Form 5
Mathematics II
$80 \quad 2 a b-a^{2}-b^{2}=$ 1.
A. $(a-b)^{2}$
B. $(-a-b)^{2}$
C. $(-a+b)^{2}$
D. $-(a+b)^{2}$
E. $-(a-b)^{2}$
$80 \quad 125^{a} \cdot 5^{b}=$
2.
A. 625^{a+b}
B. $625^{a b}$
C. $125^{a+3 b}$
D. $5^{a+3 b}$
E. $5^{3 a+b}$
80. If $4 p=9 q$, then $\frac{4 p^{2}}{9 q^{2}}=$
A. 1
B. $\frac{4}{9}$
C. $\frac{9}{4}$
D. $\left(\frac{4}{9}\right)^{2}$
E. $\left(\frac{9}{4}\right)^{2}$

80 If $n=10^{a}$, then $\log _{10} n=$ 4.
A. 10^{a}
B. 10^{n}
C. n^{a}
D. a^{n}
E. a

50 $\frac{x^{-2}-y^{-2}}{x^{-1}-y^{-1}}=$
A. $x^{-1}+y^{-1}$
B. $x^{-1}-y^{-1}$
C. $x^{-3}-y^{-3}$
D. $\frac{1}{x-y}$
E. $\frac{1}{x+y}$
80. If $\frac{1}{x}=a+b$ and $\frac{1}{y}=a-b$, then $x+y=$
A. $\frac{2}{a}$
B. $\frac{a^{2}-b^{2}}{a}$
C. $-\frac{a^{2}-b^{2}}{a}$
D. $\frac{2 a}{a^{2}-b^{2}}$
E. $\frac{-2 a}{a^{2}-b^{2}}$

80
7. If $x=\frac{y+(n-1) z}{n+1}$, then $n=$

A. $\frac{x-y+z}{z}$
B. $\frac{x+y-z}{z}$
C. $\frac{y-x-z}{x+z}$
D. $\frac{y-x-z}{x-z}$
E. $\frac{y+x-z}{x-z}$
8. $\quad \frac{5^{n+2}-35\left(5^{n-1}\right)}{18\left(5^{n+1}\right)}=$
A. $\frac{1}{18}$
B. $\frac{1}{15}$
C. $\frac{1}{5}$
D. 5
E. 5^{n}

80 Solve the inequality
9. $(4 x+3)(x-4)>0$
A. $x>4$
B. $4>x>-\frac{3}{4}$
C. $-\frac{3}{4}>x$
D. $-\frac{3}{4}>x$ or $x>4$
E. $x>-\frac{3}{4}$

80 When the hour hand has turned through
10. an angle x°, what is the angle through which the minute hand has turned?
A. $6 x^{0}$
B. $12 x^{\circ}$
C. $60 x^{0}$
D. $360 x^{0}$
E. $\quad 3600 x^{\circ}$

80 The first term of an arithmetic
11. progression is 6 and its tenth term is three times its second term. The common difference is
A. 18
B. 4
C. 3
D. 2
E. 1

80 A man solid a car for $\$ 35000$ at a loss
12. of 30% on the cost price. What would have been the loss or gain percent if he had sold it for $\$ 50500$?
A. A gain of 10%
B. A gain of 1%
C. No gain nor loss
D. A loss of 10%
E. A loss of 1%

80 If the length of a rectangle is increased
13. by 10% and the width decreased by 10%, which of the following is true?
A. Its area remains the same
B. Its area is decreased by 1%
C. Its area is increased by 1%
D. Its area is decreased by 10%
E. Its area is increased by 10%

80 The length of a side of a rhombus is
14. 10 cm . If its shorter diagonal is of length 12 cm , what is the area of the rhombus in cm^{2} ?
A. 60
B. 96
C. 100
D. 120
E. 192

80 If the bearing of B from A is $\mathrm{S} 30^{\circ} \mathrm{W}$,
15. then the bearing of A from B is
A. $\mathrm{N} 30^{\circ} \mathrm{E}$
B. $\mathrm{N} 60^{\circ} \mathrm{W}$
C. $\quad \mathrm{N} 60^{\circ} \mathrm{E}$
D. $S 30^{\circ} \mathrm{W}$
E. $\quad \mathrm{S} 30^{\circ} \mathrm{E}$

80
16.
$\frac{1}{\frac{1}{\sin \theta}-1}-\frac{1}{\frac{1}{\sin \theta}+1}=$
A. $2 \tan \theta$
B. $2 \tan ^{2} \theta$
C. $\frac{2}{\tan ^{2} \theta}$
D. $\frac{2 \sin \theta}{\cos ^{2} \theta}$
E. $\frac{2 \sin ^{2} \theta}{\cos \theta}$

80 If $\cos \theta=x$ and $0^{\circ}<\theta<90^{\circ}$, then $\tan \theta$ 17.
A. $\frac{1}{\sqrt{1-x^{2}}}$
B. $\sqrt{1-x^{2}}$
C. $\frac{\sqrt{1-x^{2}}}{x}$
D. $\frac{x}{\sqrt{1-x^{2}}}$
E. $\pm \frac{x}{\sqrt{1-x^{2}}}$

80 If $0^{\circ} \leq \theta<360^{\circ}$, which of the following
18. equations has exactly one root?
A. $\sin \theta=-1$
B. $\sin \theta=-\frac{1}{2}$
C. $\sin \theta=0$
D. $\sin \theta=\frac{1}{2}$
E. $\sin \theta=2$

80
19.

In the figure, $a: b: c=$
A. $3: 2: 1$
B. $9: 4: 1$
C. $2: \sqrt{3}: 1$
D. $\sqrt{3}: \sqrt{2}: 1$
E. $\sqrt{3}: 2: 1$

80 What is the area, in cm^{2}, of an
20. equilateral triangle of side $x \mathrm{~cm}$?
A. $\frac{\sqrt{3}}{4} x^{2}$
B. $\frac{\sqrt{3}}{2} x^{2}$
C. $\frac{1}{4} x^{2}$
D. $\frac{1}{2} x^{2}$
E. $\sqrt{3} x^{2}$

80
21.

In the figure, $A B C D E$ is a regular pentagon. $\angle A D B=$
A. 35°
B. 36°
C. 40°
D. 54°
E. 72°

80
22.

In the figure, $A B C D$ is a square with $A B$ =5. $A P=B Q=C R=D S=1$. What is the area of $P Q R S$?
A. 9
B. 15
C. 16
D. 17
E. 18

80
23.

In the figure, $A B C D$ is a square and $A B E$ is an equilateral triangle.
$\angle A D E=$?
A. 72°
B. 74°
C. 76°
D. 78°
E. None of the above

80
24.

In the figure, the two circles intersect at A and $B . C A E$ and $C B D$ are straight lines. $\angle C E D=$
A. y^{0}
C. $180^{\circ}-x^{\circ}-y^{\circ}$
D. $180^{\circ}-x^{\circ}+y^{\circ}$
E. $360^{\circ}-x^{0}-y^{0}$

80
27.

80
25.

In the figure, circle $A X B$ passes through the centre of circle $A Y B . y=$
A. $2 x$
B. $180-2 x$
C. $180-x$
D. $\frac{1}{2}(90-x)$
E. $\frac{1}{2}(180-x)$

80
26.

In the figure, $A B C D$ is a rectangle $\angle B E F=90^{\circ}$. Which two of the triangles I, II, III and IV must be similar?
A. I and II
B. I and III
C. II and III
D. II and IV
E. III and IV

In the figure, the inscribed circle of $\triangle A B C$ touches $A C$ at D. If $A B=7$, $A C=5$ and $A D=2$, then $B C=$
A. 9.5
B. 9
C. 8.5
D. 8
E. 7.5

80 A certain sum of money is just 28. sufficient to pay the wages of one man for m days or the wages of one boy for n days. For how many days will this sum be just sufficient to pay the wages of one man and one boy together?
A. $m+n$
B. $\frac{m+n}{2}$
C. $\frac{1}{m}+\frac{1}{n}$
D. $\frac{m+n}{m n}$
E. $\frac{m n}{m+n}$

80 If the value of $y^{2}+3 y+7$ is 2 , what is
29. the value of $2 y^{2}+6 y-3$?
A. -13
B. -7
C. 7
D. 13
E. It cannot be found from the information given

80 A, B, C are three spheres. If
30. $\frac{\text { Surface area of } A}{\text { Surface area of } B}=4$ and
$\frac{\text { Volume of } B}{\text { Volume of } C}=2$, then
$\frac{\text { Volume of } A}{\text { Volume of } C}=$
A. 16
B. 8
C. 2
D. $\frac{1}{8}$
E. $\frac{1}{16}$

80 The $2 n^{\text {th }}$ term of the geometric
31. progression, $8,-4,2,-1, \ldots$, is
A. $\frac{1}{2^{2 n+2}}$
B. $\frac{-1}{2^{2 n+2}}$
C. $\frac{1}{2^{2 n-3}}$
D. $\frac{1}{2^{2 n-4}}$
E. $\frac{-1}{2^{2 n-4}}$

The figure above shows the graph of $y=a x^{2}+b x+c$. Determine whether a and c are positive or negative.
A. $\quad a>0$ and $c>0$
B. $\quad a<0$ and $c<0$
C. $\quad a>0$ and $c<0$
D. $\quad a<0$ and $c>0$
E. It cannot be determined from the given data
$80 \quad \$ P$ amounts to $\$ Q$ in n years at simple
33. interest. The rate per annum is
A. $\frac{100 n(Q-P)}{P} \%$
B. $\frac{100(Q-P)}{n} \%$
C. $\frac{100(Q-P)}{n P} \%$
D. $\frac{100(Q-P)}{n Q} \%$
E. $100\left[\left(\frac{Q}{P}\right)^{\frac{1}{n}}-1\right] \%$

80
34.

If $0<x<1$, which of $x, x^{2}, \frac{1}{x}, \sqrt{x}$ is the smallest? Which is the largest?
A. $\quad \sqrt{x}$ is smallest, x^{2} is largest
B. $\frac{1}{x}$ is smallest, x^{2} is largest
C. x is smallest, $\frac{1}{x}$ is largest
D. x^{2} is smallest, $\frac{1}{x}$ is largest
E. $\quad x^{2}$ is smallest, \sqrt{x} is largest

80 The Highest Common Factor of two
35. unequal Positive integers a and b is 8 . Which of the following must be true?
I. The difference between a and b is divisible by 8
II. $\quad(a+b)$ is divisible by 16
III. $a b$ is divisible by 64
A. III only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III only
$80 x, y$ and z are three consecutive positive
36. integers. Which of the following is true?
A. $x+y+z$ must be odd
B. $x+y+z$ must be even
C. $x y z$ must be odd
D. $x y z$ must be even
E. $x^{2}+y^{2}+z^{2}$ must be even

80 If $x^{2}-k x+9 \geq 0$ for all real values of x,
37. what is the value of k ?
A. $k=-6$ only
B. $k=6$ only
C. $-6 \leq k \leq 6$
D. $k=6$ or -6 only
E. $k \leq-6$ or $k \geq 6$

80 If x and y are real numbers, what is the
38. minimum value of the expression
$(x+y)^{2}-1 ?$
A. -5
B. -1
C. 0
D. 3
E. It cannot be determined

80
39.

In the figure, the areas of the surfaces A, B, C of the cuboid are $10 \mathrm{~cm}^{2}$, $14 \mathrm{~cm}^{2}$ and $35 \mathrm{~cm}^{2}$ respectively. What is the volume of the cuboid?
A. $49 \mathrm{~cm}^{3}$
B. $70 \mathrm{~cm}^{3}$
C. $140 \mathrm{~cm}^{3}$
D. $350 \mathrm{~cm}^{3}$
E. $\quad 4900 \mathrm{~cm}^{3}$

80 x is a positive integer such that
40. $x^{2}+2 x+7$ is even. What are the possible values of x ?
A. x can be any positive integer
B. x can be any positive even number
C. x can be any positive odd number
D. x must be an even number greater than 10000
E. x must be an positive odd number greater than 10000

80 The perimeter of a sector is 16 and its
41. angle is 2 radians. What is the area of the sector?
A. 16
B. 32
C. 64
D. 16π
E. 32π

80

In the figure, diameter $A B=2$.
$\angle C A B=\frac{\pi}{10}$ rad. Minor $\operatorname{arc} B C=$
A. $\frac{\pi}{10}$
B. $\frac{\pi}{5}$
C. $\frac{3 \pi}{10}$
D. $\frac{4 \pi}{5}$
E. $\frac{9 \pi}{10}$

80
43.

In the figure, $\angle B=\angle C=90^{\circ}$.
If $A B=p$ and $B C=q$, then $C D=$
A. $p+q \tan \theta$
B. $p+\frac{q}{\tan \theta}$
C. $p+q \cos \theta$
D. $-p+q \tan \theta$
E. $-p+\frac{q}{\tan \theta}$

80
44.

In the figure, $A D$ and $B E$ bisect $\angle A$ and $\angle B$ respectively. $\angle C=$
A. 50°
B. 68°
C. 74°
D. 78°
E. 80°

80
45.

In the figure, O is the centre of the circle and its radius is r. $X Y$ touches the circle at P. Find the distance of Q from $X Y$.
A. $r(1-\sin \alpha)$
B. $r(1+\sin \alpha)$
C. $r(1-\cos \alpha)$
D. $r(1+\cos \alpha)$
E. $r(2-\sin \alpha)$

80 Which of the following is the graph of y
46. $=2 \sin \theta$, where $0 \leq \theta \leq 2 \pi$?
A.

B.

C.

D.

E.

80
47.

In the figure, $A B=B C=C D . \angle A E D=$
A. 50°
B. 65°
C. 75°
D. 90°
E. 105°

80
48.

In the figure, $R S$ is a tangent to the circle at $C . B A$ is any chord parallel to $R C S$. Which of the chords $A B, B C$ and $C A$ must be equal in length?
A. $A B$ and $B C$ only
B. $A C$ and $B C$ only
C. $A B$ and $A C$ only
D. All of them
E. No two of them

In the figure, $A B=A C, D$ is the midpoint of arc $B C$. Which of the following is/are true?
I. $A D$ bisects $\angle B A C$
II. $B C \perp A D$
III. $A D$ is a diameter of the circle
A. I only
B. II only
C. III only
D. I and II only
E. II and III only

In the figure, $A O B$ is a diameter of the circle, centre $O . \quad C D$ is the perpendicular bisector of $O A$. Which of the angles a, b, c, d is/are equal to 30° ?
A. a only
B. $\quad a$ and b only
C. a, b and c only
D. a, b, c and d
E. None of them

80
51.

In the figure, circle O is inscribed in $\triangle A B C$, touching $B C$ at X. Which of the following must be true?
I. $\quad O X \perp B C$
II. $O A$ bisect $\angle A$
III. $A O$ produced bisect $B C$
A. I only
B. I and II only
C. I and III only
D. I, II and III only
E. None of them

In the figure, $A C$ and $B C$ are diameters of two semi-circles touching each other internally at $C . P Q C$ is a straight line. If $A B=1$, then $P Q=$
A. $\cos \theta$
B. $\sin \theta$
C. $\tan \theta$
D. $\frac{1}{\sin \theta}$
E.

$$
\frac{1}{\cos \theta}
$$

With the notation in the figure, express $a+b+c+d$ in terms of x.
A. $x-180^{\circ}$
B. x
C. $540^{\circ}-x$
D. $360^{\circ}-x$
E. $180^{\circ}-x$

80
54.

In the figure, O is the centre of the circle. $P A B$ is a straight line. $x+y=$
A. 2θ
B. $90^{\circ}+\theta$
C. $180^{\circ}-\theta$
D. $180^{\circ}-2 \theta$
E. 180°

