HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1987 ## 附加數學 試卷一 ADDITIONAL MATHEMATICS PAPER I 8.30 am-10.30 am (2 hours) This paper must be answered in English Answer ALL questions in Section A and any THREE questions from Section B. All working must be clearly shown. Unless otherwise specified in a question, it is sufficient for numerical answers to be given correct to three significant figures. ### SECTION A (39 marks) Answer ALL questions in this section. 1. Let $$f(x) = \csc^2 3x$$. Find $f'(\frac{\pi}{12})$. (4 marks) 2. Let $x = y + \sin y$. Find $$\frac{dy}{dx}$$ and $\frac{d^2y}{dx^2}$ in terms of y. (5 marks) 3. For any complex number z, let \overline{z} , |z| and Re(z) be its conjugate, modulus and real part respectively. Show that $$z + \overline{z} = 2 \operatorname{Re}(z)$$ and $|z| \ge \operatorname{Re}(z)$. Hence, or otherwise, show that for any complex numbers z_1 and z_2 , $$z_1 z_2 + \overline{z}_1 \overline{z}_2 \le 2 |z_1| |z_2|$$ (5 marks) 4. Figure 1 In Figure 1, AB = 3 cm, AC = 6 cm, BC = x cm and $\angle A = \theta$. - (a) Express x^2 in terms of θ . - (b) If θ increases at the rate of $\frac{1}{3}$ radian per second, find the rate of change of x with respect to time when $\theta = \frac{\pi}{3}$. - The equation $x^2 + 4x + p = 0$, where p is a real constant, has distinct real roots α and β . - (a) Find the range of values of p. - (b) If $\alpha^2 + \beta^2 + \alpha^2 \beta^2 + 3(\alpha + \beta) 19 = 0$, find the value of p. (6 marks) 6. i [智不知] Figure 2 In Figure 2, $|\overrightarrow{AB}| = 3$, $|\overrightarrow{AC}| = 1$ and $\angle CAB = 60^{\circ}$. Find (a) $\overrightarrow{AB} \cdot \overrightarrow{AC}$, (b) $$\left| \overrightarrow{AB} + 2\overrightarrow{AC} \right|$$. (6 marks) 7. Solve the inequality (x + 2) |x - 2| < -5. (7 marks) 58 #### SECTION B (60 marks) Answer any THREE questions from this section. Each question carries 20 marks. 8. In Figure 3, R is a point on BC such that BR : RC = m : 1. Q is a point on AC. BQ intersects AR at P. $\overrightarrow{OA} = 4\mathbf{i} + \mathbf{j}$, $\overrightarrow{OB} = \mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OC} = 7\mathbf{i} + 7\mathbf{j}$ and $\overrightarrow{BQ} = 5\mathbf{i} + \mathbf{j}$. - (i) Find \overrightarrow{AB} and \overrightarrow{AC} . - (ii) Express \overrightarrow{AR} in terms of m, i and j. (4 marks) - (b) Suppose AR is perpendicular to BC. - (i) Show that $m = \frac{1}{4}$. - (ii) Find LQPR. - (iii) If $\overrightarrow{BQ} = \lambda \overrightarrow{BA} + \mu \overrightarrow{BC}$, find the values of λ and μ . - (iv) If AP : PR = n : 1, express \overrightarrow{BP} in terms of n, i and j. Hence find the value of n. (16 marks) 87-CE-ADD MATHS I-4 9. (a) 用用鲱 Figure 4(a) Figure 4(a) shows a circle of centre O and radius a inscribed in an isosceles triangle ABC with AB = AC. Let $\angle OAB = \theta$. (i) Find, in terms of a and θ , the height AH of $\triangle ABC$. Hence show that the area of $\triangle ABC$ is $$\frac{a^2(1+\sin\theta)^2}{\sin\theta\cos\theta}$$ (ii) For what value of θ is the area of $\triangle ABC$ a minimum? (Testing for maximum/minimum is not required.) (10 marks) (b) Figure 4(b) Figure 4(b) shows a circle of centre O and radius b circumscribing an isosceles triangle PQR with PQ = PR. Let $\angle OQR = \phi$. - (i) Show that the area of $\triangle PQR$ is $b^2 \cos \phi (1 + \sin \phi)$. - (ii) When $\triangle PQR$ is equilateral, show that its area is a maximum. (10 marks) - 10. (a) Let $z = \cos \theta + i \sin \theta$, where θ is not a multiple of π . If $z^2 2z + \frac{1}{z}$ is real, find the two values of z. (9 marks) - (b) Let z_1 and z_2 be the two values of z obtained in (a). - (i) Show that $z_1^2 = z_2$ and $z_2^2 = z_1$. - (ii) Find the values of z_1^3 and z_2^3 . - (iii) Find the values of $z_1^k + z_2^k$ when - $(1) \quad k = 3n \; ,$ - (2) k = 3n + 1, - (3) k = 3n + 2, where n is a positive integer. (iv) For any positive integer k, show that $$z_1^{2k} + z_2^{2k} = \begin{cases} 2 & \text{when } k \text{ is a multiple of } 3, \\ -1 & \text{when } k \text{ is not a multiple of } 3. \end{cases}$$ (11 marks) 11. It is given that the equation $$z^2 - 2z + k = 0$$ (k is real)(*) has no real roots. (a) Find the range of values of k. (2 marks) (b) Find the quadratic equation whose roots are the cubes of the roots of (*) and show that the discriminant of this equation is $4(1-k)(4-k)^2$. If this equation has real roots, deduce the value of k. (11 marks) (c) Find, in terms of k, the squares of the roots of (*), expressing the answers in the form x + iy where x and y are real. As k varies, find the equation of the locus of the points in the Argand plane representing the squares of the roots of (*). (7 marks) 60 12. In Figure 5, A is a fixed point in water a km from a straight river bank, B is a fixed point on land b km from the river. M and N are the points on the bank nearest to A and B respectively. P is a point between M and N. Let $\angle MAP = \theta$ and $\angle NBP = \phi$. A man can swim at a speed of u km/h and run at a speed of v km/h, where u < v. - (a) The man swims from A to P and then runs to B. - (i) Express MN in terms of a, b, θ and ϕ . Hence show that $\frac{d\phi}{d\theta} = -\frac{a\sec^2\theta}{b\sec^2\phi}$. - i) Let t hours be the time taken to travel from A to B via P. Show that $t = \frac{a}{u} \sec \theta + \frac{b}{v} \sec \phi$. If t is a minimum, show that $\frac{u}{v} = \frac{\sin \theta}{\sin \phi}$. (Testing for maximum/minimum is not required.) - (b) Let MN = h km. Suppose the man swims from A to P and then runs to N. - (i) Express the time taken in terms of a, h, u, v and θ . - (ii) Using the result in (b)(i), find MP in terms of a, u and v when the time taken is a minimum. (Testing for maximum/minimum is not required.) (5 marks) - (c) Suppose C is a point in water c km from N and $CN \perp MN$. If the man swims from A to C via P in the minimum time, find MP : PN. END OF PAPER ## 附加數學 試卷二 ADDITIONAL MATHEMATICS PAPER II 11.15 am-1.15 pm (2 hours) This paper must be answered in English Answer ALL questions in Section A and any THREE questions from Section B. All working must be clearly shown. Unless otherwise specified in a question, it is sufficient for numerical answers to be given correct to three significant figures. 62