HKDSE Maths (M1) 2017

BACON CO.		Solution	Marks	Remarks
1.	(a)	$k^{2} + 0.16 + 0.18 + 0.3 + k + 0.12 = 1$ $k^{2} + k - 0.24 = 0$ k = 0.2 or $k = -1.2$ (rejected)	1M	
		Thus, we have $k = 0.2$.	IA .	
	(b)	E(X) = 0(0.04) + 2(0.16) + 4(0.18) + 5(0.3) + 8(0.2) + 9(0.12)	1M	
		= 5.22	1A	
	(c)	Var(2-3X) = $9Var(X)$		
		$= 9((0-5.22)^{2}(0.04) + (2-5.22)^{2}(0.16) + (4-5.22)^{2}(0.18)$		
		$+(5-5.22)^{2}(0.3)+(8-5.22)^{2}(0.2)+(9-5.22)^{2}(0.12))$ = 56.6244	1M 1A	
		Var(2-3X)		
		= 9 Var(X) = 9(E(X ²) - (E(X)) ²)		
		$= 9(8(X^{2}) - (8(X))^{2})$ $= 9(33.54 - (5.22)^{2})$	1M	
		= 56.6244	1A	
2.	(a)	$P(B \mid A)$		
		$=\frac{P(A B)P(B)}{P(A)}$		
		$=\frac{P(A B)(1-P(B'))}{P(A)}$		
		$= \frac{0.6(1-0.7)}{}$	1M	
		0.2	1A	
	(b)	$P(A \cap B)$		
		= $P(A B)P(B)$ = $P(A B)(1 - P(B'))$		
		=0.6(1-0.7)		
		= 0.18 ≠ 0	1M	
		Thus, A and B are not mutually exclusive.	1A	f.t.
	(c)	Note that $P(A B) = 0.6 \neq 0.2 = P(A)$. Thus, A and B are not independent.	1M 1A	f.t.
		Note that $P(A \cap B) = 0.18 \neq 0.06 = P(A) P(B)$.	1M	
		Thus, A and B are not independent.	1A (6)	f.t.
2017	-DSE	-MATH-EP(M1)-3		

	Solution	Marks	Remarks
. (a)	$=\frac{1.83+3.43}{2}$		
	= 2.63	1A	
	$P\left(\frac{1.83 - 2.63}{\sigma} < Z < \frac{3.43 - 2.63}{\sigma}\right) = 0.8904$	1M	
	$P\left(\frac{-0.8}{\sigma} < Z < \frac{0.8}{\sigma}\right) = 0.8904$		
	$P\left(0 < Z < \frac{0.8}{\sigma}\right) = 0.4452$		
	$\frac{0.8}{\sigma} = 1.6$ $\sigma = 0.5$	1A	
(b)	The required probability		
	$= P \left(\frac{2.5 - 2.63}{\frac{0.5}{\sqrt{9}}} < Z < \frac{3.1 - 2.63}{\frac{0.5}{\sqrt{9}}} \right)$	1M	
	= P(-0.78 < Z < 2.82) $= 0.2823 + 0.4976$		
	= 0.7799	1A (5)	
(a)	The required probability $= (1 - 0.6)^3 (0.6)$	1M	for $(1-p)^3 p$, 0
	= 0.0384	1A	101 (1 p) p, 0 p 1
(b)	$1 - (1 - 0.6)^{10 - k} > 0.95$ $0.4^{10 - k} < 0.05$	1M	for $1 - (1 - q)^{10 - k}$, $0 < q < 1$
	$\log(0.4^{10-k}) < \log 0.05$ $k < 6.730587608$	1M	
	Thus, the greatest value of k is 6 .	1A	
(c)	The expected amount of money $-15\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1M	for $15\left(\frac{1}{r}\right)$, $0 < r < 1$
	$=15\left(\frac{1}{0.6}\right)$ $=\$25$	1A	(r), (r)
		(7)	
17-DSE	-MATH-EP(M1)-4		

$= 4 + 12x + 27x^{2} + \cdots$ $= 4 + 12x + 27x^{2} + \cdots$ $= \left(1 + e^{3x}\right)^{2}$ $= \left(1 + 1 + 3x + \frac{(3x)^{2}}{2!} + \cdots\right)^{2}$ $= (2)(2) + (2)(2)(3x) + (3x)(3x) + (2)(2)\left(\frac{9x^{2}}{2}\right) + \cdots$ $= 4 + 12x + 27x^{2} + \cdots$ $= 4 + 12x + 27x^{2} + \cdots$ $= 5^{4} - C_{1}^{4}(5^{3})x + C_{2}^{4}(5^{2})x^{2} - C_{3}^{4}(5)x^{3} + x^{4}$ $= 625 - 500x + 150x^{2} - 20x^{3} + x^{4}$ The required coefficient	ng e^{3x} or e^{6x} ng e^{3x}
$= 4 + 12x + 27x^{2} + \cdots$ $= \left(1 + e^{3x}\right)^{2}$ $= \left(1 + 1 + 3x + \frac{(3x)^{2}}{2!} + \cdots\right)^{2}$ $= (2)(2) + (2)(2)(3x) + (3x)(3x) + (2)(2)\left(\frac{9x^{2}}{2}\right) + \cdots$ $= 4 + 12x + 27x^{2} + \cdots$ $= 4 + 12x + 27x^{2} + \cdots$ $= 5^{4} - C_{1}^{4}(5^{3})x + C_{2}^{4}(5^{2})x^{2} - C_{3}^{4}(5)x^{3} + x^{4}$ $= 625 - 500x + 150x^{2} - 20x^{3} + x^{4}$ The required coefficient $= (625)(27) + (-500)(12) + (150)(4)$ $= 11475$ $= 1M$ withhold IN $= 11475$ $= 1M$ $= 1$	
	e^{3x}
$= \left(1+1+3x+\frac{(3x)^2}{2!}+\cdots\right)^2$ $= (2)(2)+(2)(2)(3x)+(3x)(3x)+(2)(2)\left(\frac{9x^2}{2}\right)+\cdots$ $= 4+12x+27x^2+\cdots$ 1M $= 5^4-C_1^4(5^3)x+C_2^4(5^2)x^2-C_3^4(5)x^3+x^4$ $= 625-500x+150x^2-20x^3+x^4$ The required coefficient $= (625)(27)+(-500)(12)+(150)(4)$ $= 11475$ 1M withhold IN $= 11475$ 1M $= 625-500x+150x^2-20x^3+x^4$ The required coefficient $= (625)(27)+(-500)(12)+(150)(4)$ $= 11475$ 1M IM $= 625-500x+150x^2-20x^3+x^4$ $= 625-500x+150x+150x+150x+150x+150x+150x+150x+$	ng e ^{3x}
$= (2)(2) + (2)(2)(3x) + (3x)(3x) + (2)(2)\left(\frac{9x^2}{2}\right) + \cdots$ $= 4 + 12x + 27x^2 + \cdots$ $1A$ (b) $(5-x)^4$ $= 5^4 - C_1^4(5^3)x + C_2^4(5^2)x^2 - C_3^4(5)x^3 + x^4$ $= 625 - 500x + 150x^2 - 20x^3 + x^4$ The required coefficient $= (625)(27) + (-500)(12) + (150)(4)$ $= 11475$ $1M$ withhold 1N $= 11475$ $1A$ $= 625 - 500x + 150x^2 - 20x^3 + x^4$ $= (625)(27) + (-500)(12) + (150)(4)$ $= 11475$ $= 10$ 10 10 10 10 10 10 10	ng e ^{3x}
$= 4 + 12x + 27x^{2} + \cdots$ (b) $(5-x)^{4}$ $= 5^{4} - C_{1}^{4}(5^{3})x + C_{2}^{4}(5^{2})x^{2} - C_{3}^{4}(5)x^{3} + x^{4}$ $= 625 - 500x + 150x^{2} - 20x^{3} + x^{4}$ The required coefficient $= (625)(27) + (-500)(12) + (150)(4)$ $= 11475$ 1M $= 11475$ $= 11475$ 1M $= (6)$	
(b) $(5-x)^4$ $= 5^4 - C_1^4(5^3)x + C_2^4(5^2)x^2 - C_3^4(5)x^3 + x^4$ $= 625 - 500x + 150x^2 - 20x^3 + x^4$ The required coefficient = (625)(27) + (-500)(12) + (150)(4) = 11475 IM withhold IN 1A(6) IM 1A(6)	
$= 5^{4} - C_{1}^{4}(5^{3})x + C_{2}^{4}(5^{2})x^{2} - C_{3}^{4}(5)x^{3} + x^{4}$ $= 625 - 500x + 150x^{2} - 20x^{3} + x^{4}$ The required coefficient $= (625)(27) + (-500)(12) + (150)(4)$ $= 11475$ $1M$ $1A$ $1A$ (6) $= -33$ $4(6^{3}) + m(6^{2}) + n(6) + 615 = -33$ $6m + n = -252$ $f'(x) = 12x^{2} + 2mx + n$	
$= (625)(27) + (-500)(12) + (150)(4)$ $= 11475$ $1M$ $1A$ (6) $5. (a) f(6) = -33$ $4(6^3) + m(6^2) + n(6) + 615 = -33$ $6m + n = -252$ $f'(x) = 12x^2 + 2mx + n$	
$4(6^{3}) + m(6^{2}) + n(6) + 615 = -33$ $6m + n = -252$ $f'(x) = 12x^{2} + 2mx + n$ 1M	I if the step is skipped
1 (0) = 0	
$12(6^2) + 2m(6) + n = 0$ 1M	
12m + n = -432 Solving, we have $m = -30$ and $n = -72$.	тест
(b) $f'(x) = 12x^2 - 60x - 72$ f'(x) = 0 when $x = -1$ or $x = 6$.	
x $(-\infty, -1)$ -1 $(-1, 6)$ 6 $(6, \infty)$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Thus, the minimum value is -33 and the maximum value is 653. 1A for both con(6)	
	rrect
017-DSE-MATH-EP(M1)-5	rect

Solution	Marks	Remarks
$y = \frac{x}{\sqrt{x-2}}$		
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{x-2} - x\left(\frac{1}{2}\right)(x-2)^{\frac{-1}{2}}}{x-2}$ $\mathrm{d}y \qquad x-4$	1M	for quotient rule
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-4}{2(x-2)^{\frac{3}{2}}}$	1A	
(b) Let (h, k) be the coordinates of the point of contact.		
So, the slope of this tangent is $\frac{h-4}{2(h-2)^{\frac{3}{2}}}$.		
$\frac{k-0}{h-9} = \frac{h-4}{2(h-2)^{\frac{3}{2}}}$	1M+1A	1M for using (a)
$\frac{h}{\sqrt{h-2}}2(h-2)^{\frac{3}{2}} = (h-4)(h-9)$		
$h^2 + 9h - 36 = 0$ h = 3 or $h = -12$ (rejected)	1M	
The slope of this tangent $= \frac{3-4}{3-4}$	1M	
$=\frac{3-4}{2(3-2)^{\frac{3}{2}}}$ -1		
$=\frac{-1}{2}$	1A (7)	
So, we have $\frac{du}{dx} = \frac{1}{x}$.	1M	
$\int g(x)dx$		
$= \int \left(\frac{1}{x} \ln \left(\frac{e}{x}\right)\right) dx$		
$= \int \left(\frac{1}{x}(1 - \ln x)\right) dx$		
$= \int (1-u) du$ $= u - \frac{1}{2}u^2 + \text{constant}$	1M	ı
$= u - \frac{1}{2}u^{2} + \text{constant}$ $= \ln x - \frac{1}{2}(\ln x)^{2} + \text{constant}$	1A	
2	2.5	
017-DSE-MATH-EP(M1)-6		

Solution	Marks	Remarks
Let $u = \ln\left(\frac{e}{x}\right)$.	1M	
Then, we have $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{-1}{x}$.		,
$\int g(x) dx$		
$= \int \left(\frac{1}{x} \ln \left(\frac{e}{x}\right)\right) dx$		
$= \int -u \mathrm{d}u$	1M	
$= \frac{-1}{2}u^2 + \text{constant}$ $-1(\cdot, (e))^2$		
$= \frac{-1}{2} \left(\ln \left(\frac{e}{x} \right) \right)^2 + \text{constant}$	1A	
(b) (i) e (ii) The required area	1A	
$= \int_{1}^{e} g(x) dx + \int_{e}^{e^{2}} -g(x) dx$	1M	
$= \left[\ln x - \frac{1}{2}(\ln x)^2\right]_1^e + \left[-\ln x + \frac{1}{2}(\ln x)^2\right]_e^{e^2} \text{(by (a))}$	1M	for using (a)
$=\frac{1}{2}+\frac{1}{2}$		
= 1 The required area	1A	
$= \int_1^e g(x) dx + \int_e^{e^2} -g(x) dx$	1M	
$= \left[\frac{-1}{2} \left(\ln \left(\frac{e}{x} \right) \right)^2 \right]_1^e + \left[\frac{1}{2} \left(\ln \left(\frac{e}{x} \right) \right)^2 \right]_e^{e^2} (by (a))$	1M	for using (a)
$=\frac{1}{2}+\frac{1}{2}$		
=1	1A (7)	
2017-DSE-MATH-EP(M1)-7		

	Marks	Remarks
(a) (i) The sample mean $= \frac{(0.75)(11) + (1.25)(13) + (1.75)(8) + (2.25)(5) + (2.75)(3)}{40}$		
= 1.45 hours	1A	
A 90% confidence interval for μ		
$= \left(1.45 - 1.645 \left(\frac{0.4}{\sqrt{40}}\right), 1.45 + 1.645 \left(\frac{0.4}{\sqrt{40}}\right)\right)$	1M+1A	1A for 1.645
≈ (1.3460, 1.5540)	1A	r.t. (1.3460, 1.5540)
(ii) Let n be the sample size.		
$2(2.17)\left(\frac{0.4}{\sqrt{n}}\right) \le 0.3$	1M+1A	1A for 2.17
$n \ge 33.48551111$ Thus, the least sample size is 34.	1A	
(b) (i) The required probability		
$=P\bigg(Z>\frac{2-1.48}{0.4}\bigg)$	1M	
= P(Z > 1.3) = 0.5 - 0.4032		
= 0.0968	1A	
(ii) The required probability $C_1^9 (1 - 0.0968)^8 (0.0968)^2$		
$= \frac{C_1^9 (1 - 0.0968)^8 (0.0968)^2}{1 - (1 - 0.0968)^{15} - C_1^{15} (1 - 0.0968)^{14} (0.0968)}$	1M+1M+1M	1M for using (b)(i) + 1M for numerator
≈ 0.086102962 ≈ 0.0861		+ 1M for denominator
~ 0.0001	1A (6)	r.t. 0.0861
	3.2	

	Solution	Marks	Remarks
0. (a)	The required probability $= \frac{2^{0}e^{-2}}{0!} + \frac{2^{1}e^{-2}}{1!} + \frac{2^{2}e^{-2}}{2!} + \frac{2^{3}e^{-2}}{3!} + \frac{2^{4}e^{-2}}{4!}$ ≈ 0.947346982 ≈ 0.9473	1M+1M 1A	IM for the 5 cases + 1M for Poisson probability r.t. 0.9473
(b)	The required probability $= \frac{2^3 e^{-2}}{3!} (3(0.25)^2 (0.1) + 3(0.25)(0.2)^2 + 3(0.45)^2 (0.2))$ ≈ 0.030721109 ≈ 0.0307	1M+1M 1A	1M for Poisson probability + 1M for any one correct r.t. 0.0307
(c)	The required probability $= 4(0.25)^3(0.1) + 6(0.25)^2(0.2)^2 + (4)(3)(0.45)^2(0.2)(0.25) + (0.45)^4$ $= 0.18375625$ ≈ 0.1838	1M+1M 1A	IM for any one correct + IM for any three correct r.t. 0.1838
(d)	The required probability $ \frac{\left(\frac{2e^{-2}}{1!}\right)(0.1) + \left(\frac{2^2e^{-2}}{2!}\right)(2(0.25)(0.1) + (0.2)^2) + 0.030721109 + \left(\frac{2^4e^{-2}}{4!}\right)(0.18375625)}{0.947346982} \approx 0.10421488 \approx 0.1042 $	1M+1M 1A (3)	1M for numerator using (b) or (c) +1M for denominator usi $r.t. 0.1042$
7-DSE-M	IATH-EP(M1)–9	28	

	Solution	Marks	Remarks
(a)	According to the suggestion by Ada, I		
	$\approx \frac{1}{2} \left(\frac{1 - 0.5}{5} \right) (f(0.5) + f(1) + 2(f(0.6) + f(0.7) + f(0.8) + f(0.9)))$	1M	
	≈ 0.747559672 ≈ 0.7476	1A	r.t. 0.7476
	According to the suggestion by Billy, I		
	$\approx \int_{0.5}^{1} \left(\frac{1}{x} + 0.1 + 0.005x \right) dx$	1M	
	$= \left[\ln x + 0.1x + 0.0025x^2 \right]_{0.5}^{1}$	1M	
	$= \ln 2 + 0.051875$ ≈ 0.74502218	1A	r.t. 0.7450
	≈ 0.7450	(5)	
(b)	f(x) $0.1x$		
	$=\frac{e^{0.1x}}{x}$ $f'(x)$		
	$=\frac{0.1e^{0.1x}}{x^2}(x-10)$	1M	
	f''(x)		
	$=\frac{0.01e^{0.1x}}{x^3}(x^2-20x+200)$	1A	
	$=\frac{0.01e^{0.1x}}{x^3}((x-10)^2+100)$	1M	
	>0 for $0.5 \le x \le 1$. Thus, the estimate suggested by Ada is an over-estimate.	1A	f.t.
	$e^{0.1x} = 1 + 0.1x + \frac{(0.1x)^2}{2!} + \frac{(0.1x)^3}{3!} + \cdots$	1M	
	$e^{0.1x} > 1 + 0.1x + 0.005x^2$ for $0.5 \le x \le 1$		
	$I > \int_{0.5}^{1} \left(\frac{1}{x} + 0.1 + 0.005x \right) dx$ Thus, the estimate appropriate by Pills is an under estimate	1.4	f.t.
	Thus, the estimate suggested by Billy is an under-estimate.	1A (6)	1.1.
(c)	0.7450 < I < 0.7476 -0.0010 < I - 0.746 < 0.0016	1M	
	So, we have $-0.002 < I - 0.746 < 0.002$. Thus, the claim is agreed.	1A	f.t.
	I - 0.746 < 0.7476 - 0.746 = 0.0016 0.746 - I < 0.746 - 0.7450 = 0.0010	1M	
	So, the difference of I and 0.746 is less than 0.002. Thus, the claim is agreed.	1A	f.t.
		(2)	
-DSE	E-MATH-EP(M1)-10		

2. (a) (i) $x-4 = \frac{3k}{2^{\lambda t} - k}$		
$3(2^{\lambda t})$		1
$x-1=\frac{3(2^{\lambda t})}{2^{\lambda t}-k}$		
$(x-4)(x-1) = \frac{9k2^{\lambda t}}{(2^{\lambda t} - k)^2}$		
$(x-4)(x-1) = \frac{1}{(2^{\lambda t}-k)^2}$	1A	
$9k2^{\lambda t}$		
(ii) $\frac{9k2^{\lambda t}}{(2^{\lambda t}-k)^2} > 0$ (as $k > 0$)		
(x-4)(x-1) > 0 (by (a)(i))	1M	
x > 4 or $x < 1$		
Thus, the claim is correct.	1A	f.t.
	(3)	
$dx = -3(\ln 2)k\lambda 2^{\lambda t}$		
(b) (i) $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-3(\ln 2)k\lambda 2^{\lambda t}}{(2^{\lambda t} - k)^2}$	1A	
$-\ln 2$ $-3(\ln 2)k2^{\lambda t}$		
$\frac{-\ln 2}{24}(x-4)(x-1) = \frac{-3(\ln 2)k2^{\lambda t}}{8(2^{\lambda t}-k)^2}$		
-1-		
$\lambda = \frac{1}{8}$	1	
(ii) (1) When 4-0		
(ii) (1) When $t = 0$, $x = 0.8$.		
$-3.2 = \frac{3k}{1-k}$		
k = 16	1A	
When $x = 0$, we have $4 + \frac{48}{t} = 0$.	1 1	a.i.ela.a.u. a.u. a
$2^{\frac{7}{8}}-16$	1M	either one
t		
So, we have $2^{\frac{1}{8}} = 4$.	1M	either one
Solving, we have $t = 16$. Thus, the crocodiles in the lake will eventually become extinct		
in 16 years.	1A	
(2) III		
(2) When $t = 0$, $x = 7$.		
$3 = \frac{3k}{1-k}$		
k = 0.5	1A	
When $r = 0$ we have $4 + \frac{1.5}{2} = 0$		
When $x = 0$, we have $4 + \frac{1.5}{\frac{t}{8} - 0.5} = 0$.		
,		
So, we have $2^{\frac{1}{8}} = 0.125$.		
It is impossible as $2^{\frac{t}{8}} > 1$ for $t > 0$.		
Thus, the crocodiles in the lake will never become extinct.	1A	f.t.
/	IA	1.6.
Note that $\lim_{t \to \infty} x = \lim_{t \to \infty} \left(4 + \frac{1.5}{2^{\frac{t}{8}} - 0.5} \right) = 4$.		
After a very long time, the estimated number of crocodiles in		
The state of the s	1A	
the lake is 4 000 .	IA	
the lake is 4000.	(9)	
the lake is 4 000 .	(9)	