Form 5

HKCEE 1983
Mathematics II
83. $\frac{6}{x^{2}-9}-\frac{5}{x^{2}+x-6}$
A. $\frac{1}{(x-2)(x-3)}$
B. $\frac{1}{(x+2)(x+3)}$
C. $\frac{1}{(x+2)(x-3)}$
D. $\frac{1}{(x-2)(x+3)}$
E. $\frac{x-27}{(x-2)(x+3)(x-3)}$
2. $\frac{\frac{1}{a^{3}}+\frac{1}{b^{3}}}{\frac{1}{a}+\frac{1}{b}}=$
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}$
B. $\frac{1}{a^{2}}+\frac{1}{a b}+\frac{1}{b^{2}}$
C. $\frac{1}{a^{2}}-\frac{1}{a b}+\frac{1}{b^{2}}$
D. $a^{2}-a b+b^{2}$
E. $a^{2}+a b+b^{2}$

83
If $x=\frac{y^{2}}{\sqrt{a^{2}+b z}}$, then $z=$
A. $\frac{1}{b}\left(\frac{y^{4}}{x^{2}}-a^{2}\right)$
B. $\frac{1}{b}\left(\frac{x^{2}}{y^{4}}-a^{2}\right)$
C. $\frac{1}{b}\left(a^{2}-\frac{x^{2}}{y^{4}}\right)$
D. $\frac{1}{b}\left(a^{2}-\frac{y^{4}}{x^{2}}\right)$
E. $\frac{1}{b}\left(a^{2}-\frac{x^{2}}{y^{2}}\right)$
43. $\left(x^{2} y^{-1}\right) \div\left(x^{\frac{1}{2}} y^{-1}\right)^{2}=$
A. $x y$
B. $x y^{-1}$
C. $x y^{-3}$
D. $x^{2} y^{\frac{1}{2}}$
E. $x^{-\frac{1}{2}} y^{-2}$

83 The H.C.F. of $a^{3}-1$ and $a^{4}-1$ is 5.
A. 1
B. $a+1$
C. $a-1$
D. $a^{2}+1$
E. $a^{2}-1$

83 When $\mathrm{f}(x)$ is divided by $(2 x+1)$, the 6. remainder is
A. $\mathrm{f}(2)$
B. $\mathrm{f}(1)$
C. $\mathrm{f}(-1)$
D. $\mathrm{f}\left(\frac{1}{2}\right)$
E. $\mathrm{f}\left(-\frac{1}{2}\right)$

83 If α and β are the roots of
7. $2 x^{2}-3 x-4=0$, then $\alpha^{2}+3 \alpha \beta+\beta^{2}$
A. $\frac{1}{4}$
B. $4 \frac{1}{4}$
C. 5
D. $8 \frac{1}{4}$
E. 13
$832 x-3 a-4>3 x+5 a+6$ is equivalent 8. to
A. $x>-8 a-10$
B. $x>2 a-10$
C. $x<-8 a-10$
D. $x<\frac{1}{5}(2 a+2)$
E. $\quad x>\frac{1}{5}(2 a+2)$

83 The sixth term and the eleventh term of 9. an A.P. are 10 and 30 respectively. The first term is
A. -14
B. -10
C. 10
D. 50
E. 54

83 If $2 x=3 y=5 x$, then $x: y: z=$ 10.
A. $2: 3: 5$
B. $5: 3: 2$
C. $6: 10: 15$
D. $15: 10: 6$
E. $25: 9: 4$

83
11.

In the figure, all the corners are rightangled. If the perimeter of the figure is 40 , then $x=$
A. 0.25
B. 2
C. 2.5
D. 4
E. 4.5

83 If the lengths of the diagonals of a
12. rhombus are 2 cm and 4 cm respectively, what is the area of the rhombus?
A. $2 \mathrm{~cm}^{2}$
B. $4 \mathrm{~cm}^{2}$
C. $8 \mathrm{~cm}^{2}$
D. $16 \mathrm{~cm}^{2}$
E. It cannot be determined

83 A hollow cylindrical metal pipe, 1 m
13. long, has an external radius and an internal radius of 5 cm and 4 cm respectively. The volume of metal is
A. $\quad 90 \pi \mathrm{~cm}^{3}$
B. $100 \pi \mathrm{~cm}^{3}$
C. $180 \pi \mathrm{~cm}^{3}$
D. $900 \pi \mathrm{~cm}^{3}$
E. $\quad 1800 \pi \mathrm{~cm}^{3}$

83 Two men cycle round a circular track
14. which 3 km long. If they start at the same time and at the same spot but go in opposite direction with speeds $6 \mathrm{~km} / \mathrm{h}$ and $9 \mathrm{~km} / \mathrm{h}$ respectively, for how long must they cycle before they meet for the first time?
A. 12 minutes
B. 15 minutes
C. 18 minutes
D. 24 minutes
E. 60 minutes

83 A man marks his good at a price that
15. will bring him a profit of 25% on the cost price. If he wants to sell his goods to a friend at the cost price, the percentage discount on the marked price should be
A. 25%.
B. 20%.
C. $16 \frac{2}{3} \%$.
D. 15%.
E. 12%.
$83 \sin ^{2} \theta-\left(\sin ^{2} \theta \cos ^{4} \theta+\sin ^{4} \theta \cos ^{2} \theta\right)=$
16.
A. $\sin ^{4} \theta$
B. $\cos ^{4} \theta$
C. $-\sin ^{4} \theta$
D. $-\cos ^{4} \theta$
E. $\sin ^{2} \theta \cos ^{2} \theta$
83. $\frac{\cos \left(90^{\circ}-\theta\right)}{\tan \left(180^{\circ}-\theta\right)}=$
A. $\cos \theta$
B. $-\cos \theta$
C. $-\frac{\sin ^{2} \theta}{\cos \theta}$
D. $-\frac{\cos ^{2} \theta}{\sin \theta}$
E. $\frac{\sin ^{2} \theta}{\cos \theta}$

83
18.

In the figure, $A B=p, D C=q$ and $\angle A=$ $\angle D=90^{\circ}$. $B C=$
A. $(q-p) \sin \theta$
B. $(q-p) \cos \theta$
C. $(q-p) \tan \theta$
D. $\frac{q-p}{\sin \theta}$
E. $\frac{q-p}{\cos \theta}$

In the figure, $\angle A B C=\angle A C D=\angle B D C$
$=90^{\circ} . A C=a . C D=$
A. $a \sin ^{2} \theta$
B. $a \sin ^{2} \theta$
C. $a \tan \theta$
D. $a \sin \theta \cos \theta$
E. $\frac{a \cos \theta}{\sin \theta}$

In the figure, $O A B$ is a sector of a circle. Radius $O A$ is 3 cm long and arc $A B=2 \mathrm{~cm}$. The area of the sector is
A. $3 \mathrm{~cm}^{2}$.
B. $6 \mathrm{~cm}^{2}$.
C. $9 \mathrm{~cm}^{2}$.
D. $3 \pi \mathrm{~cm}^{2}$.
E. $6 \pi \mathrm{~cm}^{2}$.

83
21.

In the figure, $A B=A C$. If the area of $\triangle A B C$ is $64 \mathrm{~cm}^{2}$, then $A B=$
A. 32 cm
B. $16 \sqrt{2} \mathrm{~cm}$
C. 16 cm
D. $8 \sqrt{2} \mathrm{~cm}$
E. 4 cm

83
22.

In the figure, D is a point on $B C$ and $A C=A D=B D . \quad \angle C A D=$
A. 20°
B. 25°
C. 30°
D. 35°
E. 40°

83
23.

The sum of the six marked angles in the figure is
A. $\quad 360^{\circ}$.
B. 540°.
C. 600°.
D. 720°.
E. 900°.

83
24.

In the figure, chords $A B$ and $C D$ intersect at $P . B P=D P . \angle C A D=$
A. 58°
B. 86°
C. 88°
D. 92°
E. 142°

83
25.

In the figure, the three sides of $\triangle A B C$ touch the circle at the points P, Q and R. $\angle P Q R=$
A. 30°
B. 50°
C. 55°
D. 70°
E. 75°

83 If the line $2 x-3 y+c=0$ passes
26. through the point $(1,1)$, then $c=$
A. -2
B. -1
C. 0
D. 1
E. 2

83 The equation of the line passing
27. through $(1,-1)$ and perpendicular to the x-axis is
A. $x-1=0$.
B. $x+1=0$.
C. $y-1=0$.
D. $y+1=0$.
E. $x+y=0$.

83 A circle has its centre at $(3,4)$ and
28. passes through the origin. Its equation is
A. $x^{2}+y^{2}-6 x-8 y+25=0$
B. $x^{2}+y^{2}-3 x-4 y=0$
C. $x^{2}+y^{2}-6 x-8 y=0$
D. $x^{2}+y^{2}+6 x+8 y=0$
E. $x^{2}+y^{2}-6 x-8 y+25=0$

83 If d is the distance between the point
29. (a, b) and (b, a), then d^{2}
A. 0
B. $a^{2}+b^{2}$
C. $2\left(a^{2}+b^{2}\right)$
D. $(a-b)^{2}$
E. $2(a-b)^{2}$

83
30.

The pie chart shows how a boy spends the 24 hours of a day. If the boy spends 4 hours playing, how much time does he spend watching television?
A. 1 hour
B. 2 hours
C. 3 hours
D. 4 hours
E. 5 hours

83 There are 12 boys and 8 girls in a class.
31. $\frac{1}{4}$ of the boys and $\frac{1}{4}$ of the girls wear glasses. What is the probability that a student chosen at random from the class is a boy not wearing glasses or a girl wearing glasses?
A. $\frac{5}{20}$
B. $\frac{9}{20}$
C. $\frac{11}{20}$
D. $\frac{15}{20}$
E. $\frac{9}{100}$

83
32.

In the figure, P, Q and R are curves showing the frequency distributions of the heights of students in three schools, each having the same number of students. Which distribution has the greatest standard deviation and which the smallest?

	Greatest	Smallest
A.	P	Q
B.	P	R
C.	Q	R
D.	R	P
E.	R	Q

If $x+\frac{1}{x}=2+\frac{1}{2}$, then $x=$
A. 2 only
B. -2 only
C. $\frac{1}{2}$ only
D. -2 or 2
E. $\frac{1}{2}$ or 2
$8312-x-x^{2}<0$ is equivalent to
34.
A. $x<-4$.
B. $x>3$.
C. $-4<x<3$.
D. $x<-3$ or $x>4$.
E. $\quad x<-4$ or $x>3$.

83
35.

In the figure, the equation of the straight line is $y=m x+c$. Which one of the following is true?
A. $\quad m>0$ and $c>0$
B. $\quad m>0$ and $c<0$
C. $\quad m<0$ and $c>0$
D. $\quad m<0$ and $c<0$
E. $\quad m>0$ and $c=0$

83 If a and b are positive numbers, which
36. of the following is/are true?
I. $\quad \log _{10}(a+b)=\log _{10} a+\log _{10} b$
II. $\log _{10} \frac{a}{b}=\log _{10} a-\log _{10} b$
III. $\frac{\log _{10} a}{\log _{10} b}=\frac{a}{b}$
A. I only
B. II only
C. III only
D. I and II only
E. I, II and III

83 A function $\mathrm{f}(x)$ is called an even
37. function if $\mathrm{f}(x)=\mathrm{f}(-x)$. Which of the following function is/are even functions?
I. $\mathrm{f}_{1}(x)=\frac{1}{x}$
II. $\mathrm{f}_{2}(x)=x^{2}$
III. $\mathrm{f}_{3}(x)=x^{3}$
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

83 In an arithmetic progression, the first
38. term is 3 and the common difference is 2. If the sum of the first n terms of the arithmetic progression is 143 then $n=$
A. 10
B. 11
C. 12
D. 13
E. 14

83 Three positive numbers a, b and c are
39. in geometric progression. Which of the following are true?
I. $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in geometric progression
II. a^{2}, b^{2}, c^{2} are in geometric progression.
III. $\log _{10} a, \log _{10} b, \log _{10} c$ are in arithmetic progression.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
E. None of them

83 The scale of a map is 1:20000. On
40. the map the area of a farm is $2 \mathrm{~cm}^{2}$. The actual area of the farm is
A. $\quad 400 \mathrm{~m}^{2}$.
B. $800 \mathrm{~m}^{2}$.
C. $40000 \mathrm{~m}^{2}$.
D. $80000 \mathrm{~m}^{2}$.
E. $8000000 \mathrm{~m}^{2}$.

83 It took Paul 40 minutes to walk from
41. Town A to Town B. If the return journey took him 30 minutes, the percentage increase in his speed was
A. 10%.
B. $16 \frac{2}{3} \%$.
C. 25%.
D. $33 \frac{1}{3} \%$.
E. 40%.

83 A merchant sold 2 articles each at
42. $\$ 1000$. For first article, he gained 25% on the cost price. For the second article, he lost 20% on the cost price. Altogether
A. he gained $\$ 100$.
B. he gained $\$ 50$.
C. he lost $\$ 100$.
D. he lost $\$ 50$.
E. he lost $\$ 48$.

83 Three number are in the ratio $2: 3: 5$.
43. The ratio of their average to the largest of the three numbers is
A. 1:3.
B. $1: 2$.
C. $3: 5$.
D. $2: 3$.
E. 2:1.

In the figure, $A B C D$ is a trapezium in which $A B / / D C$ and $\angle C=\angle D=\theta$. If $C D=p$ and $A B=q$, then the area of the trapezium is
A. $\frac{1}{2}(p+q)^{2} \tan \theta$.
B. $\frac{1}{4}\left(p^{2}+q^{2}\right) \tan \theta$.
C. $\frac{1}{2}\left(p^{2}-q^{2}\right) \tan \theta$.
D. $\frac{1}{4}\left(p^{2}-q^{2}\right) \tan \theta$.
E. $\frac{\left(p^{2}-q^{2}\right)}{4 \tan \theta}$

83 A solid sphere is cut into two
45. hemispheres. The percentage increase in the total surface area is
A. 25%.
B. $33 \frac{1}{3} \%$.
C. 50%.
D. 75%.
E. 100%.

83
46.

In the figure, $B C=a . A B=$
A. $a \sin 20^{\circ}$
B. $\frac{a \sin 20^{\circ}}{\sin 70^{\circ}}$
C. $\frac{a \sin 20^{\circ}}{\sin 50^{\circ}}$
D. $\frac{a \sin 50^{\circ}}{\sin 20^{\circ}}$
E. $\frac{a \sin 50^{\circ}}{\sin 70^{\circ}}$

83
47.

In the figure, $A B C D$ is a rectangle. $A B$ $=p$ and $B C=q$. If $\angle B A Y=\theta$, the distance of C from the $X A Y$ is
A. $(p+q) \sin \theta$.
B. $(p+q) \cos \theta$.
C. $\sqrt{p^{2}+q^{2}} \sin \theta$.
D. $p \cos \theta+q \sin \theta$.
E. $p \sin \theta+q \cos \theta$.

83 If $0 \mathrm{o} \leq \theta<360 \mathrm{o}$, the number of roots of
48. the equation $4 \sin ^{2} \theta \cos \theta=\cos \theta$ is
A. 2 .
B. 3 .
C. 4 .
D. 5 .
E. 6 .

83 The maximum value of $\cos ^{2} 3 x$ is 49.
A. 1 .
B. 2 .
C. 3 .
D. 6 .
E. 9 .

83
50.

The figure above shows the graph of a tangent function form 0° to 360°. The function is
A.

$$
y=\tan \frac{x^{\circ}}{2} .
$$

B. $y=\tan x^{\circ}$.
C. $y=\tan 2 x^{\circ}$.
D. $y=\tan (x-90)^{\circ}$.
E. $y=\tan (x+90)^{\circ}$.
51.

In the figure, $A B C D$ is a quadrilateral with $A B=B C$ and $A D=D C$. Which of the following is/ar true?
I. $\angle B A D=\angle B C D$
II. $A C \perp B D$
III. $B D$ bisect $A C$
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

In the figure, X and Y are points on $A B$ and $B C$ respectively such that $A X: X B$ $=3: 2$ and $B Y: Y C=4: 3$. If the area of $\triangle A B C=70$, then the area of $\triangle A X Y=$
A. 16
B. 24
C. 30
D. 40
E. 42

83
53.

In the figure, chords $A B$ and $C D$ intersect at E. The length of the minor $\operatorname{arc} B D$ is three times the length of the minor arc $A C . \angle B A D=$
A. 31°
B. 35°
C. 42°
D. 45°
E. 56°

83
54.

In the figure, $P Q$ and $X Y$ touch the circle at A and B respectively. $P Q / / X Y$ and $\angle Q A C=60^{\circ} . \angle C B X=$
A. 150°
B. 135°
C. 120°
D. 110°
E. 100°

