1995 HKCEE MATHS Paper II

1 Round off the number 0.044449 to 3 significant figures.
A. 0.04
B. 0.044
D. 0.0444
C. 0.045
E. 0.0445

2 If $\frac{x+y}{x y}=1$, then $y=$
A. $\frac{1-x}{x}$
B. $\frac{x-1}{x}$
D. $\frac{x}{x-1}$
C. $\frac{x}{1-x}$
E. $\frac{1-x}{1+x}$

3 If $f(x)=x^{99}+99 x+k$ is divisible by $x+1$, then $k=$
A. -100
B. -98
D. 100
C. 98
E. 198

4
Simplify $\left(\frac{a^{6}}{b^{12}}\right)^{-\frac{2}{3}}$
A. $\frac{b^{8}}{a^{4}}$
B. $\frac{b^{18}}{a^{9}}$
D. $\frac{a^{9}}{b^{18}}$
C. $\frac{a^{4}}{b^{8}}$
E. $\frac{1}{a^{4} b^{12}}$

5 $\frac{1}{2+\sqrt{6}}-\frac{1}{2-\sqrt{6}}=$
A. $-\sqrt{6}$
B. $-\frac{\sqrt{6}}{2}$
D. $\frac{\sqrt{6}}{2}$
C. 0
E. $\sqrt{6}$

6 The L.C.M. of $x^{3}-x$ and $x^{4}-1$ is
A. $x-1$
B. $(x-1)(x+1)$
C. $x(x-1)(x+1)\left(x^{2}+1\right)$
D. $(x-1)(x+1)\left(x^{2}+1\right)\left(x^{2}+x+1\right)$
E. $x(x-1)^{2}(x+1)^{2}\left(x^{2}+1\right)$

7
Solve the simultaneous equations: $\left\{\begin{array}{l}4 x-\frac{y}{3}=6 \\ 2 x+\frac{y}{6}=-1\end{array}\right.$
A. $x=-\frac{1}{2}, y=-12$
B. $x=-\frac{1}{2}, y=12$
D. $x=\frac{1}{2}, y=12$
C. $x=\frac{1}{2}, y=-12$
E. $x=\frac{5}{24}, y=-\frac{7}{2}$

8 Which of the following shaded regions represents the solution of $\left\{\begin{array}{l}y \geq 0 \\ x-y \geq-3 \\ x+2 y \leq 0\end{array}\right.$
A. I
B. II
C. III
D. IV
E. V

9 Find the values of x which satisfy both $-x<4$ and $\frac{2 x-16}{3}>-2$
A. $-4<x<5$
B. $x<-4$
D. $x<5$
C. $x>-4$
E. $\quad x>5$

10 If $3 x^{2}+6 x+1 \equiv 3(x+b)^{2}+c$, then $c=$
A. -8
B. -2
D. $\frac{1}{3}$
C. 0
E. 1
$11 x$ and y are two variables. The table below shows some values of x and their corresponding values of y.

x	2	3	6	12
y	36	16	4	1

Which of the following may be a relation between x and y ?
A. $x \propto \sqrt{y}$
B. $x \propto y$
D. $x \propto \frac{1}{y}$
C. $x \propto \frac{1}{\sqrt{y}}$
E. $\quad x \propto \frac{1}{y^{2}}$

12 If $125^{x}=25^{y}$ and x, y are non-zero, find $x: y$.
A. $1: 25$
B. $1: 5$
D. $3: 2$
C. $2: 3$
E. 5:1

13 Find the interest on $\$ P$ at $r \%$ p.a. for n years, compounded half-yearly.
A. $\$ P(1+2 r \%)^{n}-\$ P$
B. $\$ P(1+r \%)^{n}-\$ P$
C. $\$ P(1+r \%)^{2 n}-\$ P$
D. $\$ P\left(1+\frac{r}{2} \%\right)^{n}-\$ P$
E. $\$ P\left(1+\frac{r}{2} \%\right)^{2 n}-\$ P$

14 In the figure, $A B C D$ is a trapezium. Find its area.

A. $36 \mathrm{~cm}^{2}$
B. $45 \mathrm{~cm}^{2}$
D. $72 \mathrm{~cm}^{2}$
C. $48 \mathrm{~cm}^{2}$
E. $90 \mathrm{~cm}^{2}$

15 In the figure, the solid consists of a cylinder and a right circular cone with a common base which is a circle of radius 3 cm . The height of the cylinder is 10 cm and the slant height of the cone is 5 cm . Find the total surface area of the solid.
A. $75 \pi \mathrm{~cm}^{2}$
B. $84 \pi \mathrm{~cm}^{2}$
C. $93 \pi \mathrm{~cm}^{2}$
D. $105 \pi \mathrm{~cm}^{2}$
E. $114 \pi \mathrm{~cm}^{2}$

$16 \frac{\cos ^{2} \theta}{1+\sin \theta}-1=$
A. $-\sin \theta$
B. $\sin \theta$
D. $-\frac{\sin \theta(1-\sin \theta)}{1+\sin \theta}$
C. $\sin \theta-2$
E. $\frac{\sin \theta(1-\sin \theta)}{1+\sin \theta}$

17 If $0<x<2 \pi$, solve $\sin x=\frac{1}{3}$ correct to 3 significant figures.
A. 0.327 or 2.81
B. 0.327 or 3.47
D.0.340 or 3.48
C. 0.340 or 2.80
E. 0.340 or 5.94

18 The greatest value of $\frac{1}{2^{1-\sin x}}$ is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
D. 2
C. 1
E. 4

19 According to the figure, which of the following must be true?

A. $a^{2}=b^{2}+c^{2}-\sqrt{3} b c$
B. $a^{2}=b^{2}+c^{2}-b c$
C. $a^{2}=b^{2}+c^{2}+\frac{\sqrt{3}}{2} b c$
D. $a^{2}=b^{2}+c^{2}+b c$
E. $a^{2}=b^{2}+c^{2}+\sqrt{3} b c$

20 In the figure, the bearing of B from A is
A. 015°
B. 045°
C. 075°
D. 165°
E. 345°

21 In the figure, $B D C$ is a straight line. Arrange $A D$, $B D$ and $D C$ in ascending order of magnitude.

A. $A D<B D<D C$
B. $A D<D C<B D$
C. $D C<A D<B D$
D. $D C<B D<A D$
E. $B D<A D<D C$

22 In the figure, $A B C D$ is a semicircle. $\angle C A D=$
A. 25°
B. 40°
C. 45°
D. 50°

E. 65°

23 In the figure, O is the center of the circle, $P O Q R$ is a straight line. $T R$ is the tangent to the circle at $T . \angle P R T=$
A. 20°
B. 35°
C. 45°
D. 50°
E. 70°

24 In the figure, $A B C D$ is a cyclic quadrilateral. If $\angle D A B=110^{\circ}$ and $B C=B D$, find $\angle D A C$.
A. 20°
B. 35°
C. 40°
D. 55°
E. 70°

27 In the figure, the equation of the straight

25 In the figure, $A B=A C$ and $A D=A E . \angle D A C=$
A. 45°
B. 50°
C. 55°
D. 60°
E. 65°

26 In the figure, $\angle A D E=\angle A C B$. Find x.

A. 4
B. 8
D. 12
C. 10
E. 16
line L is

A. $x-3=0$
B. $x-y-3=0$
C. $x-y+3=0$
D. $x+y-3=0$
E. $x+y+3=0$

28 In the figure, $O A=A B$. If the slope of $A B$ is m, find the slope of $O A$.
A. -1
B. $\frac{1}{m}$
C. $-\frac{1}{m}$

D. m
E. $-m$

29 The table below shows the centers and radii of two circles C_{1} and C_{2}.

	Center	Radius
C_{1}	$(2,2)$	3
C_{2}	$(5,-2)$	2

Which of the following may represent the relative positions of C_{1} and C_{2} ?
A.

13.

30 In the figure, the equation of the circle is

A. $x^{2}+y^{2}-5=0$
B. $x^{2}+y^{2}-2 x+y=0$
C. $x^{2}+y^{2}+2 x-y=0$
D. $x^{2}+y^{2}-4 x+2 y=0$
E. $x^{2}+y^{2}+4 x-2 y=0$

31 In a shooting game, the probability that A will hit

c.

a target is $\frac{3}{5}$ and the probability that B will hit it is $\frac{2}{3}$. If each fires once, what is the probability that they will both miss the target?
A. $\frac{1}{3}$
B. $\frac{1}{4}$
D. $\frac{2}{15}$
C. $\frac{2}{5}$
E. $\frac{11}{15}$

32 The figure shows that Mr. Chan has 3 ways to leave town X and Mr. Lee has 2 ways to leave town Y. Mr. Chan and Mr. Lee leave town X and town Y respectively at the same time. If they select their ways randomly, find the probability that they will meet on their way.

A. $\frac{1}{2}$
B. $\frac{1}{3}$
D. $\frac{1}{6}$
C. $\frac{2}{3}$
E. $\frac{5}{6}$

33 The mean of a set of 9 numbers is 12 . If the mean of the first 5 numbers is 8 , the mean of the other four numbers is
A. 4
B. 10
D. 17
C. 16
E. 25

34 The figure shows the frequency curves of two symmetric distributions A and B. Which of the following is/are true?

I. The mean of $A=$ the mean of B.
II.The inter-quartile range of $A>$ the inter-quartile range of B.
III.The standard deviation of $A>$ the standard deviation of B.
A. I only.
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

35
If $f(x)=\frac{x}{1-x}$, then $f\left(\frac{1}{x}\right) f(-x)=$
A. $-\frac{1}{2}$
B. -1
D. $\frac{x}{1-x^{2}}$
C. $-\frac{1-x}{1+x}$
E. $\frac{x}{x^{2}-1}$

36 Factorize $2 a^{n+1}-7 a^{n}-30 a^{n-1}$.
A. $\left(a^{n}-6\right)(2 a+5)$
B. $a^{n}(a+6)(2 a-5)$
C. $a^{n}(a-6)(2 a+5)$
D. $a^{n-1}(a+6)(2 a-5)$
E. $a^{n-1}(a-6)(2 a+5)$

37
Simplify $\frac{\left(\frac{y}{x}-1\right)\left(1-\frac{x}{y}\right)}{\frac{x}{y}-\frac{y}{x}}$.
A. $\frac{x-y}{x+y}$
B. $-\frac{x-y}{x+y}$
D. $-\frac{x+y}{x-y}$
C. $\frac{x+y}{x-y}$
E. -1

38 If $5^{a}=2^{b}=10^{c}$ and a, b, c are non-zero, then $\frac{c}{a}+\frac{c}{b}=$
A. $\frac{7}{10}$
B. 1
D. $\log 7$
C. 7
E. $\frac{1}{\log 2}+\frac{1}{\log 5}$

39 If α, β are the roots of the equation $x^{2}-4 x-3=0$, then $\alpha^{2}+\alpha \beta+\beta^{2}=$
A. -13
B. 5
D. 16
C. 13
E. 19

40 Find the range of values of k such that the equation $x^{2}+(k-2) x+1=0$ has real roots.
A. $k=4$
B. $0<k<4$
D. $k<0$ or $k>4$
C. $0 \leq k \leq 4$
E. $k \leq 0$ or $k \geq 4$

41 Which of the following may represent the graph of $y=-x^{2}+3 x+10$.

E.

first 2 terms is 3 and the sum of the first 3 terms is 2 . The common difference is
A. $-\frac{5}{3}$
B. -1
D. $\frac{5}{3}$
C. 1
E. $\frac{7}{3}$

43 If the geometric mean of two positive numbers a and b is 10 , then $\log a+\log b=$
A. $\frac{1}{2}$
B. 1
D. 10
C. 2
E. 100

44 The marked price of a toy is $\$ 120$ and the percentage profit is 60%. If the toy is sold at a discount of 20%, the profit is
A. $\quad \$ 14.40$
B. $\$ 21.00$
D. $\$ 33.60$
C. $\$ 24.00$
E. $\$ 48.00$

45 In the figure, O is the center of the circle. Find the area of the major segment $A B C$.
A. $\frac{\pi}{4} r^{2}$
B. $\frac{3 \pi}{4} r^{2}$
C. $\left(\frac{\pi}{4}-\frac{1}{2}\right) r^{2}$
D. $\left(\frac{3 \pi}{4}-\frac{1}{2}\right) r^{2}$

E. $\left(\frac{3 \pi}{4}+\frac{1}{2}\right) r^{2}$

46 In the figure, C_{1} and C_{2} are two circles. If area of region I : area of region II : area of region III $=2: 1: 3$,
then radius of $C_{1}:$ radius $C_{2}=$
A. $9: 16$
B. $2: 3$
C. $3: 4$
D. $\sqrt{2}: \sqrt{3}$
E. $\sqrt{3}: 2$

47 In the figure, $D E=D B, A C=13$ and $B C=5$. Area of $\triangle A D E$: Area of $\triangle A C B=$
A. $64: 169$
B. $5: 13$
C. $4: 9$
D. $8: 13$

48 In the figure, a solid wooden sphere of radius 3 cm is to be cut into a cube of side $x \mathrm{~cm}$. Find the largest possible value of x.

A. $3 \sqrt{2}$
B. $2 \sqrt{3}$
D. $\frac{3}{2} \sqrt{2}$
C. 3
E. $\sqrt{3}$

49 If $0^{\circ} \leq x \leq 360^{\circ}$, the number of points of intersection of the graphs $y=\sin x$ and $y=\tan x$ is
A. 1
B. 2
D. 4
C. 3
E. 5

50 The figure shows the graph of the function
A. $y=\cos \frac{x^{\circ}}{2}$
B. $y=\frac{1}{2} \cos x^{\circ}$
C. $y=\cos x^{\circ}$
D. $y=2 \cos x^{\circ}$
E. $y=\cos 2 x^{\circ}$

51 In the figure, $A B C D E F G H$ is a cuboid. $\tan \theta=$

A. $\frac{1}{3}$
B. $\frac{1}{\sqrt{3}}$
C. 1
D. $\sqrt{3}$
E. 3

52 In the figure, $P B$ touches the semicircle $A D B$ at B. $P D=$
A. $\frac{d}{2 \cos \theta}$
B. $d \sin \theta \tan \theta$
C. $\frac{d}{\sin \theta \tan \theta}$
D. $\frac{d \cos \theta}{\tan \theta}$

E. $\frac{d \tan \theta}{\cos \theta}$

54 According to the figure, which of the following must be true?

A. $a+b=c+d$
B. $a+d=b+c$
C. $a+b+c+d=360^{\circ}$
D. $a+b+c+d=540^{\circ}$
E. $2 a+2 b-c-d=720^{\circ}$

