1994 HKCEE MATHS Paper II

1 If $f(x)=x^{2}+2 x$, then $f(x-1)=$
A. x^{2}
B. $x^{2}-1$
D. $x^{2}+2 x-3$
C. $x^{2}+2 x-1$
E. $x^{2}+4 x-1$

2 If $y=\frac{2 x-1}{x+2}$, then $x=$
A. $\frac{1+3 y}{2}$
B. $\frac{1+2 y}{2+y}$
D. $\frac{1-2 y}{2+y}$
C. $\frac{1+2 y}{2-y}$
E. $\frac{1-2 y}{2-y}$

3 The L.C.M. of $(x-1)^{2}, x^{2}-1$ and $x^{3}-1$ is
A. $x-1$
B. $(x-1)^{4}(x+1)\left(x^{2}+x+1\right)$
C. $(x-1)^{2}(x+1)\left(x^{2}+x+1\right)$
D. $(x-1)^{2}(x+1)\left(x^{2}-x+1\right)$
E. $(x-1)(x+1)\left(x^{2}+x+1\right)$

If $a=\sqrt{3}+\sqrt{2}$, then $a-\frac{1}{a}=$
A. 0
B. $2 \sqrt{2}$
D. $\sqrt{3}-\sqrt{2}$
C. $2 \sqrt{3}$
E. $\frac{2 \sqrt{3}}{3}+\frac{\sqrt{2}}{2}$

5 In the figure, (x, y) is a point in the shaded region (including the boundary) and x, y are integers.
Find the greatest value of $3 x+y$.
A. 7
B. 8
C. 9.2
D. 10
E. 10.5

6 If $x(x+1)<5(x+1)$, then
A. $x<5$
B. $x<-5$ or $x>1$
C. $x<-1$ or $x>5$
D. $-5<x<1$
E. $-1<x<5$

7 Which of the following is/are an identity /identities?
I. $(x+2)(x-2)=x^{2}-4$
II. $(x+2)(x-2)=0$
III. $(x+2)^{3}=x^{3}+8$
A. I only
B. II only
D. I and III only
C. III only
E. II and III only

8 If $\alpha \neq \beta$ and $\left\{\begin{array}{l}3 \alpha^{2}-h \alpha-b=0 \\ 3 \beta^{2}-h \beta-b=0\end{array}\right.$, then $\alpha+\beta=$
A. $-\frac{b}{3}$
B. $\frac{b}{3}$
D. $-\frac{h}{3}$
C. h
E. $\frac{h}{3}$

9 Mr. Chan bought a car for $\$ 143900$. If the value of the car goes down by 10% each year, find its value at the end of the third year. (Give your answer correct to the nearest hundred dollars.)
A. $\$ 94400$
B. $\$ 100700$
C. $\$ 104900$
D. $\$ 115100$
E. $\$ 116600$

10 A wholesaler sells an article to a retailer at a profit of 20%. The retailer sells it to a customer for $\$ 3600$ at a profit of $\$ 720$. Find the original cost of the article to the wholesaler.
A. $\$ 2304$
B. $\$ 2400$
D. $\$ 3000$
C. $\$ 2880$
E. $\$ 3456$

11 The bearing of A from B is 075°. What is the bearing of B from A ?
A. 015°
B. 075°
D. 195°
C. 105°
E. 255°

12 If the sum to infinity of a G.S. is $\frac{81}{4}$ and its second term is -9 , the common ratio is
A. $-\frac{1}{3}$
B. $\frac{1}{3}$
D. $\frac{4}{3}$
C. $-\frac{4}{3}$
E. $-\frac{4}{9}$

13 In the figure, the paper cup in the form of a circular cone contains 10 ml of water. How many ml of water must be added to fill up the paper cup?
A. 20
B. 80
C. 90
D. 260
E. 270

14 In the figure, $A B C D$ is a rectangular field of length p metres and width q metres. The path around the field is of width 2 metres. Find the area of the path.
A. $(4 p+4 q) \mathrm{m}^{2}$
B. $(2 p+2 q+4) \mathrm{m}^{2}$
C. $(2 p+2 q+16) \mathrm{m}^{2}$

D. $(4 p+4 q+16) \mathrm{m}^{2}$
E. $(p q+4 p+4 q+16) \mathrm{m}^{2}$

15 In the figure, $O A C B$ is a sector of radius r. If $\angle A O B=\frac{\pi}{3}$, find the area of the shaded part.
A. $\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right) r^{2}$
B. $\left(\frac{\pi}{6}-\frac{1}{4}\right) r^{2}$
C. $\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) r^{2}$

D. $\left(\frac{\pi}{3}-\frac{1}{2}\right) r^{2}$
E. $\frac{\pi}{3} r-\frac{\sqrt{3}}{4} r^{2}$
$16 \frac{\cos \theta}{\sin \theta+1}-\frac{\cos \theta}{\sin \theta-1}=$
A. $\frac{2}{\cos \theta}$
B. $-\frac{2}{\cos \theta}$
D. $2 \tan \theta$
C. 0
E. $-2 \tan \theta$

17 Which of the following figures shows the graph of $v=1+\sin x$?

B.

D.

$18 \frac{\sin \left(180^{\circ}+\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=$
A. $\tan \theta$

19 In the figure, $A B C D$ is a cyclic quadrilateral with $A B=5, B C=2$ and $\angle A D C=120^{\circ}$. Find $A C$.
A. $\sqrt{19}$
B. $\sqrt{21}$
C. $2 \sqrt{6}$
D. $\sqrt{34}$
E. $\sqrt{39}$

20 In the figure, $P C$ is a vertical pole standing on the horizontal plane $A B C$. If $\angle A B C=90^{\circ}$, $\angle B A C=30^{\circ}, A C=6$ and $P C=5$, find $\tan \theta$.
A. $\frac{3}{5}$
B. $\frac{5}{6}$
C. $\frac{5}{3}$
D. $\frac{3 \sqrt{3}}{5}$

E. $\frac{5 \sqrt{3}}{9}$

21 In the figure, O is the center of the circle. If $A C=3$ and $\angle B A C=\frac{\pi}{6}$, find the diameter $A B$.
A. $\frac{3}{2}$
B. 6
C. $\frac{3 \sqrt{3}}{2}$

D. $2 \sqrt{3}$
E. $3 \sqrt{3}$

22 In the figure, $P A$ is tangent to the circle at A, $\angle C A P=28^{\circ}$ and $B A=B C$. Find x.
A. 28°
B. 48°
C. 56°
D. 62°
E. 76°

23 In the figure, O is the center of the inscribed circle of $\triangle A B C$. If $\angle O A C=30^{\circ}$ and $\angle O C A=25^{\circ}$, find $\angle A B C$.
A. 50°
B. 55°
C. 60°
D. 62.5°
E. 70°

24 In the figure, $A B=A D$ and $B C=C D$. If $\angle B A D=80^{\circ}$ and $\angle A D C=65^{\circ}$, then $\angle B C D=$
A. 100°
B. 130°
C. 145°
D. 150°
E. 160°

25 In the figure, x, y and z are the exterior angles of $\triangle A B C$. If $x: y: z=4: 5: 6$, then $\angle B A C=$
A. 48°
B. 84°
C. 96°
D. 120°
E. 132°

26 The points $A(4,-1), B(-2,3)$ and $C(x, 5)$ lie on a straight line. Find x.
A. -5
B. -4
D. 2
C. 0
E. 3

27 In the figure, the shaded part is bounded by the axes, the lines $x=3$ and $x+y=5$. Find its area.
A. 10.5
B. 12
C. 15
D. 19.5
E. 21

$28 A B$ is a diameter of the circle $x^{2}+y^{2}-2 x-2 y-18=0$. If A is $(3,5)$, then B is A. $(2,3)$
B. $(1,-1)$
C. $(-1,-3)$
D. $(-5,-7)$
E. $(-7,-9)$

29 The equations of two circles $\operatorname{are}\left\{\begin{array}{l}x^{2}+y^{2}-4 x-6 y=0 \\ x^{2}+y^{2}+4 x+6 y=0\end{array}\right.$

Which of the following is/are true ?
I. The two circles have the same center.
II. The two circles have equal radii.
III. The two circles pass through the origin.
A. I only
B. II only
D. I and III only
C. III only
E. II and III only

30 In the figure, the pie chart shows the monthly expenditure of a family. If the family spends $\$ 4800$ monthly on rent, what is the monthly expenditure on entertainment?
A. $\$ 240$
B. $\$ 600$
C. $\$ 720$
D. $\$ 1800$
E. $\$ 12000$

Monthly Expenditure of a Family
31 A box contains 5 eggs, 2 of which are rotten. If 2 eggs are chosen at random, find the probability that exactly one of them is rotten.
A. $\frac{2}{5}$
B. $\frac{3}{5}$
D. $\frac{6}{25}$
A. $(a-b)(a-b-1)$
B. $(a-b)(a-b+1)$
C. $(a-b)(a+b-1)$
D. $(a+b)(a-b+1)$
E. $(a-b-1)^{2}$

36

$$
\frac{\frac{2}{x}-\frac{1}{y}}{\frac{4 y}{x}-\frac{x}{y}}=
$$

A. $2 y-x$
B. $2 y+x$
D. $\frac{1}{2 y+x}$
C. $\frac{1}{2 y-x}$
E. $\frac{1}{4 y-x}$
$37 P(x)$ is a polynomial. When $P(x)$ is divided by $(5 x-2)$, the remainder is R. If $P(x)$ is divided by $(2-5 x)$, then the remainder is
A. R
B. $-R$
D. $\frac{2}{5}$
C. $\frac{2}{5} R$
E. $-\frac{2}{5}$

38 In the figure, the line $y=m x+k$ cuts the curve $y=x^{2}+b x+c$ at $x=\alpha$ and $x=\beta$. Find the value of $\alpha \beta$.
A. $-b$
B. c
C. $m-b$
D. $k-c$
E. $c-k$

39 If $x=3, y=2$ satisfy the simultaneous equations $\left\{\begin{array}{l}a x+b y=2 \\ b x-a y=3\end{array}\right.$, find the values of a and b.
A. $\quad a=0, \quad b=1$
B. $a=0, b=-1$
C. $a=\frac{5}{6}, b=-\frac{1}{4}$
D. $a=-\frac{1}{13}, b=\frac{37}{39}$
E. $a=-\frac{12}{13}, b=\frac{5}{13}$

40 From the table, which of the following intervals must contain a root of $f(x)-x=0$?

x	$f(x)$
-2	1.2
-1	0.8
0	0.7
1	0.2
2	-0.1
3	0.8

A. $-2<x<-1$
B. $-1<x<0$
D. $1<x<2$
C. $0<x<1$
E. $2<x<3$

41 If the product of the first n terms of the sequence $10,10^{2}, 10^{3}, \ldots, 10^{n}$ exceeds 10^{55}, find the minimum value of n.
A. 9
B. 10
D. 12
C. 11
E. 56

42 If $a: b=2: 3, a: c=3: 4$ and $a: d=4: 5$, then $b: c: d=$
A. $2: 3: 4$
B. $3: 4: 5$
D. $18: 16: 15$
C. $3: 6: 10$
E. $40: 45: 48$

43 Let x vary inversely as \sqrt{y}. If y is increased by 69%, then x will be
A. increased by 23.1% (3 sig. fig.)
B. increased by 30%
C. decreased by $23.1 \%(3 \mathrm{sig}$. fig.)
D. decreased by 30%
E. decreased by $76.9 \%(3 \mathrm{sig}$. Fig)

44 In the figure, $C D E F$ is a sector of a circle which touches $A B$ at E. If $A B=25$ and $B C=15$, find the radius of the sector.

A. 9
B. 10
D. 12
C. 11.25
E. $\quad 12.5$

In the figure, $A D: D B=1: 2, A E: E C=3: 2$.

Area of $\triangle B D E$: Area of $\triangle A B C=$

48 The largest value of $(3 \cos 2 \theta-1)^{2}+1$ is
A. 2
B. 5
C. 17
D. 26
E. 50

49 In the figure, $\sin A: \sin B: \sin C=4: 5: 6$.

If $A B=8$, find $A C$.
A. $5 \frac{1}{3}$
B. $6 \frac{2}{3}$

C. $9 \frac{3}{5}$
D. 10
E. 12

50 In the figure, $A B=p, \angle A C B=\theta$. Find $C D$.
A. $p \sin \theta$
B. $p \cos \theta$
C. $\frac{p \sin \theta}{\cos ^{2} \theta}$
D. $\frac{p \sin ^{2} \theta}{\cos \theta}$

E. $\frac{p \cos ^{2} \theta}{\sin \theta}$

51 In the figure, $A B C D$ is a semi-circle, $C D E$ and $B A E$ are straight lines. If $\angle \mathrm{CBD}=30^{\circ}$ and $\angle D E A=22^{\circ}$, find x.

52 In the figure, $O A B C D$ is a sector of a circle. If $\widehat{A B}=\overparen{B C}=\overparen{C D}$, then $x=$
A. 105°
B. 120°
C. 135°
D. 144°
E. 150°

53 In the figure, $\mathrm{AB} / / \mathrm{DC}$ and $\angle D A B=\angle D B C$.
Which of the following is/are true?

I. $\frac{A B}{B D}=\frac{B D}{D C}$
II. $\frac{A B}{B D}=\frac{A D}{B C}$
III. $\frac{A D}{B D}=\frac{B D}{C D}$
A. I only
B. II only
D. I and II only
C. III only
E. II and III only

