} & 6^{315} - 2^{630} \\ 0 & 6^{315} \end{pmatrix}$

(2016-DSE-MATH-EP(M2) #08) (8 marks)

8. (a) (i) $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ (ii) $\begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix}$ (iii) $\begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix}$ (b) (i) $2^n - 1$ (ii) $\begin{pmatrix} 1 & 0 \\ 2^n - 1 & 2^n \end{pmatrix}$

(2017-DSE-MATH-EP(M2) #12) (12 marks)

12. (b) (i) A

(2018-DSE-MATH-EP(M2) #7) (8 marks)

7. (a) b = -2a, c = -3a(c) $\frac{1}{9a} \begin{pmatrix} -3 & 2 \\ -6 & 1 \end{pmatrix}$

(2019-DSE-MATH-EP(M2) #02) (5 marks)

2. (a) 2 (b) 145

(2019-DSE-MATH-EP(M2) #11) (12 marks)

11. (a)
$$a = -4$$
, $b = 5$
(c) Yes
 $A = \frac{1}{6} \begin{pmatrix} 7 & 7 \\ -1 & -1 \end{pmatrix}$, $B = \frac{1}{6} \begin{pmatrix} -1 & -7 \\ 1 & 7 \end{pmatrix}$

(2020-DSE-MATH-EP(M2) #08) (8 marks)

8. (a)
$$a=2$$
, $b=-3$, $c=-5$
(b) (i) $M^{-1}RM = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

(2021-DSE-MATH-EP(M2) #11) (12 marks)

11. (b) (i)
$$\frac{5\pi}{6}$$

(iii) $\frac{1}{2^{556}} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$

Provided by dse.life