Form 5

HKCEE 1982

Mathematics II

82 $\frac{2 a}{a^{2}-4 b^{2}}+\frac{1}{2 b-a}=$
A. $\frac{1}{a+2 b}$
B. $\frac{2 a-1}{(a+2 b)(a-2 b)}$
C. $\frac{2 a+1}{(a+2 b)(a-2 b)}$
D. $\frac{3 a+2 b}{(a+2 b)(a-2 b)}$
E. $\frac{a+2 b}{(a+2 b)(a-2 b)}$
2. $\frac{8^{2 x} \cdot 4^{3 x}}{2^{x} \cdot 16^{2 x}}=$
A. $2^{3 x}$
B. $2^{2 x}$
C. 2^{x}
D. 8
E. 1
$82 \quad\left(\mathrm{a}^{-2}-3 \mathrm{~b}^{-1}\right)^{-1}=$
3.
A. $\frac{3 a^{2}+b}{a^{2} b}$
B. $\frac{3 a^{2}-b}{a^{2} b}$
C. $\frac{3 b-a^{2}}{a^{2} b}$
D. $\frac{3 a^{2} b}{b-3 a^{2}}$
E. $\frac{3 a^{2} b}{3 b-a^{2}}$

82
4. If $x=\frac{1}{\frac{1}{y}+\frac{2}{z}}$, then $y=$
A. $\frac{2 x}{z}$
B. $\frac{z}{x z-z}$
C. $\frac{z-2 x}{x z}$
D. $\frac{x z}{2 x+z}$
E. $\frac{x z}{z-2 x}$

82 If $10^{k x+a}=P$, then $x=$
5.
A. $\frac{1}{k}\left(10^{P-a}\right)$
B. $\log _{10} \frac{P-a}{k}$
C. $\frac{1}{k} \log _{10} P-a$
D. $\frac{1}{k}\left(\log _{10} P-a\right)$
E. $\frac{1}{k}\left(\log _{10} P+a\right)$
82α and β are the roots of the equation
6. $x^{2}-5 x-7=0$. What is the equation whose roots are $\alpha+1$ and $\beta+1$?
A. $x^{2}-3 x+3=0$
B. $x^{2}-3 x-11=0$
C. $x^{2}-5 x+1=0$
D. $x^{2}-7 x-1=0$
E. $x^{2}-7 x-7=0$

82 What are the roots of the equation
7. $(x-3)^{2}(x+1)=-(x+1)^{2}(x-3)$?
A. 1 only
B. $1,-3$ only
C. $-1,3$ only
D. $1,-1,-3$
E. $1,-1,3$
$825-9 x-2 x^{2}>0$ is equivalent to
8.
A. $x>\frac{1}{2}$
B. $x<-5$
C. $-5<x<\frac{1}{2}$
D. $x<-5$ or $x>\frac{1}{2}$
E. $x>-5$ or $x<\frac{1}{2}$

82 What will \$P amount to in 3 years' 9. time. If interest is compounded monthly at 12% per annum?
A. $\$ P\left(1+\frac{36}{100}\right)$
B. $\$ P\left(1+\frac{1}{100}\right)^{36}$
C. $\$ P\left(1+\frac{12}{100}\right)^{36}$
D. $\$ P\left(1+\frac{12}{100}\right)^{3}$
E. $\$ P\left(1+\frac{1}{100}\right)^{3}$

A child spent $\frac{1}{10}$ of his saving on a shirt and $\frac{1}{5}$ of his savings on a pair of trousers. He then spent 30% of the rest of his savings on books. What percentage of his saving did he spend altogether?
A. 49.6%
B. 50.4%
C. 51%
D. 58%
E. 60%

82 The rent of a flat is raised by 30% every
11. two years beginning from a fixed date. Counting from that date, after how many years will the rent just exceed twice the original rent?
A. 4 years
B. 5 years
C. 6 years
D. 7 years
E. Over 7 years

82 A man drives 20 km at $40 \mathrm{~km} / \mathrm{h}$. At
12. what speed must he drive on his return journey so that the average speed for the double journey is $60 \mathrm{~km} / \mathrm{h}$?
A. $50 \mathrm{~km} / \mathrm{h}$
B. $80 \mathrm{~km} / \mathrm{h}$
C. $\quad 100 \mathrm{~km} / \mathrm{h}$
D. $120 \mathrm{~km} / \mathrm{h}$
E. $\quad 160 \mathrm{~km} / \mathrm{h}$

82 The marked price of a book is $\$ 240$. If
13. the book is sold at a discount of 20%, the profit will be 20% of the cost price. What is the cost price of the book?
A. $\quad \$ 153.6$
B. $\$ 160$
C. $\$ 192$
D. $\$ 200$
E. $\$ 240$

82 A right circular cone of altitude $3 r$ and 14. base radius r has the same volume as a cube of side x. $x=$
A. πr^{3}
B. πr
C. $\frac{1}{3} \pi r$
D. $\sqrt[3]{3 \pi} r$
E. $\sqrt[3]{\pi} r$

82 Some air escapes from a spherical
15. balloon of volume a^{3}. The balloon keeps its spherical shape and is now of volume b^{3}. What is the percentage decrease in the radius?
A. $\frac{a-b}{a} \times 100 \%$
B. $\frac{a-b}{b} \times 100 \%$
C. $\sqrt[3]{\frac{a^{3}-b^{3}}{a^{3}}} \times 100 \%$
D. $\sqrt[3]{\frac{a^{3}-b^{3}}{b^{3}}} \times 100 \%$
E. $\frac{a^{3}-b^{3}}{a^{3}} \times 100 \%$

82 Coffee A and coffee B are mixed in the 16. ratio $1: 2$. A profit of 20% on the cost price is made by selling the mixture at $\$ 36 / \mathrm{kg}$. If the cost price of A is $\$ 12 / \mathrm{kg}$, what is the cost price of B ?
A. $\$ 18 / \mathrm{kg}$
B. $\$ 24 / \mathrm{kg}$
C. $\$ 39 / \mathrm{kg}$
D. $\$ 48 / \mathrm{kg}$
E. $\$ 66 / \mathrm{kg}$
$82(\sin \theta+\cos \theta)^{2}-1=$
17.
A. 0
B. 1
C. $2 \cos ^{2} \theta$
D. $2 \sin \theta \cos \theta$
E. $-2 \sin \theta \cos \theta$
82. If $\tan x=-\frac{3}{4}$ and x is an angle in the second quadrant, what is the value of $\sin x+\cos x ?$
A.

$$
-\frac{7}{5}
$$

B. $-\frac{1}{5}$
C. $\frac{1}{5}$
D. 1
E. $\frac{7}{5}$

82 If $A+B=180^{\circ}$, which of the following
19 . is/are true?
I. $\sin A=\sin B$
II. $\cos A=\cos B$
III. $\tan A=\tan B$
A. I only
B. II only
C. III only
D. I, II and III
E. None of them

82 From the top of a lighthouse, h metres
20. high, the angle of depression of a boat is 20°. How far is the boat from the base of the lighthouse, which is at sealevel?
A. $\quad h \sin 20^{\circ} \mathrm{m}$
B. $h \cos 20^{\circ} \mathrm{m}$
C. $h \tan 20^{\circ} \mathrm{m}$
D. $\frac{h}{\sin 20^{\circ}} \mathrm{m}$
E.
$\frac{h}{\tan 20^{\circ}} \mathrm{n}$
82
21.

In the figure, $O A B$ is a right-angled triangle in a horizontal plane with $\angle A O B=90^{\circ}$. OC is a vertical line. If $O B=r, A C=$
A. $r \sin \beta$
B. $\frac{r \tan \alpha}{\cos \beta}$
C. $\frac{r \sin \beta}{\sin \alpha}$
D. $\frac{r \cos \beta}{\tan \alpha}$
E. $\frac{r \tan \beta}{\cos \alpha}$

82 In a circle, the angle of a sector is 30°
22. and the radius is 2 cm . The area of the sector is
A. $120 \mathrm{~cm}^{2}$
B. $60 \mathrm{~cm}^{2}$
C. $\frac{30}{\pi} \mathrm{~cm}^{2}$
D. $\frac{2 \pi}{3} \mathrm{~cm}^{2}$
E. $\frac{\pi}{3} \mathrm{~cm}^{2}$

82
23.

In the figure, $O A C B$ is a sector of a circle of radius 6 cm . Arc $A C B$ is longer than the chord $A B$ by
A. $(\pi-3) \mathrm{cm}$
B. $2(\pi-3) \mathrm{cm}$
C. $3(\pi-1) \mathrm{cm}$
D. $6(\pi-1) \mathrm{cm}$
E. $3(2 \pi-\sqrt{3}) \mathrm{cm}$

In the figure, $x=$
A. $a-b$
B. $a+b-180^{\circ}$
C. $a+b-90^{\circ}$
D. $180^{\circ}-a+b$
E. $360^{\circ}-a-b$

In the figure, $A B C D$ is a square and $P A B$ is an equilateral triangle. $\angle C P D$ =
A. 20°
B. 25°
C. 30°
D. 32°
E. 36°

82
26.

In the figure, D is a point on $B C$ such that $A D=C D$ and $A B=A C=B D$.
$\angle B=$
A. $22 \frac{1}{2}$.
B. 30°
C. 36°
D. 45°
E. 60°

82
27.

In the figure, $A K C$ and $B K D$ are two chords of the circle. $\angle C B D=$
A. $a-b$
B. $a+b$
C. $a+b-90^{\circ}$
D. $\frac{1}{2} a$
E. $\frac{1}{2} a+b$

82
28.

In the figure, $P Q$ and $R S$ touch the circle at A and C respectively. $\angle A B C=$
A. 48°
B. 60°
C. 84°
D. 90°
E. 96°

82 If $\mathrm{f}(x)=5 x+1$, then $\mathrm{f}(x+1)-\mathrm{f}(x)=$ 29.
A. 1
B. 6
C. $4 \cdot 5^{x}$
D. $5 \cdot 5^{x}$
E. $\quad 4 \cdot 5^{x}+1$

82 $\quad \log _{10}\left(x^{\log _{10} x}\right)=$
A. $\left(\log _{10} x\right)^{2}$
B. $\quad \log _{10}\left(x^{2}\right)$
C. $x \log _{10} x$
D. $\log _{10}\left(\log _{10} x\right)$
E. $10^{x^{2}}$
32. The graphs of $y=\frac{x^{2}}{2}$ and $y=x+2$ intersect at the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Which of the following equations has roots x_{1} and x_{2} ?
A. $x^{2}-x-2=0$
B. $x^{2}+x+2=0$
C. $x^{2}-2 x-4=0$
D. $x^{2}-4 x-8=0$
E. $2 x^{2}-x-2=0$

82 Let $a>2$. The inequality
32. $2 x-2 a<a x+5 a$ is equivalent to
A.

$$
x>\frac{7 a}{2-a}
$$

B. $x<\frac{7 a}{2-a}$
C. $x>\frac{-3 a}{2-a}$
D. $x<\frac{-3 a}{2-a}$
E. $x>\frac{-7 a}{2-a}$

in which of the following shaded regions do all the points satisfy the above inequalities?
A.

B.

C.

D.

E.

$82 a, b$ and k are real numbers. If $k>0$
34. and $a>b$, which of the following must be true?
I. $a^{2}>b^{2}$
II. $-a<-b$
III. $k a>k b$
A. II only
B. III only
C. I and III only
D. II and III only
E. I, II and III
$82 \$ 9000$ is divided among A, B and C.
35. A 's share, B 's share and C 's share, in that order, form an arithmetic progression. If B 's share is three times A 's share, how much does C get?
A. $\$ 1500$
B. $\$ 3000$
C. $\$ 4500$
D. $\$ 5000$
E. $\$ 6000$
$821,-0.1,0.01,-0.001, \ldots$ is a geometric
36. progression. What is its sum to infinity?
A. 0
B. 1
C. 0.99
D. $\frac{10}{11}$
E. $\frac{10}{9}$

82 If $x \neq 0$, which of the following is/are
37. geometric progression?
I. x, x^{2}, x^{3}, x^{4}
II. $x, 2 x, 3 x, 4 x$,
III. $x,-x^{2}, x^{3},-x^{4}$
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

82 The average of x and y is a, the average
38. of y and z is b, and the average of x and z is c. What is the average of x, y and z ?
A. $\frac{1}{6}(a+b+c)$
B. $\frac{1}{3}(a+b+c)$
C. $\frac{1}{2}(a+b+c)$
D. $\frac{2}{3}(a+b+c)$
E. $\frac{3}{2}(a+b+c)$

82
39.

In the figure an equilateral triangle is inscribed in a circle of radius a. What is the area of the triangle?
A. $\frac{3}{2} a^{2}$
B. $\frac{3 \sqrt{3}}{4} a^{2}$
C. $\frac{3}{4} a^{2}$
D. a^{2}
E. $\frac{3 \sqrt{3}}{2} a^{2}$

82
40.

Four identical trapeziums, each of area $16 \mathrm{~cm}^{2}$, are drawn inside a square of side 10 cm as shown in the figure. What is the height of each trapezium?
A. $\frac{1}{2} \mathrm{~cm}$
B. 1 cm
C. 2 cm
D. 3 cm
E. 4 cm

82
41.

The perimeter of the given figure $A B C D E$ is $2(\pi+4) \mathrm{cm}$. The upper portion $A E D$ is a semi-circle and the lower portion $A B C D$ is a rectangle. $A B: B C=1: 2$. What is the area of the given figure?
A. $8 \mathrm{~cm}^{2}$
B. $2 \pi \mathrm{~cm}^{2}$
C. $4 \pi \mathrm{~cm}^{2}$
D. $4(\pi+2) \mathrm{cm}^{2}$
E. $2(\pi+4) \mathrm{cm}^{2}$

82
42.

In the figure, the two concentric circles are of radius 2 cm and 4 cm respectively. Each circle is divided into 6 equal parts by 6 radii. What is the area of the shaded region?
A. $12 \pi \mathrm{~cm}^{2}$
B. $10 \pi \mathrm{~cm}^{2}$
C. $9 \pi \mathrm{~cm}^{2}$
D. $6 \pi \mathrm{~cm}^{2}$
E. $2 \pi \mathrm{~cm}^{2}$

82
43.

In the figure, the rectangles are similar. $P Q=a, Q R=b$. If $A C=2 P R$, what is the area of $A B C D$?
A. $2 a b$
B. $4 a b$
C. $2\left(a^{2}+b^{2}\right)$
D. $2(a+b) \sqrt{a^{2}+b^{2}}$
E. $2 a b \sqrt{a^{2}+b^{2}}$

The above figure shows the graph of $y=a \cos x+1$ for $0 \leq x \leq \pi$. $a=$
A. -1
B. 0
C. 1
D. 2
E. 3
42. $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=$
A. 2
B. $4 \sin \theta \cos \theta$
C. $\frac{2 \sin \theta \cos \theta}{\sin ^{2} \theta-\cos ^{2} \theta}$
D. $\frac{4 \sin \theta \cos \theta}{\sin ^{2} \theta-\cos ^{2} \theta}$

82
46.
$A B$ and $C D$ are two buildings of heights h and d respectively. The angles of elevation of C from A and B are respectively θ and 45°. $d=$
A. $h(1-\tan \theta)$
B. $h(1+\tan \theta)$
C. $h \tan \theta$
D. $\frac{h}{1+\tan \theta}$
E. $\frac{h}{1-\tan \theta}$

82
47.

In the figure, $B P$ is a diameter of the circle. The minor arc $A B$ and the radius are of equal length. $\angle A P B=$
A. $\frac{1}{2} \mathrm{rad}$
B. 1 rad
C. $\frac{\pi}{6} \mathrm{rad}$
D. $\frac{\pi}{4} \mathrm{rad}$
E. $\frac{\pi}{3} \mathrm{rad}$

82 How many roots has the equation
48. $\sin \theta+\sin ^{2} \theta=\cos ^{2} \theta$
where $0^{\circ} \leq \theta \leq 360^{\circ}$?
A. 0
B. 1
C. 2
D. 3
E. 4

82 If $0 \leq x \leq \pi$ and $\sin x \leq \cos x$, what is
49. the range of x ?
A.

$$
0 \leq x \leq \frac{\pi}{4}
$$

B. $0 \leq x \leq \frac{\pi}{2}$
C. $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}$
D. $\frac{\pi}{4} \leq x \leq \pi$
E. $\frac{\pi}{2} \leq x \leq \pi$

82
50.

In the figure, $A B C D$ is a square of side $2 a . \quad M$ and N are the mid-points of $A B$ and $C D$ respectively. h is the height of the parallelogram MBND. $h=$
A. $\frac{1}{2} a$
B. $\frac{2}{\sqrt{5}} a$
C. $\frac{\sqrt{5}}{2} a$
D. $\frac{2}{\sqrt{3}} a$
E. $\frac{\sqrt{2}}{4} a$

In the figure, $A B C D$ is a rectangle. $A C$ and $B C$ intersect at $K . \quad P A K$ is an equilateral triangle. $\angle P B K=$
A. 48°
B. 50°
C. 52°
D. 54°
E. 60°

In the figure, O is the centre of the circle. $P Q$ is a diameter. Which of the following is/are true?
I. $a=b$
II. $c=2 a$
III. $c+d=180^{\circ}$
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III

82
53.

in the figure, the length of the minor arc $C D$ is half the length of the minor arc BC. $\angle A C D=$
A. 30°
B. 35°
C. 40°
D. 45°
E. 50°

82
54.

In the figure, $T P$ and $T Q$ touch the circle at P and Q respectively. R is the point on $T Q$ produced such that $P R$ passes through the centre O of the circle. $\angle Q P R=$
A. 55°
B. 40°
C. 35°
D. 30°
E. 20°

