Rate

- 1. The distance between P and Q is d metres. A man ran from P to Q in x seconds, and back from Q to P in y seconds. What was the average speed of the man in metres per second for the whole journey?

 - **B.** $\frac{xd + yd}{2}$
 - $\mathbf{C.} \quad \frac{1}{2}(\frac{d}{x} + \frac{d}{y})$
 - **D.** $\frac{d}{x+y}$ **E.** $\frac{2d}{x+y}$

[1977-CE-MATHS 2-7]

- 2. If Mr. Chan walks x miles in y hours, then how many miles can he walk in w minutes at the same speed?
 - A. $\frac{xw}{y}$ miles
 - **B.** $\frac{xy}{w}$ miles
 - C. $\frac{wy}{x}$ miles
 - **D.** $\frac{xy}{60w}$ miles
 - **E.** $\frac{xw}{60y}$ miles

[SP-CE-MATHS A2-40]

- 3. A train travelled a journey of d km at a speed of x km/h. How many hours would have been saved if its speed had been 10 km/h faster?
 - A. $\frac{x(x+10)}{d}$ B. $\frac{d}{x(x+10)}$

 - C. $\left(\frac{x+10}{d}-\frac{x}{d}\right)$
 - **D.** $(\frac{1}{x} \frac{1}{x+10})$
 - $E. \quad \left(\frac{d}{r} \frac{d}{r+10}\right)$

[1978-CE-MATHS 2-43]

- 4. A piece of work can be completed by A alone in x days, or by B alone in y days. If A and B work together, how many days will they take to complete the work?
 - A. x + y

- $\mathbf{C.} \quad \frac{1}{x} + \frac{1}{y}$ $\mathbf{D.} \quad \frac{2}{x} + \frac{2}{y}$

[1979-CE-MATHS 2-35]

- 5. A certain sum of money is just sufficient to pay the wages of one man for m days or the wages of one boy for n days. For how many days will this sum be just sufficient to pay the wages of one man and one boy together?
 - A. m+n
 - $\mathbf{B.} \quad \frac{m+n}{2}$

 - E. $\frac{mn}{m+n}$

[1980-CE-MATHS 2-28]

- 6. A factory employs x workers each working nhours a day. The whole factory produces kwatches per day. If y workers go on leave, then how many hours a day should the remaining workers work in order to produce the same number of watches per day?

 - ny

[1981-CE-MATHS 2-38]

- 7. A man drives 20 km at 40 km/h. At what speed must he drive on his return journey so that the average speed for the double journey is 60 km/h?
 - 50 km/h A.
 - 80 km/h R.
 - C. 100 km/h
 - D. 120 km/h
 - 160 km/h

[1982-CE-MATHS 2-12]

8. Two men cycle round a circular track which is 3 km long. If they start at the same time and at the same spot but go in opposite directions with speeds 6 km/h and 9 km/h respectively, for how long must they cycle before they meet for the first time?

- A. 12 minutes
- B. 15 minutes
- C. 18 minutes
- D. 24 minutes
- E. 60 minutes

[1983-CE-MATHS 2-14]

- 9. A man drives a car at 30 km/h for 3 hours and then at 40 km/h for 2 hours. His average speed for the whole journey is
 - A. 14 km/h.
 - **B.** 30 km/h.
 - C. 34 km/h.
 - **D.** 35 km/h.
 - E. 70 km/h.

[1984-CE-MATHS 2-14]

- 10. A alone can complete a job in 8 hours. B alone takes 12 hours and C alone takes 6 hours. After A and B have worked together on the job for 3 hours, C joins them. How much longer will they take to complete the job?
 - **A.** 1 hour
 - **B.** $1\frac{1}{2}$ hour
 - C. 2 hours
 - **D.** $2\frac{1}{2}$ hours
 - E. 3 hours

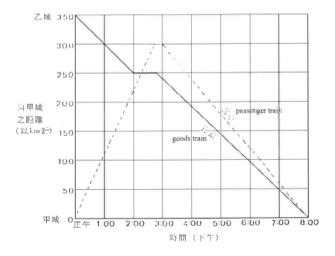
[1984-CE-MATHS 2-15]

- 11. It takes John 40 minutes to walk from his home to school. If he increases his walking speed by 2 km/h, then it takes only 30 minutes. What is the distance between John's home and his school?
 - A. 1 km
 - **B.** 4 km
 - C. 6 km
 - **D.** 8 km
 - E. 12 km

[1985-CE-MATHS 2-14]

- 12. A man drives a car at 45 km/h for 3 hours and then at 50 km/h for 2 hours. His average speed for the whole journey is
 - **A.** 47 km/h.
 - **B.** 47.5 km/h.
 - C. 48 km/h.
 - **D.** 48.5 km/h.
 - E. 49 km/h.

[1986-CE-MATHS 2-11]


- 13. A man walks from place A to place B at a speed of 3 km/h and cycles immediately back to place A along the same road at a speed of 15 km/h. The average speed for the whole trip is
 - **A.** 5 km/h.
 - **B.** 6 km/h.
 - C. 9 km/h.
 - D. 10 km/h.
 - E. 12 km/h.

[1987-CE-MATHS 2-43]

- 14. John goes to school and returns home at speeds x km/h and (x+1) km/h respectively. The school is 2 km from John's home and the total time for the two journeys is 54 minutes. Which of the following equations can be used to find x?
 - **A.** $\frac{x}{2} + \frac{x+1}{2} = \frac{54}{60}$
 - **B.** $\frac{2}{x} + \frac{2}{x+1} = \frac{54}{60}$
 - C. $\frac{\frac{1}{2}[x+(x+1)]}{4} = \frac{54}{60}$
 - $\mathbf{D.} \quad \frac{4}{\frac{1}{2}[x+(x+1)]} = \frac{54}{60}$
 - $\mathbf{E.} \quad 2x + 2(x+1) = \frac{54}{60}$

[1999-CE-MATHS 2-42]

Travel Graphs

The figure above shows the travel graph of a passenger train and a goods train travelling on the railway line between town A and town B which are 350 km apart. Study the graph and answer the following two questions.

- 15. Which of the following statements are correct?
 - (1) The goods train travelled from town B to town A.
 - (2) When the 2 trains met, the goods train was not in motion.
 - (3) Between noon and 8:00 p.m., the goods train travelled a greater distance than the passenger train.
 - A. (1) only
 - **B.** (2) only
 - C. (1) and (2) only
 - **D.** (2) and (3) only
 - **E.** (1), (2) and (3)

[1978-CE-MATHS 2-28]

- 16. What is the average speed of the passenger train on its return journey?
 - A. 3.75 km/h
 - **B.** 40 km/h
 - C. 60 km/h
 - **D.** 75 km/h
 - E. 80 km/h

[1978-CE-MATHS 2-29]

HKDSE Problems

- 17. Mary performs a typing task for 7 hours. Her average typing speeds for the first 3 hours and the last 4 hours are 63 words per minute and 56 words per minute respectively. Find her average typing speed for the 7 hours.
 - A. 17 words per minute
 - B. 35 words per minute
 - C. 59 words per minute
 - D. 60 words per minute

[2012-DSE-MATHS 2-11]

Ratio

- 1. If a:b=2:3 and b:c=4:3, then a:b:c =
 - A. 2:3:4.
 - **B.** 2:4:3.
 - C. 4:6:3.
 - **D.** 8:9:12.
 - E. 8:12:9.

[1979-CE-MATHS 2-13]

- 2. If 3x 2y = x + 3y, then $x^2 : y^2 =$
 - **A.** 2:5.
 - **B.** 5:2.
 - C. 4:25.
 - **D.** 25:4.
 - 1:4.

[1981-CE-MATHS 2-12]

- 3. If 2x = 3y = 5z, then x : y : z =
 - **A.** 2:3:5.
 - **B.** 5:3:2.
 - **C.** 6:10:15.
 - **D.** 15:10:6.
 - E. 25:9:4.

[1983-CE-MATHS 2-10]

- 4. Three numbers are in the ratio 2:3:5. The ratio of their average to the largest of the three numbers is
 - **A.** 1:3.
 - **B.** 1:2.
 - C. 3:5.
 - **D.** 2:3.
 - **E.** 2:1.

[1983-CE-MATHS 2-43]

- 5. If $\frac{3x + 2y}{x + 5y} = 1$, then $\sqrt{x + y} : \sqrt{x y} =$
 - **A.** $1:\sqrt{5}$. **B.** 3:2.

 - C. $\sqrt{5}:\sqrt{6}$.
 - **D.** $\sqrt{5}:1$.

[1984-CE-MATHS 2-11]

- 6. If a:b=1:2 and b:c=1:3, then a + b : b + c =
 - A. 1:5.
 - **B.** 2:3.
 - C. 3:4.
 - **D.** 3:5.
 - E. 3:8.

[1985-CE-MATHS 2-11]

- 7. If $r = \sqrt[3]{h^3 7r^3}$, then the ratio r: h is
 - **A.** 1:8.
 - **B.** $1:2\sqrt{2}$.
 - C. 1:2.
 - **D.** $1:\sqrt{2}$.
 - E. $1:\sqrt[3]{2}$.

[1986-CE-MATHS 2-1]

- 8. If a:b=3:2, b:c=4:3, a + b : b + c =
 - **A.** 7:10.
 - **B.** 5:7.
 - C. 1:1.
 - **D.** 7:5.
 - E. 10:7.

[1987-CE-MATHS 2-34]

- 9. If 3a = 2b = 5c, then $\frac{1}{a} : \frac{1}{b} : \frac{1}{c} =$
 - A. 3:2:5.
 - **B.** 5:2:3.
 - C. $\frac{1}{3}:\frac{1}{2}:\frac{1}{5}$
 - **D.** $\frac{1}{5}:\frac{1}{2}:\frac{1}{3}$.
 - E. $\frac{1}{2}:\frac{1}{3}:\frac{1}{5}$.

[1987-CE-MATHS 2-42]

- 10. If a:b=3:4 and b:c=2:5, then $a^2:c^2=1$
 - **A.** 3:10.
 - **B.** 9:25.
 - C. 9:100.
 - **D.** 36:25.
 - E. 36:100.

[1990-CE-MATHS 2-9]

- 11. If $\frac{1}{a}: \frac{1}{b} = 2: 3$ and a: c = 4: 1, then a : b : c =
 - **A.** 12:8:3.
 - **B.** 8:3:2.
 - C. 4:6:1.
 - **D.** 2:3:8.
 - E. 2:3:4.

[1991-CE-MATHS 2-10]

- 12. If a:b=2:3, a:c=3:4 and b:d=5:2, find c:d.
 - **A.** 1:5
 - **B.** 16:45
 - **C.** 10:3
 - **D.** 20:9
 - E. 5:1

[1992-CE-MATHS 2-10]

- 13. If a:b=2:3 and b:c=5:3, then $\frac{a+b+c}{a-b+c} =$
 - **A.** −2 .
 - **B.** $\frac{5}{2}$
 - C. 4.
 - **D.** $\frac{17}{2}$.
 - E. 31.

[1993-CE-MATHS 2-35]

- 14. If a:b=2:3, a:c=3:4 and a:d=4:5, then b:c:d=
 - **A.** 2:3:4.
 - **B.** 3:4:5.
 - **C.** 3:6:10.
 - **D.** 18:16:15.
 - **E.** 40:45:48.

[1994-CE-MATHS 2-42]

- 15. If $125^x = 25^y$ and x, y are non-zero, find x : y.
 - **A.** 1:25
 - **B.** 1:5
 - **C.** 2:3
 - **D.** 3:2
 - **E.** 5:1

[1995-CE-MATHS 2-12]

- 16. If $\frac{x+2y}{3x-4y} = 5$, then x:y =
 - **A.** 3:7.
 - **B.** 7:3.
 - C. 7:11.
 - **D.** 9:7.
 - **E.** 11:7.

[1998-CE-MATHS 2-15]

- 17. If x: y = 3: 4 and 2x + 5y = 598, find x.
 - **A.** 23
 - **B.** 26
 - C. 69
 - **D.** 78
 - E. 104

[1999-CE-MATHS 2-12]

- 18. If $81^x = 27^{2y}$ and x, y are non-zero integers, then x: y =
 - A. 2:3.
 - **B.** 3:4.
 - C. 4:3.
 - **D.** 3:2.

[2003-CE-MATHS 2-13]

- 19. If (a-b):(b-2a)=2:3, then a:b=
 - A. 3:5.
 - **B.** 5:3.
 - C. 5:7.
 - **D.** 7:5.

[2004-CE-MATHS 2-13]

- 20. Let x and y be non-zero numbers. If 2x 3y = 0, then (x + 3y) : (x + 2y) =
 - **A.** 3:2.
 - **B.** 4:3.
 - C. 9:7.
 - **D.** 11:8.

[2005-CE-MATHS 2-13]

- 21. Let x, y and z be non-zero numbers. If x : y = 1 : 2 and y : z = 3 : 1, then (x + y) : (y + z) =
 - A. 3:4.
 - **B.** 4:3.
 - C. 8:9.
 - **D.** 9:8.

[2006-CE-MATHS 2-13]

- 22. Let a and b be non-zero numbers. If 7a + 5b = 3a + 8b, then a:b=
 - **A.** 3:4.
 - **B.** 4:3.
 - C. 10:13.
 - **D.** 13:10.

[2007-CE-MATHS 2-13]

- 23. Let *m* and *n* be non-zero numbers. If $\frac{2m-n}{m-2n}$ = 3, then m: n =
 - A. 1:5.
 - **B.** 5:1.
 - **C.** 5:7.
 - **D.** 7:5.

[2011-CE-MATHS 2-12]

Applications of Ratio

- 24. On a plan, 1 cm represents 50 cm. On the plan, the area of a classroom is 100 cm^2 . What is the actual area of the classroom in m^2 ?
 - A. 25
 - **B**. 50
 - C. 500
 - D. 2500
 - E. 5000

[1978-CE-MATHS 2-38]

- 25. The running speeds of three boys A, B and C are in the ratios a:b:c. The time that A, B and C takes to complete a 1500 m race are in the ratios
 - A. a:b:c.
 - **B.** c:b:a.
 - C. b+c:a+c:a+b.
 - **D.** $\frac{1}{a} : \frac{1}{b} : \frac{1}{c}$
 - E. $\frac{a}{b}:\frac{b}{c}:\frac{c}{a}$

[1981-CE-MATHS 2-36]

- 26. The daily wages of a man and a boy are in the ratio 2:1. In a day a man has to work 8 hours but a boy only 6 hours. The hourly wages of a man and a boy are in the ratio
 - A. 8:3.
 - **B.** 2:1.
 - C. 3:2.
 - **D.** 4:3.
 - E. 1:1.

[1981-CE-MATHS 2-39]

- 27. The scale of a map is 1:20000. On the map, the area of a farm is 2 cm^2 . The actual area of the farm is
 - **A.** 400 m^2 .
 - **B.** 800 m^2 .
 - **C.** $40\ 000\ \text{m}^2$
 - **D.** 80 000 m².
 - **E.** $8\ 000\ 000\ \text{m}^2$.

[1983-CE-MATHS 2-40]

- 28. A is 25% taller than B. B is 25% shorter than C. A's height: C's height =
 - A. 1:1.
 - **B.** 5:4.
 - C. 3:4.
 - **D.** 5:3.
 - **E.** 15:16.

[1984-CE-MATHS 2-12]

- 29. If A, B and C can finish running the same distance 3, 4 and 5 minutes respectively, then A's speed: B's speed: C's speed =
 - A. 3:4:5.
 - **B.** 5:4:3.
 - C. 9:8:7.
 - **D.** 20:15:12.
 - E. 25:16:9.

[1986-CE-MATHS 2-42]

- 30. The radii of two solid spheres made of the same material are in the ratio 2:3. If the smaller sphere weighs 16 kg, then the larger one weighs
 - A. 24 kg.
 - **B.** 36 kg.
 - C. 48 kg.
 - **D.** 54 kg.
 - E. 60 kg.

[1987-CE-MATHS 2-4]

- 31. If a is 10% less than b and b is 10% greater than c, then a:c=
 - **A.** 1:1.
 - **B.** 9:10.
 - **C.** 10:9.
 - **D.** 99:100.

E. 100:99.

[1987-CE-MATHS 2-41]

- 32. The weight of a gold coin of a given thickness varies as the square of its diameter. If the weights of two such coins are in the ratio 1:4, then their diameters are in the ratio
 - A. 1:2.
 - **B.** 2:1.
 - **C.** 1:4.
 - **D.** 4:1.

E. 1:16.

[1988-CE-MATHS 2-44]

- 33. The costs of two kinds of coffee A and B are \$12/kg and \$20/kg respectively. In what ratio by weight should A and B be mixed so that the mixture will cost \$15/kg?
 - **A.** 4:3
 - **B.** 5:2
 - C. 5:3
 - **D.** 3:2
 - **E.** 5:4

[1989-CE-MATHS 2-36]

- 34. If 1 U. S. dollar is equivalent to 7.8 H. K. dollars and 1000 Japanese yen are equivalent to 53.3 H. K. dollars, how many Japanese yen are equivalent to 50 U. S. dollars?
 - A. 1 463
 - **B.** 3 417
 - C. 7317
 - **D.** 8 315
 - E. 20 787

[1990-CE-MATHS 2-10]

- 35. Coffee A and coffee B are mixed in the ratio x:y by weight. A costs \$50/kg and B costs \$40/kg. If the cost of A is increased by 10% while that of B is decreased by 15%, the cost of the mixture per kg remains unchanged. Find x:y.
 - A. 2:3
 - **B.** 5:6
 - C. 6:5
 - **D.** 3:2
 - E. 55:34

[1992-CE-MATHS 2-45]

36. The following table shows the compositions of Tea A and Tea B which are mixtures of Chinese tea and Indian tea:

	Ratio of Chinese tea and Indian tea by weight
Tea A	3:1
Tea B	2:3

- If 4 kg of tea A and 10 kg of tea B are mixed, find the ratio of Chinese tea and Indian tea in the mixture.
- A. 2:5
- **B.** 16:17
- C. 1:1
- **D.** 5:4
- E. 23:17

[1996-CE-MATHS 2-44]

- 37. In a map of scale 1:500, the length and breath of a rectangular field are 2 cm and 3 cm respectively. Find the actual area of this field.
 - **A.** 30 m^2
 - **B.** 150 m^2
 - C. 1500 m^2
 - **D.** 3000 m^2
 - **E.** 15000 m^2

[1997-CE-MATHS 2-11]

- 38. If 1 Australian dollar is equivalent to 4.69 H.K. dollars and 100 Japanese yen are equivalent to 5.35 H.K. dollars, how many Japanese yen are equivalent to 1 Australian dollar? Give your answer correct to the nearest Japanese yen.
 - A. 4
 - **B.** 25
 - C. 88
 - **D.** 114
 - E. 2509

[1999-CE-MATHS 2-13]

- 39. Tea A and tea B are mixed in the ratio x:y by weight. A costs \$80/kg and B costs \$100/kg. If the cost of A is increased by 10% and that of B is decreased by 12%, the cost of the mixture per kg remains unchanged. Find x:y.
 - A. 1:1
 - **B.** 2:3
 - C. 3:2
 - **D.** 5:6
 - **E.** 6:5

[2000-CE-MATHS 2-36]

- 40. If 1 Euro is equivalent to 6.94 H. K. dollars and 1 U. S. dollar is equivalent to 7.78 H. K. dollars, how many Euros are equivalent to 100 U. S. dollars? Give your answer correct to the nearest Euro.
 - A. 89
 - **B.** 112
 - C. 129
 - **D**. 144

[2002-CE-MATHS 2-10]

- 41. The scale of a map is 1:4000. If the actual area of a sports field is 8000 m², find its area on the map.
 - **A.** 0.02 cm^2
 - **B.** 0.05 cm^2
 - \mathbf{C} . 2 cm²
 - \mathbf{D} . 5 cm²

[2003-CE-MATHS 2-15]

- 42. A box contains two kinds of coins: \$5 and \$2. The ratio of the number of \$5 coins to the number of \$2 coins is 4:5. If the total value of the coins is \$90, then the total number of coins in the box is
 - **A.** 9.
 - **B.** 18.
 - C. 27.
 - 36.

[2004-CE-MATHS 2-14]

- 43. The scale of a map is 1:20 000. If two buildings are 3.8 cm apart on the map, then the actual distance between the two buildings
 - 0.076 km. A.
 - 0.76 km.
 - 7.6 km.
 - 76 km.

[2004-CE-MATHS 2-15]

- 44. The scale of a map is 1:8000. If the area of a park on the map is 2 cm², then the actual area of the park is
 - 4000 m^2 .
 - **B.** 6400 m^2 .
 - $12\,800\,\mathrm{m}^2$ C.
 - 16000 m^2 .

[2006-CE-MATHS 2-15]

- 45. The costs of rice of brand A and rice of brand B are 8/kg and 4/kg respectively. If x kg of rice of brand A and y kg of rice of brand B are mixed so that the cost of the mixture is 5/kg, find x:y.
 - 1:2
 - 2:1
 - C. 1:3
 - **D.** 3:1

[2008-CE-MATHS 2-13]

- 46. The scale of a map is 1:5000. If the area of a garden on the map is 4 cm², then the actual area of the garden is
 - A. 100 m².
 - 200 m^2 . B.
 - C. $10\ 000\ \mathrm{m}^2$.
 - D. $20\ 000\ \mathrm{m}^2$.

[2009-CE-MATHS 2-13]

- 47. If tea of brand A costs \$80/kg and tea of brand B costs \$40/kg, then a mixture of 4 kg of tea of brand A and 6 kg of tea of brand B costs
 - A. \$52/kg.
 - **B.** \$56/kg.
 - \$60/kg.
 - **D.** \$64/kg.

[2010-CE-MATHS 2-15]

Proportion

- 48. a, b, c are positive numbers such that $\frac{a}{b} = \frac{b}{c} = k$ (k being a constant), which of the following must be true?
 - (1) $b^2 = k^2$
 - $(2) \quad \frac{a+b}{b+c} = k$
 - (3) $\frac{a}{c} = k^2$
 - A. (2) only
 - **B.** (3) only
 - C. (1) and (2) only
 - D. (2) and (3) only
 - **E.** (1), (2) and (3)

[1984-CE-MATHS 2-39]

- 49. If $\frac{a}{b} = \frac{c}{d} = k$ and a, b, c, d are positive, then which of the following must be true?
 - $\mathbf{A.} \quad \frac{a+c}{b+d} = k$
 - **B.** ab = cd = k
 - \mathbf{C} . ac = bd = k
 - **D.** a = c = k
 - **E.** $\frac{ac}{bd} = k$

[1992-CE-MATHS 2-7]

- 50. If $\frac{a}{b} = \frac{c}{d}$, which of the following must be

 - (1) $\frac{a}{c} = \frac{b}{d}$ (2) $\frac{a+b}{b} = \frac{c+d}{d}$ (3) $\frac{a-b}{b} = \frac{c-d}{d}$

 - **A.** (1) only
 - B. (1) and (2) only
 - C. (1) and (3) onlyD. (2) and (3) only

 - **E.** (1), (2) and (3)

[1998-CE-MATHS 2-16]

HKDSE Problems

- 51. If x, y and z are non-zero numbers such that 2x = 3y and x = 2z, then (x + z) : (x + y) =
 - A. 3:5.
 - **B.** 6:7.
 - C. 9:7.
 - **D.** 9:10.

[SP-DSE-MATHS 2-13]

- 52. Let α and β be non-zero constants. If $(\alpha + \beta) : (3\alpha \beta) = 7 : 3$, then $\alpha : \beta =$
 - A. 5:9.
 - **B.** 9:5.
 - C. 19:29.
 - **D.** 29:19.

[PP-DSE-MATHS 2-12]

- 53. If x and y are non-zero numbers such that $\frac{6x+5y}{3y-2x} = 7$, then x:y=
 - **A.** 4:5.
 - **B.** 4:13.
 - C. 5:4.
 - D. 13:4.

[2012-DSE-MATHS 2-9]

- 54. The actual area of a playground is 900 m². If the area of the playground on a map is 36 cm², then the scale of the map is
 - A. 1:25.
 - **B.** 1:50.
 - C. 1:500.
 - **D.** 1:250 000.

[2013-DSE-MATHS 2-12]

- 55. It is given that $\frac{4}{5a} = \frac{5}{7b} = \frac{7}{9c}$, where a, b and c are positive numbers. Which of the following is true?
 - A. a < b < c
 - $\mathbf{B.} \quad a < c < b$
 - C. b < a < c
 - **D.** b < c < a

[2014-DSE-MATHS 2-12]

- 56. Let a, b and c be non-zero numbers. If a:c = 5:3 and b:c = 3:2, then (a+c):(b+c) =
 - **A.** 7:5.
 - **B.** 8:5.
 - **C.** 16:15.
 - **D.** 19:15.

[2015-DSE-MATHS 2-11]

- 57. If x and y are non-zero numbers such that (3y-4x):(2x+y)=5:6, then x:y=
 - A. 7:8.
 - **B.** 8:29.
 - C. 9:32.
 - **D.** 13:34.

[2016-DSE-MATHS 2-11]

- 58. The cost of flour of brand X is \$42/kg. If 3 kg of flour of brand X and 2 kg of flour of brand Y are mixed so that the cost of the mixture is \$36/kg, find the cost of flour of brand Y.
 - A. \$27/kg
 - **B.** \$30/kg
 - C. \$32/kg
 - D. \$39/kg

[2016-DSE-MATHS 2-13]

- 59. The scale of a map is 1:20 000. If the area of a zoo on the map is 4 cm², then the actual area of the zoo is
 - **A.** $8 \times 10^4 \text{ m}^2$.
 - **B.** $1.6 \times 10^5 \text{ m}^2$.
 - C. $3.2 \times 10^5 \text{ m}^2$.
 - **D.** $1 \times 10^6 \text{ m}^2$.

[2017-DSE-MATHS 2-11]

- 60. Let a, b and c be non-zero numbers. If 3a = 4b and a: c = 2: 5, then $\frac{a+3b}{b+3c} =$
 - A. $\frac{5}{3}$
 - B. $\frac{13}{33}$
 - C. $\frac{30}{53}$
 - D. $\frac{75}{39}$

[2018-DSE-MATHS 2-10]

- 61. The costs of tea of brand A and brand B are \$140/kg and \$315/kg respectively. If x kg of tea of brand A and y kg of brand B are mixed so that the cost of the mixture is \$210/kg, then x: y =
 - A. 2:3
 - B. 3:2
 - C. 4:9
 - D. 9:4

[2019-DSE-MATHS 2-12]

- 62. The actual area of a golf courses is $0.75km^2$. If the area of the course on a map is $300 cm^2$, then the scale of the map is
 - A. 1:250
 - B. 1:5000
 - C. 1:62 500
 - D. 1: 25 000 000

[2020-DSE-MATHS 2-10]

Direct & Inverse Variations

- 1. It is given that $x \propto \frac{1}{y}$. If y increases by 100%, then
 - A. x increases by 50%.
 - **B.** x increases by 75%.
 - C. x decreases by 50%.
 - **D.** x decreases by 75%.
 - E. x decreases by 100%.

[1979-CE-MATHS 2-49]

- 2. y varies inversely as x^2 . If x is increased by 100%, then y is
 - A. increased by 100%.
 - B. increased by 300%.
 - C. decreased by 25%.
 - D. decreased by 75%.
 - E. decreased by 100%.

[1988-CE-MATHS 2-39]

- 3. Given that $y \propto \frac{1}{x}$. If x is increased by 25%, find the percentage change in y.
 - A. Decreased by 20%
 - B. Decreased by 25%
 - C. Decreased by 80%
 - D. Increased by 20%
 - E. Increased by 25%

[1989-CE-MATHS 2-35]

- 4. Let x vary inversely as \sqrt{y} . If y is increased by 69%, then x will be
 - A. increased by 23.1% (3 sig. fig.).
 - B. increased by 30%.
 - C. decreased by 23.1% (3 sig. fig.).
 - D. decreased by 30%.
 - E. decreased by 76.9% (3 sig. fig.).

[1994-CE-MATHS 2-43]

5. x and y are two variables. The table below shows some values of x and their corresponding values of y.

х	2	3	6	12
у	36	16	4	1

Which of the following may be a relation between x and y?

- **A.** $x \propto \sqrt{y}$
- **B.** $x \propto y$
- C. $x \propto \frac{1}{\sqrt{y}}$

- **D.** $x \propto \frac{1}{y}$
- **E.** $x \propto \frac{1}{v^2}$

[1995-CE-MATHS 2-11]

- 6. It is given that y varies inversely as x^3 . If x is increased by 100%, then y is
 - A. increased by 800%.
 - B. increased by 700%.
 - C. decreased by 300%.
 - D. decreased by 87.5%.
 - E. decreased by 12.5%.

[1999-CE-MATHS 2-45]

- 7. It is given that y varies inversely as x. If x is increased by 50%, then y is decreased by
 - A. $33\frac{1}{3}\%$.
 - B. 50%.
 - C. $66\frac{2}{3}\%$.
 - **D.** 100%.

[2002-CE-MATHS 2-15]

Joint Variation

- 8. If x varies inversely as y^2 and y varies as \sqrt{z} , then x varies as
 - A. z.
 - **B.** z^2 .
 - C. z^4 .
 - $\mathbf{D.} \quad \frac{1}{z}$
 - E. $\frac{1}{z^2}$.

[SP-CE-MATHS 2-18]

- 9. If z varies directly as x and inversely as y, then
 - **A.** $\frac{xz}{y} = a \text{ constant}$.
 - **B.** $\frac{yz}{x} = a \text{ constant}$.
 - C. $\frac{z^2}{xy} = a \text{ constant}$.
 - **D.** $\frac{z^2y}{x} = a \text{ constant}$
 - **E.** xyz = a constant.

[1978-CE-MATHS 2-31]

- 10. If z varies inversely as x and directly as y, then
 - A. xyz is a constant.
 - **B.** $\frac{xz}{y}$ is a constant.
 - C. $\frac{yz}{x}$ is a constant.
 - **D.** $\frac{xz^2}{y}$ is a constant.
 - **E.** $\frac{z^2}{xy}$ is a constant.

[1989-CE-MATHS 2-9]

- 11. Suppose x varies directly as y^2 and inversely as z. Find the percentage increase of x when y is increased by 20% and z is decreased by 20%.
 - A. 15.2%
 - **B.** 20%
 - C. 50%
 - **D.** 72.8%
 - E. 80%

[1992-CE-MATHS 2-11]

12. The price of a cylindrical cake of radius r and height h varies directly as the volume. If r = 5 cm and h = 4 cm, the price is \$30. Find the price when r = 4 cm and h = 6 cm.

- **A.** \$25
- **B.** \$28.80
- C. \$31.50
- **D.** \$36
- E. \$54

[1993-CE-MATHS 2-14]

- 13. Suppose x varies directly as y and inversely as z. When y = 2 and z = 3, x = 7. When y = 6 and z = 7, x = 7
 - A. 1.
 - **B.** $\frac{49}{9}$
 - C. 9.
 - **D.** $\frac{49}{4}$.
 - E. 49

[1997-CE-MATHS 2-39]

- 14. If x varies inversely as y and directly as z^2 , then
 - A. $\frac{x}{vz^2}$ is a constant.
 - **B.** $\frac{xy}{z^2}$ is a constant.
 - C. $\frac{xz^2}{y}$ is a constant.
 - **D.** $\frac{z^2}{y}$ is a constant.
 - **E.** $\frac{1}{v} + z^2$ is a constant.

[1998-CE-MATHS 2-17]

- 15. y varies directly as x^2 and inversely as \sqrt{z} . If y = 1 when x = 2 and z = 9, find y when x = 1 and z = 4.
 - **A.** $\frac{2}{3}$
 - **B.** $\frac{8}{3}$
 - C. $\frac{1}{6}$
 - **D.** $\frac{3}{8}$
 - E. $\frac{9}{26}$

[2000-CE-MATHS 2-35]

- 16. Suppose z varies directly as x^2 and inversely as y. When x = 4 and y = 3, z = 2. When x = 2 and z = 3, y = 3
 - A. $\frac{1}{2}$.
 - **B.** 1.
 - C. 2.
 - **D.** 18.

[2003-CE-MATHS 2-14]

- 17. If z varies directly as y^2 and inversely as x, which of the following must be constant?
 - $\mathbf{A.} \quad xy^2z$
 - $\mathbf{B.} \quad \frac{y^2z}{x}$
 - C. $\frac{xz}{y^2}$
 - $\mathbf{D.} \quad \frac{z}{xy^2}$

[2005-CE-MATHS 2-14]

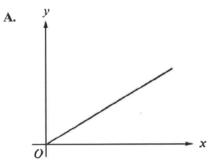
- 18. It is given that x varies directly as y and inversely as z^2 . If y is decreased by 10% and z is increased by 20%, then x is decreased by
 - **A.** 10%.
 - **B.** 23.6%.
 - C. 25%.
 - **D.** 37.5%.

[2006-CE-MATHS 2-14]

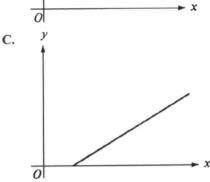
- 19. Suppose that y varies directly as x and inversely as z^2 . If x and z are both decreased by 20%, then y
 - A. is decreased by 17%.
 - B. is decreased by 20%.
 - C. is increased by 20%.
 - **D.** is increased by 25%.

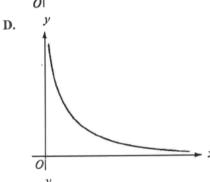
[2008-CE-MATHS 2-14]

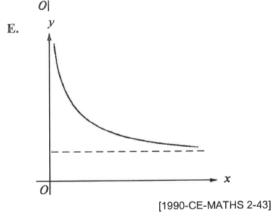
- 20. It is given that z varies directly as x and directly as y^2 . If x is decreased by 20% and y is increased by 15%, then z
 - A. is increased by 5.8%.
 - B. is decreased by 5.8%.
 - C. is increased by 8%.
 - D. is decreased by 8%.


[2010-CE-MATHS 2-16]

- 21. It is given that a varies directly as b and inversely as c^2 . When b=6 and c=3, a=-2. When a=-9 and c=4, b=
 - **A.** 5.
 - **B.** 36.
 - C. 48.
 - D. 576.


[2011-CE-MATHS 2-13]


Partial Variation


22. Which of the following graphs shows that *y* is partly constant and partly varies inversely as *x*?

B. y

- 23. Let y vary partly as $\frac{1}{x}$ and partly as x. When x = 1, y = 5 and when x = 4, $y = \frac{25}{2}$. Find y when x = 2.
 - **A.** $\frac{5}{2}$
 - **B.** 4
 - C. $\frac{25}{4}$
 - **D.** 7
 - E. $\frac{17}{2}$

[1991-CE-MATHS 2-9]

- 24. Suppose y is partly constant and partly varies inversely as x. When x = 1, y = 7 and when x = 3, y = 3. Find y when x = 2.
 - A. 2.5
 - **B.** 3.5
 - C. 4
 - **D.** 5
 - E. 6.5

[2001-CE-MATHS 2-29]

- 25. It is known that y varies partly as x and partly as \sqrt{x} . When x = 1, y = 4 and when x = 4, y = 10. Find y when x = 16.
 - **A.** 28
 - **B.** 52
 - C. 80
 - **D.** 256

[2004-CE-MATHS 2-16]

- 26. It is given that y is partly constant and partly varies directly as x. When x = 2, y = 17 and when x = 4, y = 11. Find the value of x when y = 5.
 - **A.** −3
 - **B.** 6
 - **C.** 8
 - D. 112

[2007-CE-MATHS 2-14]

- 27. It is known that f(x) varies partly as x and partly as x^2 . If f(1) = 5 and f(2) = 16, then f(3) =
 - A. 21.
 - **B.** 27.
 - C. 33.
 - **D.** 57.

[2008-CE-MATHS 2-15]

- 28. It is given that y is partly constant and partly varies inversely as x. When x = 1, y = -1 and when x = 2, y = 1. Find the value of x when y = 2.
 - A. -4
 - **B.** 1
 - C. 2.5
 - **D.** 4

[2009-CE-MATHS 2-14]

HKDSE Problems

- 29. It is given that z varies directly as x and inversely as y. When x = 3 and y = 4, z = 18. When x = 2 and z = 8, y = 3
 - **A.** 1.
 - **B.** 3.
 - C. 6.
 - **D.** 9.

[SP-DSE-MATHS 2-14]

- 30. If z varies directly as x and inversely as y^2 , which of the following must be constant?
 - A. $\frac{x}{y^2z}$
 - **B.** $\frac{z}{xy^2}$
 - C. $\frac{yz}{x^2}$
 - $\mathbf{D.} \quad \frac{xz}{y^2}$

[PP-DSE-MATHS 2-13]

- 31. It is given that y partly varies directly as x^2 and partly varies inversely as x. When x = 1, y = -4 and when x = 2, y = 5. When x = -2, y = 5
 - A. -11.
 - **B.** −5.
 - C. 5.
 - **D.** 11.

[2012-DSE-MATHS 2-10]

- 32. It is given that z varies directly as x and inversely as \sqrt{y} . If y is decreased by 64% and z is increased by 25%, then x
 - A. is increased by 20%.
 - B. is increased by 80%.
 - C. is decreased by 25%.
 - **D.** is decreased by 75%.

[2013-DSE-MATHS 2-13]

- 33. If z varies inversely as x and directly as the cube of y, which of the following must be constant?
 - A. xy^3z
 - **B.** x^3yz^3
 - C. $\frac{y^2}{xz}$
 - **D.** $\frac{y}{x^3z^3}$

[2014-DSE-MATHS 2-13]

- 34. It is given that z varies as x^3 and y^2 . When x = 2 and y = 1, z = 14. When x = 3 and y = -2, z =
 - **A.** -189.
 - **B.** −126.
 - C. 126.
 - **D.** 189.

[2015-DSE-MATHS 2-12]

- 35. It is given that z varies directly as \sqrt{x} and inversely as y. If x is decreased by 36% and y is increased by 60%, then z
 - A. is increased by 24%.
 - B. is increased by 28%.
 - C. is decreased by 40%.
 - **D.** is decreased by 50%.

[2016-DSE-MATHS 2-12]

- 36. It is given that y is the sum of two parts, one part is a constant and the other part varies as x^2 . When x = 1, y = 7 and when x = 2
 - y = 13. If x = 3, then y =
 - A. 19.
 - **B.** 20.
 - C. 23.
 - **D**. 47.

[2017-DSE-MATHS 2-12]

- 37. If w varies directly as the square root of u and inversely as the square of v, which of the following must be constant?
 - A. u^4vw^2
 - B. uv^4w^2
 - $C. \frac{vw^2}{u^4}$
 - $D. \quad \frac{v^4w^2}{u}$

[2018-DSE-MATHS 2-11]

- 38. It is given that z varies directly as the square of x and inversely as the square root of y. If x is decreased by 40% and y is increased by 44%, then z
 - A. is decreased by 70%
 - B. is increased by 70%
 - C. is decreased by 76%
 - D. is increased by 76%

[2019-DSE-MATHS 2-13]

- 39. It is given that w varies as the cube of u and the square root of v. When u = 2 and v = 4, w = 8. When u = 4 and v = 9, w =
 - A. 96
 - B. 324
 - C. 384
 - D. 729

[2020-DSE-MATHS 2-11]