HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

ADDITIONAL MATHEMATICS PAPER II

Time allowed: Two Hours

SECTION A (39 marks)

Answer All questions in this section.

1. Prove, by mathematical induction, that for any positive integer n,

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

(5 marks)

2. In the expansion of $(x^2 + 2)^n$ in descending powers of x, where n is a positive integer, the coefficient of the third term is 40. Find the value of n and the coefficient of x^4 .

(5 marks)

3. If θ is an obtuse angle and the equation in x

$$3x^2 - (4\cos\theta)x + 2\sin\theta = 0$$

has equal roots, find the value of θ .

(5 marks)

4. Using the identity $\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$, find the general solution of $\sin 2\theta + \sin 4\theta = \cos \theta$.

(6 marks)

- 5. A(3,6), B(-1,-2) and C(5,-3) are three points. P(s,t) is a point on the line AB.
 - (a) Find t in terms of s.
 - (b) If the area of $\triangle APC$ is $\frac{13}{2}$, find the two values of s.

(6 marks)

(6 marks)

(6 marks)

- 6. A straight line through C(3,2) with slope m cuts the curve $y = (x-2)^2$ at the points A and B. If C is the mid-point of AB, find the value of m.
- 7. Let $y = \frac{\tan^3 \theta}{3} \tan \theta$. Find $\frac{dy}{d\theta}$ in terms of $\tan \theta$. Hence, or otherwise, find $\int \tan^4 \theta \, d\theta$.

SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

8. (a) Show that
$$\int_0^a f(x) \, dx = \int_0^a f(a-x) \, dx.$$
 (4 marks)

- (b) Using the result in (a), or otherwise, evaluate the following integrals:
 - (i) $\int_{0}^{\pi} \cos^{2n+1} x \, dx$, where *n* is a positive integer, (ii) $\int_{0}^{\pi} x \sin^{2} x \, dx$, (iii) $\int_{0}^{\frac{\pi}{2}} \frac{\sin x \, dx}{\sin x + \cos x}$.

(16 marks)

9. A family of straight lines is given by the equation

$$(3k+2)x - (2k-1)y + (k-11) = 0,$$

where k is any constant.

(a) L_1 is the line x - 2y + 4 = 0.

Provided by dse.life

1986 CE Additional Mathematics II

- (i) There are two lines in the family each making an angle of 45° with L_1 . Find the equations of these lines.
- (ii) Find the equation of the line L in the family which is parallel to L_1 . The line L_1 and another line L_2 are equidistant from L. Find the equation of L_2 .

(11 marks)

(b) For what value of k does the line in the family form a triangle of minimum area with the two positive coordinate axes?

(7 marks)

(c) The straight lines in the family pass through a fixed point Q. Write down the equation of the line which passes through Q but which does not belong to the family.

(2 marks)

- 10. The circles $C_1: x^2 + y^2 4x + 2y + 1 = 0$ and $C_2: x^2 + y^2 10x 4y + 19 = 0$ have a common chord *AB*.
 - (a) (i) Find the equation of the line AB.
 - (ii) Find the equation of the circle with AB as a chord such that the area of the circle is a minimum.

(9 marks)

(4 marks)

- (b) The circle C_1 and another circle C_3 are concentric. If AB is a tangent to C_3 , find the equation of C_3 .
- (c) P(x, y) is a variable point such that

$$\frac{\text{distance from } P \text{ to the center of } C_1}{\text{distance from } P \text{ to the center of } C_2} = \frac{1}{k} \qquad (k > 0)$$

Find the equation of the locus of P.

- (i) When k = 2, write down the equation of the locus of P and name the locus.
- (ii) For what value of k is the locus of P a straight line?

(7 marks)

11. (a) (i) Using the substitution $x = 2\sin\theta$, evaluate

$$\int_1^2 \sqrt{4-x^2} \, \mathrm{d}x.$$

(ii) Express $3 + 2x - x^2$ in the form $a^2 - (x - b)^2$ where a and b are constants. Using the substitution $x - b = a \sin \theta$, evaluate

$$\int_0^1 \sqrt{3+2x-x^2} \,\mathrm{d}x.$$

(11 marks)

(b) In Figure 1, the shaded region is bounded by the two circles $C_1: x^2 + y^2 = 4$, $C_2: (x-1)^2 + (y - \sqrt{3})^2 = 4$ and the parabola $S: y^2 = 3x$.

- Figure 1
- (i) P(x, y) is a point on the minor arc OA of C_2 . Express y in terms of x.
- (ii) Find the area of the shaded region.

(9 marks)

Provided by dse.life

12. (a) (i) Express $\sin 108^{\circ}$ in terms of $\sin 36^{\circ}$.

Using this result and the relation $\sin 108^\circ = \sin 72^\circ$, show that $\cos 36^\circ = \frac{1 + \sqrt{5}}{4}$.

(ii) Find $\cos 72^{\circ}$ in surd form.

(7 marks)

(b) In Figure 2, O is the center of the circle APB of radius 1 unit. AKON, AHB and KHP are straight lines. PK and BN are both perpendicular to AN. $\angle AOH = 60^{\circ}$. Let $\angle OAH = \phi$.

- (i) By considering $\triangle AOH$, express OH in terms of $\tan \phi$. Hence show that $\cos \angle POK = \frac{\tan \phi}{\sqrt{3} + \tan \phi}$.
- (ii) It is given that $ON = \frac{1}{4}$.
 - (1) Find BN and hence the value of $\tan \phi$. Give your answers in surd form.
 - (2) Find the value of $\cos \angle POK$ in surd form. Hence find $\angle POK$ without using calculators.

(13 marks)

END OF PAPER

Provided by dse.life