評卷參考＊
 Marking Scheme

香港考試及評核局
 Hong Kong Examinations and Assessment Authority

 2006年香港高級程度會考

 2006年香港高級程度會考
 Hong Kong Advanced Level Examination 2006

數學及統計學 高級補充程度
Mathematics and Statistics AS－Level

> 本交件專爲閱卷員而設，其內容不應視爲標準答案。考生以及沒有參與䛵卷工作的教師在詮釋本文件時應小心謹慎。

> This document was prepared for markers＇reference．It should not be regarded as a set of model answers．Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care．

＊此部分只設英文版本

AS Mathematics and Statistics

General Marking Instructions

1. It is very important that all markers should adhere as closely as possible to the marking scheme. In many cases, however, candidates will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Markers should be patient in marking alternative solutions not specified in the marking scheme.
2. In the marking scheme, marks are classified into the following three categories:
'M' marks
'A' marks
Marks without ' M ' or ' A '
awarded for correct methods being used;
awarded for the accuracy of the answers;
awarded for correctly completing a proof or arriving at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, ' M ' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, ' A ' marks for the corresponding answers should NOT be awarded (unless otherwise specified).
3. For the convenience of markers, the marking scheme was written as detailed as possible, However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
4. Use of notation different from those in the marking scheme should not be penalized.
5. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
6. Marks may be deducted for poor presentation ($p p$). The symbol $p p-1$ should be used to denote 1 mark deducted for $p p$. At most deducted 1 mark from Section A and 1 mark from Section B for $p p$. In any case, do not deduct any marks for $p p$ in those steps where candidates could not score any marks.
7. Marks may be deducted for numerical answers with inappropriate degree of accuracy (a). The symbol (a-1) should be used to denote 1 mark deducted for a. At most deducted 1 mark from Section A and 1 mark from Section B for a. In any case, do not deduct any marks for a in those steps where candidates could not score any marks.
8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.'. stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles.

1. (a) (i) $\left(1+\frac{x}{a}\right)^{\frac{-1}{n}}$
$=1-\frac{x}{n a}+\frac{1}{2}\left(\frac{-1}{n}\right)\left(\frac{-1}{n}-1\right)\left(\frac{x}{a}\right)^{2}-\cdots$
$=1-\frac{x}{n a}+\left(\frac{1+n}{2 n^{2} a^{2}}\right) x^{2}-\cdots$
So, we have $\frac{-1}{n a}=\frac{-1}{18}$ and $\frac{1+n}{2 n^{2} a^{2}}=\frac{1}{24 a}$.
Solving, we have $a=9$ and $n=2$.
(ii) The binomial expansion is valid for $\left|\frac{x}{9}\right|<1$.

Thus, the range of values of x is $-9<x<9$.
(b) (i) By (a)(i), we have $\left(1+\frac{x}{9}\right)^{\frac{-1}{2}}=1-\frac{x}{18}+\frac{x^{2}}{216}-\cdots$.

So, we have $(9+x)^{\frac{-1}{2}}=\frac{1}{3}-\frac{x}{54}+\frac{x^{2}}{648}-\cdots$.
(ii) By (a)(ii), the range of values of x is $-9<x<9$.

1 M for any two terms correct $\mathrm{pp}-1$ for omitting '...'
$1 A+1 A$

1A accept $|x|<9$

1 M for $\frac{1}{3}(\mathrm{a})(\mathrm{i})$
pp -1 for omitting ' ... ' 1M
$-(6)$

	Solution	Marks
2. (a)	$\mathrm{S}(9)=\mathrm{S}(19)$	
	$2\left(10^{2}\right) e^{-9 \lambda}+15=2\left(20^{2}\right) e^{-19 \lambda}+15$	
	$e^{10 \lambda}=4$	
	$\lambda=\frac{\ln 4}{10}$	1A.
	Thus, we have $\lambda=\frac{\ln 2}{5}$	
(b)	$\mathrm{S}(t)=2(t+1)^{2} e^{-\lambda t}+15$	
	$\frac{\mathrm{dS}(t)}{\mathrm{d} t}=2\left(2(t+1) e^{-\lambda t}-\lambda(t+1)^{2} e^{-\lambda t}\right)$	1 A
	$=2(t+1)(2-\lambda-\lambda t) e^{-\lambda t}$	
	$\frac{\mathrm{dS}(t)}{\mathrm{d} t}=0 \text { when } t=\frac{2-\lambda}{\lambda}=\frac{2-\frac{\ln 2}{5}}{\frac{\ln 2}{\ln 2}}=\frac{10-\ln 2}{\ln }=T 3.42695041$	1 M
	$\frac{\mathrm{dS}(t)}{\mathrm{d} t}\left\{\begin{array}{lll} >0 & \text { if } & 0 \leq t<T \\ =0 & \text { if } & t=T \\ <0 & \text { if } & t>T \end{array}\right.$	1 M for testing +1 A
	Therefore, $S(t)$ attains its greatest value when $t=T$.	
	The greatest value of $\mathrm{S}(t)$	
	$\begin{aligned} & =2\left(\frac{10-\ln 2}{\ln 2}+1\right)^{2} e^{\frac{\ln 2}{5}-2}+15 \\ & =79.71368176 \end{aligned}$	
	<90	
	Thus, the temperature will not get higher than $90^{\circ} \mathrm{C}$	1A f.t.

Solution	Marks
$\begin{aligned} & \begin{array}{l} \frac{\mathrm{S}(t)=}{\frac{\mathrm{d}(t)}{\mathrm{d} t}}=2(t+1)^{2} e^{-\lambda t}+15 \\ \\ \\ =2\left(2(t+1) e^{-\lambda t}-\lambda(t+1)^{2} e^{-\lambda t}\right) \end{array} \\ & \begin{aligned} \frac{\mathrm{d}^{2} \mathrm{~S}(t)}{\mathrm{d} t^{2}} & =2\left(2 e^{-\lambda t}-2 \lambda(t+1) e^{-\lambda t}-2 \lambda(t+1) e^{-\lambda t}+\lambda^{2}(t+1)^{2} e^{-\lambda t}\right) \\ & =2\left(\left(\lambda^{2}-4 \lambda+2\right)+\left(2 \lambda^{2}-4 \lambda\right) t+\lambda^{2} t^{2}\right) e^{-\lambda t} \end{aligned} \\ & \begin{aligned} \frac{\mathrm{dS}(t)}{\mathrm{d} t} & =0 \text { when } t=\frac{2-\lambda}{\lambda}=\frac{2-\frac{\ln 2}{5}}{\frac{\ln 2}{5}}=\frac{10-\ln 2}{\ln 2}=T=1342695041 \end{aligned} \\ & \left.\frac{\mathrm{~d}^{2} \mathrm{~S}(t)}{\mathrm{d} t^{2}}\right\|_{t=T}=-4 e^{-\lambda T}<0 \end{aligned}$ Note that there is ony one local maximum. So, $\mathrm{S}(t)$ attains its greatest value when $t=T$. The greatest value of $\mathrm{S}(t)$ $\begin{aligned} & =2\left(\frac{10-\ln 2}{\ln 2}+1\right)^{2} e^{\frac{\ln 2}{5}-2}+15 \\ & =79.71368176 \\ & <90 \end{aligned}$ Thus, the temperature will not get higher than $90^{\circ} \mathrm{C}$.	1A 1M 1 M for testing +1 A 1Af.t.

3. (a) The total amount

$$
\begin{aligned}
& =\int_{1}^{11} \mathrm{f}(t) \mathrm{d} t \\
& \approx \frac{11-1}{10}(\mathrm{f}(1)+\mathrm{f}(11)+2(\mathrm{f}(3)+\mathrm{f}(5)+\mathrm{f}(7)+\mathrm{f}(9))) \\
& \approx 22.57906572 \\
& \approx 22.5791 \text { litres }
\end{aligned}
$$

1 A can be absorbed
IM for trapezoidal rule

1A $a-1$ for r.t. 22.579
(b) $\mathrm{f}(t)=\frac{500}{(t+2)^{2} e^{t}}$

$$
\begin{aligned}
\frac{\mathrm{df}(t)}{\mathrm{d} t} & =\frac{-500\left(2(t+2) e^{t}+(t+2)^{2} e^{t}\right)}{(t+2)^{4} e^{2 t}} \\
& =\frac{-500(t+4)}{(t+2)^{3} e^{t}} \\
\frac{\mathrm{~d}^{2} \mathrm{f}(t)}{\mathrm{d} t^{2}} & =-500\left(\frac{(t+2)^{3} e^{t}-(t+4)\left(3(t+2)^{2} e^{t}+(t+2)^{3} e^{t}\right)}{(t+2)^{6} e^{2 t}}\right) \\
& =-500\left(\frac{t+2-(t+4)(t+5)}{(t+2)^{4} e^{t}}\right) \\
& =500\left(\frac{t^{2}+8 t+18}{(t+2)^{4} e^{t}}\right)
\end{aligned}
$$

$$
\mathrm{f}(t)=500(t+2)^{-2} e^{-t}
$$

$$
\frac{\mathrm{df}(t)}{\mathrm{d} t}=500(-2)(t+2)^{-3} e^{-t}+500(t+2)^{-2}(-1) e^{-t}
$$

$$
=-1000(t+2)^{-3} e^{-t}-500(t+2)^{-2} e^{-t}
$$

$$
\frac{\mathrm{d}^{2} \mathrm{f}(t)}{\mathrm{d} t^{2}}=3000(t+2)^{-4} e^{-t}+1000(t+2)^{-3} e^{-t}+1000(t+2)^{-3} e^{-t}+500(t+2)^{-2} e^{-t}
$$

$$
=3000(t+2)^{-4} e^{-t}+2000(t+2)^{-3} e^{-t}+500(t+2)^{-2} e^{-t}
$$

(c) Note that $\frac{\mathrm{d}^{2} \mathrm{f}(t)}{\mathrm{d} t^{2}}>0$ for all $1 \leq t \leq 11$.

So, $\mathrm{f}(t)$ is concave upward on $[1,11]$.
Thus, the estimate in (a) is an over-estimate.

IM for product rule

1A or equivalent
1 M for quotient rule

1A or equivalent

1 M for considering the sign of $\frac{\mathrm{d}^{2} \mathrm{f}(t)}{\mathrm{d} t^{2}}$

1A f.t.
-(7)

		Solution
4. (a)The median $=$ 18	Marks	
	The interquartile range	
$=$	$125-12$	
	13	

(b) (i)

1A +1 A for correct box-and-whisker diagrams 1A for correct scale and same scale pp-1 for incomplete specifications

(ii) Note that the median (35) of the numbers of books read in the second term is greater than the maximum (30) of the numbers of books read in the first term and the difference between 35 and 30 is 5 . So, not less than 50% of these students read at least 5 more books in the second terms than that in the first term. Thus, the claim is correct.

1 M for using the median in the 2nd term and the maximum in the 1 st term
\qquad

Marks
5. (a) $\mathrm{P}\left(A \mid B^{\prime}\right)=\frac{\mathrm{P}\left(A \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}$
$0.5=\frac{\mathrm{P}\left(A \cap B^{\prime}\right)}{1-b}$
$\mathrm{P}\left(A \cap B^{\prime}\right)=0.5(1-b)$

$$
\begin{aligned}
& \mathrm{P}(A) \\
= & \mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\prime}\right) \\
= & 0.2+0.5(1-b) \\
= & 0.7-0.5 b
\end{aligned}
$$

(b) $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$
$0.2=(0.7-0.5 b) b$
$5 b^{2}-7 b+2=0$
$b=0.4$ or $b=1 \quad$ (rejected)
Thus, we have $b=0.4$.
Since A and B are independent events, we have $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$.
So, we have $\mathrm{P}\left(A \mid B^{\prime}\right) \mathrm{P}\left(B^{\prime}\right)=\mathrm{P}\left(A \cap B^{\prime}\right)=\mathrm{P}(A)-\mathrm{P}(A) \mathrm{P}(B)=\mathrm{P}(A) \mathrm{P}\left(B^{\prime}\right)$.
Since $\mathrm{P}\left(B^{\prime}\right) \neq 0$, we have $\mathrm{P}\left(A \mid B^{\prime}\right)=\mathrm{P}(A)$.
By (a), we have $0.5=0.7-0.5 b$.
Therefore, we have $0.5 b=0.2$.
Thus, we have $b=0.4$.
6. (a) For the normal distribution, the expected numbers of the students with test scores less than 50 are omitted.

For the Poisson distribution, the expected numbers of the students with merit? points greater than 4 are omitted.
(b) The difference between the sum of the observed numbers of students and the sum of the expected numbers of students fitted by the normal distribution is $100-98.78=1.22$
Let SE_{1} be the sum of errors for model fitted by the normal distribution. Then, SE_{1}
$=|20-14.65|+|41-44.00|+|28-33.45|+|9-6.38|+|2-0.30|+|0-1.22|$
$=19.34$

The difference between the sum of the observed numbers of students and the sum of the expected numbers of students fitted by the Poisson distribution is

$$
100-98.58=1.42
$$

Let SE_{2} be the sum of errors for model fitted by the Poisson distribution. Then, SE_{2}
$=|20-24.66|+|41-34.52|+|28-24.17|+|9-11.28|+|2-3.95|+|0-1.42|$
$=20.62$
Since $\mathrm{SE}_{1}<\mathrm{SE}_{2}$, the normal distribution fits the observed data better.
(7)

1 M

1A accept $0.5-0.5 b$

1A

1M for using (a) +1 M for using independence

1A

1M for using (a) +IM for using independence

1A

1 A do not accept rounding errors

1A do not accept rounding errors

1A can be absorbed
$1 \mathrm{~A}+1 \mathrm{M}$ (1 A for the first 5 terms 1 M for the last term)
1 A
either one
either one
both
1M
-(7)
7. (a) \because the y-intercept of C_{1} is $\frac{-3}{2}$.
$\therefore \frac{a}{4}=\frac{-3}{2}$
Thus, we have $a=-6$.
\because the x-intercept of C_{2} is -2 .
$\therefore \frac{a-(-2) b}{4+(-2)}=0$
Thus, we have $b=3$.
(b) (i) $\because \lim _{x \rightarrow 4^{-}} \frac{3 x-6}{4-x}=+\infty$ and $\lim _{x \rightarrow 4^{+}} \frac{3 x-6}{4-x}=-\infty$
\therefore the equation of the vertical asymptote to C_{1} is $x=4$.
$\because \lim _{x \rightarrow \pm \infty} \frac{3 x-6}{4-x}=\lim _{x \rightarrow \pm \infty} \frac{3-\frac{6}{x}}{\frac{4}{x}-1}=-3$
\therefore the equation of the horizontal asymptote to C_{1} is $y=-3$.
(ii)

1A for all the asymptotes of C_{1}
1 A for all the intercepts of C_{i}
1A for the shape and position of C_{1}
1A

1A
-(2)

1A

1A
(c) The equation of the vertical asymptote to C_{2} is $x=-4$.

The equation of the horizontal asymptote to C_{2} is $y=-3$.
The x-intercept of C_{2} is -2 .
The y-intercept of C_{2} is $\frac{-3}{2}$.
The coordinates of the point of intersection of the two curves are $(0,-1.5)$.

(d) The required area

$$
\begin{aligned}
& =\int_{\frac{-7}{2}}^{0}(9-\mathrm{g}(x)) \mathrm{d} x+\int_{0}^{\frac{7}{2}}(9-\mathrm{f}(x)) \mathrm{d} x \\
& =2 \int_{0}^{\frac{7}{2}}(9-\mathrm{f}(x)) \mathrm{d} x \\
& =2 \int_{0}^{\frac{7}{2}}\left(9-\frac{3 x-6}{4-x}\right) \mathrm{d} x \\
& =2 \int_{0}^{\frac{7}{2}}\left(12-\frac{6}{4-x}\right) \mathrm{d} x \\
& =12[2 x+\ln \mid 4-x]_{0}^{\frac{7}{2}} \\
& =84+12 \ln \frac{1}{2}-12 \ln 4 \\
& =84-12 \ln 8 \\
& =84-36 \ln 2 \\
& =59.046 \operatorname{lo15} \\
& \approx 59.0467
\end{aligned}
$$

1A for all the asymptotes of C_{2}
1 M for the shape and position of C_{2}
1 A for all the intercepts of C_{2}
1A for the intersection point
(4)

1 M accept $\int_{-1.5}^{9} \frac{4 y+6}{y+3} \mathrm{~d} y-\int_{-1.5}^{9} \frac{-4 y-6}{y+3} \mathrm{~d} y$

1M for division

1A for correct integration

1A
$a-1$ for r.t. 59.047
----------(4)
8. (a) $\frac{\mathrm{d} v}{\mathrm{~d} t}=2 t-6$
x
$=\int \frac{30 t-90}{t^{2}-6 t+11} \mathrm{~d} t$
$=15 \int \frac{\mathrm{~d} v}{v}$
$=15 \ln |v|+C$
$=15 \ln \left(t^{2}-6 t+11\right)+C \quad\left(\because t^{2}-6 t+11=(t-3)^{2}+2>0\right)$

Using the condition that $x=40$ when $t=0$, we have $C=40-15 \ln 11$.
Thus, we have $x=15 \ln \left(t^{2}-6 t+11\right)+40-15 \ln 11$.
(b) $15 \ln \left(t^{2}-6 t+11\right)+40-15 \ln 11=40$
$15 \ln \left(t^{2}-6 t+11\right)=15 \ln 11$
$t^{2}-6 t+11=11$
$t(t-6)=0$
$t=6$ or $t=0$ (rejected)
Therefore, we have $t=6$.
Thus, 6 weeks after the start of the plan, the weekly number of passengers will be the same as at the start of the plan.
(c) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{30(t-3)}{(t-3)^{2}+2}$

$$
\left\{\begin{array}{lll}
<0 & \text { if } & 0 \leq t<3 \\
=0 & \text { if } & t=3 \\
>0 & \text { if } & t>3
\end{array}\right.
$$

So, x attains its least value when $t=3$.

> The least weekly number of passengers

$$
\begin{aligned}
& =15 \ln 2+40-15 \ln 11 \\
& =40-15 \ln \frac{11}{2} \\
& \approx 1442877862 \\
& \approx 14 \text { thousand }
\end{aligned}
$$

1M for finding C
1A
--------(4)

1A
(2)
, 1 A

Solution	Marks
$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=\frac{-30\left(t^{2}-6 t+7\right)}{\left(t^{2}-6 t+11\right)^{2}}$ Note that $\frac{\mathrm{d} x}{\mathrm{~d} t}=0$ when $t=3$. $\left\|\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}\right\|_{t=3}=15>0$ Note that there is only one local minimun. So, x attains its least value when $t=3$. $\begin{aligned} & \text { The least weekly number of passengers } \\ & =15 \ln 2+40-15 \ln 11 \\ & =40-15 \ln \frac{11}{2} \\ & =14.42877862 \\ & \approx 14 \text { thousand } \end{aligned}$	1 M for testing +1 A 1 A
(d) By (c), note that the end of the Recovery Week corresponds to $t=3$. (i) The required change $\begin{aligned} & =x(4)-x(3) \\ & =15 \ln \left(4^{2}-24+11\right)-15 \ln \left(3^{2}-18+11\right) \\ & =15(\ln 3-\ln 2) \\ & =15 \ln \frac{3}{2} \\ & \approx 6.081976622 \\ & \approx 6 \text { thousand } \end{aligned}$	------..(3) 1 M 1A
The required change $\begin{aligned} & =\int_{3}^{4} \frac{30 t-90}{t^{2}-6 t+11} \mathrm{~d} t \\ & =15\left[\ln \left(t^{2}-6 t+11\right)\right]_{3}^{4} \\ & =15 \ln \left(4^{2}-24+11\right)-15 \ln \left(3^{2}-18+11\right) \\ & =15(\ln 3-\ln 2) \\ & =15 \ln \frac{3}{2} \\ & \approx 6.081976622 \\ & \approx 6 \text { thousand } \end{aligned}$	1 M IA
(ii) $\begin{aligned} & (t+1)^{2}-6(t+1)+11-3\left(t^{2}-6 t+11\right) \\ = & -2 t^{2}+14 t-27 \\ = & -2\left(t-\frac{7}{2}\right)^{2}-\frac{5}{2} \\ < & 0 \end{aligned}$ Thus, we have $(t+1)^{2}-6(t+1)+11<3\left(t^{2}-6 t+11\right)$ for all t.	1 M accept using discriminant <0 1

Solution	Marks
Note that $t^{2}-6 t+11=(t-3)^{2}+2>0$. $=\begin{aligned} & =\frac{(t+1)^{2}-6(t+1)+11}{t^{2}-6 t+11}-3 \\ & =\frac{-2 t^{2}+14 t-27}{t^{2}-6 t+11} \\ & =\frac{-2\left(t-\frac{7}{2}\right)^{2}-\frac{5}{2}}{(t-3)^{2}+2} \\ & <0 \end{aligned}$ Thus, we have $(t+1)^{2}-6(t+1)+11<3\left(t^{2}-6 t+11\right)$ for all t.	1 M accept using discriminant <0 1
Let $f(t)=(t+1)^{2}-6(t+1)+11-3\left(t^{2}-6 t+11\right)$ for all $t \geq 0$. $\begin{aligned} & \frac{\mathrm{df}(t)}{\mathrm{d} t}=-4 t+14 \\ & \frac{\mathrm{df}(t)}{\mathrm{d} t}\left\{\begin{array}{lll} >0 & \text { if } & 0 \leq t<\frac{7}{2} \\ =0 & \text { if } & t=\frac{7}{2} \\ <0 & \text { if } & t>\frac{7}{2} \end{array}\right. \end{aligned}$ So, $\mathrm{f}(t)$ attains its greatest value when $t=\frac{7}{2}$. The greatest value of $\mathrm{f}(t)$ $\begin{aligned} & =\frac{-5}{2} \\ & <0 \end{aligned}$ Thus, we have $(t+1)^{2}-6(t+1)+11<3\left(t^{2}-6 t+11\right)$ for afl t.	1 M for testing 1
(iii) $\begin{aligned} & x(t+1)-x(t) \\ = & 15 \ln \left((t+1)^{2}-6(t+1)+11\right)-15 \ln \left(t^{2}-6 t+11\right) \\ = & 15 \ln \left(\frac{(t+1)^{2}-6(t+1)+11}{t^{2}-6 t+11}\right) \\ \therefore & 15 \ln 3 \quad\left(b y(d)(1) \text { and } I^{2}-6 t+11>0\right) \\ < & 25 \end{aligned}$ Thus, the claim is incorrect.	1M for using (d)(ii) and taking in 1A f.t.
By (d) (ii), we have $(t+1)^{2}-6(t+1)+11<3\left(t^{2}-6 t+11\right)$ Note that $(r+1)^{2}-6(t+1)+11>0$ and $3\left(r^{2}-6 t+11\right)>0$. $\begin{aligned} & \ln \left((t+1)^{2}-6(t+1)+11\right)<\ln 3+\ln \left(t^{2}-6 t+11\right) \\ & 15 \ln \left((t+1)^{2}-6(t+1)+11\right)-15 \ln \left(t^{2}-6 t+11\right)<15 \ln 3 \\ & x(t+1)-x(t)<25 \end{aligned}$ Thus, the claim is incorrect.	1 M for using (d)(ii) and taking ln IA f.t.
	---------(6)

9. (a) Let $u=t+10$. Then, we have $\frac{\mathrm{d} u}{\mathrm{~d} t}=1$.

The total amount
$=\int_{0}^{3} \mathrm{f}(t) \mathrm{d} t$
$=\int_{0}^{3} 25 t^{2}(t+10)^{\frac{-1}{3}} \mathrm{~d} t$
$=\int_{10}^{13} 25(u-10)^{2} u^{\frac{-1}{3}} \mathrm{~d} u$
$=25 \int_{10}^{13}\left(u^{\frac{5}{3}}-20 u^{\frac{2}{3}}+100 u^{\frac{-1}{3}}\right) \mathrm{d} u$
$=25\left[\frac{3}{8} u^{\frac{8}{3}}-12 u^{\frac{5}{3}}+150 u^{\frac{2}{3}}\right]_{10}^{13}$

$=97.65521668$

≈ 97.6552 thousand metres
(b) $\ln (g(t)-28)=\ln k+h t^{2}$
(c) $h \approx 0.3$ (correct to 1 decimal place)
$\ln k \approx 1.0$
h~2.718281828
$k \approx 2.7$ (correct to 1 decimal place)
(d) (i) $\mathrm{g}(t) \approx 28+2.7 e^{0.3 t^{2}}$

$$
\begin{aligned}
& =28+2.7\left(1+0.3 t^{2}+\frac{\left(0.3 t^{2}\right)^{2}}{2!}+\frac{\left(0.3 t^{2}\right)^{3}}{3!}+\cdots\right) \\
& =30.7+0.81 t^{2}+0.1215 t^{4}+0.01215 t^{6}+\cdots
\end{aligned}
$$

The total amount

$$
\begin{aligned}
& =\int_{0}^{3} \mathrm{~g}(t) \mathrm{d} t \\
& \approx \int_{0}^{3}\left(30.7+0.81 t^{2}+0.1215 t^{4}+0.01215 t^{6}\right) \mathrm{d} t \\
& =\left[30.7 t+\frac{0.81 t^{3}}{3}+\frac{0.1215 t^{5}}{5}+\frac{0.01215 t^{7}}{7}\right]_{0}^{3}
\end{aligned}
$$

$$
\approx 109.0909071
$$

≈ 109.0909 thousand metres
(ii) $e^{0.3 t^{2}}=1+0.3 t^{2}+\frac{\left(0.3 t^{2}\right)^{2}}{2!}+\frac{\left(0.3 t^{2}\right)^{3}}{3!}+\mathrm{r}(t)$ and $\mathrm{r}(t)>0$ for all $t>0$ Thus, the estimate in (d)(i) is an under-estimate.
(iii) Note that the estimate in (d)(i) is greater than the total amount of cloth production under John's model and that the estimate in (d)(i) is an under-estimate.
Thus, the total amount of cloth production under Mary's model is greater than that under John's model.

1 A can be absorbed

1A $a-1$ for r.t. 97.655
--------(5)
1A
--------(1)
1A

1A
-(2)

1 M
1A pp-1 for omitting '... '

1 M

1A $a-1$ for r.t. 109.091

IA f.t.

IM for using (a), (d)(i) and (d)(ii)

1 A f.t.
--------(7)
10. (a) The required probability
$=\frac{4.7^{0} e^{-4.7}}{0!}+\frac{4.7^{1} e^{-4.7}}{1!}+\frac{4.7^{2} e^{-4.7}}{2!}+\frac{4.7^{3} e^{-4.7}}{3!}+\frac{4.7^{4} e^{-4.7}}{4!}+\frac{4.7^{5} e^{-4.7}}{5!}$
$=0668438485$
≈ 0.6684
(b) Let $X \mathrm{~km} / \mathrm{h}$ be the speed of a car entering the roundabout.

Then, $X \sim \mathrm{~N}\left(42.8,12^{2}\right)$.
The required probability
$=\mathrm{P}(X>50)$
$=\mathrm{P}\left(Z>\frac{50-42.8}{12}\right)$
$=\mathrm{P}(Z>0.6)$
$=0.2743$
(c) The required probability

$$
\begin{aligned}
& =(1-0.2743)^{5}(0.2743) \\
& =0.055209196 \\
& \approx 0.0552
\end{aligned}
$$

(d) (i) The required probability

$$
\begin{aligned}
& =C_{1}^{4}(0.2743)^{3}(1-0.2743)+(0.2743)^{4} \\
& =0065570471 \\
& \approx 0.0656
\end{aligned}
$$

(ii) The required probability

$$
0.065570471\left(\frac{(4.7)^{4} e^{-4.7}}{4!}\right)
$$

$$
\begin{aligned}
& +\left((0.2743)^{5}+C_{1}^{5}(0.2743)^{4}(1-0.2743)+C_{2}^{5}(0.2743)^{3}(1-0.2743)^{2}\right)\left(\frac{(4.7)^{5} e^{-4.7}}{5!}\right) \\
& \approx \frac{0.668438485}{\approx 0.052151265} \\
& \approx 0.0522
\end{aligned}
$$

1 M for the 6 cases +M for Poisson probability

1A $a-1$ for r.t. 0.668
$\cdots \cdots \cdots-\cdots(3)$
$1 \mathrm{M}\left(\right.$ accept $\left.\mathrm{P}\left(Z \geq \frac{50-42.8}{12}\right)\right)$

1 A $a-1$ for r.t. 0.274
-......----(2)

1 M for $(1-p)^{5} p+1 \mathrm{M}$ for $p=(\mathrm{b})$

1 A $a-1$ for r.t. 0.055
----------(3)

1 M for the 2 cases +1 M for binomial probability

1A $a-1$ for t.t. 0.066
$1 \mathrm{M}+1 \mathrm{M}$ for numerator + 1 M for denominator using (a)

1A $a-1$ for r.t. 0.052
----------(7)

Solution	Marks
11. (a) The required probability $\begin{aligned} & =1-\left((0.8)^{5}+C_{1}^{5}(0.8)^{4}(0.2)\right) \\ & =\frac{821}{3125} \\ & =0.26272 \\ & \approx 0.2627 \end{aligned}$	1M for cases correct + 1 M for binomial probability 1A $a-1$ for r.t. 0.263
$\begin{aligned} & \text { The required probability } \\ &=(0.2)^{5}+C_{1}^{5}(0.2)^{4}(0.8)+C_{2}^{5}(0.2)^{3}(0.8)^{2}+C_{3}^{5}(0.2)^{2}(0.8)^{3} \\ &= \frac{821}{3125} \\ &=0.26272 \\ & \approx 0.2627 \end{aligned}$	
(b) (i) The required probability $\begin{aligned} & =(0.8)^{6}(0.2) \\ & =\frac{4096}{78125} \\ & =0.0524288 \\ & \approx 0.0524 \end{aligned}$	\qquad 1 M for $p^{6}(1-p)$, where $0<p<1$ 1A. $a-1$ for r.t. 0.052

(ii) The required probability
$=\left(C_{2}^{6}(0.8)^{4}(0.2)^{2}\right)(0.8)+\left(C_{2}^{6}(0.8)^{4}(0.2)^{2}\right)(0.2)+\left(C_{1}^{6}(0.8)^{5}(0.2)\right)(0.2) \quad 1 \mathrm{M}$ for the 3 cases +1 M for binomial probability
$=\frac{25344}{78125}$
$=0.3244032$
≈ 0.3244

The required probability $=C_{2}^{6}(0.8)^{4}(0.2)^{2}+\left(C_{1}^{6}(0.8)^{5}(0.2)\right)(0.2)$	1 M for the 2 cases + IM for binomial probability
$=25344$	1A
78125	
-0.3244032	
≈ 0.3244	$a-1$ for r.t. 0.324
The required	
$=C_{2}^{7}(0.8)^{5}(0.2)^{2}+\left(C_{2}^{6}(0.8)^{4}(0.2)^{2}\right)(0.2)$	IM for the 2 cases +1 M for binomial probability
$=\frac{25344}{78125}$	1A
78125	
-0.3244032	
≈ 0.3244	$a-1$ for r.t. 0.324

(iii) The required probability
$=\frac{\left(C_{2}^{6}(0.8)^{4}(0.2)^{2}\right)(0.2)+\left(C_{1}^{6}(0.8)^{5}(0.2)\right)(0.2)}{0.3244032}$
1A for numerator
1 M for denominator using (b)(ii)
$=\frac{13}{33}$
≈ 03939393939
≈ 0.3939

Solution	Marks
$\begin{aligned} & \quad \begin{array}{l} \text { The required probability } \\ = \\ =1-\frac{\left(C_{2}^{6}(0.8)^{4}(0.2)^{2}\right)(0.8)}{0.3244032} \\ =\frac{13}{33} \\ \approx 0.3939393939 \\ \approx 0.3939 \end{array} \end{aligned}$	1A for numerator 1 M for denominator using (b)(ii) 1A $a-1$ for r.t. 0.394
(iv) The required probability $\begin{aligned} & =\frac{(0.8)^{5}(0.2)^{2}+C_{1}^{5}(0.8)^{4}(0.2)\left((0.2)^{2}+C_{1}^{2}(0.8)(0.2)\right)}{1-0.26272} \\ & =\frac{49}{225} \\ & \approx 0.2177777777 \\ & \approx 0.2178 \end{aligned}$	1 M (one term) +1 A for numerator 1 M for denominator using (a) 1A $a-1$ for r.t. 0.218 \qquad

	Solution	Marks
12. (a)	The required probability	
	$=1-\left(\frac{2.6^{0} e^{-2.6}}{0!}+\frac{2.6^{1} e^{-2.6}}{1!}+\frac{2.6^{2} e^{-2.6}}{2!}+\frac{2.6^{3} e^{-2.6}}{3!}\right)$	1 M for cases correct + 1M for Poisson probability
	¢0.26399835	
	≈ 0.2640	$1 \mathrm{~A} a-1$ for r.t. 0.264

Let p be the probability described in (a).
(b) (i) The required probability

$$
\begin{aligned}
& =p+(1-p) p+(1-p)^{2} p+(1-p)^{3} p \\
& =1-(1-p)^{4} \\
& \approx 1-(1-0.263998355)^{4} \\
& 0070656282 \\
& \approx 0.7066
\end{aligned}
$$

(ii) The required probability

$$
\begin{aligned}
& \approx \frac{(1-0.263998355)^{2}(0.263998355)+(1-0.263998355)^{3}(0.263998355)}{0.70656282} \\
& \approx 0.351364771 \\
& \approx 0.3514
\end{aligned}
$$

(iii) The integer m satisfies $\mathrm{P}(M \leq m)>0.95$.
$p+(1-p) p+(1-p)^{2} p+\cdots+(1-p)^{m-1} p>0.95$
$1-(1-p)^{m}>0.95$
$(1-p)^{m}<0.05$
$(1-0.263998355)^{m}<0.05$
$m \ln (0.736001645)<\ln (0.05)$
$m>9.773273146$
Thus, the least value of m is 10 .
(c) Note that $N \sim \mathrm{~B}(150, p)$.

The mean of N
$=150 \mathrm{p}$
$\approx(150)(0.263998355)$
≈ 39.59975325
≈ 39.5998

> The variance of N
> $=150 p(1-p)$
> $\approx(150)(0.263998355)(1-0.263998355)$
> ≈ 29.14548353
> ≈ 29.1455

1 M for numerator using (a)
1 M for denominator using (b)(i)

1 A (accept 0.3513)
$a-1$ for r.t. 0.351
1 M for Poisson probability
$1 \mathrm{~A} a-1$ for r.t. 0.264
(3)

IM for the 4 cases +1 M for geometric probability

1 A $a-1$ for r.t. 0.707

1 M withhold 1 M for bearing an equality sig

1 M for using log or trial and error

1 A
\qquad

1M

1 A (accept 39.6)
$a-1$ for r.t. $39.600 \quad$ either one

1A (accept 29.1456)
$a-1$ for r.t. 29.145
----------(3)

