香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

練習卷 PRACTICE PAPER

數學 延伸部分單元一(微積分與統計)

MATHEMATICS Extended Part Module 1 (Calculus and Statistics)

評卷參考

MARKING SCHEME

本評卷參考乃香港考試及評核局專為本科練習卷而編寫,供教師和學生參考之用。學生不應將評卷參考視為標準答案,硬背死記,活剝生吞。這種學習態度,既無助學生改善學習,學懂應對及解難,亦有違考試着重理解能力與運用技巧之旨。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for teachers' and students' reference. This marking scheme should NOT be regarded as a set of model answers. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, will not help students to improve their learning nor develop their abilities in addressing and solving problems.

⑥香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

PP-DSE-MATH-EP(M1)-1

只限教師參閱

FOR TEACHERS' USE ONLY

General Notes for Teachers on Marking

Adherence to marking scheme

- 1. This marking scheme has been updated, with revisions made after the scrutiny of actual samples of student performance in the practice papers. Teachers are strongly advised to conduct their own internal standardisation procedures before applying the marking schemes. After standardisation, teachers should adhere to the marking scheme to ensure a uniform standard of marking within the school.
- 2. It is very important that all teachers should adhere as closely as possible to the marking scheme. In many cases, however, students may have arrived at a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method has been specified in the question. Teachers should be patient in marking alternative solutions not specified in the marking scheme.

Acceptance of alternative answers

- 3. For the convenience of teachers, the marking scheme was written as detailed as possible. However, it is likely that students would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, teachers should exercise their discretion in marking students' work. In general, marks for a certain step should be awarded if students' solution indicate that the relevant concept / technique has been used.
- 4. In marking students' work, the benefit of doubt should be given in students' favour.
- 5. Unless the form of the answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they are correct.
- 6. Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.

Defining symbols used in the marking scheme

7. In the marking scheme, marks are classified into the following three categories:

'M' marks – awarded for applying correct methods
'A' marks – awarded for the accuracy of the answers

Marks without 'M' or 'A' – awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. (I.e. Teachers should follow through students' work in awarding 'M' marks.) However, 'A' marks for the corresponding answers should <u>NOT</u> be awarded, unless otherwise specified.

8. In the marking scheme, steps which can be skipped are enclosed by dotted rectangles, whereas alternative answers are enclosed by solid rectangles.

Others

- 9. Marks may be deducted for poor presentation (pp), including wrong / no unit. Note the following points:
 - (a) At most deduct 1 mark for pp in each section.
 - (b) In any case, do not deduct any marks for pp in those steps where students could not score any marks.
- 10. (a) Unless otherwise specified in the question, numerical answers not given in exact values or 4 decimal places should not be accepted.
 - (b) Answers not accurate up to specified degree of accuracy should not be accepted. For answers with an excess degree of accuracy, deduct 1 mark for *pp*. In any case, do not deduct any marks for excess degree of accuracy in those steps where students could not score any marks.

PP-DSE-MATH-EP(M1)-2

只限教師參閱

FOR TEACHERS' USE ONLY

		ス pk fx pp lok Teacherto	OOL OI	·-·
		Solution	Marks	Remarks
1.	(a)	$(2x+1)^3 = 8x^3 + 12x^2 + 6x + 1$	1A	
	()			
		a^2x^2		
	(b)	$e^{-ax} = 1 - ax + \frac{a^2x^2}{2} - \cdots$	1A	
	(c)	$\frac{(2x+1)^3}{e^{ax}} = (8x^3 + 12x^2 + 6x + 1)\left(1 - ax + \frac{a^2x^2}{2} - \dots\right)$	1M	
	(C)	$\frac{1}{e^{ax}} = (6x^{2} + 12x^{2} + 6x + 1)(1 - 4x + \frac{1}{2} - 1)$	111/1	
		a^2		
		The coefficient of $x^2 = 12(1) + 6(-a) + (1)\frac{a^2}{2}$	1M	
		a^2		
		$\therefore \frac{a^2}{2} - 6a + 12 = -4$		
		$a^2 - 12a + 32 = 0$		
		a = 4 or 8	1A	
			(5)	
			(5)	-
_				
_	, .	$\frac{3}{2} \cdot \frac{2}{3} \cdot 1$		
2.	(a)	$t = y^3 + 2y^2 + 1$		
		$t = y^{3} + 2y^{\frac{-1}{2}} + 1$ $\frac{dt}{dy} = 3y^{2} - y^{\frac{-3}{2}}$	1A	
		$\frac{dy}{dy} = 3y - y$	1A	
	(b)	$e^t = x^{x^2 + 1}$		
		$t = (x^2 + 1) \ln x$	1A	
		$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{x^2 + 1}{x} + 2x \ln x$	1A	
		dx = x	171	
		dv dt dt		
	(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}t}{\mathrm{d}x} \div \frac{\mathrm{d}t}{\mathrm{d}y}$	1M	
		•		OR $\frac{\frac{x^2 + 1}{x} + 2x \ln x}{3y^2 - y^{\frac{-3}{2}}}$
		$=\frac{(x^2+1+2x^2\ln x)y^{\frac{3}{2}}}{x\left(3y^{\frac{7}{2}}-1\right)}$		$\frac{x+1}{x} + 2x \ln x$
		$=\frac{\sqrt{\frac{7}{2}}}{\sqrt{\frac{7}{2}}}$	1A	$OR = \frac{3}{-3}$
		$x 3y^2 - 1 $		$3y^2 - y^2$
			(5)	-
_				
3.	(a)	By similar triangles, we have $\frac{h}{r} = \frac{20}{15}$.	1M	
		, 15		15 cm
		$h = \frac{4r}{3}$		
				ircm-s/
		$\therefore V = \frac{1}{3}\pi r^2 \left(\frac{4r}{3}\right)$		│
				20 cm
		$=\frac{1}{9}\pi r^{2}$	1A	h cm
		$(4r)^2$		
		$= \frac{4}{9}\pi r^3$ $A = \pi r \sqrt{r^2 + \left(\frac{4r}{3}\right)^2}$		v v
		5		
		$=\frac{5}{3}\pi r^2$	1A	
			•	•

PP-DSE-MATH-EP(M1)-3

只限教師參閱 FOR TEACHERS' USE ONLY

Solution	Marks	Remarks
		Kemarks
(b) (i) $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $= \frac{4}{3}\pi r^2 \frac{dr}{dt}$ $-2\pi = \frac{4}{3}\pi (3)^2 \frac{dr}{dt}$ $dr -1$	1M €	Either one
$\frac{dr}{dt} = \frac{-1}{6}$ Hence the rate of change of the radius of the water surface is $\frac{-1}{6}$ cm/s.	1A	
(ii) $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$ $= \frac{10}{3} \pi r \frac{dr}{dt}$ $= \frac{10}{3} \pi (3) \left(\frac{-1}{6}\right)$	*	
$=\frac{-5}{3}\pi$	1A	
Hence the rate of change of the area of the wet surface is $\frac{-5}{3}\pi$ cm ² /s.	(6)	
1		
(a) $y = x(2x-1)^{\frac{1}{2}}$		
$\frac{dy}{dx} = (2x-1)^{\frac{1}{2}} + x \cdot \frac{1}{2}(2x-1)^{-\frac{1}{2}}(2)$	1M	For product rule
$=\frac{3x-1}{(2x-1)^{\frac{1}{2}}}$	1A	
(b) For tangents parallel to $2x - y = 0$, we need $\frac{dy}{dx} = 2$.		
$\frac{3x-1}{(2x-1)^{\frac{1}{2}}} = 2$ $9x^2 - 6x + 1 = 4(2x-1)$	1M	
$9x^2 - 14x + 5 = 0$		
$x = 1 \text{ or } \frac{5}{9}$	1A	
For $x=1$, $y=1$ and hence the equation of the tangent is $y-1=2(x-1)$		
2x - y - 1 = 0	1A	
For $x = \frac{5}{9}$, $y = \frac{5}{27}$ and hence the equation of the tangent is		
$y - \frac{5}{27} = 2\left(x - \frac{5}{9}\right)$	1 A	
54x - 27y - 25 = 0	1A	
	(6)	

		六K软肿多胞 TON TEACHERO	OOL OI	161
		Solution	Marks	Remarks
5.	(a)	$1 - \frac{e}{e^x} = e^x - e$		
		e^{x} $(e^{x})^{2} - (e+1)e^{x} + e = 0$	1.4	
		$e^{x} = 1$ or $e^{x} = 1$	1A	
		x = 0 or 1	1A	
	(b)	The area of the region bounded by C_1 and C_2		
	(0)			
		$= \int_0^1 \left[1 - \frac{e}{e^x} - (e^x - e) \right] dx$	1M	For lower and upper limits
		$= \left[x + e \cdot e^{-x} - e^x + ex \right]_0^1$	1M	Accept $\left[e^x - ex - x - e \cdot e^{-x}\right]_0^1$
		=1+1-e+e-e+1		
		=3-e	1A	
			(5)	
6.	(a)	$Var(2\overline{X} + 7) = 4Var(\overline{X})$		
		$=4\left(\frac{8}{10}\right)$	1M	For $Var(\overline{X}) = \frac{Var(X)}{n}$
		= 3.2	1A	n
	4.			
	(b)	A 97% confidence interval for μ		43.6.6
		$=\left(50-2.17\times\frac{\sqrt{8}}{\sqrt{10}},50+2.17\times\frac{\sqrt{8}}{\sqrt{10}}\right)$	1M+1A	1M for $50 \pm d$ 1A for 2.17
		= (48.0591, 51.9409)	1A	
			(5)	
		1 2 1 1		
7.	(a)	P(a player is rewarded) = $\frac{1}{2} \cdot \frac{2}{5} + \frac{1}{2} \cdot \frac{1}{5}$		
		= 0.3	1A	
	(b)	0.3×0.3	1M	0.3×0.3
	(b)	P(both players are rewarded one player is rewarded) = $\frac{0.3 \times 0.3}{0.3 \times 0.3 + 0.3 \times 0.7 \times 2}$	1M	OR $\frac{0.3 \times 0.3}{1 - 0.7 \times 0.7}$
		$=\frac{3}{17}$	1A	OR 0.1765
	(c)	E(no. of players having drawn a blue ball from $A = 60 \times \frac{\frac{1}{2} \times \frac{2}{5}}{0.3}$	1M	
		= 40	1A	
			(5)	
_			(5)	
8.	(a)	P(a box contains more than 1 rotten eggs)		
		$=1-(0.96)^{30}-C_1^{30}(0.96)^{29}(0.04)$	1M+1M	1M for binomial prob 1M for correct cases
		≈ 0.338820302 - 0.3388	1 A	3455
		≈ 0.3388	1A	
	(b)	(i) P(the 1 st box containing more than 1 rotten egg is the 6 th box inspected)	43.5	
		$= (1 - 0.338820302)^5 (0.338820302)$ ≈ 0.0428	1M 1A	
		~ U.U+2U	· 1/1	•

Solution	Marks	Remarks
(ii) E(no. of boxes inspected until a box containing more than 1 rotten egg is found)		
$=\frac{1}{0.338820302}$	1M	
0.338820302 ≈ 2.9514	1A	
	(5)	
	(7)	
(a) $P(A) = P(A \cap B) + P(A \cap B')$		
= 0.12 + k	1A	
$P(A \mid B') = \frac{P(A \cap B')}{P(B')}$		
$0.6 = \frac{k}{1 - P(B)}$		
` '		
$P(B) = 1 - \frac{5k}{3}$	1A	
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
$=(0.12+k)+\left(1-\frac{5k}{3}\right)-0.12$	1M	
$=1-\frac{2k}{3}$	1A	
(b) If A and B are independent, $P(A)P(B) = P(A \cap B)$.		
$(0.12+k)\left(1-\frac{5k}{3}\right) = 0.12$	1M	
$0.8k - \frac{5k^2}{3} = 0$		
k = 0.48 or 0 (rejected)	1A	
Alternative solution 1		
If A and B are independent, $P(A) = P(A \mid B')$.		
0.12 + k = 0.6	1M	
k = 0.48	1A	
Alternative solution 2		
If A and B are independent, $P(A)P(B') = P(A \cap B')$.		
$(0.12+k)\left(\frac{5k}{3}\right) = k$	1M	
$\int \frac{5k^2}{3} - 0.8k = 0$		
k = 0.48 [or 0 (rejected)]	1A	
Alternative solution 3		
If A and B are independent, $P(A B) = P(A B')$.		
$\therefore \frac{P(A \cap B)}{P(B)} = P(A \mid B')$		
$\frac{0.12}{1 - \frac{5k}{3}} = 0.6$	1M	
k = 0.48	1A	
	(6)	

	六败教训参阅 FOR TEACHERS		1 L1
	Solution	Marks	Remarks
10. (a)	$\frac{dx}{dt} = \frac{61t}{(t+1)^{\frac{5}{2}}}$ Let $u = t+1$ and hence $du = dt$.		
	The amount of alloy produced by $A = \int_0^{10} \frac{61t}{(t+1)^{\frac{5}{2}}} dt$	1A	
	$= \int_{1}^{11} \frac{61(u-1)}{\frac{5}{u^{2}}} du$ $\int_{11}^{11} \left(c_{1} \frac{-3}{2}, c_{1} \frac{-5}{2} \right) du$	124	
	$= \int_{1}^{11} \left(61u^{\frac{-3}{2}} - 61u^{\frac{-5}{2}} \right) du$	1M	
	$= \left[-122u^{\frac{-1}{2}} + \frac{122}{3}u^{\frac{-3}{2}} \right]_{1}^{11}$	1A	For primitive function
	Alternative Solution $x = \int \frac{61t}{(t+1)^{\frac{5}{2}}} dt$		
	$= \int \frac{61(u-1)}{\frac{5}{u^2}} \mathrm{d}u$	1A	
	$= \int \left(61u^{\frac{-3}{2}} - 61u^{\frac{-5}{2}}\right) du$ $= -122u^{\frac{-1}{2}} + \frac{122}{3}u^{\frac{-3}{2}} + C$	1M	
	$=-122(t+1)^{\frac{-1}{2}} + \frac{122}{3}(t+1)^{\frac{-3}{2}} + C$	1A	
	The amount of alloy produced by $A = \left[-122(10+1)^{\frac{-1}{2}} + \frac{122}{3}(10+1)^{\frac{-3}{2}} + C \right] - \left[-122 + \frac{122}{3} + C \right]$		
	≈ 45.6636	1A (4)	$OR = \frac{244}{3} - \frac{3904}{33\sqrt{11}}$
(b)	The amount of alloy produced by B $= \int_0^{10} \frac{15 \ln(t^2 + 100)}{16} dt$		
	$\approx \frac{2}{2} \cdot \frac{15}{16} \{ \ln(0+100) + \ln(10^2 + 100) + 2[\ln(2^2 + 100) + \ln(4^2 + 100) + \ln(6^2 + 100) + \ln(8^2 + 100)] \}$ ≈ 45.6792	} 1M	
		(2)	

		So	lution				Marks	Remarks
(a)	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \frac{15 \mathrm{ln}}{\mathrm{d}t}$	$(t^2 + 100)$						
(0)								
	$=\frac{15t}{8(t^2+1)}$						1A	
	$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(\frac{\mathrm{d}y}{\mathrm{d}t} \right) = \frac{15}{8} \cdot \frac{(t^2)^2}{2}$	$\frac{(2+100)-t(2t)}{(2+100)-t(2t)}$						
		· ·						
	$=\frac{15(10}{8(t^2+t)}$	$\frac{0-t^2}{2}$					1A	
	$\therefore \frac{d^2}{dt^2} \left(\frac{dy}{dt} \right) > 0$	for $0 < t < 10$						
	$dt^2 (dt)$ Thus, 45.6792 is a		a of the or	ount of all	vy produced by	, D	1A	
	Hence it is uncertain						ן ו	
	the results of (a) ar					·	} 1A	
							(4)	
							.,,	
1. (a)	$P'(t) = kte^{\frac{a}{20}t}$							
(a)	P'(t) = a							
	$ \ln \frac{\mathbf{P}'(t)}{t} = \frac{a}{20}t + \ln $	k					1A	
							(1)	
(b)								
. ,	t 1		3	4				
	P'(t) 22.	83 43.43	61.97	78.60			.	
	$ \ln \frac{P'(t)}{t} \qquad 3.1 $	3.08	3.03	2.98			1A	
	$ \ln \frac{P'(t)}{t} $							
	3.3							
	5.5							
	3.2							
		*						
	3.1							
	3.0							
	3.0				*			
							1A	
	2.9							
	0					t		

	只阪教師参阅 FUR TEAUTIERS	OSE ON	NLT
	Solution	Marks	Remarks
Do-	m the graph $a \approx 2.98 - 3.13$	1 N /	
FIO	m the graph, $\frac{a}{20} \approx \frac{2.98 - 3.13}{4 - 1}$	1M ≤	TC:4
	:-1	1A	Either one
	m the graph, $\ln k \approx 3.18$	│	
<i>K</i> ≈	: 24	1A	
		(5)	
		, ,	
(1) (1)	$d_{\mathbf{P}'(x)} = d\left(\frac{-t}{20}\right)$		
(c) (1)	$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{P}'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(24t e^{\frac{-t}{20}} \right)$		
	$=24e^{\frac{-t}{20}}\left(1-\frac{t}{20}\right)$	1A	
	$\therefore \frac{d}{dt}P'(t) = 0 \text{ when } t = 20$		
	d <i>i</i>		
	t < 20 20 > 20		
	$\left \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{P}'(t) \right + \mathrm{ve} \left 0 \right - \mathrm{ve} $	1M	
	dt		
	Alternative Solution		
	$\frac{d^2}{dt^2}P'(t) = 24e^{\frac{-t}{20}} \left[\frac{-1}{20} \left(1 - \frac{t}{20} \right) + \frac{-1}{20} \right]$		
	$=\frac{6}{5}e^{\frac{-t}{20}}\left(\frac{t}{20}-2\right)$	> 1M	
	\ '		
	$\therefore \frac{d^2}{dt^2} P'(t) < 0 \text{ when } t = 20$		
	dr .		
	Hence the rate of change of the population size is greatest when $t = 20$.	1A	
(ii)	$\frac{d}{dt} \left(te^{\frac{-t}{20}} \right) = e^{\frac{-t}{20}} - \frac{1}{20} te^{\frac{-t}{20}}$	1A	
(11)	$dt \binom{i\epsilon}{} = 20^{i\epsilon}$		
	$-t$ $-t$ $1 \left(-t \right)$		
	$24te^{\frac{-t}{20}} = 480e^{\frac{-t}{20}} - 480\frac{d}{dt} \left(te^{\frac{-t}{20}} \right)$		
	$\mathbf{u}($		
	$\int 24te^{\frac{-t}{20}} dt = -9600e^{\frac{-t}{20}} - 480te^{\frac{-t}{20}} + C$	1M	
	•	1141	
	$P(t) = C - 480te^{\frac{-t}{20}} - 9600e^{\frac{-t}{20}}$	1A	
	Since $P(0) = 30$, we have		
	$C - 480(0)e^0 - 9600e^0 = 30$	1M	
	C = 9630	1111	
	$\therefore P(t) = 9630 - 480te^{\frac{-t}{20}} - 9600e^{\frac{-t}{20}}$	1A	
(iii)	$\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \left[9630 - 480te^{\frac{-t}{20}} - 9600e^{\frac{-t}{20}} \right]$		
(111)	$t \to \infty$ $t \to \infty$		
	= 9630	1A	
	\therefore the population size after a very long time is estimated to be 9630 thousands.		
		(9)	
		(2)	

Solution Solution Marks Remarks		六败教训参阅 FOR TEACHERS	IL I	
$= 3.21$ (b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ (c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } 1 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ $= \frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ ≈ 0.0869 1A IM for numerator 1M for denominator 1M for denominator 1M for binomial probability 1M for binomial probability 1M			Marks	Remarks
$= 3.21$ (b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ (c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } 1 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ $= \frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ ≈ 0.0869 1A IM for numerator 1M for denominator 1M for denominator 1M for binomial probability 1M for binomial probability 1M	2. (a)	The estimate of the mean $= \frac{0 \times 6 + \dots + 7 \times 4}{1 \times 10^{-10}}$		
(b) (i) The sample proportion of school days with less than 4 visits $= \frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion $= \left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ $= (0.4730, 0.6670)$ 1M 1A (c) (i) By (a), $\lambda = 3.21$. P(crowded on a day) $= 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ ≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ $= 0.0869$ IM For Poisson probability IM for numerator IM for denominator IM for denominator IM for binomial probability	. ,		1 Λ	
(b) (i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$ (ii) An approximate 95% confidence interval for the proportion = $\left(0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}}\right)$ 1M 1A (c) (i) By (a), $\lambda = 3.21$. P(crowded on a day) = $1 - e^{-3.21}\left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!}\right)$ 1M For Poisson probability ≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3(1 - 0.399705729)^2 + (1 - 0.399705729)^3(0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4(0.399705729)}$ 1M IM for numerator 1M for denominator 1M for binomial probability 1A		- 5.21	IA	
(ii) An approximate 95% confidence interval for the proportion $= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}} & 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \end{pmatrix}$ $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.399705729)$ ≈ 0.399705729 ≈ 0.399705729 ≈ 0.399705729 $\approx 0.399705729)^{3}(1 - 0.399705729)^{2} + (1 - 0.399705729)^{3}(0.399705729)^{2}$ $= (0.399705729)^{3}(1 - 0.399705729)^{5} - 5(1 - 0.399705729)^{4}(0.399705729)$ ≈ 0.0869 1M IM for Poisson probability IM for numerator 1M for denominator 1M for denominator 1M for binomial probability			(1)	
(ii) An approximate 95% confidence interval for the proportion $= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}} & 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \end{pmatrix}$ $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.399705729)$ ≈ 0.399705729 ≈ 0.399705729 ≈ 0.399705729 $\approx 0.399705729)^{3}(1 - 0.399705729)^{2} + (1 - 0.399705729)^{3}(0.399705729)^{2}$ $= (0.399705729)^{3}(1 - 0.399705729)^{5} - 5(1 - 0.399705729)^{4}(0.399705729)$ ≈ 0.0869 1M IM for Poisson probability IM for numerator 1M for denominator 1M for denominator 1M for binomial probability				
(ii) An approximate 95% confidence interval for the proportion $= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}} & 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \end{pmatrix}$ $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.4730, 0.6670)$ 1M $= (0.399705729)$ ≈ 0.399705729 ≈ 0.399705729 ≈ 0.399705729 $\approx 0.399705729)^{3}(1 - 0.399705729)^{2} + (1 - 0.399705729)^{3}(0.399705729)^{2}$ $= (0.399705729)^{3}(1 - 0.399705729)^{5} - 5(1 - 0.399705729)^{4}(0.399705729)$ ≈ 0.0869 1M IM for Poisson probability IM for numerator 1M for denominator 1M for denominator 1M for binomial probability	(b)	(i) The sample proportion of school days with less than 4 visits = $\frac{57}{100}$	1 Δ	
$= \begin{pmatrix} 0.57 - 1.96\sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96\sqrt{\frac{0.57 \times 0.43}{100}} \end{pmatrix}$ $= (0.4730, 0.6670)$ IM $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ IM $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ IM $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ IM $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ IM $= (0.4730, 0.6700)$ IM $= $	(0)	100		
$= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $1A$ $(c) (i) By (a), \lambda = 3.21. P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right) \approx 0.399705729 \approx 0.3997 = \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)} \approx 0.0869 1A For Poisson probability 1M \text{ for numerator 1M for denominator 1M for denominator 1M for binomial probability}$				
$= (0.4730, 0.6670)$ $= (0.4730, 0.6670)$ $1A$ $(c) (i) By (a), \lambda = 3.21. P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right) \approx 0.399705729 \approx 0.3997 = \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)} \approx 0.0869 1A For Poisson probability 1M \text{ for numerator 1M for denominator 1M for denominator 1M for binomial probability}$		$= \left[0.57 - 1.96 \sqrt{\frac{0.57 \times 0.43}{100}}, 0.57 + 1.96 \sqrt{\frac{0.57 \times 0.43}{100}} \right]$	1M	
(c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } crowded \text{ on at least 2 days})$ $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for denominator 1M for binomial probability		,	1A	
(c) (i) By (a), $\lambda = 3.21$. $P(crowded \text{ on a day}) = 1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ ≈ 0.399705729 ≈ 0.3997 (ii) $P(crowded \text{ on alternate days } crowded \text{ on at least } 2 \text{ days})$ $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability				
P(crowded on a day) = $1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ IM For Poisson probability ≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability			(3)	
P(crowded on a day) = $1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{2!} + \frac{3.21^3}{3!} \right)$ IM For Poisson probability ≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability				
≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1M for numerator 1M for denominator 1M for binomial probability 1	(c)			
≈ 0.399705729 ≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1M for numerator 1M for denominator 1M for binomial probability 1		P(crowded on a day) = $1 - e^{-3.21} \left(1 + 3.21 + \frac{3.21^2}{21} + \frac{3.21^3}{21} \right)$	1M	For Poisson probability
≈ 0.3997 (ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1A IM for numerator 1M for denominator 1M for binomial probability 1M for binomi		,		
(ii) P(crowded on alternate days crowded on at least 2 days) $= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 1M for numerator 1M for denominator 1M for binomial probability			1A	
$= \frac{(0.399705729)^3 (1 - 0.399705729)^2 + (1 - 0.399705729)^3 (0.399705729)^2}{1 - (1 - 0.399705729)^5 - 5(1 - 0.399705729)^4 (0.399705729)}$ ≈ 0.0869 IM for numerator 1M for denominator 1M for binomial probability 1A				
≈ 0.0869 1A		(ii) P(crowded on alternate days crowded on at least 2 days) $(0.200705720)^3 (1.0.200705720)^2 + (1.0.200705720)^3 (0.200705720)^2$		1M for numerator
≈ 0.0869 1A		$=\frac{(0.399703729)(1-0.399703729)+(1-0.399703729)(0.399703729)}{1-(1-0.399705729)^5-5(1-0.399705729)^4(0.399705729)}$	1M+1M+1M	
			1A	TWI for dinomial probabilit
			(6)	
			(6)	

元		· - ·
Solution	Marks	Remarks
Let X_r minutes and X_e minutes be the waiting times for a customer in the regular		
and express counter respectively.		
(a) $P(X_r > 6) = P\left(Z > \frac{6 - 6.6}{1.2}\right)$	1M	
(a) $\Gamma(X_r > 0) = \Gamma(Z > 1.2)$	1111	
= P(Z > -0.5)		
≈ 0.6915	1A	
	(2)	
	(2)	
(b) (i) P(more than 10 from 12 customers with $X_r > 6$)		
$=C_{11}^{12}(0.6915)^{11}(1-0.6915)+(0.6915)^{12}$	1M+1M	
≈ 0.0759	1A	
(ii) Let Y minutes be the average waiting time of the 12 customers		
$Y \sim N\left(6.6, \frac{1.2^2}{12}\right) = N(6.6, 0.12)$	1A	
$(0.0, \frac{12}{12})^{-1}(0.0, 0.12)$	IA.	
(6-66)		
$P(Y > 6) = P\left(Z > \frac{6 - 6.6}{\sqrt{0.12}}\right)$		
$\approx P(Z > -1.73)$		OR $P(Z > -1.732)$
≈ 0.9582	1A	OR 0.9584
0.7502	111	OR 0.5501
	(5)	
(c) (i) $P(X_r < k) = 0.2119$		
$P\left(Z < \frac{k - 6.6}{1.2}\right) = 0.2119$	1M	
· · · · · · · · · · · · · · · · · · ·		
$\frac{k-6.6}{1.2} = -0.8$		
k = 5.64	1A	
$P(X_e > k) = 0.0359$		
$p(z = 5.64 - \mu)$ 0.0350	111/	
$P\left(Z > \frac{5.64 - \mu}{0.8}\right) = 0.0359$	1M	
$\frac{5.64 - \mu}{0.8} = 1.8$		

$\mu = 4.2$	1A	
(12 (()		
(ii) $P(X_r > \mu) = P\left(Z > \frac{4.2 - 6.6}{1.2}\right)$		
1.2) ≈ 0.9772	1A	
P(1 customer pays at regular counter 2 customers wait more than μ min)	IA.	
2(0.88)(0.9772)(0.12)(0.5)		1M for numerator
$\approx \frac{2(0.88)(0.9772) + (0.12)(0.5)^2}{[(0.88)(0.9772) + (0.12)(0.5)]^2}$	1M+1M	1M for denominator
≈ 0.1219	1A	
0.1217	111	
	(8)	