## 1993 HKCEE MATHS Paper II

1 If $f(x)=10^{2 x}$, then $f(4 y)=$
A. $10^{4 y}$
B. $10^{2+4 y}$
D. $40^{y}$
C. $10^{8 y}$
E. $40^{2 y}$

2
If $s=\frac{n}{2}[2 a+(n-1) d]$, then $d=$
A. $\frac{2(s-a n)}{n(n-1)}$
B. $\frac{2(s-a n)}{n-1}$
D. $\frac{a s-n}{a(n-1)}$
C. $\frac{s}{n(n-1)}$
E. $\frac{4(s-a n)}{n(n-1)}$

3 Simplify $\left(x^{2}-\sqrt{3} x+1\right)\left(x^{2}+\sqrt{3} x+1\right)$
A. $x^{4}+1$
B. $x^{4}-x^{2}+1$
C. $x^{4}+x^{2}+1$
D. $x^{4}-3 x^{2}-2 \sqrt{3} x-1$
E. $x^{4}+\sqrt{3} x^{3}-2 \sqrt{3} x^{2}+\sqrt{3} x+1$

4 Simplify $\frac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}$.
A. $\frac{1}{\sqrt{a}-\sqrt{b}}$
B. $\frac{a+2 \sqrt{a b}-b}{a-b}$
D. $\frac{b+2 \sqrt{a b}-a}{a-b}$
C. $\frac{\sqrt{b}+\sqrt{a}}{2 \sqrt{a}}$
E. $\frac{a+b}{a-b}$

5 If $3 x^{2}+a x-5 \equiv(b x-1)(2-x)-3$, then
A. $a=-5, b=-3$
B. $a=-5, b=3$
C. $a=-3, b=-5$
D. $a=5, b=-3$
E. $\quad a=3, b=5$

6 Find the greatest value of $3 x+2 y$ if $(x, y)$ is a point lying in the region $O A B C D$ (including the boundary).
A. 15
B. 13
C. 12
D. 9
E. 8


7 The diagram shows the graphs of $y=a x^{2}+b x$ and $y=c x+d$. The solutions of the equation $a x^{2}+b x=c x+d$ are
A. $-1,1$
B. $-1,2$
C. 0,1
D. 0,3
E. 1,3


8 If $\log (p+q)=\log p+\log q$, then
A. $p=q=1$
B. $p=\frac{q}{q-1}$
D. $p=\frac{q+1}{q}$
C. $p=\frac{q}{q+1}$
E. $p=\frac{q-1}{q}$

9 The expression $x^{2}-2 x+k$ is divisible by $(x+1)$. Find the remainder when it is divided by $(x+3)$.
A. 1
B. 4
D. 16
C. 12
E. 18

10 If 3, $a, b, c, 23$ are in A.S., then $a+b+c=$
A. 13
B. 26
D. 39
C. 33
E. 65

11 Find the H.C.F. and L.C.M. of $a b^{2} c$ and $a b c^{3}$
H.C.F. L.C.M.
A. $a$
$a^{2} b^{3} c^{4}$
B. $a b c$
$a b^{2} c^{3}$
C. $a b c$ $a^{2} b^{3} c^{4}$
D. $a b^{2} c^{3} \quad a b c$
E. $a^{2} b^{3} c^{4} \quad a b c$

12 If $\alpha$ and $\beta$ are the roots of the quadratic equation $x^{2}-3 x-1=0$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
A. -3
B. -1
D. $\frac{2}{3}$
C. $-\frac{1}{3}$
E. 3

13 If the simultaneous equations $\left\{\begin{array}{l}y=x^{2}-k \\ y=x\end{array}\right.$ have only one solution, find $k$.
A. -1
B. $-\frac{1}{4}$
D. $\frac{1}{4}$
C. -4
E. 1

14 The price of a cylindrical cake of radius $r$ and height $h$ varies directly as the volume. If $r$ $=5 \mathrm{~cm}$ and $h=4 \mathrm{~cm}$, the price is $\$ 30$. Find the price when $r=4 \mathrm{~cm}$ and $h=6 \mathrm{~cm}$.
A. $\$ 25$
B. $\$ 28.80$
C. $\$ 31.50$
D. $\$ 36$
E. $\$ 54$

A. $1: 3$
B. $2: 3$
C. $3: 4$
D. $3: 2$

17 The figure shows a solid consisting of a cylinder of height $h$ and a hemisphere of radius $r$. The area of the curved surface of the cylinder is twice that of the hemisphere. Find the ratio volume of cylinder : volume of hemisphere.

E. $3: 1$

18 A merchant marks his goods $25 \%$ above the cost. He allows $10 \%$ discount on the marked price for a cash sale. Find the percentage profit the merchant makes for a cash sale
A. $12.5 \%$
B. $15 \%$
D. $35 \%$
C. $22.5 \%$
E. $37.5 \%$
$19 \frac{\cos \theta}{1-\sin ^{2} \theta} \times \frac{1-\cos ^{2} \theta}{\sin \theta}=$
A. $\sin \theta$
B. $\cos \theta$
D. $\frac{1}{\sin \theta}$
C. $\tan \theta$
E. $\frac{1}{\cos \theta}$
$20 \cos ^{4} \theta-\sin ^{4} \theta+2 \sin ^{2} \theta=$
A. 0
D. $\left(1-\cos ^{2} \theta\right)^{2}$
C. $\left(1-\sin ^{2} \theta\right)^{2}$
E. $\left(\cos ^{2} \theta-\sin ^{2} \theta\right)^{2}$

21 In the figure, $\cos A=-\frac{4}{5}$. Find $a$.
A. $\sqrt{153}$
B. $\sqrt{137}$
C. $\sqrt{89}$
D. $\sqrt{41}$
E. $\sqrt{25}$


22 The largest value of $3 \sin ^{2} \theta+2 \cos ^{2} \theta-1$ is
A. 1
B. $\frac{3}{2}$
C. $120^{\circ}$
D. 3
D. $135^{\circ}$
E. $140^{\circ}$

23 In the figure, $A B=B C, B P=C P$ and $B P \perp C P$. Find $\tan \theta$.
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{3}}$

E. $\frac{\sqrt{3}}{2}$

24 In the figure, points $A, B, C$ and $D$ are concyclic. Find $x$.
A. $20^{\circ}$
B. $22.5^{\circ}$
C. $25^{\circ}$
D. $27.5^{\circ}$
E. $30^{\circ}$


25 In the figure, $B A / / D E$ and $A C=A D$. Find $\theta$.
A. $34^{\circ}$
B. $54^{\circ}$
C. $70^{\circ}$
D. $72^{\circ}$
E. $76^{\circ}$


26 In the figure, $A B$ is a diameter. Find $\angle A D C$.
A. $100^{\circ}$
B. $110^{\circ}$


27 If the point $(1,1),(3,2)$ and $(7, k)$ are on the same straight line, then $k=$
A. 3
B. 4
C. 6
D. 7
E. 10
$28 A(0,0), B(5,0)$ and $C(2,6)$ are the vertices of a triangle. $\mathrm{P}(9,5), Q(6,6)$ and $R(2,-9)$ are three points. Which of the following triangles has/have area(s) greater than the area of $\triangle A B C$ ?
I. $\triangle A B P$
II. $\triangle A B Q$
III. $\triangle A B R$
A. I only
B. II only
D. I and II only
C. III only
E. II and III only

29 A circle of radius 1 touches both the positive $x$-axis and the positive $y$-axis. Which of the following is/are true?
I. Its center is in the first quadrant.
II. Its center lies on the line $x-y=0$.
III. Its center lies on the line $x+y=1$.
A. I only
B. II only
D. I and II only
C. III only
E. I and III only

30 What is the area of the circle $x^{2}+y^{2}-10 x+6 y-2=0 ?$
A. $32 \pi$
B. $34 \pi$
D. $134 \pi$

31 Two fair dice are thrown. What is the probability of getting a total of 5 or 10 ?
A. $\frac{1}{9}$
B. $\frac{5}{36}$
C. $\frac{1}{6}$
D. $\frac{7}{36}$
E. $\frac{2}{9}$

32 A group of $n$ numbers has mean $m$. If the numbers 1,2 and 6 are removed from the group, the mean of the remaining $n-3$ numbers remains unchanged. Find $m$.
A. 1
B. 2
D. 6
C. 3
E. $n-3$


The figure shows the frequency polygons of two symmetric distributions $A$ and $B$ with the same mean. Which of the following is/are true?
I. Interquartile range of $A<$ Interquartile range of $B$
II. Standard deviation of $\mathrm{A}>$ Standard deviation of $B$ III. Mode of $A>$ Mode of $B$
A. I only
B. II only
D. I and III only
C. III only
E. II and III only

34 If $9^{x+2}=36$, then $3^{x}=$
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. 2
D. $\sqrt{6}$
E. 9

35 If $a: b=2: 3$ and $b: c=5: 3$, then $\frac{a+b+c}{a-b+c}=$
A. -2
B. $\frac{5}{2}$
D. $\frac{17}{2}$
C. 4
E. 31

36

| $x$ | Sign of $f(x)$ |
| :---: | :---: |
| 3.56 | + |
| 3.58 | - |
| 3.57 | + |
| 3.575 | + |

From the table, a root of the equation $f(x)=0$ is
A. 3.57 (correct to 3 sig.fig.).
B. 3.575 (correct to 4 sig.fig.).
C. 3.5775 (correct to 5 sig.fig.).
D. 3.5725 (correct to 4 sig.fig.).
E. 3.58 (correct to 3 sig.fig.).

37 Given that the positive numbers $p, q, r, s$ are in G.S., which of the following must be true?
I. $k p, k q, k r, k s$ are in G.S., where $k$ is a non-zero constant.
II. $a^{p}, a^{q}, a^{r}, a^{s}$ are in G.S., where $a$ is a positive constant.
III. $\log p, \log q, \log r, \log s$ are in A.S.
A. I only
B. II only

38 In the figure, the rectangle has perimeter 16 cm and area $15 \mathrm{~cm}^{2}$. Find the length of its diagonal AC.
A. $\sqrt{32} \mathrm{~cm}$
B. $\sqrt{34} \mathrm{~cm}$
C. 7 cm
D. $\sqrt{226} \mathrm{~cm}$

E. $\sqrt{241} \mathrm{~cm}$

39 In factorizing the expression $a^{4}+a^{2} b^{2}+b^{4}$, we find that
A. $\left(a^{2}-b^{2}\right)$ is a factor.
B. $\left(a^{2}+b^{2}\right)$ is a factor.
C. $\left(a^{2}-a b-b^{2}\right)$ is a factor.
D. $\left(a^{2}-a b+b^{2}\right)$ is a factor.
E. it cannot be factorized.

40 If the solution of the inequality $x^{2}-a x+6 \leq 0$ is $c \leq x \leq 3$, then
A. $a=5, c=2$
B. $a=-5, c=2$
C. $a=5, c=-2$
D. $\quad a=1, c=-2$
E. $\quad a=-1, c=2$

41 In the figure, $A B C D$ is a square and $A B E$ is an equilateral triangle. $\frac{\text { Area of } A B E}{\text { Area of } A B C D}=$
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{\sqrt{3}}{8}$

D. $\frac{\sqrt{3}}{4}$
E. $\frac{\sqrt{3}}{2}$

42 In the figure, the radii of the sectors $O P Q$ and ORS are 5 cm and 3 cm respectively, $\frac{\text { Area of shaded region }}{\text { Area of sector } O P Q}=$
A. $\frac{4}{25}$
B. $\frac{2}{5}$
C. $\frac{9}{25}$

D. $\frac{16}{25}$
E. $\frac{21}{25}$

43 Which of the following gives the compound interest on $\$ 10000$ at $6 \%$ p.a. for one year, compounded monthly?
A. $\$ 10000 \times \frac{0.06}{12} \times 12$
B. $\$ 10000\left(1.06^{12}-1\right)$
C. $\$ 10000\left(1+\frac{0.06}{12}\right)^{12}$
D. $\$ 10000\left[\left(1+\frac{0.06}{12}\right)^{12}-1\right]$
E. $\quad \$ 10000\left[\left(1+\frac{0.6}{12}\right)^{12}-1\right]$

Originally $\frac{2}{3}$ of the students in a class failed in an examination. After taking a re-examination, $40 \%$ of the failed students passed. Find the total pass percentage of the class.

45 Solve $\tan ^{4} \theta+2 \tan ^{2} \theta-3=0$ for $0^{\circ} \leq \theta<360^{\circ}$.
A. $45^{\circ}, 135^{\circ}$ only
B. $45^{\circ}, 225^{\circ}$ only
C. $45^{\circ}, 60^{\circ}, 225^{\circ}, 240^{\circ}$
D. $45^{\circ}, 120^{\circ}, 225^{\circ}, 300^{\circ}$
E. $45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$

46 The figure shows the graph of the function

A. $y=\sin \left(350^{\circ}-x\right)$
B. $y=\sin \left(x+10^{\circ}\right)$
D. $y=\sin \left(x-10^{\circ}\right)$
C. $y=\cos \left(x+10^{\circ}\right)$
E. $y=\cos \left(x-10^{\circ}\right)$

47 In the figure, $A B C$ is an equilateral triangle and the radii of the three circles are each equal to 1. Find the perimeter of the triangle.
A. 12
B. $3\left(1+\tan 30^{\circ}\right)$
C. $6\left(1+\tan 30^{\circ}\right)$
D. $3\left(1+\frac{1}{\tan 30^{\circ}}\right)$
E. $6\left(1+\frac{1}{\tan 30^{\circ}}\right)$

48 In the figure, $A B C D E F G H$ is a cuboid. The diagonal $A H$ makes an angle $\theta$ with the base $A B C D$. Find $\tan \theta$
A. $\frac{3}{5}$
B. $\frac{3}{12}$
C. $\frac{3}{13}$
D. $\frac{3}{\sqrt{178}}$

E. $\frac{\sqrt{153}}{5}$

49 In the figure, if $\operatorname{arc} B C: \operatorname{arc} C A: \operatorname{arcAB}=1: 2: 3$, which of the following is/are true?
I. $\angle A: \angle B: \angle C=1: 2: 3$
II. $a: b: c=1: 2: 3$
III. $\sin A: \sin B: \sin C=1: 2: 3$
A. I only
B. II only
C. III only
D. I and II only
E. I, II and III only

A. $1: 2$
B. $1: 3$
C. $1: \sqrt{2}$
D. $1: \sqrt{3}$

E. $\sqrt{2}: \sqrt{3}$

E. I, II and III

52 In the figure, $A B C D$ and $E F G H$ are two squares and $A C H$ is an equilateral triangle.

Find $A B: E F$.
B. II only
C. III only
D. I and II only
III. $\angle O A N=\angle N O B$
A. I only

都 $-1$

53


In the figure, a rectangular piece of paper $A B C D$ is folded along $E F$ so that $C$ and $A$ coincide. If $A B=12 \mathrm{~cm}, B C=16 \mathrm{~cm}$, find $B E$.
A. 3.5 cm
B. 4.5 cm
D. 8 cm
C. 5 cm
E. 12.5 cm

54 In the figure, the three circles touch one another. $X Y$ is their common tangent. The two larger circles are equal. If the radius of the smaller circle is 4 cm , find the radii of the larger circles.
A. 8 cm
B. 10 cm
C. 12 cm


