Form 5

HKCEE 1984

Mathematics II
84. $\frac{4}{(x-2)(x+1)}-\frac{3}{x^{2}-1}$
A.

$$
\frac{1}{(x-1)^{2}(x+1)}
$$

B. $\frac{x+2}{(x-2)(x+1)(x-1)}$
C. $\frac{x+10}{(x-2)(x+1)(x-1)}$
D. $\frac{x-10}{(x-2)(x+1)(x-1)}$
E. $\frac{x^{2}-3 x-10}{(x-2)(x+1)(x-1)^{2}}$
84. If $a=\frac{2 b(2 y-x)}{x-3 y}$, then $y=$
A. $\frac{a+2 b}{3 a+4 b} x$
B. $\frac{a-2 b}{-3 a+4 b} x$
C. $-\frac{a+2 b}{3 a+4 b} x$
D. $\frac{3 a+4 b}{a+2 b} x$
E. $\frac{-3 a+4 b}{a-2 b} x$
$84\left(2^{n+1}\right)^{2} \times\left(2^{-2 n-1}\right) \div 4^{n}=$
3.
A. 1
B. $2^{2 n-1}$
C. $2^{n^{2}+2 n}$
D. $2^{n^{2}-2 n}$
E. $2^{-2 n+1}$
A. -7
B. -1
C. 0
D. 1
E. 7

84 If α and β are the roots of
5. $3 x^{2}-x-1=0$,
then $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=$
A. 7
B. 3
C. 1
D. -1
E. -5

84 If $(\sqrt{3}-\sqrt{2}) x=1$, then $x=$ 6.
A. $\sqrt{3}+\sqrt{2}$
B. $\frac{1}{\sqrt{3}+\sqrt{2}}$
C. $\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{2}}$
D. $\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}$
E. $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$

84 What is/are the root(s) of
7. $\sqrt{5-x}=x-3$?

84 If $x+2$ is a factor of $x^{2}+a x+b$, then
4. $2 a-b+3=$
A. 4 only
B. 1 and 4 only
C. -1 and -4 only
D. -4 and 4 only
E. $-4,-1,1$ and 4

84 The sum of the first ten terms of an 8. arithmetic progression is 120 . If the common difference is 4 , then the first term is
A. -12 .
B. -6 .
C. -2 .
D. 2 .
E. 6 .
$84 \quad \$ 10000$ is invested for 2 years at 10%
9. per annum, compounded half-yearly. The compound interest, correct to the nearest dollar, is
A. $\$ 12155$.
B. $\$ 2155$.
C. $\$ 2100$.
D. $\$ 2000$.
E. $\$ 1025$.

84 The equation $x^{2}+k x+k=0$ has equal
10. roots (k being a constant). $k=$
A. 4 only
B. -4 only
C. 0 or 4
D. 0 or -4
E. 4 or -4
84. If $\frac{3 x+2 y}{x+5 y}=1$, then $\sqrt{x+y}: \sqrt{x-y}=$
A. $1: \sqrt{5}$
B. $3: 2$
C. $\sqrt{5}: \sqrt{6}$
D. $\sqrt{5}: 1$
E. $\sqrt{7}: 2$
$84 A$ is 25% taller than B. B is 25%
12. shorter than C. A's height : C 's height $=$
A. $1: 1$
B. $5: 4$
C. $3: 4$
D. $5: 3$
E. $15: 16$

84 A rectangular box, without a lid, is
13. 40 cm long, 30 cm wide and 10 cm height. The area of the external surface of the box is
A. $\quad 2600 \mathrm{~cm}^{2}$.
B. $3400 \mathrm{~cm}^{2}$.
C. $3500 \mathrm{~cm}^{2}$.
D. $3800 \mathrm{~cm}^{2}$.
E. $\quad 12000 \mathrm{~cm}^{2}$.

84 A man drives a car at $30 \mathrm{~km} / \mathrm{h}$ for 3
14. hours and then at $40 \mathrm{~km} / \mathrm{h}$ for 2 hours. His average speed for the whole journey is
A. $\quad 14 \mathrm{~km} / \mathrm{h}$.
B. $30 \mathrm{~km} / \mathrm{h}$.
C. $34 \mathrm{~km} / \mathrm{h}$.
D. $35 \mathrm{~km} / \mathrm{h}$.
E. $\quad 70 \mathrm{~km} / \mathrm{h}$.
$84 A$ alone can complete a job in 8 hours.
15. B alone takes 12 hours and C alone takes 6 hours. After A and B have worded together on the job for 3 hours, C joins them. How much longer will they take to complete the job?
A. 1 hour
B. $1 \frac{1}{2}$ hours
C. 2 hours
D. $2 \frac{1}{2}$ hours
E. 3 hours

84 The marked price of a book is 20%
16. above the cost price. If the book is sold at a discount of 10% off the marked price, what is the gain per cent based on the cost price?
A. 8%
B. 10%
C. 12%
D. 18%
E. None of the above.
84. $\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}+\cos ^{2} \theta=$
A. 1
B. $\frac{1}{2}+\cos ^{2} \theta$
C. $\cos ^{2} \theta$
D. $1+\tan ^{2} \theta$
E. $1+\cos ^{2} \theta$

84
18.

In the figure, $B C D$ is a straight line. $\angle A D C=90^{\circ}$ and $B C=10 . A D=$
A. $10 \cos 70^{\circ}$
B. $10 \sin 70^{\circ}$
C. $\quad 10 \tan 70^{\circ}$
D. $\frac{10 \sin 20^{\circ}}{\sin 55^{\circ}}$
E. $\frac{10 \tan 20^{\circ}}{\sin 55^{\circ}}$

84
19.

In the figure, $\cos \theta=$
A. $-\frac{1}{4}$
B. $-\frac{1}{2}$

84
C. $\frac{1}{4}$
D. $\frac{1}{2}$
E. $\frac{3}{4}$ 20.

In the figure, $\triangle A B C$ lies in a horizontal plane. $\angle B A C=90^{\circ}$. HA is vertical and $H A=h . \quad \tan \theta=$
A. 1
B. $\tan 30^{\circ}$
C. $\frac{1}{\tan 30^{\circ}}$
D. $h \tan 30^{\circ}$
E. $\frac{h}{\tan 30^{\circ}}$

In the figure, $A B=x$ and $A C=2 x$. The area of $\triangle A B C$ is 16 . x (correct to 2 decimal places) is
A. $\quad 2.83$.
B. 4.00 .
C. 4.30 .
D. 5.66 .
E. 6.08 .

84 The sum of the interior angles of a
22. convex polygon is greater than the sum of the exterior angles by 360°. How many sides has the polygon?
A. 3
B. 4
C. 5
D. 6
E. 8

84
23.

In the figure, $x=$?
A. 31
B. 34
C. 40
D. 48
E. It cannot be determined.

In the figure, $A B$ and $A C$ touch the circle at B and C respectively. $\angle A=$
A. 30°
B. 40°
C. 50°
D. 80°
E. 85°

In the figure, O is the centre of the circle. $T A$ and $T B$ touch the circle at A and B respectively. $O A=2$. The length of the arc $A P B$ is
A. $\frac{\pi}{4}$.
B. $\frac{\pi}{2}$.
C. $\frac{3 \pi}{4}$.
D. $\frac{3 \pi}{2}$.
E. 3π.

84 The point P divides $A B$ internally so
26. that $A P: P B=2: 1$. The coordinates of A and B are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively. The coordinates of P are
A. $\left(\frac{2 x_{1}+x_{2}}{3}, \frac{2 y_{1}+y_{2}}{3}\right)$.
B. $\left(\frac{x_{1}+2 x_{2}}{3}, \frac{y_{1}+2 y_{2}}{3}\right)$.
C. $\left(\frac{2 x_{1}-x_{2}}{3}, \frac{2 y_{1}-y_{2}}{3}\right)$.
D. $\left(\frac{x_{1}-2 x_{2}}{3}, \frac{y_{1}-2 y_{2}}{3}\right)$.
E. $\left(\frac{x_{1}+x_{2}}{3}, \frac{y_{1}+y_{2}}{3}\right)$.

84 The line $x+y+k=0$ (k being a
27. constant) passes through the centre of the circle
$x^{2}+y^{2}-2 x+4 y-6=0 . k=$
A. -2
B. -1
C. 0
D. 1
E. 2

84 The equation of a circle is
28. $x^{2}+y^{2}-2 x+5 y-7=0$.

Which of the following is/are true?
I. The circle passes through the point $(-1,1)$.
II. The centre of the circle lies in the second quadrant.
III. The circle intersects the x-axis at two points.
A. II only
B. III only
C. I and II only
D. II and III only
E. I, II and III

84 If a, b and c are positive real numbers,
29. which of the following graphs could represent the line $a x+b y+c=0$?
A.

B.

C.

D.

E.

84 The probability that John will win a 30. game is $\frac{1}{3}$ and the probability that he will lose is $\frac{2}{3}$. What is the probability that, in three games, he will win any two games and lose one game?
A. $\frac{4}{27}$
B. $\frac{2}{27}$
C. $\frac{1}{27}$
D. $\frac{2}{9}$
E. $\frac{1}{9}$

84 Two dice are thrown. What is the
31. probability of getting a sum of 8 ?
A. $\frac{1}{12}$
B. $\frac{1}{11}$
C. $\frac{5}{36}$
D. $\frac{1}{6}$
E. $\frac{2}{9}$

84 The standard deviation of the five 32. numbers $a-2 d, a-d, a, a+d, a+2 d$, is
A. 0 .
B. d.
C. $\sqrt{2} d$.
D. $\sqrt{5} d$.
E. $\sqrt{10} d$.
$84-4 x^{2}-9 \geq 0$ is equivalent to
33.
A. $x \geq \frac{3}{2}$ or $x \geq-\frac{3}{2}$.
B. $\frac{3}{2} \leq x \leq-\frac{3}{2}$.
C. $-\frac{3}{2} \leq x \leq \frac{3}{2}$.
D. $x \geq-\frac{3}{2}$ or $x \leq \frac{3}{2}$.
E. $x \leq-\frac{3}{2}$ or $x \geq \frac{3}{2}$.

84 The graph of $y=x^{2}+a x+b(a$ and b
34 . being constants) cuts the x-axis at $(2,0)$ and ($h, 0$), and cuts the y-axis at $(0,-2) . h=$
A. -3
B. -2
C. -1
D. 0
E. 1

84 If a and b are non-zero real numbers
35. and $a>b$, which of the following must be true?
I. $a^{2}>b^{2}$
II. $\frac{1}{a}>\frac{1}{b}$
III. $a^{3}>b^{3}$
A. II only
B. III only
C. I and II only
D. II and III only
E. I and III only

84 If $\mathrm{f}(x)=\left(\log _{10} 2 x\right)-x$,
36. then $\mathrm{f}(x+1)-\mathrm{f}(x)=$
A. $\log _{10} 2-1$
B. $\log _{10} \frac{x+1}{x}$
C. $\log _{10} \frac{10(x+1)}{x}$
D. $\log _{10} \frac{x+1}{10 x}$
E. $\log _{10} \frac{x+1}{x}-2 x$

84 If $a \neq \pm 1$, then $1+a^{2}+a^{4}+\ldots+a^{2 n}=$ 37.
A. $\frac{1-a^{2 n}}{1-a}$
B. $\frac{1-a^{2 n}}{1-a^{2}}$
C. $\frac{1-a^{2 n+1}}{1-a}$
D. $\frac{1-a^{2 n+1}}{1-a^{2}}$
E. $\frac{1-a^{2 n+2}}{1-a^{2}}$

84 Which of the following must be
38. geometric progression(s)?
I. $\quad \log _{10} 3, \log _{10} 9, \log _{10} 27, \log _{10} 81$
II. $\quad 0.9,0.99,0.999,0.9999$
III. $1,-3,9,-27$
A. I only
B. III only
C. I and III only
D. I and II only
E. I, II and III only
$84 a, b, c$ are positive numbers such that 39. $\frac{a}{b}=\frac{b}{c}=k$ (k being a constant), which of the following must be true?
I. $b^{2}=k^{2}$
II. $\frac{a+b}{b+c}=k$
III. $\frac{a}{c}=k^{2}$
A. II only
B. III only
C. I and II only
D. II and III only
E. I, II and III

84 Last year, a man saved 10% of his
40. income. By how much per cent must his income be increased if his expenditure increased by 20% and he wants to save 20% of his income?
A. 50%
B. 35%
C. 30%
D. 20%
E. 15%

84 The external and internal radii of a
41. hollow metal sphere are 4 cm and 3 cm respectively.
$\frac{\text { Volume of metal }}{\text { Volume of the enclosed empty space }}=$
C. $\frac{4}{3}$
D. $\frac{37}{27}$
E. $\frac{64}{27}$

84 A solid metal sphere of volume 252
42. cm^{3} is melted and recast into 3 smaller solid spheres whose radii are in the ratio $1: 2: 3$. The volume of the smaller sphere is
A. $5 \mathrm{~cm}^{3}$.
B. $7 \mathrm{~cm}^{3}$.
C. $14 \mathrm{~cm}^{3}$.
D. $18 \mathrm{~cm}^{3}$.
E. $28 \mathrm{~cm}^{3}$.

84 The base radii of two right circular
43. cylinders are in the ratio $2: 3$. If the two cylinders have the same height, what is the ratio of their curved surface area?
A. $2: 3$
B. $4: 9$
C. $8: 27$
D. $\sqrt{8}: \sqrt{27}$
E. None of the above.
44. The greatest value of $\frac{3}{4+2 \cos \theta}$ is
A. 3 .
B. $\frac{3}{2}$.
C. $\frac{3}{4}$.
D. $\frac{3}{5}$.
E. $\frac{1}{2}$.
A. $\frac{1}{27}$
B. $\frac{1}{3}$

84 If $0^{\circ} \leq \theta<360^{\circ}$, the number of roots of
45. the equation
$2 \sin \theta+\frac{1}{\sin \theta}=3$ is
A. 0
B. 1
C. 2
D. 3
E. 4

84
46.

In the figure, $\angle B=90^{\circ}$ and $B C D$ is a straight line. If $A B=p$ and $B C=q$, then $\cos \theta=$
A. $\frac{p}{q}$
B.

$$
\frac{p}{\sqrt{p^{2}+q^{2}}}
$$

C.

$$
\frac{q}{\sqrt{p^{2}+q^{2}}}
$$

D. $\frac{-p}{\sqrt{p^{2}+q^{2}}}$
E. $\frac{-q}{\sqrt{p^{2}+q^{2}}}$

84
47.

In the figure, the radius of the sector is r and $\angle P O Q=x^{\circ}$. If the area of the sector is A, then $x=$
A. $\frac{2 A}{r^{2}}$
B. $\frac{360 A}{r^{2}}$
C. $\frac{360 A}{\pi r^{2}}$
D. $\frac{180 A}{r^{2}}$
E. $\frac{180 A}{\pi r^{2}}$

84
48.

In the figure, $P Q R S$ is a square inscribed in $\triangle A B C . A B=A C$ and $P Q=a . A B=$
A. $a\left(\sin \theta+\frac{1}{2} \cos \theta\right)$
B. $a\left(\sin \theta+\frac{1}{2} \sin \theta\right)$
C.

$$
a\left(\frac{1}{\sin \theta}+\frac{1}{2 \cos \theta}\right)
$$

D.

$$
a\left(\frac{1}{\cos \theta}+\frac{1}{2 \sin \theta}\right)
$$

E. $\frac{2 a}{\sin \theta}$

84
49.

In the figure, $A B / / D C . A B=q$ and $D C=p . B C=$
A. $\frac{(p+q) \sin 50^{\circ}}{2 \sin 70^{\circ}}$
B. $\frac{(p+q) \sin 70^{\circ}}{2 \sin 50^{\circ}}$
C. $\frac{(p-q) \sin 70^{\circ}}{\sin 60^{\circ}}$
D. $\frac{(p-q) \sin 70^{\circ}}{\sin 50^{\circ}}$
E. $\frac{(p-q) \sin 50^{\circ}}{\sin 70^{\circ}}$

84
50.

In the figure, $X Y / / B C . A X: X B=$ $2: 1$. If the area of the trapezium $B C Y X=20$, then the area of $\triangle A B C=$
A. 80
B. 60
C. 45
D. 40
E. 36

84
51.

The figure shows the graph of $y=a \sin k \theta$. What are the values of the constant a and k ?
A. $\quad a=1$ and $k=1$
B. $\quad a=1$ and $k=2$
C. $a=1$ and $k=\frac{1}{2}$
D. $\quad a=2$ and $k=2$
E. $\quad a=2$ and $k=\frac{1}{2}$

84 In $\triangle A B C, B C=a, A C=b, A B=c$ and
52. $a>b>c$. Which of the following must be true?
I. $\angle A>\angle B>\angle C$
II. $b+c>a$
III. $\angle B+\angle C>\angle A$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

84
53.

In the figure, $A B$ is a diameter of the circle. $A P=A Q . A B=10$ and $B P=8$. $P Q=$
A. 5
B. 6
C. 6.4
D. 8
E. 9.6

84
54.

In the figure, the chords $B A$ and $C D$, when produced, meet at P. The chords $A D$ and $B C$, when produced, meet at Q. $\angle B=$
A. 35°
B. 40°
C. 45°
D. 50°
E. 55°

