Please stick the barcode label here．

Candidate Number

MATHEMATICS Extended Part

Module 1 （Calculus and Statistics）

Question－Answer Book

8：30 am－11：00 am（ $21 / 2$ hours）

This paper must be answered in English

INSTRUCTIONS

（1）After the announcement of the start of the examination， you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1，3，5，7， 9 and 11.
（2）This paper consists of TWO sections，A and B ．
（3）Attempt ALL questions in this paper．Write your answers in the spaces provided in this Question－Answer Book．Do not write in the margins．Answers written in the margins will not be marked．
（4）Graph paper and supplementary answer sheets will be supplied on request．Write your Candidate Number，mark the question number box and stick a barcode label on each sheet，and fasten them with string INSIDE this book．
（5）Unless otherwise specified，all working must be clearly shown．
（6）Unless otherwise specified，numerical answers should be either exact or given to 4 decimal places．
（7）No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the＇Time is up＇announcement．

[^0]

The table below shows the probability distribution of a discrete random variable X, where a and b arc
constants.

x	-1	0	1	2	3	4
$P(X=x)$	a	0.15	0.15	b	0.05	0.25

It is given that $\mathrm{E}(5 X+1)=10$
(a) Find a and b.
(b) Let C be the event that $X>0$ and D be the event that $X \leq 2$. Find $\mathrm{P}(C \mid D)$.

The probability that a person has disease D is 0.12 . Test T is used to show whether a person has
disease D or not. For a person who has disease D, the probability that test T shows that the person has
disease D is 0.97 . For a person who does not have disease D, the probability that test T shows that the
person does not have disease D is 0.89 .
(a) Find the probability that test T shows a correct result.
(b) Find the probability that test T shows that a person has disease D.
(c) \quadGiven that a person is shown to have disease D by test T, is the probability that the person actually has disease D less than 0.6 ? Explain your answer.

Answers written in the margins will not be marked.
2021-DSE-MATH-EP(M1)-2

2021-DSE-MATH-EP(MI)-3 3

Goon to the next page Provided by dse.life

保 questions. For each question, the probability that Peter knows how to do the examination, there are 10 question Peter knows how to do, the probability that he carelessly answers the In an examinn . For each question that Peter will answer the question correctly for the question that he knows question is 0.8 . is 0.1 ; otherwise, Peter will answer how to do, he will answer them wrongly. Peter ges quev to do. For questions that Pecer doens correctly. how to di. ansers 8 or more questions correctly
grade A Pre that peter gets
(a) Find the probab en peter gnows how to do all the questions and Λ
(b) Find the probability
(c)
(7 marks)
\qquad
\qquad

niswers written in the margins will not be marked

2021-DSE-MATH-EP(MI)-4
4. Mary conducts a survey to estimate the proportion p of children in a city who learn recorder In a randon sample of 40 children from the city, 28 of them learn recorder
(a) (i) Find the sample proportion of children who learn recorder
(ii) Find an approximate 90% confidence interval for p
(b) Mary now wants to construct an approximate 99% confidence interval for p such that the width of the confidence interval does not exceed 0.1 . Using the result of (a)(i), estimate the least number of children that Mary should survey

Answers written in the margins will not be marked.

2021-DSE-MATH-EP(MI)-5
5

Answers written in the margins will not be marked
2021-DSE-MATH-EP(M1)-6

2021-DSE-MATH-EP(M1)-8

7. Let $y=\frac{e^{x}}{x^{3}-x+2}$, where $0 \leq x \leq 5$. Find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) the greatest value and the least value of y.
Answers writen in the margins will not be marked

Answers written in the margins will not be marked.

Please stick the barcode label here.

SECTION B (50 marks)

9. The weight of each potato in a large farm follows a normal distribution with a mean of 200 grams and a standard deviation of σ grams. The classification of the potatoes is as follows

Weight of a potato (W grams)	$W<180$	$180 \leq W<230$	$W \geq 230$
Classification	small	medium	big

It is given that 21.19% of the potatoes in the farm are small.
(a) Find the percentage of medium potatoes in the farm.
(b) The potatoes in the farm are now inspected one by one. Find the probability that the 4 th potato inspected is the 2nd big potato inspected.
(c) From the farm, 5 potatoes are randomly selected.
(i) Find the probability that there are exactly 1 big potato and 2 small potatoes.
(ii) Given that there is exactly 1 big potato, find the probability that there are at least 2 small potatoes.

Answers written in the margins will not be marked.

2021-DSE-MATH-EP(MI)-14

Answers written in the margins will not be marked.

2021-DSE-MATH-EP(M1)-15

15

Goon to the nextpage ,

Answers written in the margins will not be marked.

2021-DSE-MATH-EP(MI)-16

Provided by dse.life
12. A tank is used for collecting rain water. During a certain shower, rain water flows into the tank for 7 minutes Let $V \mathrm{~m}^{3}$ be the volume of rain water in the tank. It is given that

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\sqrt{t+1} \sqrt{3-\sqrt{t+1}} \quad(0 \leq t \leq 7)
$$

where t is the number of minutes clapsed since rain water starts flowing into the tank. The tank is empty at $t=0$ and the rate of change of the volume of rain water in the tank attains its maximum value when $t=T$
(a) Find T.
(4 marks)
(b) Find the exact value of V when $t=T$
(c) The tank is in the shape of an inverted right circular cone of height 1 m and base radius 6 m . The tank is held vertically. Let $h \mathrm{~m}$ be the depth of rain water in the tank. Find
(i) the constant Q such that $\frac{\mathrm{d} V}{\mathrm{~d} t}=Q h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}$,
(ii) $\left.\frac{\mathrm{d} h}{\mathrm{~d} t}\right|_{t=T}$.

(5 marks)
(

Answers written in the margins will not be marked.

2021-DSE-MATH-EP(M1)-20

[^0]: ©香港考試及評核局 保留版權
 Hong Kong Examinations and Assessment Authority All Rights Reserved 2021

