

Section B

Question Number	Performance in General
$\begin{array}{lll}10 & \text { (a) } & \text { (i) } \\ & & \text { (ii) }\end{array}$ (b) (c)	Good. Many candidates applied the trapezoidal rule correctly. Poor. Many candidates used $\frac{\mathrm{d}}{\mathrm{d} t}\left(t^{\frac{-1}{2}} e^{\frac{-t}{2}}\right)$ instead of $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(t^{\frac{-1}{2}} e^{\frac{-t}{2}}\right)$ to determine whether the estimate in (i) is an over-estimate or under-estimate. Fair. Many candidates used wrong substitutions. Very poor. Only a few candidates attempted this part. Among them, some wrote $I \approx 0.692913377$ instead of $I<0.692913377$.
(a) (b) (c) (d)	A common mistake was to mix up R with $\frac{\mathrm{d} R}{\mathrm{~d} t}$. Fair. However, many candidates knew that maximum intensity implied $\frac{\mathrm{d} R}{\mathrm{~d} t}=0$ Poor. Some candidates were not able to choose a suitable substitution to solve for R, while others did not go on after substitution or made careless mistakes in further calculations. Very poor. A common mistake was $\left.R\right\|_{t=41}-\left.R\right\|_{t=40}=\ln \frac{61}{50}$. Very poor. Only a few candidates attempted this part. Among them, some forgot to square the denominator when applying quotient rule to calculate $\frac{\mathrm{d}^{2} R}{\mathrm{~d} t^{2}}$.
$12 \text { (a) (i) }$ (ii) (b) (i) (ii)	Good. However, some candidates used the standard deviation of the sample instead of the population, used values other than 1.645 , or interchanged the upper and lower confidence limits. Fair. B sides mistakes similar to (i), many candidates did not write the width of the confidence interval correctly or failed to solve inequalities. Good. Most candidates were able to express the probability of the mentioned event, but some failed in the standardisation of normal distributions. Satisfactory. Binomial coefficients were omitted or written wrongly by some candidates.
$13 \quad \text { (a) }$ (b) (c) (i) (ii)	Excellent. However, a small number of candidates forgot the formula of Poisson probabilities. Satisfactory. Some candidates failed to write all the terms needed in the numerator. Satisfactory. Many candidates were able to apply the correct method, although some got wrong numerical answers. Poor. Most candidates failed to identify all the events related to the probability required and some even used 4.6 instead of 2.3 as the mean of the Poisson distribution.

General comments and recommendation

1. Candidates should be more careful when writing notations and performing calculations
2. Candidates should not write ' ln ' as 'In' for natural logarithm
3. Candidates should pay more attention to the accuracy required for final answers.
