Marking Scheme

Module 1 (Calculus and Statistics)

This document was prepared for markers' reference. It should not be regarded as a set of model answers. Candidates and teachers who were not involved in the marking process are advised to interpret its contents with care.

General Marking Instructions

- It is very important that all markers should adhere as closely as possible to the marking scheme. In many marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular specified in the marking scheme. Markers should be patient in marking alternative solutions not
- 2. In the marking scheme, marks are classified into the following three categories:

'M' marks

'A' marks

Marks without 'M' or 'A'

awarded for correct methods being used; awarded for the accuracy of the answers;

awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 3. For the convenience of markers, the marking scheme was written as detailed as possible. However, it is still likely that candidates would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, markers should exercise their discretion in marking candidates' work. In general, marks for a certain step should be awarded if candidates' solution indicated that the relevant concept/technique had been used.
- 4. In marking candidates' work, the benefit of doubt should be given in the candidates' favour.
- In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.
- Unless otherwise specified in the question, numerical answers should either be exact or given to 4 decimal places. Answers not accurate up to the required degree of accuracy should not be accepted.

	Solution	Marks	Remarks
(a)	a + 0.15 + 0.15 + b + 0.05 + 0.25 = 1 a + b = 0.4	1M	
	E(5X+1)=10		
	5E(X) + 1 = 10 E(X) = 1.8	1M	
	(-1)(a) + (0)(0.15) + (1)(0.15) + (2)(b) + (3)(0.05) + (4)(0.25) = 1.8 -a + 2b = 0.5	1M	
	Solving, we have $a = 0.1$ and $b = 0.3$.	1A	for both correct
(b)	$P(C \mid D)$		
	$=\frac{P(C\cap D)}{}$		
	P(D)		
	$=\frac{0.15+0.3}{0.1+0.15+0.15+0.3}$	1M	
	$=\frac{9}{14}$	1A	r.t. 0.6429
		(6)	
(a)	The required probability		
	= (0.12)(0.97) + (1-0.12)(0.89) = 0.8996	1M 1A	
(b)			
	= (0.12)(0.97) + (1-0.12)(1-0.89) = 0.2132	1M 1A	
(c)	The required probability		
	$= \frac{(0.12)(0.97)}{0.2132}$ ≈ 0.545966228	1M	
	< 0.6 Thus, the required probability is less than 0.6.		
	Thus, the required producting to too than 5.5.	1A (6)	f.t.
			100

Solution	Marks	Remarks
P(Peter answers 1 question correctly) = $(0.8)(1-0.1) = 0.72$	1M	can be absorbed
The required probability = $(0.72)^{10} + C_1^{10}(0.72)^9(1-0.72) + C_2^{10}(0.72)^8(1-0.72)^2$	1M	
≈ 0.437829035 ≈ 0.4378	IA	r.t. 0.4378
The required probability = $(0.8)^{10} ((1-0.1)^{10} + C_1^{10} (1-0.1)^9 (0.1) + C_2^{10} (1-0.1)^8 (0.1)^2)$	1M	
≈ 0.099837499 ≈ 0.0998	IA	r.t. 0.0998
The required probability 0.099837499		
≈ 0.437829035 ≈ 0.228028503	1M	
≈ 0.2280	1A (7)	r.t. 0.2280
a) (i) The sample proportion		
$=\frac{28}{40}$		
= 0.7	1A	
(ii) An approximate 90% confidence interval for p is	Herby S	
$= \left(0.7 - 1.645 \left(\sqrt{\frac{(0.7)(1 - 0.7)}{40}}\right), 0.7 + 1.645 \left(\sqrt{\frac{(0.7)(1 - 0.7)}{40}}\right)\right)$	1M+1A	
≈ (0.580808426, 0.819191573) ≈ (0.5808, 0.8192)	1A	r.t. (0.5808, 0.8192)
Let n be the number of children that Mary surveys.		
$(2)(2.575)\sqrt{\frac{(0.7)(1-0.7)}{n}} \le 0.1$	1M	
$\frac{n}{0.21} \ge \left(\frac{(2)(2.575)}{0.1}\right)^2$ $n \ge 556.9725$		
Thus, the least number of children that Mary should survey is 557.	(6)	

1M 1M	
1M	
1M	
1A	
1M+1M	
1A	
1.0	
1M	
1A	
1000	
(0)	

	Solution	Marks	Remarks
	$e^{-6.x}$	THE IS	A COMMING
(a)	$(-6r)^2$ $(-6r)^3$		
	$=1+(-6x)+\frac{(-6x)^2}{2!}+\frac{(-6x)^3}{3!}+\frac{(-6x)^4}{4!}+\cdots$	1M	
	$= 1 - 6x + 18x^2 - 36x^3 + 54x^4 - \dots$	1141	
	=1-01+101 -301 +341	1A	
(b)	$(1-kx^2)^5$		
(0)	$=1-5kx^2+10k^2x^4-\cdots-k^5x^{10}$		
	=1-3/2 110/2 12/2	1M	
	$(1)(10k^2) + (18)(-5k) + (54)(1) = -26$		
	$10k^2 - 90k + 54 = -26$	1M	
	$k^2 - 9k + 8 = 0$		
	(k-1)(k-8) = 0		
	k=1 or $k=8$	14	
		IA (5)	
		(0)	
		770,300	
(a)	te that $x^3 - x + 2 > 0$ for all $0 \le x \le 5$. $\frac{dy}{dx}$		
	$=\frac{(x^3-x+2)e^x-e^x(3x^2-1)}{(x^3-x+2)^2}$	IM	
	$=\frac{(x^3-3x^2-x+3)e^x}{(x^3-x+2)^2}$	14	
	$={(x^3-x+2)^2}$	1A	

		Solutio	n			Marks	Remarks
(x-3)	$x^{2} - x + 3 = 0$ $(x-1)(x+1) = 0$ $x = 1 \text{ or } x = 0$		d)			IM	
x	0 ≤ x < 1	x = 1	1 < x < 3	x = 3	3 < x ≤ 5		
$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0		0	+	IM	for testing
у	7	$\frac{e}{2}$	Я	$\frac{e^3}{26}$	7		
	= 0, we have		For $x = 5$, v	we have y	$=\frac{e^5}{122}.$	IM	
				o			
respec	the greatest va	lue and the	least value of	y are $\frac{1}{2}$	and $\frac{1}{2}$	1A+1A	
respect $\frac{dy}{dx} = x^3 - 1$ $(x - 3)$ $x = 3$	tively. $6x^2 - x + 3 = 0$ 3(x-1)(x+1) = 0 3(x-1)(x+1) = 0 3(x-1)(x+1) = 0	0		y are $\frac{1}{2}$	and $\frac{1}{2}$	IM	
respect $\frac{dy}{dx} = x^3 - 3x = 3$ $x = 3$ $\frac{d^2}{dx}$ $= \frac{(x^4)^2}{(x^4)^2}$	tively. 0 $3x^{2} - x + 3 = 0$ $(x - 1)(x + 1) = 0$ $x = 1 \text{ or } x = 0$ $-6x^{5} + 10x^{4} + 0$ $(x - 1)(x + 1) = 0$ $(x - 1)(x +$	0 -1 (rejecte	d)		and $\frac{1}{2}$		
respect $\frac{dy}{dx} = x^3 - 3$ $x = 3$ $\frac{d^2y}{dx}$ $= \frac{(x^4)^2}{(x^2)^2}$	tively. 0 $3x^2 - x + 3 = 0$ 0(x-1)(x+1) = 0 0(x-1)(x+1) = 0	0 -1 (rejecte	d)		and $\frac{1}{2}$		for testing
respect $\frac{dy}{dx} = x^3 - 1$ $(x - 3)$ $x = 3$ $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ For	tively. 0 $3x^{2} - x + 3 = 0$ $0(x - 1)(x + 1) = 0$ $x = 1 \text{ or } x = 0$ $-6x^{5} + 10x^{4} + 0$ $x = -e < 0$ $x = 1$ $= \frac{2e^{3}}{169} > 0$ $x = 0 \text{ , we have}$	0 -1 (rejecte $-12x^{3} - 17x$ $-12x^{3} - x + 2)^{3}$ e $y = \frac{1}{2}$.	$(2^2 - 18x + 10)e^{-18x}$	x		IM	for testing
respect $\frac{dy}{dx} = x^3 - 1$ $(x - 3)$ $x = 3$ $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ For Note	tively. 0 $3x^{2} - x + 3 = 0$ $0(x - 1)(x + 1) = 0$ $x = 1 \text{ or } x = 0$ $-6x^{5} + 10x^{4} + 0$ $= -e < 0$ $x = 0 \text{ , we have}$	0 -1 (rejecte $\frac{-12x^3 - 17x}{3 - x + 2)^3}$ e $y = \frac{1}{2}$. $\frac{e^5}{122} < \frac{e}{2}$.	For $x = 5$,	we have y	$=\frac{e^5}{122}$	IM	for testing
respect $\frac{dy}{dx} = x^3 - 1$ $(x - 3)$ $x = 3$ $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ For Note Thus,	tively. 0 $3x^{2} - x + 3 = 0$ $0(x - 1)(x + 1) = 0$ $x = 1 \text{ or } x = 0$ $-6x^{5} + 10x^{4} + 0$ $x = -e < 0$ $x = 1$ $= \frac{2e^{3}}{169} > 0$ $x = 0 \text{ , we have}$	0 -1 (rejecte $\frac{-12x^3 - 17x}{3 - x + 2)^3}$ e $y = \frac{1}{2}$. $\frac{e^5}{122} < \frac{e}{2}$.	For $x = 5$,	we have y	$=\frac{e^5}{122}$	IM	for testing

Solutio		34-1	p 1
8		Marks	Remarks
(a) $f'(1) = \frac{8}{9}$			
(4)		IM	
$\frac{2^k}{1+2^k} = \frac{8}{9} \\ 2^k = 8$			
$\frac{1+2^k}{9} = \frac{1}{9}$			
$2^k - 8$			
L - 3			
k = 3		1A	
		1.7	
1 . 23x			
(b) Let $u = 1 + 2^{3x}$.		1M	
So, we have $\frac{du}{dx} = 3(2^{3x}) \ln 2$.		1141	
dx			
f(x)			
$=\int \frac{2^{3x}}{1+2^{3x}} dx$			
J 1+2 ^{3x}			
$=\frac{1}{3\ln 2}\int \frac{1}{u} du$			
$3 \ln 2 \int u^{-1}$		1M	
$= \frac{1}{3\ln 2} \ln u + C$ $= \frac{1}{3\ln 2} \ln(1 + 2^{3x}) + C$			
3 ln 2 m/m + C		1M	
1 1-4 - 23x - 2			
$=\frac{1}{3\ln 2}\ln(1+2)+C$			
When $x=1$, we have $y=2$.			
f(1) = 2			
$\frac{1}{3\ln 2}\ln(1+2^3) + C = 2$		IM	
2 ln 2			
$C = 2 - \frac{2\ln 3}{3\ln 2}$			
3 ln 2			
	21n2		
Thus, we have $f(x) = \frac{1}{3 \ln 2} \ln(1$	$(3x)+2-\frac{2113}{21-2}$.	1A	
3 ln 2	3 In 2	(7)	
		(/)	

	Solution	Marks	Remarks
). (a)	$P\left(Z < \frac{180 - 200}{\sigma}\right) = 0.2119$ $\frac{180 - 200}{\sigma} = -0.8$ $\sigma = 25$	1M	
	$P\left(\frac{180 - 200}{25} \le Z < \frac{230 - 200}{25}\right)$ $= P(-0.8 \le Z < 1.2)$ $= 0.2881 + 0.3849$ $= 0.673$	1М	
	Thus, the required percentage is 67.3%.	1A (3)	
(b)	P(a potato is big) = $1 - 0.2119 - 0.673 = 0.1151$ The required probability = $C_1^3 (0.1151)(1 - 0.1151)^2 (0.1151)$ ≈ 0.031121483 ≈ 0.0311	1M 1M 1A (3)	r.t. 0.0311
(c)	(i) The required probability = $C_1^5 (0.1151) C_2^4 (0.2119)^2 (0.673)^2$ ≈ 0.070224494 ≈ 0.0702	IM IA	r.t. 0.0702
	(ii) The required probability $\approx \frac{0.070224494 + C_1^5 (0.1151)C_3^4 (0.2119)^3 (0.673) + C_1^5 (0.1151)(0.2119)^4}{C_1^5 (0.1151)(1-0.1151)^4}$ ≈ 0.244066836 ≈ 0.2441	1M+1M 1A (5)	r.t. 0.2441

	Marks	Remarks
The required probability $= \frac{0.9^{0} e^{-0.9}}{0!} + \frac{0.9^{1} e^{-0.9}}{1!} + \frac{0.9^{2} e^{-0.9}}{2!}$		Remarks
$=2.305e^{-0.9}$	1M+1M 1A (3)	r.t. 0.9371
b) The required probability	(3)	
$= \frac{7.8^5 e^{-7.8}}{5!}$ $= 240.597864 e^{-7.8}$	1M	
= 240.597804e	1A (2)	r.t. 0.0986
(c) The required probability $ = \left(\frac{1.3^2 e^{-1.3}}{2!}\right) \left(\frac{0.9^0 e^{-0.9}}{0!}\right) + \left(\frac{1.3^1 e^{-1.3}}{1!}\right) \left(\frac{0.9^1 e^{-0.9}}{1!}\right) + \left(\frac{1.3^0 e^{-1.3}}{0!}\right) $	$\left(\frac{0.9^2 e^{-0.9}}{2!}\right)$ 1M+1M	
$=2.42e^{-2.2}$	1A (3)	r.t. 0.2681
(d) The required probability $= \frac{\left(\frac{1.3^{0} e^{-1.3}}{0!}\right) \left(\frac{0.9^{2} e^{-0.9}}{2!}\right)}{2.42e^{-2.2}}$	1M+1M	
$=\frac{81}{484}$	1A (3)	r.t. 0.1674
(e) P(the number of emails John receives in a certain hour is few $= \left(\frac{1.3^0 e^{-1.3}}{0!}\right) \left(\frac{0.9^0 e^{-0.9}}{0!}\right) + \left(\frac{1.3^1 e^{-1.3}}{1!}\right) \left(\frac{0.9^0 e^{-0.9}}{0!}\right) + \left(\frac{1.3^0 e^{-1.3}}{0!}\right) \left(\frac{0.9^1 e^{-0.9}}{1!}\right) + 2.42e^{-2.2}$ $= 5.62e^{-2.2}$	er than 3)	
The required probability $= \frac{\left(\frac{1.3^{0} e^{-1.3}}{0!}\right) \left(2.305 e^{-0.9}\right)}{5.62 e^{-2.2}}$	1M+1M	
$=\frac{461}{1124}$	1A	r.t. 0.4101

	Solution	Marks	Remarks
1. (a)	f'(x)		
	$=\frac{1}{2}\left(\frac{x}{2-x}\right)^{\frac{-1}{2}}\frac{(2-x)+x}{(2-x)^2}$		
	$=x^{\frac{-1}{2}}(2-x)^{\frac{-3}{2}}$	1A	
	$= x^{2} (2-x)^{2}$		
	f''(x)		
	$=x^{\frac{-1}{2}}\left(\frac{-3}{2}\right)(2-x)^{\frac{-5}{2}}(-1)+\left(\frac{-1}{2}\right)x^{\frac{-3}{2}}(2-x)^{\frac{-3}{2}}$	1M	
	$=\frac{1}{2}x^{\frac{-3}{2}}(2-x)^{\frac{-3}{2}}\left(\frac{3x}{2-x}-1\right)$		
	$=x^{\frac{-3}{2}}(2-x)^{\frac{-5}{2}}(2x-1)$	1A	
	-x (2-x) - (2x-1)	(3)	
(b)	(i) J		
	$\approx \frac{1}{2} \left(\frac{0.5}{5} \right) (f(0) + f(0.5) + 2(f(0.1) + f(0.2) + f(0.3) + f(0.4)))$	1M	
	2 (5) ≈ 0.177150823		
	≈ 0.1772	1A	r.t. 0.1772
	(ii) $\int_{0}^{0.5} f(x) dx + \int_{0.5}^{1} f(x) dx = \int_{0}^{1} f(x) dx$		
		223	
	$J+K=\frac{\pi-2}{2}$	1M	
	K		
	$=\frac{\pi-2}{2}-J$		
	$\approx \frac{\pi - 2}{2} - 0.177150823$		
	2 ≈ 0.393645504		
	≈ 0.3936	1A	r.t. 0.3936
	(iii) By (a), we have $f''(x) = x^{\frac{-3}{2}}(2-x)^{\frac{-5}{2}}(2x-1) < 0$ for $0 < x < 0.5$.		
	(iii) By (a), we have $f''(x) = x^2 (2-x)^2 (2x-1) < 0$ for $0 < x < 0.5$. By (b)(i), we have $J > 0.177150823$.	1	
	Since $J = \frac{\pi - 2}{2} - K$, we have $K < 0.393645504$.	1M	
	Note that $K > 0$.		
	$\frac{\sigma}{K}$		
	> \frac{0.177150823}{0.393645504}	IM	
	≈ 0.450026282		
	> 0.44		
	Thus, the claim is disagreed.	1A	f.t.
		(8)	

Solution	Marks	Remarks
$\frac{d}{dt}\left(\frac{dV}{dt}\right)$	iviarks	Remarks
$= \frac{1}{2\sqrt{t+1}} \sqrt{3 - \sqrt{t+1}} + \sqrt{t+1} \left(\frac{1}{2\sqrt{3 - \sqrt{t+1}}} \right) \left(\frac{-1}{2\sqrt{t+1}} \right)$ $= \frac{6 - 3\sqrt{t+1}}{4\sqrt{t+1}\sqrt{3 - \sqrt{t+1}}}$	IM	
$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}V}{\mathrm{d}t} \right) = 0$ $6 - 3\sqrt{t+1} = 0$		
<i>t</i> = 3	IM	
$ \begin{array}{c cccc} 0 \le t < 3 & t = 3 & 3 < t \le 7 \\ \hline \frac{d}{dt} \left(\frac{dV}{dt} \right) & + & 0 & - \end{array} $	1M	for testing
So, $\frac{dV}{dt}$ attains its maximum value when $t=3$. Thus, we have $T=3$.	1A	
$\frac{d}{dt}\left(\frac{dV}{dt}\right)$		
$= \frac{1}{2\sqrt{t+1}}\sqrt{3-\sqrt{t+1}} + \sqrt{t+1} \left(\frac{1}{2\sqrt{3-\sqrt{t+1}}}\right) \left(\frac{-1}{2\sqrt{t+1}}\right)$	1M	
$= \frac{6 - 3\sqrt{t+1}}{4\sqrt{t+1}\sqrt{3} - \sqrt{t+1}}$ $\frac{d}{dt} \left(\frac{dV}{dt}\right) = 0$ $6 - 3\sqrt{t+1} = 0$ $t = 3$	1M	
$= \frac{\frac{d^2}{dt^2} \left(\frac{dV}{dt} \right)}{16(t+1)^{\frac{3}{2}} (3 - \sqrt{t+1})^{\frac{3}{2}}}$		
$\left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(\frac{\mathrm{d}V}{\mathrm{d}t} \right) \right _{t=3} = \frac{-3}{32} < 0$	1M	for testing
So, $\frac{dV}{dt}$ attains its maximum value when $t=3$.		
Thus, we have $T=3$.	1A	
		Day Sales

Solution	Marks	Remarks
Let $u = 3 - \sqrt{t+1}$.	1M	
So, we have $\frac{du}{dt} = \frac{-1}{2\sqrt{t+1}}$.		
Exact value of V when $t = T$	1M	
$= \int_0^3 \sqrt{t+1} \sqrt{3-\sqrt{t+1}} dt$	1141	
$= -2\int_0^3 (t+1)\sqrt{3-\sqrt{t+1}} \left(\frac{-1}{2\sqrt{t+1}}\right) dt$	IM	
$= -2\int_{2}^{1} (3-u)^{2} \sqrt{u} du$ $= 2\int_{1}^{2} (9u^{\frac{1}{2}} - 6u^{\frac{3}{2}} + u^{\frac{5}{2}}) du$		
$= 2 \left[6u^{\frac{3}{2}} - \frac{12}{5}u^{\frac{5}{2}} + \frac{2}{7}u^{\frac{7}{2}} \right]_{1}^{2}$	1M	
	1A	
$=\frac{328\sqrt{2}-272}{35}$	(5)	
(i) Let r m be the radius of the surface of rain water in $\frac{h}{r} = \frac{1}{r}$	the tank.	
r = 6 r = 6h		
$V = \frac{1}{3}\pi r^2 h$		
$=\frac{1}{3}\pi(6h)^2h$	1M	
$=12\pi h^3$		
$\frac{\mathrm{d}V}{\mathrm{d}t} = 36\pi h^2 \frac{\mathrm{d}h}{\mathrm{d}t}$	1M	
$Q = 36\pi$	1A	
	The same part was	

Solution	Marks	Remarks
$ V _{t=7} = \frac{328\sqrt{2} - 272}{35}$		Remarks
$12\pi(h\big _{t=T})^3 = \frac{328\sqrt{2} - 272}{35}$		
$h _{t=T} = \left(\frac{82\sqrt{2} - 68}{105\pi}\right)^{\frac{1}{3}}$		
$\frac{\mathrm{d}V}{\mathrm{d}t}\Big _{t=T}$		
$=\sqrt{3+1}\sqrt{3-\sqrt{3+1}}$		
= 2		
At $t = T$, we have		
$2 = 36\pi \left(\frac{82\sqrt{2} - 68}{105\pi} \right)^{\frac{2}{3}} \frac{dh}{dt} \Big _{t=T}$		
105π dt $t=T$	1M	
$\frac{\mathrm{d}h}{\mathrm{d}t}\Big _{t=T} = \frac{1}{18-\frac{1}{3}} \left(\frac{105}{82\sqrt{2}-68}\right)^{\frac{2}{3}}$		
$\frac{dt}{t=T} = \frac{1}{18\pi^{\frac{1}{3}}} \left(82\sqrt{2} - 68 \right)$	1A	r.t. 0.0640
	(5)	
	of the second	