$8.30 \mathrm{am}-10.30 \mathrm{am}$（2 hours）
This paper must be answered in English

1．Answer ALL questions in Section A and any THREE questions in Section B．
2．All working must be clearly shown．
3．Unless otherwise specified，numerical answers must be exact．
4．In this paper，vectors may be represented by bold－type letters such as \mathbf{u} ，but candidates are expected to use appropriate symbols such as $\overrightarrow{\mathrm{u}}$ in their working．

5．The diagrams in the paper are not necessarily drawn to scale．

FORMULAS FOR REFERENCE

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \\
& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\
& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B)
\end{aligned}
$$

Section A（42 marks）
Answer ALL questions in this section．

1．Solve $\frac{1}{x}>1$ ．
（3 marks）

2．Find
（a）$\frac{\mathrm{d}}{\mathrm{d} x} \sin ^{2} x$ ，
（b）$\frac{\mathrm{d}}{\mathrm{d} x} \sin ^{2}(3 x+1)$ ．
（4 marks）

3．（a）Show that $\frac{1}{\sqrt{x+\Delta x}}-\frac{1}{\sqrt{x}}=\frac{-\Delta x}{\sqrt{x}(\sqrt{x+\Delta x})(\sqrt{x}+\sqrt{x+\Delta x})}$ ．
（b）Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{\sqrt{x}}\right)$ from first principles．

4．$\quad P(-1,2)$ is a point on the curve $(x+2)(y+3)=5$ ．Find
（a）the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at P ，
（b）the equation of the tangent to the curve at P ．

5．（a）Solve $|1-x|=2$ ．
（b）By considering the cases $x \leq 1$ and $x>1$ ，or otherwise，solve $|1-x|=x-1$ ．

6．Express the complex number $\frac{1+\sqrt{3} i}{\sqrt{3}+i}$ in polar form．
Hence find the argument θ of $\left(\frac{1+\sqrt{3} i}{\sqrt{3}+i}\right)^{2000}$ ，where θ is limited to the principal values $-\pi<\theta \leq \pi$ ．
(6 marks)

7．α and β are the roots of the quadratic equation

$$
x^{2}+(p-2) x+p=0
$$

where p is real．
（a）Express $\alpha+\beta$ and $\alpha \beta$ in terms of p ．
（b）If α and β are real such that $\alpha^{2}+\beta^{2}=11$ ，find the value（s）of p．
（7 marks）
8.

Figure 1
In Figure $1, \overrightarrow{O A}=\mathbf{i}, \overrightarrow{O B}=\mathbf{j} . C$ is a point on $O A$ produced such that $A C=k$ ，where $k>0 . D$ is a point on $B C$ such that $B D: D C=1: 2$ ．
（a）Show that $\overrightarrow{O D}=\frac{1+k}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}$ ．
（b）If $\overrightarrow{O D}$ is a unit vector，find
（i）k ，
（ii）$\angle B O D$ ，giving your answer correct to the nearest degree．
（7 marks）

Section B（48 marks）

Answer any THREE questions in this section．
Each question carries 16 marks．
9.

In Figure 2，$O A C$ is a triangle．B and D are points on $A C$ such that $A D=D B=B C . F$ is a point on $O D$ produced such that $O D=D F . E$ is a point on $O B$ produced such that $O E=k(O B)$ ，where $k>1$ ．Let $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$ ．
（a）（i）Express $O D$ in terms of \mathbf{a} and \mathbf{b} ．
（ii）Show that $\overrightarrow{O C}=-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}$ ．
（iii）Express $\overrightarrow{E F}$ in terms of k ，a and \mathbf{b} ．
（b）It is given that $O A=3, O B=2$ and $\angle A O B=60^{\circ}$ ．
（i）Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{b} \cdot \mathbf{b}$ ．
（ii）Suppose that $\angle O E F=90^{\circ}$ ．
（1）Find the value of k ．
（2）A student states that points C, E and F are collinear．Explain whether the student is correct．
（11 marks）

10．Let $\mathrm{f}(x)=\frac{7-4 x}{x^{2}+2}$ ．
（a）（i）Find the x－and y－intercepts of the curve $y=\mathrm{f}(x)$ ．
（ii）Find the range of values of x for which $\mathrm{f}(x)$ is decreasing．
（iii）Show that the maximum and minimum values of $\mathrm{f}(x)$ are 4 and $-\frac{1}{2}$ respectively．
（9 marks）
（b）In Figure 3，sketch the curve $y=\mathrm{f}(x)$ for $-2 \leq x \leq 5$ ．
（3 marks）
（c）Let $p=\frac{7-4 \sin \theta}{\sin ^{2} \theta+2}$ ，where θ is real．

From the graph in（b），a student concludes that the greatest and least values of p are 4 and $-\frac{1}{2}$ respectively．Explain whether the student is correct．If not，what should be the greatest and least values of p ？
（4 marks）

If you attempt Question 10，fill in the first three boxes above and tie this sheet into your answer book．

10．（b）（continued）

Figure 3

This is a blank page．

11．（a）Let $w=\cos \theta+i \sin \theta$ ，where $0<\theta<\pi$ ．It is given that the complex number $w^{2}+\frac{5}{w}-2$ is purely imaginary．

Show that $2 \cos ^{2} \theta+5 \cos \theta-3=0$ ．

Hence，or otherwise，find w ．
（b）$\quad A$ and B are two points in an Argand diagram representing two distinct non－zero complex numbers z_{1} and z_{2} respectively．Suppose that $z_{2}=w z_{1}$ ，where w is the complex number found in（a）．
（i）Find $\left|\frac{z_{2}}{z_{1}}\right|$ and $\arg \left(\frac{z_{2}}{z_{1}}\right)$ ．
（ii）Let O be the point representing the complex number 0 ． What type of triangle is $\triangle O A B$ ？Explain your answer．
（8 marks）

12．Consider the function $\mathrm{f}(x)=x^{2}-4 m x-\left(5 m^{2}-6 m+1\right)$ ，where $m>\frac{1}{3}$ ．
（a）Show that the equation $\mathrm{f}(x)=0$ has distinct real roots． （3 marks）
（b）Let α, β be the roots of the equation $\mathrm{f}(x)=0$ ，where $\alpha<\beta$ ．
（i）Express α and β in terms of m ．
（ii）Furthermore，it is known that $4<\beta<5$ ．
（1）Show that $1<m<\frac{6}{5}$ ．
（2）Figure 4 shows three sketches of the graph of $y=\mathrm{f}(x)$ drawn by three students．Their teacher points out that the three sketches are all incorrect． Explain why each of the sketches is incorrect．

Figure 4
12.
（b）
（ii）
（2）
（continued）

Figure 4 （continued）
（13 marks）
13.

Figure 5

Two boats A and B are initially located at points P and Q in a lake respectively，where Q is at a distance 100 m due north of $P . R$ is a point on the lakeside which is at a distance 100 m due west of Q ．（See Figure 5．） Starting from time（in seconds）$t=0$ ，boats A and B sail northwards．At time t ，let the distances travelled by A and B be $x \mathrm{~m}$ and $y \mathrm{~m}$ respectively，where $0 \leq x \leq 100$ ．Let $\angle A R B=\theta$ ．
（a）Express $\tan \angle A R Q$ in terms of x ．
Hence show that $\tan \theta=\frac{100(100-x+y)}{10000-100 y+x y}$ ．（4 marks）
（b）Suppose boat A sails with a constant speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$ and B adjusts its speed continuously so as to keep the value of $\angle A R B$ unchanged．
（i）Using（a），show that $y=\frac{100 x}{200-x}$ ．
（ii）Find the speed of boat B at $t=40$ ．
（iii）Suppose the maximum speed of boat B is $3 \mathrm{~m} \mathrm{~s}^{-1}$ ． Explain whether it is possible to keep the value of $\angle A R B$ unchanged before boat A reaches Q ．
（12 marks）

END OF PAPER

2000－CE－A MATH 1－12
－ 11 －
5A．（C）保留版權 All Rights Reserved 2000

Additional Mathematics
Paper 1

Section A

1． $0<x<1$
2．（a） $2 \sin x \cos x$
（b） $6 \sin (3 x+1) \cos (3 x+1)$
3．（b）$\frac{-\sqrt{x}}{2 x^{2}}$
4．（a）-5
（b） $5 x+y+3=0$
5．（a）$x=-1$ or 3
（b）$x \geq 1$
6． $\cos \frac{\pi}{6}+i \sin \frac{\pi}{6},-\frac{2 \pi}{3}$
7．（a） $2-p, p$
（b）-1
8．（b）（i）$\sqrt{5}-1$
（ii） 48°
－（C）保留版權 All Rights Reserved 2000

Section B

Q． $9 \quad$（a）（i） $\overrightarrow{O D}=\frac{\mathbf{a}+\mathbf{b}}{2}$
（ii） $\overrightarrow{O B}=\frac{\overrightarrow{O A}+2 \overrightarrow{O C}}{1+2}$

$$
\begin{aligned}
& \mathbf{b}=\frac{\mathbf{a}+2 \overrightarrow{O C}}{3} \\
& \overrightarrow{O C}=-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}
\end{aligned}
$$

（iii） $\overrightarrow{E F}=\overrightarrow{O F}-\overrightarrow{O E}$

$$
\begin{aligned}
& =2 \overrightarrow{O D}-k \overrightarrow{O B} \\
& =2\left(\frac{\mathbf{a}+\mathbf{b}}{2}\right)-k \mathbf{b} \\
& =\mathbf{a}+(1-k) \mathbf{b}
\end{aligned}
$$

（b）（i） $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \angle A O B$

$$
\begin{aligned}
& =3(2) \cos 60^{\circ} \\
& =3 \\
\mathbf{b} \cdot \mathbf{b} & =|\mathbf{b}|^{2}=4
\end{aligned}
$$

（ii）（1） $\overrightarrow{O E} \cdot \overrightarrow{E F}=0$

$$
\begin{aligned}
& k \mathbf{b} \cdot[\mathbf{a}+(1-k) \mathbf{b}]=0 \\
& k \mathbf{a} \cdot \mathbf{b}+k(1-k) \mathbf{b} \cdot \mathbf{b}=0 \\
& 3 k+4 k(1-k)=0 \\
& 7 k-4 k^{2}=0 \\
& k=0 \text { (rejected) or } k=\frac{7}{4} \\
& \therefore k=\frac{7}{4} .
\end{aligned}
$$

（2）Put $k=\frac{7}{4}$ ：

$$
\begin{aligned}
\overrightarrow{E F} & =\mathbf{a}+\left(1-\frac{7}{4}\right) \mathbf{b}=\mathbf{a}-\frac{3}{4} \mathbf{b} \\
\overrightarrow{C E} & =\overrightarrow{O E}-\overrightarrow{O C} \\
& =\frac{7}{4} \mathbf{b}-\left(-\frac{1}{2} \mathbf{a}+\frac{3}{2} \mathbf{b}\right) \\
& =\frac{1}{2} \mathbf{a}+\frac{1}{4} \mathbf{b}
\end{aligned}
$$

Since $\overrightarrow{C E} \neq \mu \overrightarrow{E F}, C, E, F$ are not collinear．The student is incorrect．

5A．（C）保留版權 All Rights Reserved 2000

Q． 10 （a）（i）Put $x=0, y=\frac{7}{2} \quad \therefore$ the y－intercept is $\frac{7}{2}$ ．
Put $y=0, x=\frac{7}{4} \quad \therefore$ the x－intercept is $\frac{7}{4}$ ．
（ii） $\mathrm{f}(x)$ is decreasing when $\mathrm{f}^{\prime}(x) \leq 0$ ．

$$
\begin{aligned}
& \mathrm{f}^{\prime}(x)=\frac{-4\left(x^{2}+2\right)-(7-4 x) 2 x}{\left(x^{2}+2\right)^{2}} \\
& \quad=\frac{4 x^{2}-14 x-8}{\left(x^{2}+2\right)^{2}} \\
& \frac{4 x^{2}-14 x-8}{\left(x^{2}+2\right)^{2}} \leq 0 \\
& (2 x+1)(x-4) \leq 0 \\
& -\frac{1}{2} \leq x \leq 4
\end{aligned}
$$

（iii） $\mathrm{f}(x)$ is increasing when $\mathrm{f}^{\prime}(x) \geq 0$ ，
i．e．$x \geq 4$ or $x \leq-\frac{1}{2}$ ．
$\mathrm{f}^{\prime}(x)=0$ when $x=4$ or $-\frac{1}{2}$ ．
As $\mathrm{f}^{\prime}(x)$ changes from positive to negative as x increases through $-\frac{1}{2}$ ，so $\mathrm{f}(x)$ attains a maximum at $x=-\frac{1}{2}$ ．
At $x=-\frac{1}{2}, y=4$
\therefore the maximum value of $\mathrm{f}(x)$ is 4 ．
As $\mathrm{f}^{\prime}(x)$ changes from negative to positive as
x increases through 4，so $\mathrm{f}(x)$ attains a
minimum at $x=4$ ．
At $x=4, y=-\frac{1}{2}$
\therefore the minimum value of $\mathrm{f}(x)$ is $-\frac{1}{2}$ ．

（c）Put $x=\sin \theta, \mathrm{f}(\sin \theta)=\frac{7-4 \sin \theta}{\sin ^{2} \theta+2}=p$ ．
The range of possible value of $\sin \theta$ is $-1 \leq \sin \theta \leq 1$ ．
From the graph in（b），the greatest value of $\mathrm{f}(x)$ in the range $-1 \leq x \leq 1$ is 4 ．
\therefore the greatest value of p is 4 and the student is correct．
From the graph in（b）， $\mathrm{f}(x)$ attains its least value at one of the end－points．
$f(1)=1, f(-1)=\frac{11}{3}$ ．
\therefore the least value of p is 1 and the student is incorrect．

Q． 11 （a）$w=\cos \theta+i \sin \theta$
$w^{2}=\cos 2 \theta+i \sin 2 \theta$
$\frac{1}{w}=\frac{1}{\cos \theta+i \sin \theta}$
$=\cos (-\theta)+i \sin (-\theta)$
$=\cos \theta-i \sin \theta$
$w^{2}+\frac{5}{w}-2$
$=\cos 2 \theta+i \sin 2 \theta+5(\cos \theta-i \sin \theta)-2$
$=\cos 2 \theta+5 \cos \theta-2+i(\sin 2 \theta-5 \sin \theta)$
Since $w^{2}+\frac{5}{w}-2$ is purely imaginary，
$\cos 2 \theta+5 \cos \theta-2=0$
$\left(2 \cos ^{2} \theta-1\right)+5 \cos \theta-2=0$
$2 \cos ^{2} \theta+5 \cos \theta-3=0$
$\cos \theta=\frac{1}{2}$ or $\cos \theta=-3 \quad$（rejected）
$\theta=\frac{\pi}{3} \quad(\because 0<\theta<\pi)$
Imaginary part

$$
\begin{aligned}
& =\sin \frac{2 \pi}{3}-5 \sin \frac{\pi}{3} \neq 0 \\
& \therefore w=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}
\end{aligned}
$$

（b）（i）$\left|\frac{z_{2}}{z_{1}}\right|=|w|$

$$
\begin{aligned}
\arg \left(\frac{z_{2}}{z_{1}}\right) & =\arg (w) \\
& =\frac{\pi}{3}
\end{aligned}
$$

（ii）$\left|\frac{z_{2}}{z_{1}}\right|=\frac{\left|z_{2}\right|}{\left|z_{1}\right|}=1$
$\therefore\left|z_{2}\right|=\left|z_{1}\right|$
i．e．$O A=O B$ ．
$\angle A O B=\arg \left(z_{2}\right)-\arg \left(z_{1}\right)$
$=\arg \left(\frac{z_{2}}{z_{1}}\right)$
$=\frac{\pi}{3}$
Since $O A=O B, \triangle O A B$ is isosceles．
$\angle O A B=\angle O B A=\frac{1}{2}\left(\pi-\frac{\pi}{3}\right)=\frac{\pi}{3}$
$\therefore \triangle O A B$ is equilateral．

5A．（保留版權 All Rights Reserved 2000

Q． 12 （a） $\mathrm{f}(x)=x^{2}-4 m x-\left(5 m^{2}-6 m+1\right)$
Discriminant $\Delta=(-4 m)^{2}+4\left(5 m^{2}-6 m+1\right)$

$$
=36 m^{2}-24 m+4
$$

$$
=4\left(9 m^{2}-6 m+1\right)
$$

$$
=4(3 m-1)^{2}>0 \quad\left(\because m>\frac{1}{3}\right)
$$

\therefore the equation $\mathrm{f}(x)=0$ has distinct real roots．
（b）
（i）$x=\frac{4 m \pm \sqrt{\Delta}}{2}$

$$
=2 m \pm(3 m-1)
$$

Since $\alpha<\beta$ ，

$$
\begin{aligned}
& \alpha=2 m-(3 m-1)=-m+1 \\
& \beta=2 m+(3 m-1)=5 m-1
\end{aligned}
$$

（ii）（1）Since $4<\beta<5$ ，
$4<5 m-1<5$
$5<5 m<6$
$1<m<\frac{6}{5}$
（2）Sketch A ：
Since the coefficient of x^{2} in $\mathrm{f}(x)$ is positive，the graph of $y=\mathrm{f}(x)$ should open upwards．
However，the graph in sketch A opens downwards，so sketch A is incorrect．

Sketch B ：
Since $\alpha=1-m$ and $1<m<\frac{6}{5}$ ，
$1-1>1-m>1-\frac{6}{5}$
$0>\alpha>-\frac{1}{5}$
In sketch B, α is less than -1 ，so sketch B is incorrect．

Sketch C ：

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=x^{2}-4 m x-\left(5 m^{2}-6 m+1\right) \\
y
\end{array}=-1\right.
\end{aligned} \begin{aligned}
-1 & =x^{2}-4 m x-\left(5 m^{2}-6 m+1\right)
\end{aligned} \begin{aligned}
x^{2}-4 m x-\left(5 m^{2}-6 m\right)=0----\left(^{*}\right)
\end{aligned} \begin{aligned}
\text { Discriminant } \Delta & =(-4 m)^{2}+4\left(5 m^{2}-6 m\right) \\
& =36 m^{2}-24 m \\
& =12 m(3 m-2)
\end{aligned}
$$

Since $1<m<\frac{6}{5}, \Delta>0$ ．
As $\Delta>0$ ，equation $\left({ }^{*}\right)$ has real roots，
i．e．$y=\mathrm{f}(x)$ and $y=-1$ always have intersecting points．However，the line and the graph in sketch C do not intersect，so sketch C is incorrect．

Q． 13 （a） $\tan \angle A R Q=\frac{100-x}{100}$

$$
\begin{aligned}
\tan \theta & =\tan (\angle A R Q+\angle Q R B) \\
& =\frac{\tan \angle A R Q+\tan \angle Q R B}{1-(\tan \angle A R Q)(\tan \angle Q R B)} \\
& =\frac{\frac{100-x}{100}+\frac{y}{100}}{1-\left(\frac{100-x}{100}\right)\left(\frac{y}{100}\right)} \\
& =\frac{100(100-x+y)}{10000-100 y+x y}
\end{aligned}
$$

（b）（i）At $t=0, \tan \theta=\frac{P Q}{R Q}$

$$
=\frac{100}{100}=1 .
$$

Since $\angle A R B$ remains unchanged，

$$
\frac{100(100-x+y)}{10000-100 y+x y}=1
$$

$$
10000-100 x+100 y=10000-100 y+x y
$$

$$
200 y-x y=100 x
$$

$$
y=\frac{100 x}{200-x}
$$

（ii）$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{(200-x)(100)-100 x(-1)}{(200-x)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t}$

$$
\begin{aligned}
& =\frac{20000}{(200-x)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t} \\
& =\frac{40000}{(200-x)^{2}}
\end{aligned}
$$

At $t=40, x=40 \times 2=80$ ．

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{40000}{(200-80)^{2}} \\
& =\frac{25}{9}
\end{aligned}
$$

\therefore the speed of boat B at $t=40$ is $\frac{25}{9} \mathrm{~m} \mathrm{~s}^{-1}$ ．
（iii）From（ii），$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{40000}{(200-x)^{2}}$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} t} \leq 3 \\
& \frac{40000}{(200-x)^{2}} \leq 3 \\
& 200-x \geq \frac{200}{\sqrt{3}} \\
& x \leq 200\left(1-\frac{1}{\sqrt{3}}\right)
\end{aligned}
$$

When $x>200\left(1-\frac{1}{\sqrt{3}}\right), \frac{\mathrm{d} y}{\mathrm{~d} t}>3$ ．
So it is impossible to keep $\angle A R B$ unchanged before boat A reaches Q ．

