2012年香港中學文憑考試
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2012

數學 必修部分 試卷一
 MATHEMATICS COMPULSORY PART PAPER 1

Abstract

本評卷參考乃香港考試及評核局專爲今年本科考試而編寫，供関卷員參考之用。閱卷員在完成関卷工作後，若將本評卷參考提供其任教會考班的本科同事參閱，本局不表反對，但須切記，在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件，関卷員／教師應嚴詞拒絕，因學生極可能將評卷參考視爲標準答案，以致但知硬背死記，活剝生吞。這種落伍的學習態度，既不符現代教育原則，亦有違考試着重理解能力與運用技巧之旨。因此，本局籲請各閱卷員／教師通力合作，堅守上述原則。 This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for markers＇reference．The Authority has no objection to markers sharing it，after the completion of marking，with colleagues who are teaching the subject．However，under no circumstances should it be given to students because they are likely to regard it as a set of model answers． Markers／teachers should therefore firmly resist students＇requests for access to this document．Our examinations emphasise the testing of understanding，the practical application of knowledge and the use of processing skills．Hence the use of model answers，or anything else which encourages rote memorisation，should be considered outmoded and pedagogically unsound．The Authority is counting on the co－operation of markers／teachers in this regard．

香港考試及評核局 保留版權
Hong Kong Examinations and Assessment Authority
All Rights Reserved

Hong Kong Diploma of Secondary Education Examination
Mathematics Compulsory Part Paper 1

General Marking Instructions

1．It is very important that all markers should adhere as closely as possible to the marking scheme．In many cases，however，candidates will have obtained a correct answer by an alternative method not specified in the marking scheme．In general，a correct answer merits all the marks allocated to that part，unless a particular method has been specified in the question．Markers should be patient in marking alternative solutions not specified in the marking scheme．

2．In the marking scheme，marks are classified into the following three categories：
＇ \mathbf{M}＇marks awarded for correct methods being used；
＇A＇marks awarded for the accuracy of the answers； Marks without＇M＇or＇A＇awarded for correctly completing a proof or arriving at an answer given in a question．
In a question consisting of several parts each depending on the previous parts，＇M＇marks should be awarded to steps or methods correctly deduced from previous answers，even if these answers are erroneous．However， ＇A＇marks for the corresponding answers should NOT be awarded（unless otherwise specified）．

3．For the convenience of markers，the marking scheme was written as detailed as possible．However，it is still likely that candidates would not present their solution in the same explicit manner，e．g．some steps would either be omitted or stated implicitly．In such cases，markers should exercise their discretion in marking candidates＇work．In general，marks for a certain step should be awarded if candidates＇solution indicated that the relevant concept／technique had been used．

4．Use of notation different from those in the marking scheme should not be penalized．
5．In marking candidates＇work，the benefit of doubt should be given in the candidates＇favour．
6．Marks may be deducted for wrong units（ u ）or poor presentation（ $p p$ ）．
a．The symbol $4-1$ should be used to denote 1 mark deducted for u ．At most deduct I mark for u in each of Section $\mathrm{A}(1)$ and Section $\mathrm{A}(2)$ ．Do not deduct any marks for u in Section B．
b．The symbol pp－1 should be used to denote 1 mark deducted for $p p$ ．At most deduct 1 mark for $p p$ in each of Section $\mathrm{A}(1)$ and Section $\mathrm{A}(2)$ ．Do not deduct any marks for $p p$ in Section B．
c．At most deduct 1 mark in each of Section A（1）and Section A（2）．
d．In any case，do not deduct any marks in those steps where candidates could not score any marks．
7．In the marking scheme，＇r．t．＇stands for＇accepting answers which can be rounded off to＇and＇f．t．＇stands for ＇follow through＇．Steps which can be skipped are shiaded whereas alternative answers are enclosed with rectangles．All fractional answers must be simplified．

只限教師參閲

 FOR TEACHERS＇USE ONLY

5．Let x be the number of male guards in the exhibition centre．
Then，the number of female guards in the exhibition centre is $(x+24)$
$x+(x+24)=132$
$2 x=108$
$x=54$
Thus，the number of male guards in the exhibition centre is 54 ．
Let x and y be the numbers of male and female guards respectively．
So，we have $x+y=132$ and $\frac{y}{6}-\frac{x}{6}=4$ ．
Therefore，we have $x+(x+24)=132$
Solving，we have $x=54$ ．
Thus，the number of male guards in the exhibition centre is 54 ．
$\begin{aligned} & \text { The number of male guards in the exhibition centre } \\ = & \frac{132-(6)(4)}{2} \\ = & \frac{108}{2} \\ = & 54\end{aligned}$

6．（a）$\frac{4 x+6}{7}>2(x-3)$
$4 x+6>14(x-3)$
$10 x<48$
$x<\frac{24}{5}$
$2 x-10 \leq 0$
$x \leq 5$
Thus，the required solution is $x<\frac{24}{5}$ ．
（b） 4

只限教師參関

$$
\begin{array}{lll}
& & \\
\text { 7. (a) } \quad & a \\
& =18.1-6.8 \\
= & 11.3 \\
& & b \\
& & 12.1+3.2 \\
& =15.3
\end{array}
$$

（b）Note that the longest time taken by the students to finish a 100 m race after the training is 15.2 s which is less than the upper quartile of the distribution of the times taken before the training． Thus，the claim is agreed．

8．（a）$\triangle A E D \sim \triangle B E C$
$\triangle A E B \sim \triangle D E$
$\frac{A E}{B E}=\frac{D E}{C E}$
$\frac{A E}{8}=\frac{15}{20}$
$A E=6 \mathrm{~cm}$
（b）$A E^{2}+B E^{2}$
$=6^{2}+8^{2}$
$=10^{2}$
$=A B^{2}$
Thus，$A C$ and $B D$ are perpendicular to each other．

9．（a）Let $x \mathrm{~cm}$ be the length of $A D$ ．
$\frac{(6+x)(12)}{2}(10)=1020$
$x=11$
Thus，the length of $A D$ is 11 cm ．
（b）

$$
\begin{aligned}
& C D \\
= & \sqrt{12^{2}+(11-6)^{2}} \\
= & 13 \mathrm{~cm}
\end{aligned}
$$

The total surface area of the prism $A B C D E F G H$
$=(12+11+13+6)(10)+\frac{(6+11)(12)}{2}(2)$
$=624 \mathrm{~cm}^{2}$

FOR TEACHERS' USE ONLY

（b）Let x be the test score and m be the mean of the test scores before the score adjustment．

The standard score before the score adjustment
$=\frac{x-m}{10}$
The standard score after the score adjustment
$=\frac{(x(1+20 \%)+5)-(m(1+20 \%)+5)}{12}$
$=\frac{1.2(x-m)}{12}$
$=\frac{x-m}{10}$
Thus，there is no change in the standard score of each student due to the score adjustment．

16．（a）The required probability

$$
\begin{aligned}
& =\frac{\left(C_{4}^{8}\right)\left(C_{1}^{2}\right)^{4}}{C_{4}^{16}} \\
& =\frac{8}{13}
\end{aligned}
$$

The required probability
$=\left(\frac{16}{16}\right)\left(\frac{14}{15}\right)\left(\frac{12}{14}\right)\left(\frac{10}{13}\right)$
$=\frac{8}{13}$

（b）The required probability

$$
\begin{aligned}
& =1-\frac{8}{13} \\
& =\frac{5}{13}
\end{aligned}
$$

The required probability				
$=\frac{C_{2}^{8}}{C_{4}^{16}}+\frac{\left(C_{1}^{8}\right)\left(C_{2}^{2}\right)\left(C_{2}^{7}\right)\left(C_{1}^{2}\right)^{2}}{C_{4}^{16}}$	1 M	for considering 2 cases		
$=\frac{5}{13}$	1 A	r．t 0.385		
The required probability $=\frac{C_{2}^{8}}{C_{4}^{16}}+\frac{\left(C_{2}^{8}\right)\left(C_{1}^{2}\right)^{2}\left(C_{1}^{6}\right)\left(C_{2}^{2}\right)}{C_{4}^{16}}$ $=\frac{5}{13}$ 1 M				for considering 2 cases
:---				

Solution	Marks	Remarks
17．（a）Note that the radius of C is 10 ． Thus，the equation of C is $(x-6)^{2}+(y-10)^{2}=10^{2}$ ． （b）The equation of L is $y=-x+k$ ． Putting $y=-x+k$ in $x^{2}+y^{2}-12 x-20 y+36=0$ ， we have $x^{2}+(-x+k)^{2}-12 x-20(-x+k)+36=0$ ． So，we have $2 x^{2}+(8-2 k) x+\left(k^{2}-20 k+36\right)=0$ ． The x－coordinate of the mid－point of $A B$ $\begin{aligned} & =\frac{\frac{-(8-2 k)}{2}}{2} \\ & =\frac{k-4}{2} \end{aligned}$ The y－coordinate of the mid－point of $A B$ $\begin{aligned} & =\frac{-(k-4)}{2}+k \\ & =\frac{k+4}{2} \end{aligned}$ Thus，the required coordinates are $\left(\frac{k-4}{2}, \frac{k+4}{2}\right)$ ．	1M 1A －－－－－－（2） 1 M 1M 1M 1A 1A	can be absorbed $x^{2}+y^{2}-12 x-20 y+36=0$ for sum of roots
The equation of L is $y=-x+k$ ． Note that the equation of the straight line passing through the centre of C and perpendicular to L is $y-10=1(x-6)$ ． Solving the system of linear equations $\left\{\begin{array}{l}y=-x+k \\ x-y+4=0\end{array}\right.$ ， we have $\left\{\begin{array}{l}x=\frac{k-4}{2} \\ y=\frac{k+4}{2}\end{array}\right.$ ． Thus，the required coordinates are $\left(\frac{k-4}{2}, \frac{k+4}{2}\right)$ ．	$\begin{gathered} 1 \mathrm{M} \\ 1 \mathrm{M} \\ 1 \mathrm{M} \\ 1 \mathrm{~A}+1 \mathrm{~A} \end{gathered}$	for solving

Solution	Marks	Remarks
The equation of L is $y=-x+k$ ． Putting $y=-x+k$ in $x^{2}+y^{2}-12 x-20 y+36=0$ ， we have $x^{2}+(-x+k)^{2}-12 x-20(-x+k)+36=0$ ． Hence，we have $2 x^{2}+(8-2 k) x+\left(k^{2}-20 k+36\right)=0$ ． Note that $\sqrt{(8-2 k)^{2}-4(2)\left(k^{2}-20 k+36\right)}=2 \sqrt{-k^{2}+32 k-56}$ ． So，the x－coordinates of A and B are $\frac{k-4+\sqrt{-k^{2}+32 k-56}}{2}$ and $\frac{k-4-\sqrt{-k^{2}+32 k-56}}{2}$ The x－coordinate of the mid－point of $A B$ $=\frac{\frac{k-4+\sqrt{-k^{2}+32 k-56}}{2}+\frac{k-4-\sqrt{-k^{2}+32 k-56}}{2}}{2}=\frac{k-4}{2}$ The y－coordinate of the mid－point of $A B$ $\begin{aligned} & =\frac{-(k-4)}{2}+k \\ & =\frac{k+4}{2} \end{aligned}$ Thus，the required coordinates are $\left(\frac{k-4}{2}, \frac{k+4}{2}\right)$ ．	1 M 1 M 1 M 1A 1A	for solving

18．（a）By sine formula，we have
$\frac{A P}{\sin \angle P B A}=\frac{A B}{\sin \angle A P B}$
$\frac{A P}{\sin 60^{\circ}}=\frac{20}{\sin \left(180^{\circ}-60^{\circ}-72^{\circ}\right)}$
$A P \approx 23.3 \mathrm{~cm}$
Thus，the length of $A P$ is 23.3 cm ．
（b）（i）Let S be the foot of the perpendicular from P to $A D$ ．

$$
P S
$$

$=A P \sin \angle P A D$
$\approx 23.30704256 \sin 72^{\circ}$
$\approx 22.1663147 \mathrm{~cm}$
AS
$=A P \cos \angle P A D$
$\approx 23.30704256 \cos 72^{\circ}$
$\approx 7.202272239 \mathrm{~cm}$
By sine formula，we have
$\frac{P B}{\sin \angle P A B}=\frac{A B}{\sin \angle A P B}$
$\frac{P B}{\sin 72^{\circ}}=\frac{20}{\sin \left(180^{\circ}-60^{\circ}-72^{\circ}\right)}$
$P B \approx 25.59545552 \mathrm{~cm}$
Let T be the foot of the perpendicular from P to $B C$ ．
$P T^{2}=P B^{2}-A S^{2}$
$P T^{2} \approx(25.59545552)^{2}-(7.202272239)^{2}$
$P T \approx 24.56124219 \mathrm{~cm}$
Note that $\alpha=\angle P T S$ ．
By cosine formula，we have
$\cos \alpha=\frac{P T^{2}+S T^{2}-P S^{2}}{2(P T)(S T)}$
$\cos \alpha \approx \frac{(24.56124219)^{2}+(20)^{2}-(22.1663147)^{2}}{2(24.56124219)(20)}$
25 258.59703733°
$\alpha \approx 58.6^{\circ}$
（ii）Let X be the projection of P on the base $A B C D$ ．
Then，we have $\beta=\angle P B X$ ．
Note that $P B>P T$ ．
$\sin \alpha$
$=\frac{P X}{P T}$
$>\frac{P X}{P B}$
$=\sin \angle P B X$
$=\sin \beta$
Since α and β are acute angles，α is greater than β ．

19．（a）（i）Note that $\left\{\begin{array}{l}a b^{2}=254100 \\ a b^{4}=307461\end{array}\right.$ ．
So，we have $b^{2}=\frac{307461}{254100}$ ．
Solving，we have $b=1.1$ and $a=210000$ ．
The required weight
$=(210000)\left(1.1^{(2)(4)}\right)$
$=450153.6501$ tonnes
（ii）The total weight of the goods
$=a b^{2}+a b^{4}+\cdots+a b^{2 n}$
$=\frac{a b^{2}\left(b^{2 n}-1\right)}{b^{2}-1}$
$=\frac{(210000)(1.1)^{2}\left((1.1)^{2 n}-1\right)}{1.1^{2}-1}$
$=1210000\left((1.1)^{2 n}-1\right)$ tonnes
（b）（i）Note that $\mathrm{A}(4)=450153.65>420000=2 a$ ．
Also note that $(1.1)^{2 m}>(1.1)^{m}$ for any positive integer m ．

$$
\mathrm{A}(m+4)
$$

$=(1.1)^{2 m} \mathrm{~A}(4)$
$>(1.1)^{2 m}(2 a)$
$>(1.1)^{m}(2 a)$
$=\mathrm{B}(m)$
Thus，the claim is agreed．
（ii）Let n be the number of years elapsed since the start of the operation of X ．

The total weight of the goods handled by Y
$=2 a b+2 a b^{2}+\cdots+2 a b^{n-4}$
$=\left(\frac{2 a b\left(b^{n-4}-1\right)}{b-1}\right)$ tonnes，where $n>4$
$1210000\left((1.1)^{2 n}-1\right)+\frac{420000(1.1)\left((1.1)^{n-4}-1\right)}{1.1-1}>20000000$
$121\left(1.1^{2 n}\right)+462\left(1.1^{n-4}\right)-2583>0$
$121\left(1.1^{4}\right)\left(1.1^{n}\right)^{2}+462\left(1.1^{n}\right)-2583\left(1.1^{4}\right)>0$
$1.1^{n}>3.496831134$ or $1.1^{n}<-6.10470069$（rejected）
$n \log 1.1>\log 3.496831134$
$n>13.13455888$
Note that n is an integer．
Thus，the new facilities should be installed in the 14th year since the start of the operation of X ．

Marks

1 M
$1 \mathrm{~A}+1 \mathrm{~A}$

1A

1M

1A
r．t． 450000 tonnes
1
1
f．t．
f．

