Form 5

HKCEE 1985

Mathematics II

1. $\frac{2}{1+x}-\frac{2}{1-x}-\frac{4 x}{x^{2}-1}$
A. $\frac{1}{1-x}$
B. $\frac{1}{1+x}$
C. $\frac{1-7 x}{x^{2}-1}$
D. $\frac{1-7 x}{1-x^{2}}$
E. $\frac{3 x+1}{1-x^{2}}$
2. $\frac{\frac{b}{a}-\frac{a}{b}}{\frac{1}{a}-\frac{1}{b}}=$
A. $a+b$
B. $a-b$
C. $-a+b$
D. $-a-b$
E. $\frac{1}{a}+\frac{1}{b}$
3. If $\frac{a b}{k a+b}=\frac{1}{k}$, then $b=$
A. $\frac{a}{a-k}$
B. $\frac{k a}{k a-1}$
C. $\frac{k a}{1-k a}$
D. $\frac{k^{2} a}{a-k}$
E. $\frac{k^{2} a}{k-a}$
$85(x+y)^{-1}\left(x^{-2}-y^{-2}\right)=$
4.

A. $\frac{1}{x^{3}}-\frac{1}{y^{3}}$
B. $\frac{1}{x^{2} y}-\frac{1}{x y^{2}}$
C. $\frac{1}{x y^{2}}-\frac{1}{x^{2} y}$
D. $\frac{1}{x^{2}}-\frac{1}{y^{2}}$
E. $\frac{1}{x^{2} y}+\frac{1}{x y^{2}}$

85 If $a-\sqrt{b^{2}+c^{2}}=d$, then $c=$
5.
A. $d-a+b$
B. $a-d-b$
C. $\pm \sqrt{d^{2}-a^{2}+b^{2}}$
D. $\pm \sqrt{a^{2}-d^{2}-b^{2}}$
E. $\pm \sqrt{(a-d)^{2}-b^{2}}$

85 The L.C.M. of $2 a^{2}-2 b^{2}$ and
6. $a^{3}-2 a^{2} b+a b^{2}$ is
A. $a-b$
B. $(a-b)(a+b)$
C. $2 a(a-b)(a+b)$
D. $2 a(a-b)^{2}(a+b)$
E. $2 a(a-b)^{3}(a+b)$

85 Let a and b be constants. If
7. $3 x^{3}-a x^{2}+5 x-3 b$ is divisible by $x+3$ then $3 a+b=$
A. -32
B. -22
C. 22
D. 32
E. It cannot be determined
$85 \quad \log _{10}\left(a^{2}-b^{2}\right)=$
8.
A. $\frac{\log _{10} a}{\log _{10} b}$
B. $2 \log _{10}(a-b)$
C. $2 \log _{10} a-2 \log _{10} b$
D. $\log _{10}(a+b)+\log _{10}(a-b)$
E. $\left(\log _{10} a+\log _{10} b\right)\left(\log _{10} a-\log _{10} b\right)$

85 If α and β are roots of $\mathrm{x} 2+2 \mathrm{x}-4=0$, 9. then $2^{\alpha} \cdot 2^{\beta}=$
A. $\frac{1}{16}$
B. $\frac{1}{4}$
C. 2
D. 4
E. 16

85 The second term and the fifth term of a
10. geometric progression are -12 and $40 \frac{1}{2}$ respectively. The first term is
A. $1 \frac{1}{2}$
B. 6
C. 8
D. 15
E. 18

85 If $a: b=1: 2$ and $b: c=1: 3$, then
11. $a+b: b+c=$
A. $1: 5$
B. $2: 3$
C. $3: 4$
D. $3: 5$
E. $3: 8$

85 A hawker bought 120 apples and the 12. cost was $\$ 90$. It was found that $\frac{1}{8}$ of the apples were rotten and could not be sold. He sold the rest at $\$ 1$ each. What percentage of the cost was his profit?
A. $11 \frac{1}{9} \%$
B. $14 \frac{2}{7} \%$
C. $16 \frac{2}{3} \%$
D. $28 \frac{4}{7} \%$
E. $33 \frac{1}{3} \%$

85 The marked price of a book is double
13. that of its cost. In a sale, what percentage discount was given if the profit made was 20% of the cost?
A. 10%
B. 20%
C. 30%
D. 40%
E. 50%

85 John spends 40 minutes to walk from
14. his home to school. If he increases his walking speed by $2 \mathrm{~km} / \mathrm{h}$, then it takes only 30 minutes. What is the distance between John's home and his school?
A. 1 km
B. 4 km
C. 6 km
D. 8 km
E. 12 km
8560% of the students in a school are
15. boys. 70% of the boys and 40% of the girls wear glasses. If 696 students wear glasses, how many students are there in the school?
A. 1200
B. 1050
C. 868
D. 849
E. 800

85
16.

In the figure, a regular hexagon of side 2 cm is inscribed in a circle. The area of the circle is greater than the area of the hexagon by
A. $(3 \pi-6) \mathrm{cm}^{2}$
B. $(3 \pi-3 \sqrt{3}) \mathrm{cm}^{2}$
C. $(4 \pi-6) \mathrm{cm}^{2}$
D. $(4 \pi-3 \sqrt{3}) \mathrm{cm}^{2}$
E. $(4 \pi-6 \sqrt{3}) \mathrm{cm}^{2}$

85
17. $\tan \theta\left(\frac{1}{\sin \theta}-\sin \theta\right)=$
A. 1
B. $\cos \theta$
C. $\sin \theta$
D. $\frac{1}{\cos \theta}$
E. $\frac{1}{\sin \theta}$

85
18.

If $\tan \theta=\frac{2 a b}{a^{2}-b^{2}}$ and $0^{\circ}<\theta<90^{\circ}$, then $\cos \theta=$
A. $\frac{a^{2}+b^{2}}{a^{2}-b^{2}}$
B. $\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
C. $\frac{a^{2}-b^{2}}{\sqrt{a^{2}+b^{2}}}$
D. $\frac{\sqrt{a^{2}-b^{2}}}{a^{2}+b^{2}}$
E. $\sqrt{\frac{a^{2}-b^{2}}{a^{2}+b^{2}}}$

85
19.

In the figure, $A B=2$ and $A C=5, B C=$
A. $\sqrt{39}$
B. $\sqrt{29}$
C. $\sqrt{24}$
D. $\sqrt{20}$
E. $\sqrt{19}$

85 In $\triangle A B C, \angle A=30^{\circ}, A B=6 \mathrm{~cm}$. If the
20. area of $\triangle A B C$ is $15 \mathrm{~cm}^{2}, A C=$
A. $\quad 2.5 \mathrm{~cm}$
B. 5 cm
C. 10 cm
D. 12 cm
E. 15 cm

85
21.

In the figure, $B C X$ is a straight line. $A C$ $=1, A B=$
A. $2 \sin 20^{\circ}$
B. $2 \cos 20^{\circ}$
C. $\sqrt{2} \cos 20^{\circ}$
D. $\frac{1}{2 \sin 20^{\circ}}$
E. $\frac{\sqrt{3}}{2 \sin 20^{\circ}}$

85
22.

In the figure, $A B C D$ is a cyclic quadrilateral. $B A$ is produced to E. $D A$ bisects $\angle C A E . \angle B C D=$
A. 40°
B. 45°
C. 50°
D. 55°
E. 65°

85 The exterior angles of a pentagon are
23. $x^{0}, 2 x^{0}, 3 x^{0}, 4 x^{0}, 5 x^{0}$. The smallest interior angle of the pentagon is
A. 120°
B. 60°
C. 48°
D. 36°
E. 24°

85
24.

In the figure, A, D, E and B lie on a straight line. $C E$ bisects $\angle A C B$ and $C D$ $\perp A B . \angle D C E=$
A. $\frac{1}{2}\left(x^{0}-y^{\circ}\right)$
B. $\frac{1}{2}\left(x^{0}+y^{0}\right)$
C. $x^{\circ}-y^{\circ}$
D. $90^{\circ}-\frac{1}{2}\left(x^{0}+y^{\circ}\right)$
E. $\quad 90^{\circ}-\left(x^{0}-y^{\circ}\right)$

In the figure, $A B C D$ is a rhombus B is the centre of the circle. $\angle A B C=$
A. 105°
B. 120°
C. 130°
D. 135°
E. 150°

85 The distance between ($1-k, k$) and
26. $(2,1+k)$ is $\sqrt{26}, k=$
A. 4
B. 6
C. -4 or 6
D. 4 or -6
E. -4 or -6

85 The equation of the perpendicular
27. bisector of the line joining $(1,2)$ and $(7,4)$ is
A. $3 x+y+15=0$
B. $3 x+y-15=0$
C. $3 x-y+9=0$
D. $3 x-y-9=0$
E. $x+3 y-13=0$

85
28.

In the figure, the circle passes through $(0,0)$ and cuts the two axes at $(6,0)$ and $(0,-8)$. Its equation is
A. $x^{2}+y^{2}-3 x+4 y=0$
B. $x^{2}+y^{2}+3 x-4 y=0$
C. $x^{2}+y^{2}+6 x-8 y=0$
D. $x^{2}+y^{2}-6 x+8 y=0$
E. $x^{2}+y^{2}-6 x-8 y=0$

85 The equation of a circle is
29. $x^{2}+y^{2}-4 x-5=0$. Which of the following is/are true?
I. The circle passes through the origin.
II. The centre lies on the x-axis.
III. The line $x-5=0$ touches the circle.
A. II only
B. III only
C. I and II only
D. II and III only
E. I, II and III

85
30.

Class mid-value	Frequency
$m-8$	3
$m-4$	1
m	2
$m+4$	6

The mean of the above distribution is
A.

$$
m-\frac{1}{3}
$$

B. $m-\frac{1}{2}$
C. $m-2$
D. $m-4$
E. m

85 There are four balls, numbered $1,2,5$
31. and 10 in a bag. If 2 balls are taken out at random, the probability that the sum of the numbers on the two balls drawn is greater than or equal to 7 is
A. $\frac{1}{2}$
B. $\frac{5}{8}$
C. $\frac{2}{3}$
D. $\frac{3}{4}$
E. $\frac{5}{6}$

85 Two dice are thrown. The probability 32. of getting at least one " 6 " is
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{11}{36}$
D. $\frac{25}{36}$
E. $\frac{35}{36}$

In the figure, P and Q are the cumulative frequency curves for the heights of two groups of students, each having 100 students. Which of the following must be true?
I. range of $P<$ range of Q
II. median of $P<$ median of Q
III. the $3^{\text {rd }}$ quartile of $P<$ the $3^{\text {rd }}$ quartile of Q
A. I only
B. II only
C. I and II only
D. I and III only
E. I, II and III

85
34.

In the figure, P and Q are curves showing the distribution of weights of students in two schools, each having the same number of students. Which of the following must be true?
I. standard deviation of $P>$ standard deviation of Q
II. mode of $P>$ mode of Q
III. median of $P>$ median of Q
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

85
35.

In the figure, the equation of the curve is $y=(x-2)^{2}-1$. The curve intersects the x-axis at A and $B . C$ is the vertex of the curve. The area of $\triangle A B C$ is
A. 1
B. 1.5
C. 2
D. 2.5
E. 3

85 Which of the following is the solution
36. of $(x-1)(x-3) \leq 0$ and $x-2 \leq 0$
A. $x \leq 2$
B. $x \leq 3$
C. $2 \leq x \leq 3$
D. $1 \leq x \leq 2$
E. $1 \leq x \leq 3$

85
37.

Which of the following systems of inequalities determine the shaded region in the figure?
A. $\left\{\begin{array}{c}x \geq 1 \\ x+y \geq 1 \\ x \geq y\end{array}\right.$
B. $\left\{\begin{array}{c}x \geq 1 \\ x+y \leq 1 \\ x \geq y\end{array}\right.$
C. $\left\{\begin{array}{c}x \leq 1 \\ x+y \leq 1 \\ x \leq y\end{array}\right.$
C. II and III only
D. I, II and III
E. None of I, II and III
85 If $\mathrm{f}(2 x)=8 x^{3}+4 x$, then $\mathrm{f}(3 a)=$
40.
A. $9 a^{3}+6 a$
B. $12 a^{3}+6 a$
C. $27 a^{3}+6 a$
D. $108 a^{3}+6 a$
E. $216 a^{3}+12 a$
D. $\left\{\begin{array}{c}x \leq 1 \\ x+y \leq 1 \\ x \geq y\end{array}\right.$
E. $\left\{\begin{array}{c}x \leq 1 \\ x+y \geq 1 \\ x \geq y\end{array}\right.$

85
38. If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in geometric progression, then which of the following is true?
A. $b^{2}=a c$
B. $b^{2}=\frac{1}{a c}$
C. $b^{2}=\frac{a+c}{2}$
D. $b^{2}=\frac{a+c}{2 a c}$
E. $b^{2}=\frac{2 a c}{a+c}$

85 Three distinct numbers x, y and z are in
39. arithmetic progression. Which of the following is/are also in arithmetic progression?
I. $x+10, y+10, z+10$
II. $10 x, 10 y, 10 z$
III. x^{2}, y^{2}, z^{2}
A. I and II only
B. I and III only

85 A number is first reduced by $p \%$ and
41. then increased by $x \%$. If the number so obtained is the same as the original number then $x=$
A. p
B. $\frac{p}{100}$
C. $\frac{p}{1-p}$
D. $\frac{100}{100-p}$
E. $\frac{100 p}{100-p}$

85 The length and width of a cuboid are
42. each increased by 10% and the height remains unchanged. The percentage increase in volume is
A. 10%
B. 20%
C. 21%
D. 24%
E. 33%

85 A cone of base radius $2 r \mathrm{~cm}$ and height 43. $h \mathrm{~cm}$ has a volume of $60 \mathrm{~cm}^{3}$. The volume of a cylinder of base radius r cm and height $4 h \mathrm{~cm}$ is
A. $60 \mathrm{~cm}^{3}$
B. $120 \mathrm{~cm}^{3}$
C. $180 \mathrm{~cm}^{3}$
D. $240 \mathrm{~cm}^{3}$
E. $\quad 360 \mathrm{~cm}^{3}$

85
44.

In the figure, the volumes of the pyramids $V A B C$ and $V P Q R$ are $27 \mathrm{~cm}^{3}$ and 64 cm 3 respectively. Planes $A B C$ and $P Q R$ are parallel.
Area of $\triangle A B C$: Area of $\triangle P Q R=$
A. $\sqrt{27}: \sqrt{64}$
B. $\sqrt{37}: \sqrt{64}$
C. $3: 4$
D. $9: 16$
E. $27: 64$

85
45.

The figure shows the graph of
A. $y=3 \cos x^{\circ}, 0 \leq x \leq 360$
B. $y=3 \sin x^{0}, 0 \leq x \leq 360$
C. $y=2+\sin x^{0}, 0 \leq x \leq 360$
D. $y=2+\cos x^{0}, 0 \leq x \leq 360$
E. $y=3+\sin x^{0}, 0 \leq x \leq 360$

85 If $0^{\circ} \leq \theta \leq 360^{\circ}$, then the largest value
46. of $2 \sin 2 \theta+\cos 2 \theta+2$ is
A. 1
B. 2
C. 3
D. 4
E. 5

85
47.

In the figure, $B C D$ is a straight line $A D$ $=p$, then $B C=$
A. $p \tan (\beta-\alpha)$
B. $p(\tan \alpha-\tan \beta)$
C. $p(\tan \beta-\tan \alpha)$
D. $p\left(\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}\right)$
E.

$$
p\left(\frac{1}{\tan \beta}-\frac{1}{\tan \alpha}\right)
$$

85
48.

In the figure, $A B$ is a diameter of the circle $A B C$. If arc $A C$ has the same length as $A B$, then $\angle C A B=$
A. $\frac{\pi}{2}$ radians
B. $\left(\frac{\pi}{2}-\frac{1}{2}\right)$ radians
C. $\left(\frac{\pi}{2}-1\right)$ radians
D. $\left(\frac{\pi}{2}-2\right)$ radians
E. $\left(\pi-\frac{1}{2}\right)$ radians

85
49.

In the figure, $\angle C A B=\angle C B D=90^{\circ}$. $B C=2$. The area of quadrilateral $A B C D=$
A. $2 \sin (\alpha+\beta)$
B. $2(\tan \alpha+\tan \beta)$
C. $2(\sin \alpha \cos \alpha+\sin \beta \cos \beta)$
D. $2(\tan \alpha+\sin \beta \cos \beta)$
E. $2(\sin \alpha \cos \alpha+\tan \beta)$

In the figure, $\angle C=90^{\circ} . P$ and Q are points on $B C$ such that $B P=P Q=Q C$. $\angle C A Q=$
A. 30°
B. 25°
C. 22°
D. 20°
E. 15°

85
51.

In the figure, $A B C D$ is a rectangle. E is a point on $B C$ such that $\angle A E D=90^{\circ}$. $A D=13$ and $D E=5$. The area of $A B C D=$
A. 30
B. 52
C. 60
D. 65
E. 120

In the figure, $A B C D$ is a rectangle E, F, G and H are points on the four sides such that $E F / / D B / / G H . A F=F B$ and $H C=2 B H$. What fraction of the area of $A B C D$ is shaded?
A. $\frac{13}{36}$
B. $\frac{5}{12}$
C. $\frac{25}{36}$
D. $\frac{25}{72}$
E. $\frac{47}{72}$

In the figure, $F G$ touches the circle at E. The chord $C B$ is produced to meet $F G$ at $A . \angle A C E=$
A. 10°
B. 20°
C. 25°
D. 30°
E. 35°

85
54.

In the figure the circle touches the sides of $\triangle A B C$ at X, Y and $Z . O$ is the centre of the circle. Which of the following must be true?
I. $O A$ bisects $\angle B A C$
II. A, X, O and Z are concyclic
III. $A X=A Z$
A. III only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

