$11.15 \mathrm{am}-1.15 \mathrm{pm}$（2 hours）
This paper must be answered in English

1．Answer ALL questions in Section A and any THREE questions in Section B．
2．All working must be clearly shown．
3．Unless otherwise specified，numerical answers must be exact．
4．The diagrams in the paper are not necessarily drawn to scale．

FORMULAS FOR REFERENCE

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2} \\
& \cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \\
& \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \\
& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\
& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B)
\end{aligned}
$$

Section A (42 marks)
Answer ALL questions in this section.

1. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \mathrm{~d} x$.
(3 marks)
2. Find $\int x(x+2)^{99} \mathrm{~d} x$.
(4 marks)
3.

Figure 1
Figure 1 shows two parallel lines $L_{1}: 2 x+2 y-1=0$ and $L_{2}: 2 x+2 y-13=0$.
(a) Find the y-intercept of L_{1}.
(b) Find the distance between L_{1} and L_{2}.
(c) $\quad L_{3}$ is another line parallel to L_{1}. If the distance between L_{1} and L_{3} is equal to that between L_{1} and L_{2}, find the equation of L_{3}.
(5 marks)
4.

Figure 2
In Figure 2，the line $L: y=6 x$ and the curves $C_{1}: y=6 x^{2}$ and $C_{2}: y=3 x^{2}$ all pass through the origin．L also intersects C_{1} and C_{2} at the points $(1,6)$ and $(2,12)$ respectively．Find the area of the shaded region．

5．A family of straight lines is given by the equation

$$
y-3+k(x-y+1)=0,
$$

where k is real．
（a）Find the equation of a line L_{1} in the family whose x－intercept is 5 ．
（b）Find the equation of a line L_{2} in the family which is parallel to the x－axis．
（c）Find the acute angle between L_{1} and L_{2} ．

6．The slope at any point (x, y) of a curve is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x+k
$$

If the curve touches the x－axis at the point $(2,0)$ ，find
（a）the value of k ，
（b）the equation of the curve．
（6 marks）

7．（a）Expand $(1+2 x)^{n}$ in ascending powers of x up to the term x^{3} ， where n is a positive integer．
（b）In the expansion of $\left(x-\frac{3}{x}\right)^{2}(1+2 x)^{n}$ ，the constant term is 210 ． Find the value of n ．
（6 marks）

8．（a）Show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$ ．
（b）Find the general solution of the equation

$$
\cos 6 x+4 \cos 2 x=0
$$

（7 marks）

Section B（48 marks）
Answer any THREE questions in this section．
Each question carries 16 marks．
9.

Figure 3
L is a straight line of slope m and passes through the point $(0,1)$ ．The line L cuts the parabola $x^{2}=4 y$ at two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ as shown in Figure 3.
（a）Show that x_{1} and x_{2} are the roots of the equation

$$
\begin{equation*}
x^{2}-4 m x-4=0 \tag{3marks}
\end{equation*}
$$

（b）Find $\left(x_{1}-x_{2}\right)^{2}$ in terms of m ．
Hence，or otherwise，show that $A B=4\left(1+m^{2}\right)$ ．（ 6 marks）
（c）$\quad C$ is a circle with $A B$ as a diameter．
（i）Find，in terms of m ，the coordinates of the centre of C and its radius．
（ii）Find，in terms of m ，the distance from the centre of C to the line $y+1=0$ ．

State the geometrical relationship between C and the line $y+1=0$ ．Explain your answer．

10．$A(-3,0)$ and $B(-1,0)$ are two points and $P(x, y)$ is a variable point such that $P A=\sqrt{3} P B$ ．Let C be the locus of P ．
（a）Show that the equation of C is $x^{2}+y^{2}=3$ ．
（3 marks）
（b）$\quad T(a, b)$ is a point on C ．Find the equation of the tangent to C at T ．

（2 marks）

（c）The tangent from A to C touches C at a point S in the second quadrant．Find the coordinates of S ．
（3 marks）
（d）

Figure 4
ℓ is a straight line which passes through point A and makes an angle θ with the positive x－axis，where $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} . Q(x, y)$ is a point on ℓ such that $A Q=r$ ．（See Figure 4．）
（i）Write down the coordinates of Q in terms of r and θ ．
（ii）$\quad \ell$ cuts C at two distinct points H and K ．Let $A H=r_{1}, A K=r_{2}$ ．
（1）Show that r_{1} and r_{2} are the roots of the quadratic equation $r^{2}-6 r \cos \theta+6=0$ ．
（2）Find the range of possible values of θ ，giving your answers correct to three significant figures．
11.

Figure 5
Figure 5 shows a right cylindrical tower with a radius of $r \mathrm{~m}$ standing on horizontal ground．A vertical pole $H G, h \mathrm{~m}$ in height，stands at the centre G of the roof of the tower．Let O be the centre of the base of the tower．C is a point on the circumference of the base of the tower due west of O and D is a point on the roof vertically above C ．A man stands at a point A due west of O ．The angles of elevation of D and H from A are 10° and β respectively．The man walks towards the east to a point B where he can just see the top of the pole H as shown in Figure 5．（Note ：If he moves forward，he can no longer see the pole．）The angle of elevation of H from B is α ．Let $A B=\ell \mathrm{m}$ ．
（a）Show that $A D=\frac{\ell \sin \alpha}{\sin \left(\alpha-10^{\circ}\right)} \mathrm{m}$ ．

Hence（i）express $C D$ in terms of ℓ and α ，
（ii）show that $h=\frac{\ell \sin ^{2} \alpha \sin \left(\beta-10^{\circ}\right)}{\sin \left(\alpha-10^{\circ}\right) \sin (\alpha-\beta)}$ ．
（Hint ：You may consider $\triangle A D H$ ．）
（b）In this part，numerical answers should be given correct to two significant figures．

Suppose $\alpha=15^{\circ}, \beta=10.2^{\circ}$ and $\ell=97$ ．
（i）Find
（1）the height of the pole $H G$ ，
（2）the height and radius of the tower．
（ii）$\quad P$ is a point south－west of O ．Another man standing at P can just see the top of the pole H ．Find
（1）the distance of P from O ，
（2）the bearing of B from P ．

12．（a）Prove，by mathematical induction，that

$$
\cos \theta+\cos 3 \theta+\cos 5 \theta+\cdots+\cos (2 n-1) \theta=\frac{\sin 2 n \theta}{2 \sin \theta}
$$

where $\sin \theta \neq 0$ ，for all positive integers n ． （6 marks）
（b）Using（a）and the substitution $\theta=\frac{\pi}{2}-x$ ，or otherwise，show that

$$
\sin x-\sin 3 x+\sin 5 x=\frac{\sin 6 x}{2 \cos x}
$$

where $\cos x \neq 0$ ．

> (2 marks)
（c）Using（a）and（b），evaluate

$$
\int_{0.1}^{0.5}\left(\frac{\sin x-\sin 3 x+\sin 5 x}{\cos x+\cos 3 x+\cos 5 x}\right)^{2} \mathrm{~d} x
$$

giving your answer correct to two significant figures．
（4 marks）
（d）Evaluate

$$
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sin x+3 \sin 3 x+5 \sin 5 x+7 \sin 7 x+\cdots+1999 \sin 1999 x) \mathrm{d} x \circ
$$

13.

Figure 6（a）
Figure 6（b）
A curve passes through three points $A(14,8), B(r, 2)$ and $C(r, 0)$ as shown in Figure 6（a）．The curve consists of two parts．The equation of the part joining A and B is $x=\sqrt{4+3 y^{2}}$ and the part joining B and C is the vertical line $x=r$ ．
（a）Find the value of r ．
（b）A pot， 8 units in height，is formed by revolving the curve and the line segment $O C$ about the y－axis，where O is the origin．（See Figure 6（b）．）If the pot contains water to a depth of h units，where $h>2$ ，show that the volume of water V in the pot is $\left(h^{3}+4 h+16\right) \pi$ cubic units．

> (7 marks)
（c）Initially，the pot in（b）contains water to a depth greater than 3 units．The water is now pumped out at a constant rate of 2π cubic units per second．Find the rate of change of the depth of the water in the pot with respect to time when
（i）the depth of the water is 3 units，and
（ii）the depth of the water is 1 unit．

END OF PAPER

Outlines of Solutions

1999 Additional Mathematics

Paper 2

Section A

1．$\frac{\pi}{4}$

2．$\frac{(x+2)^{101}}{101}-\frac{(x+2)^{100}}{50}+c$ ，where c is a constant
3．（a）$\frac{1}{2}$
（b） $3 \sqrt{2}$
（c） $2 x+2 y+11=0$

4． 3
5．（a）$x+y-5=0$
（b）$y-3=0$
（c）$\frac{\pi}{4}$
6．（a）-8
（b）$y=x^{3}-x^{2}-8 x+12$

7．（a） $1+2_{n} C_{1} x+4{ }_{n} C_{2} x^{2}+8_{n} C_{3} x^{3}+\ldots$
（b） 4

8．（b）$k \pi \pm \frac{\pi}{4}$ ，where k is an integer

Section B

Q． 9 （a）The equation of L is $y=m x+1$ ．
Substitute $y=m x+1$ into $x^{2}=4 y$ ：
$x^{2}=4(m x+1)$
$x^{2}-4 m x-4=0$
$\therefore x_{1}, x_{2}$ are the roots of the equation $x^{2}-4 m x-4=0$ ．
（b）$\left\{\begin{aligned} x_{1}+x_{2} & =4 m \\ x_{1} x_{2} & =-4\end{aligned}\right.$

$$
\begin{aligned}
\left(x_{1}-x_{2}\right)^{2} & =\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2} \\
& =(4 m)^{2}-4(-4) \\
& =16\left(m^{2}+1\right) \\
A B^{2}= & \left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \\
= & \left(x_{1}-x_{2}\right)^{2}+\left(m x_{1}+1-m x_{2}-1\right)^{2} \\
= & \left(x_{1}-x_{2}\right)^{2}+\left(m x_{1}-m x_{2}\right)^{2} \\
= & \left(1+m^{2}\right)\left[16\left(m^{2}+1\right)\right] \\
A B & =4\left(1+m^{2}\right)
\end{aligned}
$$

（c）（i）$\quad x$－coordinate of centre of $C=\frac{x_{1}+x_{2}}{2}=2 m$
y－coordinate of centre of $C=\frac{y_{1}+y_{2}}{2}=\frac{m x_{1}+1+m x_{2}+1}{2}$

$$
=\frac{m}{2}(4 m)+1=2 m^{2}+1
$$

\therefore the coordinates of the centre are $\left(2 m, 2 m^{2}+1\right)$ ．
Radius of $C=\frac{A B}{2}=2\left(1+m^{2}\right)$
（ii）Distance from centre of C to $y+1=0$

$$
\begin{aligned}
& =\left|2 m^{2}+1-(-1)\right| \\
& =2\left(m^{2}+1\right)
\end{aligned}
$$

As the distance from centre of C to $y+1=0$ is equal to the radius C ，the line $y+1=0$ is a tangent to C ．

Q． 10 （a）$\quad P A=\sqrt{3} P B$
$\sqrt{(x+3)^{2}+y^{2}}=\sqrt{3} \sqrt{(x+1)^{2}+y^{2}}$
$x^{2}+6 x+9+y^{2}=3\left(x^{2}+2 x+1+y^{2}\right)$
$x^{2}+y^{2}=3$
（b）Differentiate $x^{2}+y^{2}=3$ with respect to x ：
$2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{x}{y}$
Equation of tangent at $T(a, b)$ is
$\frac{y-b}{x-a}=\frac{-a}{b}$
$a x+b y=a^{2}+b^{2}$
（c）Substitute $A(-3,0)$ into the equation of tangent ：

$$
\left.\begin{array}{l}
a(-3)+b(0)=3 \\
a=-1 \\
b
\end{array}\right)=\sqrt{3-(-1)^{2}} \quad(\Theta S \text { lies in the 2nd quadrant. })
$$

\therefore the coordinates of S are $(-1, \sqrt{2})$ ．
（d）（i）The coordinates of Q are $(-3+r \cos \theta, r \sin \theta)$ ．
（ii）（1）Substitute $(-3+r \cos \theta, r \sin \theta)$ into C ：

$$
\begin{aligned}
& (-3+r \cos \theta)^{2}+(r \sin \theta)^{2}=3 \\
& 9-6 r \cos \theta+r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=3 \\
& r^{2}-6 r \cos \theta+6=0---\left({ }^{*}\right)
\end{aligned}
$$

Since $A H=r_{1}, A K=r_{2}, r_{1}$ and r_{2} are the roots of $(*)$ ．
（2）Since ℓ cuts C at two distinct points，$\left({ }^{*}\right)$ has two distinct real roots．
$(6 \cos \theta)^{2}-4(6)>0$
$\cos ^{2} \theta>\frac{2}{3}$
$\cos \theta>\sqrt{\frac{2}{3}}$ or $\cos \theta<-\sqrt{\frac{2}{3}}$（rejected）
$\therefore-0.615<\theta<0.615$（correct to 3 sig．figures）

Q． 11 （a）Consider $\triangle A B D$ ：
By Sine Law，

$$
\begin{aligned}
& \frac{A D}{\sin \angle A B D}=\frac{\ell}{\sin \angle A D B} \\
& \frac{A D}{\sin \left(180^{\circ}-\alpha\right)}=\frac{\ell}{\sin \left(\alpha-10^{\circ}\right)} \\
& A D=\frac{\ell \sin \alpha}{\sin \left(\alpha-10^{\circ}\right)} \mathrm{m}
\end{aligned}
$$

（i）Consider $\triangle A C D$ ：

$$
\begin{aligned}
C D & =A D \sin 10^{\circ} \\
& =\frac{\ell \sin \alpha \sin 10^{\circ}}{\sin \left(\alpha-10^{\circ}\right)} \mathrm{m}
\end{aligned}
$$

（ii）Consider $\triangle A D H$ ：

$$
\begin{aligned}
& \frac{A D}{\sin (\alpha-\beta)}=\frac{D H}{\sin \left(\beta-10^{\circ}\right)} \\
& D H=A D \frac{\sin \left(\beta-10^{\circ}\right)}{\sin (\alpha-\beta)}=\frac{\ell \sin \alpha \sin \left(\beta-10^{\circ}\right)}{\sin \left(\alpha-10^{\circ}\right) \sin (\alpha-\beta)}
\end{aligned}
$$

Consider $\triangle D H G$ ：

$$
\begin{aligned}
h & =D H \sin \alpha \\
& =\frac{\ell \sin ^{2} \alpha \sin \left(\beta-10^{\circ}\right)}{\sin \left(\alpha-10^{\circ}\right) \sin (\alpha-\beta)}
\end{aligned}
$$

（b）（i）（1）Using（a）（ii）：

$$
\begin{aligned}
\text { height of pole } & =\frac{97 \sin ^{2} 15^{\circ} \sin \left(10.2^{\circ}-10^{\circ}\right)}{\sin \left(15^{\circ}-10^{\circ}\right) \sin \left(15^{\circ}-10.2^{\circ}\right)} \\
& =3.1100=3.1 \mathrm{~m}(\text { correct to } 2 \text { sig. fig. })
\end{aligned}
$$

（2）Using（a）（i）：

$$
\text { height of tower } \begin{aligned}
C D & =\frac{97 \sin 15^{\circ} \sin 10^{\circ}}{\sin \left(15^{\circ}-10^{\circ}\right)} \\
& =50.020=50 \mathrm{~m} \text { (correct to } 2 \text { sig. fig. })
\end{aligned}
$$

$$
\begin{aligned}
\text { radius of tower } & =\frac{h}{\tan 15^{\circ}} \\
& =\frac{3.1100}{\tan 15^{\circ}} \\
& =11.607=12 \mathrm{~m} \text { (correct to } 2 \text { sig. fig.) }
\end{aligned}
$$

（ii）（1）Consider $\triangle H P O$ ：

$$
\begin{aligned}
& \tan \angle H P O=\frac{O H}{O P} \\
& \begin{aligned}
O P & =\frac{O H}{\tan 15^{\circ}} \\
& =\frac{3.1100+50.020}{\tan 15^{\circ}} \\
& =198.28 \\
& =200 \mathrm{~m} \text { (correct to } 2 \text { sig. fig.) }
\end{aligned}
\end{aligned}
$$

（2）$\angle B P O=\frac{1}{2}\left(180^{\circ}-45^{\circ}\right)=67.5^{\circ}$
Bearing of B from P is $\mathrm{N}\left(67.5^{\circ}-45^{\circ}\right) \mathrm{W}$ ，i．e． $\mathrm{N} 22.5^{\circ} \mathrm{W}$ ．

Q． 12 （a）For $n=1$, LHS $=\cos \theta$ ．

$$
\begin{aligned}
\text { RHS } & =\frac{\sin 2 \theta}{2 \sin \theta} \\
& =\frac{2 \sin \theta \cos \theta}{2 \sin \theta}=\cos \theta=\text { LHS } .
\end{aligned}
$$

\therefore the statement is true for $n=1$ ．
Assume $\cos \theta+\cos 3 \theta+\cos 5 \theta+\cdots+\cos (2 k-1) \theta=\frac{\sin 2 k \theta}{2 \sin \theta}$
for some positive integer k ．
Then $\cos \theta+\cos 3 \theta+\cos 5 \theta+\cdots+\cos (2 k-1) \theta+\cos [2(k+1)-1] \theta$
$=\frac{\sin 2 k \theta}{2 \sin \theta}+\cos (2 k+1) \theta$
$=\frac{\sin 2 k \theta+2 \sin \theta \cos (2 k+1) \theta}{2 \sin \theta}$
$=\frac{\sin 2 k \theta+\sin (2 k+2) \theta-\sin 2 k \theta}{2 \sin \theta}$
$=\frac{\sin 2(k+1) \theta}{2 \sin \theta}$
The statement is also true for $n=k+1$ if it is true for $n=k$ ．
By the principle of mathematical induction，
the statement is true for all positive integers n ．
（b）Using（a）： $\cos \theta+\cos 3 \theta+\cos 5 \theta=\frac{\sin 6 \theta}{2 \sin \theta}$ ，where $\sin \theta \neq 0$ ．
Put $\theta=\frac{\pi}{2}-x$ ：
$\cos \left(\frac{\pi}{2}-x\right)+\cos 3\left(\frac{\pi}{2}-x\right)+\cos 5\left(\frac{\pi}{2}-x\right)=\frac{\sin 6\left(\frac{\pi}{2}-x\right)}{2 \sin \left(\frac{\pi}{2}-x\right)}$
$\cos \left(\frac{\pi}{2}-x\right)+\cos \left(\frac{3 \pi}{2}-3 x\right)+\cos \left(\frac{5 \pi}{2}-5 x\right)=\frac{\sin (3 \pi-6 x)}{2 \sin \left(\frac{\pi}{2}-x\right)}$
$\sin x-\sin 3 x+\sin 5 x=\frac{\sin 6 x}{2 \cos x}$ ，where $\sin \left(\frac{\pi}{2}-x\right)=\cos x \neq 0$ ．
（c） $\int_{0.1}^{0.5}\left(\frac{\sin x-\sin 3 x+\sin 5 x}{\cos x+\cos 3 x+\cos 5 x}\right)^{2} d x$
$=\int_{0.1}^{0.5}\left[\frac{\sin 6 x}{2 \cos x} / \frac{\sin 6 x}{2 \sin x}\right]^{2} \mathrm{~d} x$
$=\int_{0.1}^{0.5} \tan ^{2} x \mathrm{~d} x$
$=\int_{0.1}^{0.5}\left(\sec ^{2} x-1\right) \mathrm{d} x$
$=[\tan x-x]_{0.1}^{0.5}$
$=0.046$（correct to 2 sig．fig．）
（d） $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}(\sin x+3 \sin 3 x+5 \sin 5 x+7 \sin 7 x+\cdots+1999 \sin 1999 x) \mathrm{d} x$

$$
=[-\cos x-\cos 3 x-\cos 5 x-\cos 7 x-\cdots-\cos 1999 x]_{\frac{\pi}{3}}^{\frac{\pi}{2}}
$$

$=-\frac{1}{2}\left[\frac{\sin 2000 x}{\sin x}\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$
$=\frac{1}{2}$

Q． 13 （a）Substitute $(r, 2)$ into $x=\sqrt{4+3 y^{2}}$ ：

$$
r=\sqrt{4+3(2)^{2}}=4
$$

（b）$\quad V=$ Volume of lower cylindrical part + volume of upper part
Volume of lower cylindrical part $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi(4)^{2}(2) \\
& =32 \pi
\end{aligned}
$$

Volume of upper part $=\pi \int_{2}^{h} x^{2} \mathrm{~d} y$

$$
\begin{aligned}
& =\pi \int_{2}^{h}\left(4+3 y^{2}\right) \mathrm{d} y \\
& =\pi\left[4 y+y^{3}\right]_{2}^{h} \\
& =\left(h^{3}+4 h-16\right) \pi
\end{aligned}
$$

$\therefore V=32 \pi+\left(h^{3}+4 h-16\right) \pi$
$=\left(h^{3}+4 h+16\right) \pi$ cubic units
（c）（i）Let h units be the depth of water at time t ．
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\pi\left(3 h^{2}+4\right) \frac{\mathrm{d} h}{\mathrm{~d} t}$
Put $\frac{\mathrm{d} V}{\mathrm{~d} t}=-2 \pi$ and $h=3:$
$-2 \pi=\pi\left[3(3)^{2}+4\right] \frac{\mathrm{d} h}{\mathrm{~d} t}$
$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{-2}{31}$ units per sec．
\therefore the depth decreases at a rate $\frac{2}{31}$ units per sec．
（ii）When $h=1$ ，the water remained is in the cylindrical part only．

$$
\begin{aligned}
\frac{\mathrm{d} h}{\mathrm{~d} t} & =\frac{\frac{\mathrm{d} V}{\mathrm{~d} t}}{\text { base area of cylilnder }} \\
& =\frac{-2 \pi}{\pi(4)^{2}} \\
& =-\frac{1}{8} \text { units per sec. }
\end{aligned}
$$

\therefore the depth decreases at a rate $\frac{1}{8}$ units per sec．

