Form 5

HKCEE 1991

Mathematics II

$91\left(a^{2 a}\right)\left(3 a^{4 a}\right)$
1.
A. $3 a^{6 a}$
B. $(3 a)^{6 a}$
C. $3 a^{8 a}$
D. $4 a^{6 a}$
E. $\quad\left(3^{4 a}\right)\left(a^{6 a}\right)$
2. $\frac{1}{1-x^{2}}-\frac{1}{(1+x)^{2}}=$
A.

$$
\frac{2}{\left(1-x^{2}\right)\left(1+x^{2}\right)}
$$

B. $\frac{2 x^{2}}{\left(1-x^{2}\right)\left(1+x^{2}\right)}$
C. $\frac{2 x^{2}}{\left(1-x^{2}\right)(1+x)^{2}}$
D. $\frac{2}{(1-x)(1+x)^{2}}$
E. $\frac{2 x}{(1-x)(1+x)^{2}}$

91 Which one of the following is a factor
3. of $x^{3}-4 x^{2}+x+6$?
A. $(x+1)(x-2)$
B. $(x+1)(x+2)$
C. $(x-1)(x+2)$
D. $(x-1)(x-3)$
E. $(x-1)(x+3)$
4. If $y=\sqrt{\frac{1+m x}{1-m x}}$, then $x=$
A. $\frac{m(y-1)}{y+1}$.
B. $\frac{y-1}{m(y+1)}$.
C. $\frac{\left(1-y^{2}\right)}{m\left(1+y^{2}\right)}$.
D. $\frac{m\left(y^{2}-1\right)}{\left(y^{2}+1\right)}$.
E. $\frac{\left(y^{2}-1\right)}{m\left(y^{2}+1\right)}$.
5. $\frac{\frac{1}{x^{2}}+\frac{1}{y^{2}}}{\frac{1}{x}+\frac{1}{y}}=$
A. $\frac{1}{x^{2}}+\frac{1}{y^{2}}$
B. $\frac{1}{x^{2}}+\frac{1}{x y}+\frac{1}{y^{2}}$
C. $\frac{1}{x^{2}}+\frac{2}{x y}+\frac{1}{y^{2}}$
D. $\frac{1}{x^{2}}-\frac{2}{x y}+\frac{1}{y^{2}}$
E. $\frac{1}{x^{2}}-\frac{1}{x y}+\frac{1}{y^{2}}$

91 The L.C.M. of $\mathrm{x}, 2 x^{2}, 3 x^{3}, 4 x^{4}, 5 x^{5}$ is 6.
A. x.
B. $5 x^{5}$.
C. $60 x^{5}$.
D. $120 x^{5}$.
E. $120 x^{15}$.

91 In which of the following cases the 7. equation $\mathrm{f}(x)=0$ cannot be solved by the method of bisection?

B.

C.

D.

E.

91 Solve the following equations:
8. $x-1=y+2=x+y-5$
A. $x=1, y=-2$
B. $x=1, y=4$
C. $x=4, y=1$
D. $x=7, y=-2$
E. $x=7, y=4$

91 Let y vary partly as $\frac{1}{x}$ and partly as x. When $x=1, y=5$ and when $x=4$, $y=\frac{25}{2}$. Find y when $x=2$.
A. $\frac{5}{2}$
B. 4
C. $\frac{25}{4}$
D. 7
E. $\frac{17}{2}$

91
10. If $\frac{1}{a}: \frac{1}{b}=2: 3$ and $a: c=4: 1$, then $a: b: c=$
A. $12: 8: 3$.
B. $8: 3: 2$.
C. $4: 6: 1$.
D. $2: 3: 8$.
E. $2: 3: 4$.

91 A blanket loses 10% of its length and
11. 8% of its width after washing. The percentage loss in area is
A. 18.8%.
B. 18%.
C. 17.2%.
D. 9%.
E. 8%.

91 12.

In the figure, $A B C D$ is a square of side a and $M N P Q$ is a square of side b. The four trapeziums are identical. The area of the shaded region is
A. $\frac{3 b^{2}+a^{2}}{4}$.
B. $\frac{3 b^{2}-a^{2}}{2}$.
C. $\frac{5 b^{2}+a^{2}}{4}$.
D. $\frac{5 b^{2}-a^{2}}{4}$.
E. $\frac{(a-b)^{2}}{4}+b^{2}$.

91
13.

In the figure, $T B$ touches the semi-circle at B. $T A$ cuts the semi-circle at P such that $T P=P A$. If the radius of the semicircle is 2 , find the area of the shaded region.
A. $12-\pi$
B. $8-\pi$
C. $6-\pi$
D. $4-\pi$
E. $2(4-\pi)$

91
14.

An equilateral triangle and a square have equal perimeters.
$\frac{\text { Area of the triangle }}{\text { Area of the square }}=$
A. $\frac{9 \sqrt{3}}{16}$.
B. $\frac{\sqrt{3}}{4}$.
C. $\frac{\sqrt{3}}{3}$.
D. $\frac{4 \sqrt{3}}{9}$.
E. 1 .

91 A man borrows $\$ 10000$ from a bank at
15. 12% per annum compounded monthly. He repays the bank $\$ 2000$ at the end of each month. How much does he still owe the bank just after the second repayment?
A. $\$ 6181$
B. $\$ 6200$
C. $\$ 6201$
D. $\$ 8304$
E. $\$ 8400$
16. $\left[\frac{1}{\cos \theta}+\tan \theta\right](1-\sin \theta)=$
A. $\sin \theta$
B. $\cos \theta$
C. $\cos ^{2} \theta$
D. $1+\sin \theta$
E. $\sin \theta \tan \theta$
91. $\frac{\sin \left(\theta-90^{\circ}\right)}{\tan \left(\theta+180^{\circ}\right)}=$
A. $\cos \theta$
B. $-\cos \theta$
C. $\frac{\cos ^{2} \theta}{\sin \theta}$
D. $-\frac{\cos ^{2} \theta}{\sin \theta}$
E. $\frac{1}{\sin \theta}$

91 For $0 \leq \theta<2 \pi$, how many roots does
18. the equation $\tan \theta+2 \sin \theta=0$ have?
A. 1
B. 2
C. 3
D. 4
E. 5

91
19.

In the figure, $X P Y$ and $Y Q Z$ are semicircles with areas A_{1} and A_{2} respectively. $\angle Y X Z=60^{\circ}$ and $\angle Y Z X=$ 45°. The ratio $A_{1}: A_{2}=$
A. $\sqrt{2}: \sqrt{3}$.
B. $\sqrt{2}: 3$.
C. $2: 3$.
D. $2: \sqrt{3}$.
E. $\sqrt{3}: \sqrt{2}$.

91
20.

In the figure, $\angle A=30^{\circ}$ and $\angle B=120^{\circ}$. The ratio of the altitudes of the triangle $A B C$ from A and from B is
A. 2:1.
B. $\sqrt{3}: 1$.
C. $\sqrt{2}: 1$.
D. $1: \sqrt{2}$
E. $1: \sqrt{3}$

91
21.

In the figure, O is the centre of the circle. Find $a+c$.
A. b
B. $2 b$
C. $180^{\circ}-b$
D. $360^{\circ}-b$
E. $360^{\circ}-2 b$

91
22.

In the figure, O is the centre of the circle $B C D . A B C$ and $E D C$ are straight lines. $B C=D C$ and $\angle A E D=70^{\circ}$. Find $\angle B O D$.
A. 40°
B. 70°
C. 80°
D. 90°
E. 140°

91
23.

In the figure, $A B C D E$ and $A B X Y Z$ are two identical regular pentagons. Find $\angle A E Z$.
A. 15°
B. 18°
C. 24°
D. 30°
E. 36°

91
24.

In the figure, $T P A$ and $T Q B$ are tangents to the circle at P and Q respectively. If $P Q=P R$, which of the following must be true?
I. $\angle A P R=\angle Q R P$
II. $\angle Q T P=\angle Q P R$
III. $\angle Q P R=\angle A P R$
A. I only
B. II only
C. III only
D. I and II only
E. I and III only

91
25.

In the figure, E and F are the midpoints of $A B$ and $A C$ respectively. G and H divide $D B$ and $D C$ respectively in the ratio $1: 3$. If $E F=12$, find $G H$.
A. 3
B. 4
C. 6
D. 8
E. 12

91 The circle $x^{2}+y^{2}+4 x+k y+4=0$
26. passes through the point $(1,3)$. The radius of the circle is
A. $\sqrt{68}$.
B. $\sqrt{48}$.
C. $\sqrt{17}$.
D. 6 .
E. 3 .

91 Let A and B be the points $(4,-7)$ and
27. $(-6,5)$ respectively. The equation of the line passing through the mid-point of $A B$ and perpendicular to
$3 x-4 y+14=0$ is
A. $3 x-4 y-1=0$.
B. $3 x+4 y+7=0$.
C. $4 x-3 y+1=0$.
D. $4 x+3 y-7=0$.
E. $4 x+3 y+7=0$.
$91 \quad P Q R S$ is a parallelogram with vertices P
28. $=(0,0), Q=(a, b)$ and $S=(-b, a)$. Find R.
A. $(-a,-b)$
B. $(a,-b)$
C. $(a-b, a-b)$
D. $(a-b, a+b)$
E. $(a+b, a+b)$

91
29.

In the figure, A and B are the positions of two boats. The bearing of B from A is
A. $\quad \mathrm{N} 55^{\circ} \mathrm{E}$.
B. $\mathrm{N} 70^{\circ} \mathrm{E}$.
C. $\mathrm{N} 20^{\circ} \mathrm{E}$.
D. $\mathrm{S} 35^{\circ} \mathrm{E}$.
E. $\quad \mathrm{S} 75^{\circ} \mathrm{E}$.

91 The mean and standard deviation of a
30. distribution of test scores are m and s respectively. If 4 marks are added to each score of the distribution, what are the mean and standard deviation of the new distribution?

Mean
A. $m+4$
s
B. $m+4$
$s+2$
C. $m+4$
$s+4$
D. m
$s+2$
E. m
$s+4$

The graph shows the frequency curves of two symmetric distributions P and Q. Which of the following is /are true?
I. The mean of $P<$ the mean of Q.
II. The mode of $P>$ the mode of Q.
III. The inter-quartile range of $\mathrm{P}<$ the inter-quartile range of Q .
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

91 A fair die is thrown 3 times. The 32. probability that " 6 " occurs exactly once is
A. $\frac{1}{3}$.
B. $\left(\frac{1}{6}\right)^{3}$.
C. $\frac{1}{3} \times \frac{1}{6}$.
D. $\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{2}$.
E. $3\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{2}$.
91. If $(\sqrt{3}+1) \sqrt{x}=2$, then $x=$
33.
A. $2-\sqrt{3}$.
B. $\sqrt{3}-1$.
C. 1 .
D. $2(2-\sqrt{3})$.
E. $4-\sqrt{3}$.

91 If $\log x: \log y=m: n$, then $x=$
34.
A. $\frac{m y}{n}$.
B. $(m-n) y$.
C. $m-n+y$.
D. $y^{\frac{m}{n}}$.
E. $\frac{m \log y}{n}$.

91 If $\mathrm{f}(x)=x-\frac{1}{x}$, then $\mathrm{f}(x)-\mathrm{f}\left(\frac{1}{x}\right)=$
A. 0 .
B. $2 x$.
C. $-\frac{2}{x}$.
D. $2\left(x-\frac{1}{x}\right)$.
E. $2\left(\frac{1}{x}-x\right)$.

91 If $p\left(x^{2}-x\right)+q\left(x^{2}+x\right)=4 x^{2}+8 x$, find 36. $\quad p$ and q.
A. $p=4, q=8$
B. $p=-8, q=4$
C. $p=-2, q=6$
D. $p=2, q=6$
E. $p=6, q=-2$

91 If $x<0<y$, then which one of the
37. following must be positive?
A. $x+y$
B. $x-y$
C. $y-x$
D. $x y$
E. $\frac{y}{x}$

91 Which one of the following shaded
38. regions represents the solution of

$$
\left\{\begin{array}{c}
2 \leq x+y \leq 6 \\
0 \leq x \leq 4 \\
0 \leq y \leq 4
\end{array} ?\right.
$$

A.

B.

C.

D.

E.

91 If $(x-2)(x-3)=(a-2)(a-3)$, solve
39. for x.
A. $x=0$ or 5
B. $x=2$ or 3
C. $x=a$ or 2
D. $x=a$ or 3
E. $x=a$ or $5-a$

91 If the sum to n terms of an A.P. is
40. $n^{2}+3 n$, find the $7^{\text {th }}$ term of the A.P.
A. 16
B. 18
C. 54
D. 70
E. It cannot be found.

91 If x, y, z are in G.P, which of the
41. following must be true?
I. $x+3, y+3, z+3$ are in G.P.
II. $3 x, 3 y, 3 z$ are in G.P.
III. x^{2}, y^{2}, z^{2} are in G.P.
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

913 kg of a solution contains 40% of
42. alcohol by weight. How much alcohol should be added to obtain a solution containing 50% of alcohol by weight?
A. 0.3 kg
B. $\quad 0.6 \mathrm{~kg}$
C. 0.75 kg
D. $\quad 1.5 \mathrm{~kg}$
E. $\quad 3.75 \mathrm{~kg}$
$91 \quad P$ sold an article to Q at a profit of
43. 25%. Q sold it to R also at a profit of 25%. If Q gained $\$ 500$, how much did P gain?
A. $\$ 250$
B. $\$ 320$
C. $\$ 333$
D. $\$ 400$
E. $\$ 500$

91
44.

From a rectangular metal sheet of width 3 cm and length 40 cm , at most how many circles each of radius 1 cm can be cut?
A. 20
B. 21
C. 22
D. 23
E. 24

DIRECTIONS: Question 45 and 46 refer to the figure below, which shows a cuboid $A B C D E F G H$ with $A E=2 a, E F=2 b$ and $F G=2 c . A C$ and $B D$ intersect at X.

91
45.

$X E=$
A. $\sqrt{a^{2}+b^{2}+c^{2}}$
B. $\sqrt{a^{2}+b^{2}+(2 c)^{2}}$
C. $\sqrt{a^{2}+(2 b)^{2}+c^{2}}$
D. $\sqrt{(2 a)^{2}+b^{2}+c^{2}}$
E. $2 \sqrt{a^{2}+b^{2}+c^{2}}$

91 If the angle between XE and the plane
46. EFGH is θ, then $\tan \theta=$
A. $\frac{a}{b}$.
B. $\frac{2 a}{b}$.
C. $\frac{\sqrt{(2 a)^{2}+c^{2}}}{b}$.
D.

$$
\frac{a}{\sqrt{b^{2}+c^{2}}} .
$$

E. $\frac{2 a}{\sqrt{b^{2}+c^{2}}}$.

91
47.
$\cos \frac{\pi}{2}+\cos \pi+\cos \frac{3 \pi}{2}+\cos 2 \pi+\ldots+$ $\cos 10 \pi=$
A. 0
B. 1
C. -1
D. 10
E. -10

91
48.

The figure shows the graph of the function
A. $y=2 \cos x$.
B. $y=2-\sin x$.
C. $y=2+\sin x$.
D. $y=2-\cos x$.
E. $y=2+\cos x$.

In the figure, the height of the vertical pole $P O$ is
A. $\quad 7.5 \mathrm{~m}$.
B. $\quad 15 \mathrm{~m}$.
C. $15 \sqrt{2} \mathrm{~m}$.
D. $15 \sqrt{3} \mathrm{~m}$.
E. 45 m .

91
50.

In the figure, find the length of $A B$, correct to the nearest cm .
A. $\quad 14 \mathrm{~cm}$
B. 15 cm
C. 16 cm
D. 17 cm
E. 18 cm

91
51.

In the figure, $A B C$ and $C D E$ are equilateral triangles. Find $\angle A D E$.
A. 15°
B. 35°
C. 40°
D. 45°
E. 50°

91
52.

In the figure, $\operatorname{arc} A B: \operatorname{arc} B C: \operatorname{arc} C D:$ $\operatorname{arc} D E: \operatorname{arc} E A=1: 2: 3: 4: 5$. Find θ.
A. 30°
B. 36°
C. 60°
D. 72°
E. 120°

91
53.

In the figure, M is the mid-point of $B C$ and $A D=2 D B . A M$ and $C D$ intersect at K. Find $\frac{\text { area of } \triangle A D K}{\text { area of } \triangle A K C}$.
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{3}{4}$
D. $\frac{4}{5}$
E. 1

91 In the figure, which of the pairs of
54. triangles must be congruent?
I.

II.

III.

A. I only
B. II only
C. I and III only
D. II and III only
E. I, II and III

