2008 AS Mathematics & Statistics

評卷參考*

Marking Scheme * 此部分只設英文版本。

AS Mathematics and Statistics

General Instructions To Markers

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
- 2. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept / technique had been used.
- 3. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- 4. Unless the form of the answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they are correct.
- 5. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.
- 6. In the marking scheme, marks are classified into the following three categories:

'M' marks - awarded for applying correct methods
'A' marks - awarded for the accuracy of the answers

Marks without 'M' or 'A' - awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. (I.e. Markers should follow through candidates' work in awarding 'M' marks.) However, 'A' marks for the corresponding answers should <u>NOT</u> be awarded, unless otherwise specified.

- 7. In the marking scheme, steps which can be skipped are enclosed by dotted rectangles, whereas alternative answers are enclosed by solid rectangles.
- 8. Marks may be deducted for poor presentation (pp). The symbol (pp-1) should be used to denote 1 mark deducted for pp.
 - (a) At most deduct 1 mark for pp in each section.
 - (b) In any case, do not deduct any marks for pp in those steps where candidates could not score any marks.
- 9. Marks may be deducted for numerical answers with inappropriate degree of accuracy (a). The symbol (a-1) should be used to denote 1 mark deducted for a.
 - (a) At most deduct 1 mark for a in each section.
 - (b) In any case, do not deduct any marks for a in those steps where candidates could not score any marks.
- 10. Marks entered in the Page Total Box should be the NET total scored on that page.

		Solution	Marks	Remarks
	,	$\left(\frac{-1}{2}\right)\left(\frac{-1}{2}-1\right)$		For binomial expansion
1. (a)	(i) $\frac{1}{\sqrt{1+ar}} = 1+$	$\frac{-1}{2}$ $(ax) + \frac{\left(\frac{-1}{2}\right)\left(\frac{-1}{2} - 1\right)}{2!}(ax)^2 + \cdots$	1M	on $(1 + ax)^{\frac{-1}{2}}$
	VITAL	$a = 3a^2$		For any two terms correct.
	=1	$\frac{a}{2}x + \frac{3a^2}{8}x^2 + \cdots$	1A	pp-1 for omitting ''
	$\left(\frac{-a}{a} = \frac{3}{a}\right)$			
	$\therefore \begin{cases} \frac{-a}{2} = \frac{3}{2} \\ \frac{3a^2}{9} = b \end{cases}$		1M ¹	For both
	$\left(\frac{8}{8}\right) = b$			
	$\therefore a = -3$ and	$b=\frac{27}{2}$	1A	For both correct
		•		
	(ii) The expansion	is valid for $ x < \frac{\pi}{3}$	1A	
		2(1) 27(1)2		
(b)	$\therefore \frac{1}{\sqrt{1}} = 1 + \frac{1}{\sqrt{1}}$	$\frac{3}{2} \left(\frac{1}{30} \right) + \frac{27}{8} \left(\frac{1}{30} \right) + \cdots$		
	$\sqrt{1-3\left(\frac{1}{30}\right)}$	$\frac{3}{2} \left(\frac{1}{30} \right) + \frac{27}{8} \left(\frac{1}{30} \right)^2 + \cdots$		
	• • •			
	$\sqrt{\frac{10}{9}} \approx \frac{843}{800}$		1A	For RHS, accept 1.05375
	$\sqrt{10} \approx \frac{2529}{800}$		1A	Accept 3.16125 and 3.161
	800		(7)	
/- \	$y^3 - uy = 1$			
. (a)				
	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}u} - \left(u \frac{\mathrm{d}y}{\mathrm{d}u} + y\right)$) = 0	1M	
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{y}{3v^2 - u}$		1A	
	$du 3y^2 - u$	·		
	Alternative Solution			
	$u=y^2-\frac{1}{y}$			
		·		
	$\frac{\mathrm{d}u}{\mathrm{d}y} = 2y + \frac{1}{y^2}$		IM	
	dv v ²			
	$\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{y^2}{2y^3 + 1}$		1A	
(b)	$u=2^{x^2}$			
	$\ln u = x^2 \ln 2$		1M	
	$\frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} = 2x\ln 2$		1 M	
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 2^{x^2} \cdot 2x \ln 2$		1A	
	dx			
	Alternative Solution			
	$u=2^{x^2}=e^{x^2\ln 2}$		1 M	
	$\frac{\mathrm{d}u}{\mathrm{d}x} = e^{x^2 \ln 2} \cdot 2x \ln 2$		1 M	
	$dx = 2^{x^2} \cdot 2x \ln 2$			
	$= 2 \cdot 2x \ln 2$		l 1A	1

	Solution	Marks	Remarks
(c	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}$		
•	$=\frac{y}{3y^2-u}\cdot 2^{x^2}\cdot 2x\ln 2$	lM	
	2 ^{x²} .2 m ln ?		r^2+1
	$=\frac{2^{x^2} \cdot 2xy \ln 2}{3y^2 - 2^{x^2}}$	lΑ	OR $\frac{2^{x^2+1} xy \ln 2}{3v^2-2^{x^2}}$
	3y -2	(7)	$3y^2-2^x$
···		(7)	
	dr (1 1)		
. (a)	$\frac{dx}{dt} = 5.3 \left(\frac{1}{t+2} - \frac{1}{t+5} \right) + 1.2e^{-0.1t}$		
	•		•
	$x = \int \left[5.3 \left(\frac{1}{t+2} - \frac{1}{t+5} \right) + 1.2e^{-0.1t} \right] dt$	1 M	,
	$= 5.3[\ln(t+2) - \ln(t+5)] - 12e^{-0.1t} + C \text{(since } t \ge 0\text{)}$	1A	OR $5.3[\ln t+2 -\ln t+5]$
	When $t=0$, $x=0$.		$-12e^{-0.1t} + C$
	$0 = 5.3(\ln 2 - \ln 5) - 12 + C$	1M	-12e +C
	$C = 5.3(\ln 5 - \ln 2) + 12$		
	≈ 16.8563	}	
	i.e. $x = 5.3[\ln(t+2) - \ln(t+5)] - 12e^{-0.1t} + 16.8563$	1A	OR $x = \cdots + 5.3 \ln 2.5 + 12$
(b)	$\lim_{t \to \infty} \left\{ 5.3 \left[\ln(t+2) - \ln(t+5) \right] - 12e^{-0.1t} + 16.8563 \right\}$	1M	
	$=5.3 \lim_{t \to \infty} \ln \frac{t+2}{t+5} - 12 \lim_{t \to \infty} e^{-0.1t} + 16.8563$		
	- '		
	= 16.8563 i.e. the concentration of the drug after a long time = 16.8563 mg/L	1A	
	no. the concentration of the drug after a long time – 10.6303 mg/L		
		(6)	
(a)	$P(A \cap B) = P(A \mid B) \cdot P(B)$		
(a)			
	$=\frac{k}{6}$	1A	
(L)	A DATA DATA DATA DATA DATA DATA DATA DA		
(0)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
	$\therefore \frac{9}{20} = \frac{1}{5} + k - \frac{k}{6}$	1M	
	i.e. $k = \frac{3}{10}$		
	$\kappa = \frac{10}{10}$	1A	
(c)	$P(A' \cap B) = P(B) - P(A \cap B)$		
\-/			
	$=\left(\frac{3}{10}\right)-\frac{1}{6}\left(\frac{3}{10}\right)$	1M	
	Alternative Solution	 	
	$\frac{Atternative Solution}{P(A' \cap B) = P(A \cup B) - P(A)}$] []	
	$=\frac{9}{20}-\frac{1}{5}$	IM	
	$=\frac{1}{4}$	<u> </u>	

	Solution	Marks	Remarks
(d)	$P(A' \cap B') = 1 - P(A \cup B)$		
	$=1-\frac{9}{20}$		
	20		
	Alternative Solution 1		
	$P(A' \cap B') = P(A') - P(A' \cap B)$		
	$= \left(1 - \frac{1}{5}\right) - \left(\frac{1}{4}\right)$		
	Alternative Solution 2		
	$P(A' \cap B') = P(A') + P(B') - P(A' \cup B')$		
	$= P(A') + P(B') - P((A \cap B)')$		
	$= \left(1 - \frac{1}{5}\right) + \left(1 - \frac{3}{10}\right) - \left(1 - \frac{1}{6} \cdot \frac{3}{10}\right)$		
	$=\frac{11}{20}$		
	20 ≠ 0	1M	For $P(A' \cap B') \neq 0$
	Hence A' and B' are not mutually exclusive.	1	Follow through
1	Alternative Solution		
	$P(A') + P(B') = \left(1 - \frac{1}{5}\right) + \left(1 - \frac{3}{10}\right)$		
	$=\frac{3}{2}$		
	2 P(A') + P() = since P(A') + P() < 1	114	n n/ //\ \ n/ n/\ \ \ n/ //\ \ \ n/
	$\neq P(A' \cup B') \text{since } P(A' \cup B') \le 1$ Using A' and B' are not materially analysing	1M	For $P(A') + P(B') \neq P(A' \cup B')$
	Hence A' and B' are not mutually exclusive.	1	Follow through
		(7)	
5. (a)	Let X be the amount of money spent by a randomly selected customer. P(X > 30000) = 0.242		
	$P\left(Z > \frac{30000 - \mu}{6000}\right) = 0.242$	1M	For standardization
	$\therefore P\left(0 < Z \le \frac{30000 - \mu}{6000}\right) = 0.258$		
	$\therefore \frac{30000 - \mu}{6000} = 0.7$	1A	
	i.e. $\mu = 25800$	1A	
(b)	The required probability		
(-)	P(16500 < X < 30000)	1.4	F P(16500 - V - 20000)
	$=\frac{P(16500 < X < 30000)}{P(X < 30000)}$	1 A	For $P(16500 < X < 30000)$
	$\sqrt{16500-25800}$ $\sqrt{30000-25800}$		
	F) < Z <		
	_ (0000)		
	$= \frac{0000}{1 - P(X \ge 30000)}$	•	
	$= \frac{P\left(\frac{16500 - 25800}{6000} < Z < \frac{30000 - 25800}{6000}\right)}{1 - P(X \ge 30000)}$ $= \frac{P(-1.55 < Z < 0.7)}{1 - P(X \ge 30000)}$	1 A	For denominator
	$=\frac{P(-1.55 < Z < 0.7)}{1 - 0.242}$	1A	For denominator
	$= \frac{P(-1.55 < Z < 0.7)}{1 - 0.242}$ $= \frac{0.4394 + 0.258}{1 - 0.258}$	1A	For denominator
	$= \frac{P(-1.55 < Z < 0.7)}{1 - 0.242}$ $= \frac{0.4394 + 0.258}{0.758}$		For denominator
	$= \frac{P(-1.55 < Z < 0.7)}{1 - 0.242}$ $= \frac{0.4394 + 0.258}{1 - 0.258}$	1A	For denominator

 (a) Since the mean of the 17 student marks is 74, k = 74 (b) The required probability =	1A	For denominator OR 0.3860 Accept 1 d.p. or above Follow through Awarded only when (i) is correct
$= \frac{C_1^3 \cdot C_2^{15}}{C_3^{18}}$ $= \frac{105}{272}$ (c) (i) The standard deviation of the 18 student marks is 9.32737905. The corresponding interval is $(74 - 2 \times 9.32737905, 74 + 2 \times 9.327379)$ $\approx (55.34524189, 92.65475811)$ Thus, 55 is an <i>outlier</i> . (ii) There is no change in the median which is 74 in both cases. The standard deviation decreases as the extreme datum (the outlier) is removed	1A 1M 205) 1A 1A 1A 1A	OR 0.3860 Accept 1 d.p. or above Follow through Awarded only when (i) is
 (c) (i) The standard deviation of the 18 student marks is 9.32737905. The corresponding interval is (74-2×9.32737905, 74+2×9.32737905) ≈ (55.34524189, 92.65475811) Thus, 55 is an outlier. (ii) There is no change in the median, which is 74 in both cases. The standard deviation decreases as the extreme datum (the outlier) is removed. 	1M 205) 1A 1A 1A 1A	Accept 1 d.p. or above Follow through Awarded only when (i) is
 ≈ (55.34524189, 92.65475811) Thus, 55 is an outlier. (ii) There is no change in the median, which is 74 in both cases. The standard deviation decreases as the extreme datum (the outlier) is removed. 	1A 1A 1A	Awarded only when (i) is
(ii) There is no change in the median, which is 74 in both cases. The standard deviation decreases as the extreme datum (the outlier) is removed.	1A 1A	Awarded only when (i) is
The standard deviation decreases as the extreme datum (the outlier) is removed	d. 1A	- ','
2 2	(7)	
2 2		
(a) $\lim_{x \to \infty} \frac{3x - 2}{x + 2} = \lim_{x \to \infty} \frac{3 - \frac{2}{x}}{1 + \frac{2}{x}} = 3$ $\therefore \text{ the equation of the horizontal asymptote to } C \text{ is } y = 3.$ $\lim_{x \to -2^{-}} \frac{3x - 2}{x + 2} = +\infty \text{ and } \lim_{x \to -2^{+}} \frac{3x - 2}{x + 2} = -\infty$ $\therefore \text{ the equation of the vertical asymptote to } C \text{ is } x = -2.$	1A	
the equation of the vortical asymptote to C is $x = -2$.	(2)	
(b) $y = f(x)$ $y = 3$		·
$x = -2$ $x = -2$ $y = f(x)$ $\frac{2}{3}$ -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	1A 1A	For intercepts For asymptotes
_3	1A	For shape (pp-1) for origin and labels of axes were all missing
	(3)	

Solution	Marks	Remarks
(c) (i) $f(x) = \frac{3x-2}{x+2}$		
$f'(x) = \frac{(x+2)(3) - (3x-2)(1)}{(x+2)^2}$	1A	For numerator
$(x+2)^2$		
$=\frac{8}{(x+2)^2}$		
$(x+2)^2$ So the equation of L_1 is $y-k=f'(h)(x-h)$		
$y - \frac{3h-2}{h+2} = \frac{8}{(h+2)^2}(x-h)$	l IM	
$(h+2)^2 y - (3h-2)(h+2) = 8x - 8h$		
$8x - (h+2)^2 y + 3h^2 - 4h - 4 = 0$	1	Follow through
		er en egen er en sk
(ii) (1) If L_1 passes through the origin, then		
$8(0) - (h+2)^{2}(0) + 3h^{2} - 4h - 4 = 0$		
$h=2$ or $\frac{-2}{3}$ (rejected since P lies in the first quadrant)	1A	(pp-1) if $\frac{-2}{3}$ was not rejected
$\therefore k = \frac{3(2)-2}{(2)+2} = 1$		
Slope of $L_2 = \frac{[(2)+2]^2}{-8} = -2$	1 M	
Hence the equation of L_2 is $y-1=-2(x-2)$		
i.e. $2x + y - 5 = 0$	1A	
(2) The x-intercept of L_2 is $\frac{5}{2}$		
So the required area		
$= \int_{\frac{2}{2}}^{2} \frac{3x-2}{x+2} dx + \frac{1}{2} \left(\frac{5}{2} - 2 \right) (1)$	1A+1A	$OR = \cdots + \int_{\frac{1}{2}}^{\frac{5}{2}} (5 - 2x) dx$
$= \int_{\frac{2}{3}}^{2} \left(3 - \frac{8}{x+2}\right) dx + \frac{1}{2} \left(\frac{1}{2}\right) (1)$	1 M	For $3 - \frac{8}{x+2}$
$= [3x - 8 \ln x + 2] \frac{2}{3} + \frac{1}{4}$		
$= \frac{17}{4} + 8 \ln \frac{2}{3}$	1 A	OR 1.0063
4 3 3	(10)	
	(10)	

		Solution	Marks	Remarks
. (a)	(i)	$N'(t) = \frac{20}{1 + he^{-kt}} (t \ge 0)$		
		$\ln\left[\frac{20}{N'(t)} - 1\right] = -kt + \ln h$		
	1	$ \operatorname{Im}\left[\frac{\mathbf{N}'(t)}{\mathbf{N}'(t)}-1\right] = -\kappa t + \operatorname{Im} h $	1A	
	(ii)	$\ln h = 1.5$	 1M <	<u> </u>
		$h=e^{1.5}$		
		≈ 4.4817 (correct to 4 d.p.)	1 A	Either One
		$-k = \frac{1.5 - 0}{0 - 7.6}$	∢	
		$k = \frac{15}{76}$		
		70		
		≈ 0.1974 (correct to 4 d.p.)	1A	
			(4)	<u> </u>
		·		
(b)	(i)	$v = 4.5 + e^{0.2t}$		
		$\frac{\mathrm{d}v}{\mathrm{d}t} = 0.2e^{0.2t}$	1A	
		dt .	***	
		$N(t) = \int \frac{20}{1 + 4.5e^{-0.2t}} dt$		
		$=\int \frac{100}{e^{0.2t}+4.5} (0.2e^{0.2t}) dt$		
		$=\int \frac{100}{v} dv$	1M	
		$=100\ln v +C$		
		$= 100 \ln(4.5 + e^{0.2t}) + C (: 4.5 + e^{0.2t} > 0)$	IA.	
		Since N(0) = 50 , so $C = 50 - 100 \ln 5.5$	1M	
		i.e. $N(t) = 100 \ln \frac{4.5 + e^{0.2t}}{5.5} + 50$	1A	
		5.5	IA.	
	(ii)	(1) $M(20) = N(20)$		
		$21 \left[(20) + \frac{4.5}{0.2} e^{-0.2(20)} \right] + b = 100 \ln \frac{4.5 + e^{0.2(20)}}{5.5} + 50$		
		2		
		$b\approx -141,2090$	1 A	
		(2) Consider $M'(t) - N'(t)$		
		$=21(1-4.5e^{-0.2t})-\frac{20}{1+4.5e^{-0.2t}}$	1 A	For the 1st term
		$=\frac{1-425.25e^{-0.4t}}{1+4.5e^{-0.2t}}$	1 A	-
			IA	
,		$M'(t) - N'(t) > 0$ when $e^{-0.4t} < \frac{1}{425.25}$	1M	
		i.e. $t > \frac{\ln 425.25}{0.4} \approx 15.1317$	1 A	
		Since $M(20) = N(20)$ and $M(t) - N(t)$ is increasing when $t > 20$,		
		so $M(t) > N(t)$ for $t > 20$.		
		Hence the biologist's claim is correct.	1 A	Follow through
			(11)	

		·	Solution	Marks	Remarks
9.	(a)	(i)	$\int_0^{10} \frac{1}{40} \sqrt{1+t^2} \mathrm{d}t$		
			$\approx \frac{10}{2(4)} \cdot \frac{1}{40} \left(\sqrt{1+0^2} + 2\sqrt{1+2.5^2} + 2\sqrt{1+5^2} + 2\sqrt{1+7.5^2} + \sqrt{1+10^2} \right)$	1 M	
			≈ 1.305182044 ≈ 1.3052	1A	
			So the increase of temperature is about 1.3052 °C.		
			$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{40} \sqrt{1 + t^2} \right) = \frac{t}{40 \sqrt{1 + t^2}}$		
			$\frac{d^2}{dt^2} \left(\frac{1}{40} \sqrt{1+t^2} \right) = \frac{1}{40(1+t^2)^{\frac{3}{2}}}$	1 A	
			> 0 Hence it is an over-estimate.	1A	Follow through
				(4)	
	(b)	(i)	$100(\ln x_0)^2 - 630 \ln x_0 + 1960 = 968$		
	. ,		$50(\ln x_0)^2 - 315\ln x_0 + 496 = 0$	1A	
			$\ln x_0 = \frac{31}{10} \text{ or } \frac{16}{5}$		
			$x_0 \approx 22.1980$ or 24.5325	1 A	
		(ii)	$W'(x) = \frac{200 \ln x}{1000000000000000000000000000000000000$	1A	
		.,	$∴ W'(x) < 0 \text{ when } 200 \ln x - 630 < 0 (\because x \ge 22)$		
			$\therefore \ln x < 3.15$		
			i.e. $22 \le x < e^{3.15} \approx 23.3361$	1 A	Accept $x < 23.3361$
		(iii)	$\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}W}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$		
			$= \frac{200 \ln x - 630}{x} \cdot \frac{\sqrt{1 + t^2}}{40}$ When $t = 0$, $x = 22$.	1M	
		$ \frac{dW}{dt}\Big _{t=0} = \frac{200 \ln 22 - 630}{22} \cdot \frac{\sqrt{1+0}}{40} $	1 M		
		≈ -0.0134	1A		
		Hence the rate of change of electricity consumption at $t = 0$ is -0.0134 units per year.			
		(iv)	The electricity consumption at $t = 10$ is approximately W(22 + 1.305182044)	1 M	
			$= 100(\ln 23.305182044)^2 - 630 \ln 23.305182044 + 1960$		
			\approx 967.7502 units Since the estimate in (a)(i) is an over-estimate, the actual temperature when	1A 	
			t = 10 is $x < 23.305182044$. Moreover, W(x) is decreasing for $22 \le x < 23.3361$ by (b)(ii).	} 1M	
			Therefore the actual electricity consumption is larger than this estimate.	1A	Follow through
				(11)	

(2)	Solution The required probability	Marks	Remarks
(α)	$= 1 - \left(\frac{3.9^{0} e^{-3.9}}{0!} + \frac{3.9^{1} e^{-3.9}}{1!} + \frac{3.9^{2} e^{-3.9}}{2!} + \frac{3.9^{3} e^{-3.9}}{3!} \right)$ ≈ 0.546753239	1M+1M	1M for cases correct 1M for Poisson probabilit
	≈ 0.5468	1A (3)	
(b)	The required probability $= 1 - P(\text{no } busy \text{ counters are found after the 4th counter is checked})$		
	$\approx 1 - (1 - 0.546753239)^4$	1 M	
	≈ 0.9578	1A	
	Alternative Solution 1 The required probability		
	$\approx C_1^4 (0.546753239) (1 - 0.546753239)^3 + C_2^4 (0.546753239)^2 (1 - 0.546753239)^2$		
į	$+ C_3^4 (0.546753239)^3 (1 - 0.546753239) + (0.546753239)^4$ ≈ 0.9578	1M 1A	IM for Binomial probability
ſ	Alternative Solution 2		
	The required probability $\approx (0.546753239) + (1 - 0.546753239)(0.546753239)$		
	$+(1-0.546753239)^{2}(0.546753239)+(1-0.546753239)^{3}(0.546753239)$ ≈ 0.9578	IM IA	1M for Geometric probability
		(2)	<u>.</u>
(c)	The required probability $\approx (0.546753239)^{10} + C_9^{10} (0.546753239)^9 (1 - 0.546753239)$		
	$+C_8^{10}(0.546753239)^8(1-0.546753239)^2$ ≈ 0.096004444	1M+1M	lM for cases correct lM for Binomial probabilit
	≈ 0.0960	1A (3)	
(d)	The required probability		
	$\approx C_8^{10} (0.546753239)^8 (1 - 0.546753239)^2 \times \frac{2}{10}$		
	$+C_9^{10}(0.546753239)^9(1-0.546753239)\times\frac{1}{10}+0$	1M+1A	1M for form correct
	≈ 0.0167	1A (3)	
(e)	The required probability		•
	$(0.546753239)^{10} \times [(0.546753239)^5 + C_4^5 (0.546753239)^4 (1 - 0.546753239)]$		
	$\approx \frac{+C_9^{10}(0.546753239)^9(1-0.546753239)\times(0.546753239)^5}{0.096004444}$	M+1M+1A	1M for denominator using (o 1M for numerator form corre
Γ	Alternative Solution	· ·	1A for numerator correct
	The required probability		
	$\approx \frac{(0.546753239)^{15} + C_{14}^{15}(0.546753239)^{14}(1 - 0.546753239)}{(0.546753239)^{15} + C_{14}^{15}(0.546753239)^{14}(1 - 0.546753239)}$	M+1M+1A	1M for denominator using (c 1M for numerator form corre
L	0.096004444	141±1161±1W	1A for numerator correct
	≈ 0.0163	1A	

with correct λ and λ with correct λ with correct λ and λ and λ with correct λ and		Solution	Marks	Remarks
$\begin{array}{c} \approx 0.9636 \\ \\ \approx 0.9636 \\ \\ \end{array} \begin{array}{c} \text{IA} \\ \hline \\ \text{(5)} \\ \\ p_0 = P\left(Z > \frac{4.6 - 3}{0.8}\right) = P(Z > 2) = 0.5 - 0.4772 = 0.0228 \\ \\ p_2 = P\left(Z < \frac{2 - 3}{0.8}\right) = P(Z < -1.25) = 0.5 - 0.3944 = 0.1056 \\ \\ p_1 = 1 - p_0 - p_2 = 1 - 0.0228 - 0.1056 = 0.8716 \\ \hline \end{array} \begin{array}{c} \text{IM} \\ \text{For any one correct} \\ \text{For all correct} \\ \hline \end{array} \\ \text{(c)} \begin{array}{c} \text{(i)} \text{The required probability} \\ \\ = C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0 \\ \\ = 3(0.1056)(0.8716)^2 + 3(0.1056)^2(0.0228) \\ \\ \approx 0.241431455 \\ \\ \approx 0.2414 \\ \hline \end{array} \begin{array}{c} \text{IM} \\ \text{(ii)} \text{The required probability} \\ \\ = C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!1!} p_2 p_1^2 p_0 + p_1^4 \\ \\ = 6(0.1056)^2(0.0228)^2 + 12(0.1056)(0.8716)^2(0.0228) + (0.8716)^4 \\ \\ \approx 0.599107436 \\ \\ \approx 0.5991 \\ \hline \end{array} \begin{array}{c} \text{IM} \text{IM for any 2 cases} \\ \text{IM} \text{IM} \\ \text{IM} \text{IM for any 2 cases} \\ \text{IM} \text{IM for any 2 cases} \\ \text{IM} \text{IM for any 2 cases} \\ \text{IM for denominator using the probability} \\ \\ \approx \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436) \\ \\ \approx 0.0883 \\ \hline \end{array} \begin{array}{c} \text{IM} \text{IM for any 2 cases} \\ \text{IM for denominator using the probability} \\ \text{IM} \text$. (a)	$= \frac{1.8^{0}e^{-1.8}}{0!} + \frac{1.8^{1}e^{-1.8}}{1!} + \frac{1.8^{2}e^{-1.8}}{2!} + \frac{1.8^{3}e^{-1.8}}{3!} + \frac{1.8^{4}e^{-1.8}}{4!}$	1M+1M	1M for Poisson probability
(b) $p_0 = P\left(Z > \frac{4.6 - 3}{0.8}\right) = P(Z > 2) = 0.5 - 0.4772 = 0.0228$ $p_2 = P\left(Z < \frac{2 - 3}{0.8}\right) = P(Z < -1.25) = 0.5 - 0.3944 = 0.1056$ $p_1 = 1 - p_0 - p_2 = 1 - 0.0228 - 0.1056 = 0.8716$ (c) (i) The required probability $= C_1^2 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.599107436 (d) The required probability $\frac{1.8^2 e^{-1.8}}{2!} \frac{(0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)}{0.963593339}$ IM For standardization For any one correct IM IM for form correct IM IM for form correct IM IM for form correct IM IM for form correct IM IM for any 2 cases IM for any 2 cases IM for all correct IM for any 2 cases IM for all correct IM IM for any 2 cases IM for all correct			1A	
$p_2 = P\left(Z < \frac{2-3}{0.8}\right) = P(Z < -1.25) = 0.5 - 0.3944 = 0.1056$ $p_1 = 1 - p_0 - p_2 = 1 - 0.0228 - 0.1056 = 0.8716$ (c) (i) The required probability $= C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 (d) The required probability $= \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ $\approx \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ ≈ 0.0883 IM for any 2 cases IM for denominator using IM for denominator using IM for all correct.			(3)	
$p_2 = P\left(Z < \frac{2-3}{0.8}\right) = P(Z < -1.25) = 0.5 - 0.3944 = 0.1056$ $p_1 = 1 - p_0 - p_2 = 1 - 0.0228 - 0.1056 = 0.8716$ (c) (i) The required probability $= C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{ !2!!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 (d) The required probability $= \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ $\approx \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ ≈ 0.0883 IM for any 2 cases IM for denominator using IM for denominator using IM for all correct				
(c) (i) The required probability $= C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 1M IM for form correct 1A in the	(b)	$p_0 = P\left(Z > \frac{4.6 - 3}{0.8}\right) = P(Z > 2) = 0.5 - 0.4772 = 0.0228$) IM	For standardization
(c) (i) The required probability $= C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 1M IM for form correct 1A in the		$p_2 = P\left(Z < \frac{2-3}{0.8}\right) = P(Z < -1.25) = 0.5 - 0.3944 = 0.1056$	} 1A	For any one correct
(c) (i) The required probability $= C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 1M IM for form correct 1A 1A (5) (d) The required probability $\frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ ≈ 0.0883 1M for any 2 cases IM for denominator using the following properties of the correct			J IA	For all correct
$=C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 1A (d) The required probability $\frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ $\approx \frac{1.88^3 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ ≈ 0.0883 IM for any 2 cases IM for denominator usi 1A for all correct			(3)	
$= C_1^3 p_2 p_1^2 + C_1^3 p_2^2 p_0$ $= 3(0.1056)(0.8716)^2 + 3(0.1056)^2 (0.0228)$ ≈ 0.241431455 ≈ 0.2414 (ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 1A (d) The required probability $\frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ $\approx \frac{1.88^3 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ ≈ 0.0883 IM for any 2 cases IM for denominator usi 1A for all correct				
$\begin{array}{c} \approx 0.241431455 \\ \approx 0.2414 \end{array} \hspace{1cm} 1A \\ \text{(ii)} \hspace{1cm} \text{The required probability} \\ = C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!!} p_2 p_1^2 p_0 + p_1^4 \\ = 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4 \\ \approx 0.599107436 \\ \approx 0.5991 \end{array} \hspace{1cm} 1A \\ = \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436) \\ \approx 1.8000000000000000000000000000000000000$	(c)	· · · · · · · · · · · · · · · · · · ·	1M	1M for form correct
(ii) The required probability $= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!1!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 1A $\frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ $\approx \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ ≈ 0.0883 1M for form correct $\frac{1.8 + 1.8 + 1.8}{4!} = \frac{1.8 + 1.8 + 1.8}{1.8} = \frac{1.8 + 1.8}{1.8}$		≈ 0.241431455	1.4	
$= C_2^4 p_2^2 p_0^2 + \frac{4!}{1!2!!!} p_2 p_1^2 p_0 + p_1^4$ $= 6(0.1056)^2 (0.0228)^2 + 12(0.1056)(0.8716)^2 (0.0228) + (0.8716)^4$ ≈ 0.599107436 ≈ 0.5991 (d) The required probability $= \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436)$ ≈ 0.0883 IM 1M for form correct 1A IM for any 2 cases IM for denominator using the form of the correct			IA IA	
$ \begin{array}{c} \approx 0.599107436 \\ \approx 0.5991 \end{array} $ (d) The required probability $ \frac{1.8^2 e^{-1.8}}{2!} (0.1056)^2 + \frac{1.8^3 e^{-1.8}}{3!} (0.241431455) + \frac{1.8^4 e^{-1.8}}{4!} (0.599107436) \\ \approx 0.0883 $ IM for any 2 cases 1M for denominator using 1A for all correct			1M	1M for form correct
(d) The required probability $ \frac{1.8^{2}e^{-1.8}}{2!}(0.1056)^{2} + \frac{1.8^{3}e^{-1.8}}{3!}(0.241431455) + \frac{1.8^{4}e^{-1.8}}{4!}(0.599107436) $ $ \approx 0.0883 $ 1M for any 2 cases 1M for denominator using the probability of t		· · · · · · · · · · · · · · · · · · ·	1 A	
(d) The required probability $ \frac{1.8^{2}e^{-1.8}}{2!}(0.1056)^{2} + \frac{1.8^{3}e^{-1.8}}{3!}(0.241431455) + \frac{1.8^{4}e^{-1.8}}{4!}(0.599107436) $ $ \approx 0.0883 $ IM for any 2 cases 1M for denominator using 1A for all correct			1A	
$\frac{1.8^{2}e^{-1.8}}{2!}(0.1056)^{2} + \frac{1.8^{3}e^{-1.8}}{3!}(0.241431455) + \frac{1.8^{4}e^{-1.8}}{4!}(0.599107436)$ ≈ 0.0883 IM for any 2 cases 1M for denominator using the following states are also as a second state of the following states are also as a second			(5)	
$\approx \frac{\frac{1.8^{2}e^{-1.8}}{2!}(0.1056)^{2} + \frac{1.8^{3}e^{-1.8}}{3!}(0.241431455) + \frac{1.8^{4}e^{-1.8}}{4!}(0.599107436)}{0.963593339}$ ≈ 0.0883 IM for any 2 cases 1M for denominator using 1A for all correct				
© 0.963593339	(d)			
		0.963593339		1M for denominator using (1A for all correct
		≈ V.V003		
			(4)	

. (a)	ТЪ	Solution e required probability	Marks	Remarks
. (a)	= 1 ≈ 0	e required probability $-[(1-0.01)^{40} + C_1^{40}(1-0.01)^{39}(0.01) + C_2^{40}(1-0.01)^{38}(0.01)^2]$ 0.007497363 0.0075	1M+1M	1M for cases correct 1M for Binomial probabilit (Can be awarded in (d)(i))
			(2)	
			(3)	-
(b)		e required probability		
		1 – 0.007497363) ⁴ (0.007497363)	1M	
	≈ 0	0.0073	1 A	
			(2)	
į.				
(c)		$(0.007497363)(1-0.007497363)^{k-1} + C_2^k(0.007497363)^2(1-0.007497363)^k$	2	
	+…	$+C_{k-1}^{k}(0.007497363)^{k-1}(1-0.007497363)+(0.007497363)^{k}>0.05$		
į	Alte	ernative Solution		
:	0.00	$07497363 + (1 - 0.007497363)(0.007497363) + (1 - 0.007497363)^2(0.007497363)$	63)	
	+	$+(1-0.007497363)^{k-1}(0.007497363) > 0.05$		
	1-($(1-0.007497363)^k > 0.05$	1M	
	0.99	$92502636^k < 0.95$	1111	
	k ln	0.992502636 < ln 0.95	1M	
	<i>k</i> >	$\frac{\ln 0.95}{\ln 0.992502636} \approx 6.815832223$		
		th 0.992302636 ce the least value of k is 7.	1 A	
			(3)	
(d)	(i)	The required probability		
		$= 1 - \left[(1 - 0.015)^{40} + C_1^{40} (1 - 0.015)^{39} (0.015) + C_2^{40} (1 - 0.015)^{38} (0.015)^2 \right]$ ≈ 0.022069897		
		≈ 0.0221	1A	
	(ii)	The required probability		
	\ /	$= [C_0^8 (1 - 0.007497363)^8 (0.007497363)^0] [C_2^{12} (1 - 0.022069897)^{10} (0.022069897)^2]$		
		$+[C_1^8(1-0.007497363)^7(0.007497363)][C_1^{12}(1-0.022069897)^{11}(0.022069897)]$		
		$+[C_2^8(1-0.007497363)^6(0.007497363)^2][C_0^{12}(1-0.022069897)^{12}(0.022069897)^0]$	IM+IM	1M for any 1 case correct 1M for all cases correct
		≈ 0.037154780 ~ 0.0373		TIVE FOR ALL CASES COFFECT
		≈ 0.0372	1A	
,	(iii)	The required probability	ĺ	
		$\approx \frac{[C_0^8(1-0.007497363)^8(0.007497363)^0][C_2^{12}(1-0.022069897)^{10}(0.022069897)^2]}{(0.022069897)^{10}(0.022069897)^{10}}$	1M+1M	1M for form correct
		0.037154780 ≈ 0.6517	1A	1M for denominator using (ii
			IA	
		h de la companya de	(7)	