Form 5

HKCEE 1984 Mathematics II

84
$$\frac{4}{(x-2)(x+1)} - \frac{3}{x^2 - 1}$$
A.
$$\frac{1}{(x-1)^2(x+1)}$$
B.
$$\frac{x+2}{(x-2)(x+1)(x-1)}$$
C.
$$\frac{x+10}{(x-2)(x+1)(x-1)}$$
D.
$$\frac{x-10}{(x-2)(x+1)(x-1)}$$
E.
$$\frac{x^2 - 3x - 10}{(x-2)(x+1)(x-1)^2}$$
84
2. If $a = \frac{2b(2y-x)}{x-3y}$, then $y =$
A.
$$\frac{a+2b}{3a+4b}x$$
B.
$$\frac{a-2b}{-3a+4b}x$$
C.
$$-\frac{a+2b}{3a+4b}x$$
D.
$$\frac{3a+4b}{a+2b}x$$
E.
$$-\frac{3a+4b}{a-2b}x$$
E.
$$\frac{-3a+4b}{a-2b}x$$
84
 $(2^{n+1})^2 \times (2^{-2n-1}) \div 4^n =$
3.

A. 1 B. 2^{2n-1} C. 2^{n^2+2n} D. 2^{n^2-2n} E. 2^{-2n+1}

84 If x + 2 is a factor of $x^2 + ax + b$, then 4. 2a - b + 3 = A. -7 B. -1 C. 0 D. 1

E. 7

84 If α and β are the roots of 5. $3x^2 - x - 1 = 0$, then $\frac{1}{\alpha^2} + \frac{1}{\beta^2} =$ A. 7 B. 3 C. 1 D. -1 E. -5

84 If $(\sqrt{3} - \sqrt{2})x = 1$, then x = 6.

A.
$$\sqrt{3} + \sqrt{2}$$

B. $\frac{1}{\sqrt{3} + \sqrt{2}}$
C. $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}}$
E. $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$

84 What is/are the root(s) of

 $7. \qquad \sqrt{5-x} = x - 3?$

A. 4 only

B. 1 and 4 only

C.
$$-1$$
 and -4 only

- D. -4 and 4 only
- E. -4, -1, 1 and 4

- 84 The sum of the first ten terms of an
- 8. arithmetic progression is 120. If the common difference is 4, then the first term is
 - A. -12.
 - В. *–*6.
 - С. –2.
 - D. 2.
 - E. 6.

\$10 000 is invested for 2 years at 10%per annum, compounded half-yearly.

The compound interest, correct to the nearest dollar, is

- A. \$12 155.
- B. \$2155.
- C. \$2100.
- D. \$2000.
- E. \$1025.
- 84 The equation $x^2 + kx + k = 0$ has equal 10. roots (*k* being a constant). k =
 - A. 4 only
 - B. –4 only
 - C. 0 or 4
 - D. 0 or -4
 - E. 4 or –4

84
11. If
$$\frac{3x+2y}{x+5y} = 1$$
, then $\sqrt{x+y} : \sqrt{x-y} =$

A.
$$1: \sqrt{5}$$

B. $3:2$
C. $\sqrt{5}: \sqrt{6}$
D. $\sqrt{5}:1$
E. $\sqrt{7}: 2$

- 84 A is 25% taller than B. B is 25%
 12. shorter than C. A's height : C's height
 =
 - A. 1:1B. 5:4
 - C. 3:4
 - C. 3:2

- D. 5:3 E. 15:16
- 84 A rectangular box, without a lid, is
- 13. 40 cm long, 30 cm wide and 10 cm height. The area of the external surface of the box is
 - A. 2600 cm^2 .
 - B. 3400 cm^2 .
 - C. 3500 cm^2 .
 - D. 3800 cm^2 .
 - E. $12\ 000\ \text{cm}^2$.
- 84 A man drives a car at 30 km/h for 3
- 14. hours and then at 40 km/h for 2 hours. His average speed for the whole journey is
 - A. 14 km/h.
 - B. 30 km/h.
 - C. 34 km/h.
 - D. 35 km/h.
 - E. 70 km/h.
- 84 A alone can complete a job in 8 hours.
- 15. *B* alone takes 12 hours and *C* alone takes 6 hours. After *A* and *B* have worded together on the job for 3 hours, *C* joins them. How much longer will they take to complete the job?
 - A. 1 hour B. $1\frac{1}{2}$ hours C. 2 hours D. $2\frac{1}{2}$ hours E. 3 hours
- 84 The marked price of a book is 20%
- 16. above the cost price. If the book is sold at a discount of 10% off the marked price, what is the gain per cent based on the cost price?
 - A. 8%B. 10%C. 12%

D.
$$18\%$$

E. None of the above.
84
17. $\frac{\tan^2 \theta}{1 + \tan^2 \theta} + \cos^2 \theta =$
A. 1
B. $\frac{1}{2} + \cos^2 \theta$
C. $\cos^2 \theta$
D. $1 + \tan^2 \theta$
E. $1 + \cos^2 \theta$

84 18.

In the figure, *BCD* is a straight line. $\angle ADC = 90^{\circ}$ and *BC* = 10. *AD* =

Α.	$10\cos 70^{\circ}$
В.	10 sin 70°
C.	10 tan 70°
D.	$10\sin 20^{\circ}$
	sin 55°
-	

E. $\frac{10\tan 20^{\circ}}{\sin 55^{\circ}}$

84 19.

In the figure, $\cos \theta =$

84

20.

84

21.

In the figure, $\triangle ABC$ lies in a horizontal plane. $\angle BAC = 90^{\circ}$. HA is vertical and HA = h. tan $\theta =$

1
tan 30°
1
tan 30°
<i>h</i> tan 30°
h
tan 30°

In the figure, AB = x and AC = 2x. The area of $\triangle ABC$ is 16. x (correct to 2 decimal places) is

A.	2.83.
B.	4.00.
C.	4.30.
D.	5.66.

- E. 6.08.
- 84 The sum of the interior angles of a 22. convex polygon is greater than the sum
 - of the exterior angles by 360°. How many sides has the polygon?
 - A. 3
 - B. 4
 - C. 5
 - D. 6
 - E. 8

84 23.

In the figure, x = ?

- A. 31
- B. 34
- C. 40
- D. 48
- E. It cannot be determined.

84

In the figure, AB and AC touch the circle at B and C respectively. $\angle A =$

- A. 30°
- B. 40°
- C. 50°
- D. 80°
- E. 85°

In the figure, O is the centre of the circle. *TA* and *TB* touch the circle at *A* and *B* respectively. OA = 2. The length of the arc *APB* is

A.	π	
	4 .	
В.	π	
	$\frac{1}{2}$.	
C.	3π	
	4	•
D.	3π	
	2	•
E	3π	
	5.0.	

84

25.

84 The point *P* divides *AB* internally so 26. that AP : PB = 2 : 1. The coordinates of *A* and *B* are (x_1, y_1) and (x_2, y_2) respectively. The coordinates of *P* are

A.
$$\left(\frac{2x_1 + x_2}{3}, \frac{2y_1 + y_2}{3}\right)$$
.
B. $\left(\frac{x_1 + 2x_2}{3}, \frac{y_1 + 2y_2}{3}\right)$.
C. $\left(\frac{2x_1 - x_2}{3}, \frac{2y_1 - y_2}{3}\right)$.
D. $\left(\frac{x_1 - 2x_2}{3}, \frac{y_1 - 2y_2}{3}\right)$.
E. $\left(\frac{x_1 + x_2}{3}, \frac{y_1 + y_2}{3}\right)$.

84 The line x + y + k = 0 (k being a

27. constant) passes through the centre of the circle $x^{2} + y^{2} - 2x + 4y - 6 = 0.$ k =

- A. –2
- B. -1
- C. 0
- D. 1
- E. 2
- 84 The equation of a circle is

28. $x^2 + y^2 - 2x + 5y - 7 = 0$. Which of the following is/are true?

- I. The circle passes through the point (-1, 1).
- II. The centre of the circle lies in the second quadrant.
- III. The circle intersects the *x*-axis at two points.
- A. II only
- B. III only
- C. I and II only
- D. II and III only
- E. I, II and III
- 84 If *a*, *b* and *c* are positive real numbers,
- 29. which of the following graphs could represent the line ax + by + c = 0?

84 The probability that John will win a 30. game is $\frac{1}{3}$ and the probability that he will lose is $\frac{2}{3}$. What is the probability that, in three games, he will win any two games and lose one game?

A.
$$\frac{4}{27}$$

B. $\frac{2}{27}$
C. $\frac{1}{27}$
D. $\frac{2}{9}$
E. $\frac{1}{9}$

- 84 Two dice are thrown. What is the
- 31. probability of getting a sum of 8?

A.	1
	12
B.	1
	$\overline{11}$
C.	5
	36
D.	1
	$\overline{6}$
E.	2
	_

9

84 The standard deviation of the five 32. numbers a - 2d, a - d, a, a + d, a + 2d, is

- A. 0. B. *d*. C. $\sqrt{2} d$. $\sqrt{5} d$. D.
- $\sqrt{10} d$ E.
- $4x^2 9 \ge 0$ is equivalent to 84 33.
 - A. $x \ge \frac{3}{2} \text{ or } x \ge -\frac{3}{2}$. B. $\frac{3}{2} \le x \le -\frac{3}{2}$. $C. \quad -\frac{3}{2} \le x \le \frac{3}{2} \ .$ D. $x \ge -\frac{3}{2} \text{ or } x \le \frac{3}{2}$. E. $x \le -\frac{3}{2} \text{ or } x \ge \frac{3}{2}$.
- The graph of $y = x^2 + ax + b$ (a and b 84 being constants) cuts the x-axis at (2, 0)34. and (h, 0), and cuts the y-axis at (0, -2). h =
 - A. -3
 - B. -2
 - C. -1
 - D. 0
 - E. 1

- If a and b are non-zero real numbers 84
- and a > b, which of the following must 35. be true?

I.
$$a^2 > b^2$$

II. $\frac{1}{a} > \frac{1}{b}$

I.

- $\begin{array}{cc} a & b \\ \text{III.} & a^3 > b^3 \end{array}$
- A. II only
- Β. III only
- С. I and II only
- D. II and III only
- E. I and III only
- 84 If $f(x) = (\log_{10} 2x) - x$,
- 36. then f(x + 1) - f(x) =
 - A. $\log_{10} 2 - 1$ $\log_{10}\frac{x+1}{x}$ Β. C. $\log_{10} \frac{10(x+1)}{x}$ D. $\log_{10} \frac{x+1}{10x}$ $\log_{10}\frac{x+1}{r} - 2x$ E.
- If $a \neq \pm 1$, then $1 + a^2 + a^4 + ... + a^{2n} =$ 84 37.

A.	$1 - a^{2n}$
	1-a
B.	$1 - a^{2n}$
	$1 - a^2$
C.	$1 - a^{2n+1}$
	1-a
D.	$1 - a^{2n+1}$
	$1 - a^2$
E.	$1 - a^{2n+2}$
	$1 - a^2$

84 Which of the following must be 38. geometric progression(s)?

> I. $\log_{10}3$, $\log_{10}9$, $\log_{10}27$, $\log_{10}81$

II. 0.9, 0.99, 0.999, 0.9999

III. 1, -3, 9, -27

A. I only

B. III only

- C. I and III only
- D. I and II only
- E. I, II and III only

84 *a*, *b*, *c* are positive numbers such that a_{20}

^{39.} $\frac{a}{b} = \frac{b}{c} = k$ (k being a constant), which

of the following must be true?

I.
$$b^2 = k^2$$

II. $\frac{a+b}{b+c} = k$
III. $\frac{a}{c} = k^2$

- A. II only
- B. III only
- C. I and II only
- D. II and III only
- E. I, II and III
- 84 Last year, a man saved 10% of his40. income. By how much per cent must his income be increased if his expenditure increased by 20% and he wants to save 20% of his income?
 - A. 50%
 - B. 35%
 - C. 30%
 - D. 20%
 - E. 15%
- 84 The external and internal radii of a41. hollow metal sphere are 4cm and 3 cm respectively.

2
Volume of metal

Volume of the enclosed empty space

A.
$$\frac{1}{27}$$

B. $\frac{1}{3}$

C. $\frac{4}{3}$ D. $\frac{37}{27}$ E. $\frac{64}{27}$

A solid metal sphere of volume 252
cm³ is melted and recast into 3 smaller solid spheres whose radii are in the ratio 1 : 2 : 3. The volume of the smaller sphere is

A.
$$5 \text{ cm}^3$$
.
B. 7 cm^3 .
C. 14 cm^3 .
D. 18 cm^3 .

E. 28 cm^3 .

- 84 The base radii of two right circular43. cylinders are in the ratio 2 : 3. If the two cylinders have the same height
 - two cylinders have the same height, what is the ratio of their curved surface area?
 - A. 2:3
 - B. 4:9
 - C. 8:27D. $\sqrt{8}:\sqrt{27}$
 - D. $\sqrt{8}:\sqrt{27}$
 - E. None of the above.

⁸⁴_{44.} The greatest value of $\frac{3}{4+2\cos\theta}$ is

A. 3. B. $\frac{3}{2}$. C. $\frac{3}{4}$. D. $\frac{3}{5}$. E. $\frac{1}{2}$. 84 If $0^{\circ} \le \theta < 360^{\circ}$, the number of roots of

45. the equation $2\sin\theta + \frac{1}{\sin\theta} = 3$ is A. 0 Β. 1 C. 2 D. 3 E. 4 84 A 46. р В D С q

In the figure, $\angle B = 90^{\circ}$ and *BCD* is a straight line. If AB = p and BC = q, then $\cos \theta =$

A.
$$\frac{p}{q}$$

B. $\frac{p}{\sqrt{p^2 + q^2}}$
C. $\frac{q}{\sqrt{p^2 + q^2}}$
D. $\frac{-p}{\sqrt{p^2 + q^2}}$
E. $-q$

84 47.

In the figure, the radius of the sector is r and $\angle POQ = x^{\circ}$. If the area of the sector is A, then x =

A.
$$\frac{2A}{r^2}$$

B.
$$\frac{360A}{r^2}$$

C.
$$\frac{360A}{\pi r^2}$$

D.
$$\frac{180A}{r^2}$$

E.
$$\frac{180A}{\pi r^2}$$

84 48.

In the figure, *PQRS* is a square inscribed in $\triangle ABC$. AB = AC and PQ = a. AB =

A. $a(\sin \theta + \frac{1}{2} \cos \theta)$ B. $a(\sin \theta + \frac{1}{2} \sin \theta)$

C.
$$a(\frac{1}{\sin\theta} + \frac{1}{2\cos\theta})$$

D.
$$a(\frac{1}{\cos\theta} + \frac{1}{2\sin\theta})$$

E. $2a$

$$\frac{2a}{\sin\theta}$$

In the figure, AB // DC. AB = q and DC = p. BC =

A. $(p+q)\sin 50^\circ$ $2\sin 70^\circ$ В. $(p+q)\sin 70^\circ$ 2sin 50° C. $(p-q)\sin 70^\circ$ sin 60° D. $(p-q)\sin 70^\circ$ sin 50° E. $(p-q)\sin 50^\circ$

84 50.

In the figure, XY // BC. AX : XB =2 : 1. If the area of the trapezium BCYX = 20, then the area of $\triangle ABC =$

- A. 80
- В. 60
- C. 45
- D. 40
- E. 36

84

The figure shows the graph of $y = a \sin k\theta$. What are the values of the constant a and k?

- A. a = 1 and k = 1a = 1 and k = 2B. C. a = 1 and $k = \frac{1}{2}$ D. a = 2 and k = 2E. a = 2 and $k = \frac{1}{2}$
- 84 In $\triangle ABC$, BC = a, AC = b, AB = c and
- 52. a > b > c. Which of the following must be true?
 - I. $\angle A > \angle B > \angle C$
 - П. b + c > a
 - III. $\angle B + \angle C > \angle A$
 - A. I only
 - B. II only
 - C. III only
 - D. I and II only
 - E. II and III only

84

53.

In the figure, AB is a diameter of the circle. AP = AQ. AB = 10 and BP = 8. PQ =

- A. 5
 B. 6
 C. 6.4
 D. 8
 E. 9.6
- 84 54.

In the figure, the chords *BA* and *CD*, when produced, meet at *P*. The chords *AD* and *BC*, when produced, meet at *Q*. $\angle B =$

- A. 35°
- B. 40°
- C. 45°
- D. 50°
- E. 55°