1. $\frac{m^9}{(m^3 n^{-7})^5} = \frac{m^9}{m^{15} n^{-35}}$ 1M for $(a^p b^q)$ $= \frac{n^{35}}{m^{15} m^{-9}}$ 1M for $a^{-p} =$ $= \frac{n^{35}}{m^6}$. 1A 2. $\frac{4a + 5b - 7}{b} = 8$ 1M $4a + 5b - 7 = 8b$ 1M $-3b = 7 - 4a$ 1M $b = \frac{4a - 7}{3}$. 1A 3. The required probability $= \frac{3 + 2 + 1}{4 \times 5}$ $= \frac{3}{10}$. 1A $4.(a) x^3 + x^2 y - 7x^2$ 1A $4.(b) x^3 + x^2 y - 7x^2 - x - y + 7$ 1A	$a^{pr} = a^{pr}b^{qr}$ $\frac{1}{a^{p}}$ b on one side ent nominator denominator
$= \frac{n^{35}}{m^{15}m^{-9}}$ $= \frac{n^{35}}{m^{6}}.$ 1M 1A 1A 1M 1M 1A 1M 1M 1A 1M 1M 1A 1M 1M 1A 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M	$\frac{1}{a^{p}}$ b on one side ent nominator denominator
$=\frac{n^{35}}{m^{6}}.$ 1A 1A 	b on one side ent nominator denominator
2. $\frac{4a+5b-7}{b} = 8$ 4a+5b-7 = 8b -3b = 7-4a $b = \frac{4a-7}{3}$. 3. The required probability $= \frac{3+2+1}{4\times 5}$ $= \frac{3}{10}$. 4.(a) $x^3 + x^2y - 7x^2$ $= x^2(x+y-7)$. 4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$. (b) $x^3 + x^2y - 7x^2 - x - y + 7$. (c) $x^3 + x^2y - 7x^2 - x - y + 7$. (b on one side ent nominator denominator
2. $\frac{4a+3b-7}{b} = 8$ 4a+5b-7 = 8b -3b = 7-4a $b = \frac{4a-7}{3}$. 3. The required probability $= \frac{3+2+1}{4\times 5}$ $= \frac{3}{10}$. 4.(a) $x^3 + x^2y - 7x^2$ $= x^2(x+y-7)$. 4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$ $= x^2y - 7x^2 - x - y + 7$	b on one side ent nominator denominator
$4a+5b-7 = 8b$ $-3b = 7-4a$ $b = \frac{4a-7}{3}.$ 3. The required probability $= \frac{3+2+1}{4\times 5}$ $= \frac{3}{10}.$ 4.(a) $x^3 + x^2y - 7x^2$ $= x^2(x+y-7).$ 4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$ $\frac{1}{4} = \frac{3}{10} + \frac{1}{10} +$	b on one side ent nominator denominator
$-3b = 7-4a$ $b = \frac{4a-7}{3}.$ 3. The required probability $= \frac{3+2+1}{4\times 5}$ $= \frac{3}{10}.$ 4.(a) $x^{3} + x^{2}y - 7x^{2}$ $= x^{2}(x+y-7).$ 4.(b) $x^{3} + x^{2}y - 7x^{2} - x - y + 7$ $= x^{2}y - 7x^{2} - x - y + 7$	b on one side ent nominator denominator
$b = \frac{4a - 7}{3}.$ 3. The required probability $= \frac{3 + 2 + 1}{4 \times 5}$ $= \frac{3}{10}.$ 4.(a) $x^3 + x^2y - 7x^2$ $= x^2(x + y - 7).$ 4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$ $= x^2(x - y - 7).$ 1A or equivalence of the second s	ent nominator denominator
3. The required probability $=\frac{3+2+1}{4\times 5}$ $=\frac{3}{10}$. 4.(a) $x^3 + x^2y - 7x^2$ $=x^2(x+y-7)$. 4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$ $=x^2(x-y-7)$. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	nominator denominator
3. The required probability $=\frac{3+2+1}{4\times 5}$ $=\frac{3}{10}$. 4.(a) $x^3 + x^2y - 7x^2$ $=x^2(x+y-7)$. 4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$. 1.1. IM for the IM f	nominator denominator
$= \frac{3}{10}.$ 1A or 0.3 4.(a) $x^3 + x^2y - 7x^2$ $= x^2(x + y - 7).$ 1A 4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4.(a) $x^{3} + x^{2}y - 7x^{2}$ = $x^{2}(x + y - 7)$. 4.(b) $x^{3} + x^{2}y - 7x^{2} - x - y + 7$ 1A	
$= x^{2}(x+y-7).$ 4.(b) $x^{3}+x^{2}y-7x^{2}-x-y+7$	
4.(b) $x^3 + x^2y - 7x^2 - x - y + 7$	
$=x^{2}(x+y-7)-x-y+7$ 1M for using (a)
$= (x + y - 7)[x^{2} - (x + y - 7)]$ 1M for factoria	zation
=(x-1)(x+1)(x+y-7). 1A or equivale	ent
5.(a) $\frac{7-3x}{5} \le 2(x+2),$ (4)	
$5 7 - 3r \le 10r + 20$	
$x \ge -1 $ 1A	
4x - 13 > 0	
$x > \frac{13}{4} $ 1A $x > 3.25$	
Thus, the required solution is $x > \frac{13}{4}$. 1A	
5.(b) 4 1A	
6.(a) Let x be the selling price of the book.	to go mucfit
$\frac{x-250}{250} = 20\%$ 1M for percent $= \frac{p-c}{c}$	tage profit
x = 300.	
Thus, the selling price of the book is \$300. 1A u-1 for mi	

(1)		I	I
6.(b)	Let by be the marked price of the book. y(1 - 250) = x	114	
	y(1-25%) = x y = 400	1 1/1	
	y = 400. Thus, the marked price of the book is \$400	1 Δ	u-1 for missing unit
	Thus, the marked price of the book is \$400.		u-1 for missing unit
7.	Let a be the number of apples owned by Ada and b be that owned by Billy.		
	$\int a = 4b$	1M	for both equations
	a-12 = b+12	111/1	
	Solving, $a = 32$ and $b = 8$.	1A + 1A	1A for each value
	Thus, the total number of apples owned by them is 40.	1A	
0	(CAD (CDD 259	(4)	
8.	$\angle CAD = \angle CBD = 25^{\circ}$	IM	\angle s in the same segment
	$\therefore AB = AD$	1M	
	$\therefore \angle BAD = 180^{\circ} - 2 \times 38^{\circ} = 64^{\circ}$.	1.1	
	$\angle BDC = \angle BAC = 64^{\circ} - 25^{\circ} = 39^{\circ}$	IA	
	$\therefore BC = CE$	114	
	$\therefore \angle BEC = \frac{180^\circ - 58^\circ}{2} = 61^\circ.$	1 M	
	$\angle ABE = 61^\circ - \angle BAE = 22^\circ.$	1A	u–1 for missing unit
		(5)	
9.(a)	Let x° be the required angle.	1M	0
	$\pi \times 12^2 \times \frac{x}{360^\circ} = 30\pi$	1 M	for $\pi r^2 \times \frac{0}{360^\circ} = A$
	x = 75.		
	Thus, the angle of the sector is 75° .	1A	
9.(b)	The required perimeter = $2\pi \times 12 \times \frac{75}{360} + 2 \times 12$	1M + 1M	1M for the arc length 1M for the radii
	$=(24+5\pi)$ cm.	1A	in terms of π u–1 for missing unit
10 (-)	Let a and h be two constants	(5)	
10.(a)	Let <i>a</i> and <i>b</i> be two constants. $\left(a+10b-10600\right)$		
	a + 6b - 9000	1M	
	$\begin{bmatrix} u + 6b = -5000 \end{bmatrix}$	1M	
	Thus, the required income = $6600 + 20 \times 400 = 14600 .	1M + 1A	u–1 for missing unit
		(4)	<u> </u>
10.(b)	Let N be the number of handbags sold in a month such that her income is $$18\ 000$.		
	$N = \frac{18000 - 6600}{400} = 28.5$	1 M	
	Since 28.5 is not an integer, it is not possible that the income	1A	
	15 \$18 000.	(2)	
11.(a)	$f(2) = (2-2)^2 (2+h) + k = -5$		for remainder and factor
	$f(3) = (3-2)^2(3+h) + k = 0$	IM	theorems
			•
	h=2 and $k=-5$	1A + 1A	

11.(b)	$\mathbf{f}(\mathbf{x}) = 0$		
	$(x-2)^2(x+2)-5=0$		
	$(x^2 - 4x + 4)(x + 2) - 5 = 0$		
	$x^3 - 2x^2 - 4x + 3 = 0$		
	$(x-3)(x^2+x-1) = 0$	1M	
	$x = 3$ or $x = \frac{-1 \pm \sqrt{5}}{2}$	1M	
	Thus, not all the roots of the equation $f(x) = 0$ are integers. The claim is disagreed.	1A	
		(3)	
12.(a)	mean = 55 kg	1A	
	median = 52 kg range = $79 - 40 - 39 \text{ kg}$	1A 1A	
	$\operatorname{range} = 17 + 6 = 57 \mathrm{kg}$	(3)	
12.(b)	Let a and b be the required weights.		
	$\frac{a+b+55\times 20}{2} = 56$		
	22	1)7	
	a+b=132 Note that $a=80$ kg as the range is increased by 1 kg. Thus	1M 1M	
	the weight of each of these students is 80 kg and 52 kg.	$1\mathbf{A} + 1\mathbf{A}$	u–1 for missing unit
13 (a)	AE = BF (given)		
13.(a)	AB = BC (properties of square)	1	with reasons
	$\angle ABE = \angle BCF = 90^{\circ}$ (properties of square)		
	$\Delta ABE \cong \Delta BCF (\mathbf{R.H.S.})$	1	with reason
		(2)	
13.(b)	$\angle AEB = \angle BFC \ (\triangle ABE \cong \triangle BCF)$	1	using (a)
	$\therefore \angle AEB = 90^\circ - \angle FBC$		
	$\therefore \angle BGE = 180^\circ - \angle GEB - \angle GBE$	2	
	$= 180^{\circ} - (90^{\circ} - \angle GBE) - \angle GBE$	2	follow through
	= 90°. • ABGE is a right-angled triangle		
		(3)	
13(c)	Note that $CF = BF = 15$ cm	(3) 1M	
15.(0)	Note that $CF = BE = 15$ cm	1 A	
	$BG = \sqrt{15^2 - 9^2} = 12 \text{ cm}$.	(2)	
14 (a)	(i) L passes through $(-5, 11)$	(2) 1M	
1(u)	3	11/1	
	Slope of $L = \frac{1}{4}$	1M	
	L: 3x - 4y + 59 = 0.	1A	
	(ii) Centre of $C = \left(h, \frac{3h+59}{4}\right)$	1M	using (a)(i)
	The required equation :		
	$(x-h)^{2} + \left[y - \left(\frac{3h+59}{4}\right)\right]^{2} = (h-4)^{2} + \left(\frac{3h+59}{4} - (-1)\right)^{2}$	1A	$(x-h)^2 + (y-k)^2 = r^2$

	$2x^{2} - 4xh + 2h^{2} + 2y^{2} - 3hy - 59y + \frac{3481}{8} + \frac{9h^{2}}{8} + \frac{177}{4}h$		
	$=\frac{25h^2}{8}+\frac{125}{4}h+\frac{4225}{8}$	1M	follow through
	$2x^2 + 2y^2 - 4hx - (3h + 59)y + 13h - 93 = 0.$		
		(6)	
l4.(b)	Putting (26, 43) into the equation of C, we have $h = 11$.	1M	using (a)(ii) or otherwise
	Centre of $C = (11, 23)$	1M	
	The required diameter = $2\sqrt{(11-4)^2 + [23-(-1)]^2} = 50.$	1A	
15 ()		(3)	
15.(a)	Let x marks be the required score. x - 66		
	$\frac{1}{12} = -0.5$	1M	
	x = 60 The score of David in the Methematics examination is 60		
	marks .	1A	
		(2)	
15.(b)	Note that $60 = 66 - 0.5 \times 12$ and $49 = 52 - 0.3 \times 10$.	1M	for $x = \mu + z\sigma$
	As $-0.3 > -0.5$, he performs better in the Science examination than in the Mathematics examination	1A	
	The claim is agreed.	111	
	c^5c^9	(2)	
16.(a)	The required probability = $\frac{C_2 C_2}{C_4^{14}}$	1M	
	_ 360	1.4	
	$=\frac{1}{1001}$.	IA	
	$C^{5}C^{9} + C^{5}C^{9}$	(2)	
l 6.(b)	The required probability = $1 - \frac{c_1 c_3 + c_0 c_4}{C_4^{14}}$	1M	for $p_2 = 1 - p_1$
	$=\frac{5}{5}$.	1A	
	11	(2)	
17.(a)	$A(1) + A(2) + A(3) + \dots + A(n)$		
	$=\frac{[-1+(4n-5)]n}{[n-1]n}$	1M	
	$\frac{2}{-2n^2-3n}$	1A	
	-2n $-3n$.		
17.(b)	$\log(B(1)B(2)B(3)\cdots B(n))$		
	$= \log(10^{\mathbf{A}(n)})$		
	$=\log(10^{2n^2-3n})$	1M	using (a)
	$=2n^2-3n.$		
	$2n^2 - 3n \ge 8000$ (n-64)(2n+125) \ge 0		
	125	13.6	
	$-\frac{1}{2} \le n \le 64$	1 M	

	The greatest value of n is 64.	1A (3)	
18.(a)	$(-4k)^2 - 4(2)(3k^2 + 5)$		
	$=-8(k^2+5)$	1M	for discriminant
	Since $-8(k^2+5) < 0$ for all real k, the equation $f(x) = 0$		
	does not have real roots and the graph of $y = f(x)$ does not cut the x-axis.	1A	
		(2)	
18.(b)	$2x^2 - 4kx + 3k^2 + 5$		
	$= 2(x^2 - 2kx + k^2) + k^2 + 5$	1M	
	$= 2(x-k)^2 + k^2 + 5.$	1M	
	Thus, the required vertex = $(k, k^2 + 5)$.	1A (3)	
18.(c)	Note that when S and T are nearest to each other, they	(3)	
	coincide with the vertices of the graphs of $y = f(x)$ and $y = 2 - f(x)$ respectively.	1M	
	The coordinates of S is $(k, k^2 + 5)$ and that of T is $(k, -k^2 - 3)$.	1M	using (b)
	Thus, the y-coordinate of the midpoint of ST is 1.	1 M	
	The perpendicular bisector of ST is $y - 1 = 0$. The claim is disagreed	1A	
		(4)	
19.(a)	(i) $AC = \sqrt{40^2 + 24^2 - 2(40)(24)\cos 80^\circ}$	1 M	cosine law
	≈ 42.92546446		
	≈ 42.9 cm.	1A	to 3 sig. fig.
	(ii) $\cos \angle ACB = \frac{24^2 + 42.92546446^2 - 40^2}{2(24)(42.92546446)}$		or sine law
	2(24)(42.92546446) ///CB ~ 66 59081/87°		
	≈ 66.6°.	1A	to 3 sig. fig.
	(iii) The area of $\triangle ABC$ and that of $\triangle ABD$ are fixed.	1 M	
	The area of $\triangle ACD = \frac{1}{2}AC^2 \sin \angle CAD$	1 M	
	When $\angle BCD$ increases from 105° to 145°, $\angle CAD$ decreases from 103° to 23.2°. The required area increases when $\angle BCD$ increases from 105° to 111.6° but decreases	2A	follow through
	when it increases from 111.6° to 145° .	(7)	
19.(b)	Let M be the projection of B onto CD and N be that of B onto the plane ACD .	(7)	
	$CM = AC \cos \angle ACD \approx 17.86278929 \text{ cm}$	1M	
	$BM = \sqrt{BC^2 - CM^2} \approx 16.02874788 \text{ cm}$	1 M	
	$\cos \angle BMA = \frac{AM^2 + BM^2 - AB}{2(AM)(BM)}$		
	$\angle BMA \approx 0.144202402^{\circ}$	1 M	
	$BN = BM \sin \angle BMA \approx 15.86121883 \mathrm{cm}$	1A	
		I	l

The required volume =
$$\frac{1}{3} \left(\frac{1}{2} A C^2 \sin \angle C A D \right) BN \approx 3690 \text{ cm}^3$$
. $1M + 1A$
......(6)