#### HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1986

#### ADDITIONAL MATHEMATICS PAPER I

Time allowed: Two Hours

SECTION A (39 marks) Answer All questions in this section.

- 1. Find, from first principles,  $\frac{\mathrm{d}}{\mathrm{d}x}(x^3)$ .
- 2. The quadratic equation

$$x^2 \log a + (x+1) \log b = 0.$$

where a and b are constants, has non-zero equal roots. Find b in terms of a.

(5 marks)

(4 marks)

- 3. The maximum value of the function  $f(x) = 4k + 18x kx^2$  (k is a positive constant) is 45. Find k. (5 marks)
- 4. Find the equation of the tangent to the curve  $x^2 + xy + y^2 = 7$  at the point (2,1).

(6 marks)

(6 marks)

(6 marks)

(7 marks)

- 5. The angle between the two vectors  $\mathbf{i} + \mathbf{j}$  and  $(c+4)\mathbf{i} + (c-4)\mathbf{j}$  is  $\theta$ , where  $\cos \theta = -\frac{3}{5}$ . Find the value of the constant c.
- 6. On the same Argand diagram, sketch the locus of the point representing the complex number z in each of the following cases:
  - (a) |z-2| = 1;
  - (b) |z 1| = |z 3|.

Hence, or otherwise, find the complex numbers represented by the points of intersection of the two loci.

7. Solve  $x > \frac{3}{x} + 2$  for each of the following cases:

- (a) x > 0;
- (b) x < 0.

SECTION B (60 marks)

Answer any THREE questions from this section. Each question carries 20 marks.

8. In Figure 1, OACB is a trapezium with  $OB \parallel AC$  and AC = 2OB. P and Q are points on OA and BC respectively such that  $OP = \frac{1}{2}OA$  and  $BQ = \frac{1}{3}BC$ . Let  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ .



- (a) Express  $\overrightarrow{OC}$ ,  $\overrightarrow{BC}$  and  $\overrightarrow{OQ}$  in terms of **a** and **b**.
- (b) OC intersects PQ at the point R. Let PR : RQ = h : 1 - h.
  - (i) Express  $\overrightarrow{OR}$  in terms of  $\mathbf{a}, \mathbf{b}$  and h.

## Provided by dse.life

(5 marks)

- (ii) If  $\overrightarrow{OR} = k\overrightarrow{OC}$ , find h and k.
- (c) OB and PQ are produced to meet at T and  $\overrightarrow{OT} = \lambda \mathbf{b}$ .
  - (i) Express  $\overrightarrow{PQ}$  in terms of **a** and **b**.
  - Express  $\overrightarrow{PT}$  in terms of  $\mathbf{a}, \mathbf{b}$  and  $\lambda$ .
  - (ii) Hence, or otherwise, find the value of  $\lambda$ .

(6 marks)

(3 marks)

(9 marks)

(9 marks)

- 9. (a) Write down the general solution of the equation  $\cos x = \frac{1}{\sqrt{2}}$ .
  - (b) Let m be a positive integer.
    - (i) If  $z = r(\cos \theta + i \sin \theta)$ , show that  $z^m + \bar{z}^m = 2r^m \cos m\theta$ .
    - (ii) By making use of (a) and (b)(i), or otherwise, find the values of m for which

$$\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^m + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right)^m = \sqrt{2}.$$

(c) (i) Let p be a positive integer. Find the values of p for which

 $(1+i)^p - (1-i)^p = 0.$ 

(ii) By making use of (c)(i), or otherwise, find the value of

$$\frac{(1+i)^{4k+1}}{(1-i)^{4k-1}}$$

where k is a positive integer.

- 10. The graph of the function  $f(x) = x^3 + hx^2 + kx + 2$  (*h* and *k* are constants) has 2 distinct turning points and intersects the line y = 2 at the point (0, 2) only.
  - (a) Show that  $3k < h^2 < 4k$ .
  - (b) It is also known that the graph of f(x) passes through (-2, 0).
    - (i) Express k in terms of h.
    - (ii) If h is an integer, use the results in (a) and (b)(i) to show that h = 4 or 5.
    - (iii) For h = 4, find the maximum and minimum points of the graph of f(x) and sketch this graph.
- 11. Figure 2 shows two rods OP and PR in the xy-plane. The rods, each 10 cm long, are hinged at P. The end O is fixed while the end R can move along the positive x-axis. OL = 20 cm, OR = s cm and  $\angle POR = \theta$ , where  $0 \le \theta \le \frac{\pi}{2}$ .



(a) Express s in terms of  $\theta$ .

If R moves from the point O to the point L at a speed of 10 cm/s, find the rate of change of  $\theta$  with respect to time when s = 10.

(5 marks)

(b) Find the equation of the locus of the mid-point of PR and sketch this locus.

(5 marks)

Provided by dse.life

#### (8 marks)

(8 marks)

(12 marks)

#### 1986 CE Additional Mathematics I

(a) Find A in terms of x.

(c) A square of side  $\ell$  cm is inscribed in  $\triangle OPR$  such that one side of the square lies on OR. Show that  $20 \sin \theta \cos \theta$ 

$$\ell = \frac{20\sin\theta\cos\theta}{\sin\theta + 2\cos\theta}.$$

Hence find  $\theta$  when the area of the square is a maximum.

(10 marks)

12. Figure 3 shows a rectangular picture of area  $A \text{ cm}^2$  mounted on a rectangular piece of cardboard of area 3600 cm<sup>2</sup> with sides of length x cm and y cm. The top, bottom and side margins are 12 cm, 13 cm and 8 cm wide respectively.



| (- ) |                                                                                                                                                   | (2  marks) |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (b)  | Show that the largest value of $A$ is 1600.                                                                                                       | (5 marks)  |
| (c)  | <ul> <li>(i) Find the range of values of x for which A decreases as x increases.</li> <li>(ii) If x ≥ 50, find the largest value of A.</li> </ul> | < ,        |
|      |                                                                                                                                                   | (6  marks) |
| (d)  | If $\frac{4}{9} \leq \frac{x}{y} \leq \frac{9}{16}$ , find the range of values of x and the largest value of A.                                   |            |
|      |                                                                                                                                                   | (7  marks) |

### END OF PAPER

# Provided by dse.life