1 Estimation

1.1 HKCEE MA $2006-\mathrm{I}-11$

In the figure, $A B C D E F$ is a thin six-sided polygonal metal sheet, where all the measurements are correct to the nearest cm .
(a) Write down the maximum absolute error of the measurements.
(b) Find the least possible area of the metal sheet.
(c) The actual area of the metal sheet is $x \mathrm{~cm}^{2}$. Find the range of values of x.

1.2 HKCEE MA 2007 I 10
(a) If the length of a piece of thin metal wire is measured as 5 cm correct to the nearest cm , find the least possible length of the metal wire
(b) The length of a piece of thin metal wire is measured as 2.0 m correct to the nearest 0.1 m .
(i) Is it possible that the actual length of this metal wire exceeds 206 cm ? Explain your answer
(ii) Is it possible to cut this metal wire into 46 pieces of shorter metal wires, with each length measured as 5 cm correct to the nearest cm ? Explain your answer.
1.3 HKCEE MA $2008-\mathrm{I}-7$

John wants to buy the following items in a supermarket:

Item	Unitprice	Quantity needed
Biscuit:	$\$ 8.2$ per pack	4 packs
Chocolate	$\$ 6.3$ per box	3 boxes
Soft drink	$\$ 4.8$ per can	2 cans

(a) By rounding up the unit price of each item to the nearest dollar, estimate the total amount that John should pay.
(b) If John has only $\$ 100$, does he have enough money to buy all the items needed? Use the result of (a) to explain your answer.

1.4 HKCEE MA 2009-I - 4

Round off 405.504 to
(a) the nearest integer
(b) 2 decimal places,
(c) 2 significant figures.
1.5 HKCEEMA 2010 I 8

Three students, Peter, John and Henry have $\$ 16.8, \$ 24.3$ and $\$ 32.5$ respectively.
(a) By rounding down the amount owned by each student to the nearest dollar, estimate the total amount they have.
(b) If the three students want to buy a football of price $\$ 70$, will they have enough money to buy the football? Use the result of (a) to explain your answer

1.6 HKCEEMA 2011-I-4

(a) Round off 8091.1908 to the nearest ten.
(b) Round up 8091.1908 to 3 significant figures.
(c) Round down 8091.1908 to 3 decimal places.

1.7 HKDSE MA 2013-I-8

A pack of sea salt is termed regular if its weight is measured as 100 g correct to the nearest g .
(a) Find the least possible weight of a regular pack of sea salt.
(b) Is it possible that the total weight of 32 regular packs of sea salt is measured as 3.1 kg correct to the nearest 0.1 kg ? Explain your answer.
1.8 HKDSEMA 2014-I-3
(a) Round up 123.45 to 1 significant figure.
(b) Round off 123.45 to the nearest integer.
(c) Round down 123.45 to 1 decimal place.

1.9 HKDSEMA 2017-I 9

A bottle is termed standard if its capacity is measured as 200 mL correct to the nearest 10 mL
(a) Find the least possible capacity of a standard bottle.
(b) Someone claims that the total capacity of 120 standard bottles can be measured as 23.3 L correct to the nearest 0.1 L . Do you agree? Explain your answer.
1.10 HKDSEMA 2018 -I-3
(a) Round up 265.473 to the nearest integer.
(b) Round down 265.473 to 1 decimal place.
(c) Round off 265.473 to 2 significant figures.
1.11 HKDSE MA 2020 - I-3
(a) Round up 534.7698 to the nearest hundred.
(b) Round down 534.7698 to 2 decimal places.
(c) Round off 534.7698 to 2 significant figures.

1 Estimation

11 HKCEEMA2006~Iー11 (a) Maximum absolute error $=1 \mathrm{~cm} \div 2=0.5 \mathrm{~cm}$	
(b)	Least possible area of $A B C X=17.5 \times 11.5=201.25 \mathrm{~cm}^{2}$ Least possible area of DEFX $=1.5 \times 15.5=23.25 \mathrm{~cm}^{2}$ \therefore Least possible area of sheet $=224.5 \mathrm{~cm}^{2}$
(c)	Upper limit of area $=18.5 \times 12.5+2.5 \times 16.5=272.5 \mathrm{~cm}^{2}$ $\therefore 224.5 \leq x<272.5$
1.2 HKCEE MA 2007-I-10	
(a) Least possible length $=5-1 \div 2=4.5(\mathrm{~cm})$	
(b)	(i) Uppor limit $=(2.0+0.1 \div 2) \mathrm{m}=205 \mathrm{~cm}<206 \mathrm{~cm}$ \therefore No. (ii) Method I
	Least possible total length of short wires $4.5 \mathrm{~cm} \times 46=207 \mathrm{~cm}>205 \mathrm{~cm}$ \therefore No.
	Methodz
	Upper limit of length of one short wire $=205 \mathrm{~cm} \div 46=4.4565 \mathrm{~cm}<4.5 \mathrm{~cm}$ \therefore No.
13 HKCEE MA $2008-\mathrm{I}-7$	
(a) Total amount $\approx \$(9 \times 4+17 \times 3+5 \times 2)=\$ 97$	
```(b) \(\because\) Actual amount \(<\) Estimated amount \(<\$ 100\) \(\therefore\) Yes.```	
14 HKCEE MA 2009-I-4	
	) 406
	) 405.50
(c)	) 410
1.5 HKCEE MA 2010-I-8	
(a) Total amount $\approx \$(16+24+32)=\$ 72$   (b) $\because$ Actual amount $>$ Estimated amount $>\$ 70$ Yes.	
1.6 HKCEEMA $201 \mathrm{I}-\mathrm{I}-4$	
(a)	() 8090
	) 8100
(c)	(c) 8091.190
1.7 HKDSEMA2013-I -8	
(a) Least possible weight $=(100-1 \div 2) \mathrm{g}=99.5 \mathrm{~g}$	
	Method 1   Least possible total weight $=99.5 \mathrm{~g} \times 32$
(b)	$\therefore \text { No. } \quad=3184 \mathrm{~g}=3.2 \mathrm{~kg} \text {, ncarcst } 0.1 \mathrm{~kg}$

## Method 2

$$
\begin{aligned}
\text { Upper limit of weight of } 1 \text { pack } & =3.1+0.1 \div 2 \\
& =98.43 \mathrm{gg}<99.5 \mathrm{~g}
\end{aligned}
$$

$\therefore$ No.
1.8 HKDSEMA 2014-I-3
(a) 100
(b) 123
(b) 123
(c) 123.4
1.9 HKDSEMA 2017-I-9
(a) Least possible capacity $=\left(\begin{array}{ll}200 & 10 \div 5\end{array}\right) \mathrm{mL}=195 \mathrm{~mL}$
(b) Method 1
$\frac{\text { Method }}{\text { Least total capacity }}=195 \mathrm{~mL} \times 120=23.4 \mathrm{~L}>23.35 \mathrm{~L}$
$\therefore$ No.
Method2
Upper limit of capacity of 1 bottic $=\frac{23.3+0.1 \div 2}{130} \mathrm{~L}$ $\begin{aligned} & =\frac{2.3}{1120}{ }^{120} \mathrm{~L} \\ & =194.58 \mathrm{~mL}<195 \mathrm{~mL}\end{aligned}$
. No.
1.10 HKCDSE MA 2018-1-3
(a) 266
(b) 265.4
(c) 270
1.11 HKDSE MA $2020-1-3$

30	600

b 534.76
c 530

## 2 Percentages

## 2A Basic percentages

2A. 1 HKCEE MA 1989-I-1
(Also as 8A.4.)
(a) The monthly income of a man is increased from $\$ 8000$ to $\$ 9000$. Find the percentage increase.
(b) After the increase, the ratio of his savings to his expenditure is $3: 7$ for each month. How much does he save each month?

2A. 2 HKCEE MA 2002 I 6
The radius of a circle is 8 cm . A new circle is formed by increasing the radius by $10 \%$.
(a) Find the area of the new circle in terms of $\pi$.
(b) Find the percentage increase in the area of the circle.

## 2A. 3 HKCEE MA 2006-I-6

The weight of Tom is $20 \%$ more than that of John. It is given that Tom weighs 60 kg .
(a) Find the weight of John.
(b) The weight of Susan is $20 \%$ less than that of Tom. Are Susan and John of the same weight? Explain your answer.

## 2A. 4 HKCEE MA 2008 - I-8

There are 625 boys in a school and the number of girls is $28 \%$ less than that of boys.
(a) Find the number of girls in the school.
(b) There are 860 local students in the school.
(i) Find the percentage of local students in the school.
(ii) It is given that $80 \%$ of the boys are local students. If $x \%$ of the girls are also local students, write down the value of $x$.

## 2A. 5 HKCEE MA 2009-I - 7

In a survey, there are 172 male interviewees. The number of female interviewees is $75 \%$ less than that of male interviewees. Find
(a) the number of female interviewees,
(b) the percentage of female interviewees in the survey.

## 2A. 6 HKCEE MA 2010-I-7

Mary has 50 badges. The number of badges owned by Tom is $30 \%$ less than that owned by Mary.
(a) How many badges does Tom have?
(b) If Mary gives a cermin number of her badges to Tom, will they have the same number of badges? Explain your answer.

## 2A. 7 HKDSE MA 2012-I - 4

The daily wage of Ada is $20 \%$ higher than that of Billy while the daily wage of Billy is $20 \%$ lower than that of Chrisine. It is given that the daily wage of Billy is $\$ 480$.
(a) Find the daily wage of Ada.
(b) Who has the highest daily wage? Explain your answer.

## 2A. 8 HKDSE MA 2016-I-5

In a recreation club, there are 180 members and the number of male members is $40 \%$ more than the number of female members. Find the difference of the number of male members and the number of female members.

## 2A. 9 HKDSE MA 2020 - I-

In a recruitment exercise, the number of male applicant is $28 \%$ more than the number of female applicants. The difference of the number of male applicants and the number of female applicants is 91 applicants. The dixference of the number of male applicants and
Find the number of male applicants in the recruitment exercise.

## 2B Discount, profit and loss

## 2B. 1 HKCEE MA 1990-I-1

A person bought 10 gold coins at $\$ 3000$ each and later sold them all at $\$ 2700$ each
(a) Find the total loss.
(b) Find the percentage loss.

## 2B. 2 HKCEE MA 1994-I - 6

A merchant bought an article for $\$ x$. He put it in his shop for sale at a marked price $70 \%$ higher than its cost. The article was then sold to a customer at a discount of $5 \%$.
(a) What was the percentage gain for the merchant by selling the article?
(b) If the customer paid $\$ 2907$ for the article, find the value of $x$.

## 2B. 3 HKCEE MA 1995-I-4

Mr. Cheung bought a flat in 1993 for $\$ 2400000$. He made a profit of $30 \%$ when he sold the flat to Mr . Lee in 1994.
(a) Find the price of the flat that Mr. Lee paid.
(b) Mr. Lee then sold the flat in 1995 for $\$ 3000000$. Find his percentage gain or loss.

## 2B. 4 HKCEE MA 1998-I-7

The marked price of a toy car is $\$ 29$. It is sold at a discount of $20 \%$.
(a) Find the selling price of the toy car.
(b) If the cost of the toy car is $\$ 18$, find the percentage profit.

## 2B. 5 HKCEE MA $2001-\mathrm{I}-8$

The price of a textbook was $\$ 80$ last year. The price is increased by $20 \%$ this year.
(a) Find the new price.
(b) Peter is given a $20 \%$ discount when buying the textbook from a bookstore this year. How much does he pay for this book?

## 2B. 6 HKCEE MA 2003 - I - 5

A handbag costs $\$ 400$. The marked price of the handbag is $20 \%$ above the cost. It is sold at a $25 \%$ discount on the marked price.
(a) Find the selling price of the handbag.
(b) Find the percentage profit or percentage loss.

## 2B. 7 HKCEE MA 2005 - I-6

The cost of a calculator is $\$ 160$. If the calculator is sold at its marked price, then the percentage profit is $25 \%$.
(a) Find the marked price of the calculator.
(b) If the calculator is sold at a $10 \%$ discount on the marked price, find the percentage profit or percentage loss.

## 2. Percentages

2B. 8 HKCEE MA $2007-\mathrm{I}-6$
The marked price of a vase is $\$ 400$. The vase is sold at a discount of $20 \%$ on its marked price.
(a) Find the selling price of the vase.
(b) A profit of $\$ 70$ is made by selling the vase. Find the percentage profit.

## 2B. 9 HKCEE MA 2011-I-7

The marked price of a birthday cake is $\$ 360$. The birthday cake is sold at a discount of $45 \%$ on its marked price.
(a) Find the selling price of the birthday cake.
(b) If the marked price of the birthday cake is $80 \%$ above its cost, determine whether there will be a gain or a loss after selling the birthday cake. Explain your answer.

## 2B. 10 HKDSE MA SP-I - 4

The marked price of a handbag is $\$ 560$. It is given that the marked price of the handbag is $40 \%$ higher than the cost.
(a) Find the cost of the handbag.
(b) If the handbag is sold at $\$ 460$, find the percentage profit.

## 2B. 11 HKDSE MA PP - I - 4

The cost of a chair is $\$ 360$. If the chair is sold at a discount of $20 \%$ on its marked price, then the percentage profit is $30 \%$. Find the marked price of the chair.

## 2B. 12 HKDSE MA 2014-I - 6

The marked price of a toy is $\$ 255$. The toy is now sold at a discount of $40 \%$ on its marked price.
(a) Find the selling price of the toy.
(b) If the percentage profit is $2 \%$, find the cost of the toy.

2B. 13 HKDSE MA 2015-I - 6
The cost of a book is $\$ 250$. The book is now sold and the percentage profit is $20 \%$.
(a) Find the selling price of the book.
(b) If the book is sold at a discount of $25 \%$ on its marked price, find the marked price of the book.

2B. 14 HKDSE MA 2018-I-7
The marked price of a vase is $30 \%$ above its cost. A loss of $\$ 88$ is made by selling the vase at a discount of $40 \%$ on its marked price. Find the marked price of the vase.

## 2B. 15 HKDSE MA 2019-I-5

A wallet is sold at a discount of $25 \%$ on its marked price. The selling price of the wallet is $\$ 690$.
(a) Find the marked price of the wallet.
(b) After selling the wallet, the percentage profit is $15 \%$. Find the cost of the wallet.

## 2C Interest

## 2C. 1 HKCEE MA 1983(A/B)-1-6

The compound interest on $\$ 1000$ at $10 \%$ per annum for 3 years, compounded yearly, equals the simple interest on another $\$ 1000$ at $r \%$ per annum for the same period of time. Calculate $r$ to 2 decimal places.

## C. 2 HKCEE MA 1991-I-3

A man buys some British pounds ( $£$ ) with 150000 Hong Kong dollars (HK\$) at the rate $£ 1=\mathrm{HK} \$ 15.00$ and puts it on fixed deposit for 30 days. The rate of interest is $14.60 \%$ per annum.
(a) How much does he buy in Brtitsh pounds?
(b) Find the amount in British pounds at the end of 30 days.
(Suppose 1 year $=365$ days and the interest is calculated at simple interest.)
(c) If he sells the amount in (b) at the rate of $£ 1=\mathrm{HK} \$ 1450$, how much does he get in Hong Kong dollars?

## 2C. 3 HKCEE MA 1993-I - 1 (a)

What is the simple interest on $\$ 100$ for 6 months at $3 \%$ p.a.?

## 2C. 4 HKCEE MA 1996 I- 12

Bank A offers personal loans at an interest rate of $18 \%$ per annum. For each successive month after the day when the loan is taken, loan interest is calculated and an instalment is paid.
(Answers to this question should be corrected to 2 decimal places.)
(a) Mr . Chan took a personal loan of $\$ 50000$ from Bank A and agreed to repay the bank in monthly instalments of $\$ 9000$ until the loan is fully repaid (the last instalment may be less than $\$ 9000$ ). The outstandingbalance of his loan for each of the first three months is shown in Tabie 1 .
(i) Complete Table 1 until the loan is fully repaid.
(ii) Find the amount of his last instalment.
(iii) Calculate the total interestearned by the bank.
(b) Mrs. Lee also took a personal loan of $\$ 50000$ from Bank A. She agreed to pay $\$ 9000$ as the first monthly instalment and increase the amount of each instalment by $20 \%$ for every successive month until the loan is fully repaid. The outstanding balance of her loan for the first month is shown in Table 2. Complete Table 2 until the loan is fully repaid.
(c) Mr. Cheung wants to buy a $\$ 50000$ piano for her daughter but he has no savings at hand. He intends to buy the piano by taking a personal loan of $\$ 50000$ from Bank A. If he can only save $\$ 12000$ from his income every month and uses his savings to repay the loan, can he afford to use the repayment scheme as described in (b)? Explain your answer.

Table 1 The outstanding balance of Mr. Chan's loan for each month

Month			
1	Loan Interest (\$)	Loan Repaid (\$)	Oütstanding Bajance $(\$)$
2	750.00	8250.00	41750.00
3	50.25	8373.75	33376.25
4		8499.36	24.876 .89
5			
6			

Table 2 The outstanding balance of Mrs. Lee's loan for each month

Month	Instalment.(\$)	Loan Interest (\$)	Loan Repaid (\$)	Outstanding Balance (\$)
1	9000.00	750.00	8250.00	41750.00
2				
3				
4				
5				

11

2C. 5 HKCEE MA 2000-I - 10
(a) Solve $10 x^{2}+9 x-22=0$.
(b) Mr. Tung deposited $\$ 10000$ in a bank on his 25 th birthday and $\$ 9000$ on his 26 th birthday. The interest was compounded yearly at $r \%$ p.a., and the total amount he received on his 27 th birthday was $\$ 22000$. Find $r$.

## 2C. 6 HKCEE MA 2004-I - 3

A sum of $\$ 5000$ is deposited at $2 \%$ p.a. for 3 years, compounded yearly. Find the interest correct to the nearest dollar.

## 2 Percentages

2A Basic percentages
2A. 1 HKCEE MA $1989-\mathrm{I}-1$
(a) $\%$ increase $=\frac{9000-8000}{8000} \times 100 \%=12.5 \%$
(b) Amount saved $=\$ 9000 \times \frac{3}{3+7}=\$ 2700$

2A. 2 HKCEEMA $2002-I-6$
(a) Newr radius $=8 \times(1+10 \%)=8.8(\mathrm{~cm})$
$\Rightarrow$ New area $=\pi(8.8)^{2}=77.44 \pi\left(\mathrm{~cm}^{2}\right)$
(b) \% increase $\frac{77.44 \pi-\pi(8)^{2}}{\pi(8)^{2}} \times 100 \%=21 \%$

2A. 3 HKCEEMA 2006-T-6
(a) Weight of John $=60 \div(1+20 \%)=50(\mathrm{~kg})$
(b) Weight of Susan $=60 \times(1-20 \%)=48 \neq 50(\mathrm{~kg})$

2A. 4 HKCEE MA 2008-I - 8
(a) Number of girls $=625 \times(1-25 \%)=450$
(b) (i) Required $\%=\frac{860}{625+450} \times 100 \%=80 \%$
(ii) 80

2A. 5 HKCEEMA 2009-I-7
(a) Number of female interviewees $=172 \times(1-75 \%)=43$
(b) Required $\%=\frac{43}{172+43} \times 100 \%=20 \%$

2A. 6 HKCEEMA 2010-I-7
(a) Number of badges Tom has $=50 \times(1-30 \%)=35$
(b) Method I

Total number of badges $=50+35=85$, which is odd! $\therefore$ No.
Method 2
$\frac{\text { Methou } 2}{\text { Let Mary give } x \text { badges. }}$
$50-x=35+x$
No.
2A. 7 HKDSE MA 2012-I-4
(a) Daily wagc of Ada $=\$ 480 \times(1+20 \%)=\$ 576$
(b) Daily wage of Christine $=\$ 480 \div\left(\begin{array}{ll}1 & 20 \%\end{array}\right)=\$ 600$ $\because 600>576>480$
$\therefore$ Christine

## 2A. 8 HKDSEMA 2016 -I- 5

Let there be $x$ female members.

Number of male members
$\Rightarrow 1.4 x$
$1.4 x+x=180$

$\begin{aligned} \Rightarrow 1.4 x+x & =180 \\ x & =75\end{aligned}$
$\therefore$ Tbere are 75 fema
$\therefore$ Tbere are $x$ female and $1.4(75)=105$ male members.
2A. 9 on the next page

2B Discount, profit and loss
2B. 1 HKCEEMA 1990-I-I
(a) Total loss $=\$(3000-2700) \times 10=\$ 3000$
(b) $\%$ loss $=\frac{3000}{3000 \times 10} \times 100 \%=10 \%$

2B. 2 HKCEE MA 1994-I- 6
(a) Marked price $=\$ 1.7 x$

Selling price $=\$ 1.7 x(1-5 \%)=\$ 1.615 x$
$\therefore \% \operatorname{gain}=\frac{1.615 x-x}{x} \times 100 \%=61.5 \%$
(b) $1.615 x=2907 \stackrel{x}{\Rightarrow} x=1800$

2B. 3 HKCEE MA $1995-\mathrm{T}-4$
(a) Price $=\$ 2400000 \times(1+30 \%)=\$ 3120000$
(b) $\%$ loss $=\frac{3120000-3000000}{3120000} \times 100 \%=3.85 \%$

2B. 4 HKCEE MA 1998 -I -7
(a) Selling price $=\$ 29 \times(1-20 \%)=\$ 23.2$
(b) $\%$ proft $=\frac{23.2-18}{18} \times 100 \%=28.9 \%$
28. 5 HKCEE MA $2001-\mathrm{T}-8$
(a) New price $=\$ 80 \times(1+20 \%)=\$ 96$
(b) Amount he pays $=\$ 96 \times(1-20 \%)=\$ 76.8$

2B. 6 HKCEEMA $2003-$ I- 5
(a) Marked price $=\$ 400 \times(1+20 \%)=\$ 480$ $\Rightarrow$ Selling price $=\$ 480 \times(1-25 \%)=\$ 360$
(b) $\%$ loss $=\frac{400-360}{400} \times 100 \%=10 \%$

2B. 7 HKCEEMA 2005-I-6
(a) Marked price $=\$ 160 \times(1+25 \%)=\$ 200$
(b) Seling price $=\$ 200 \times(1-10 \%)=\$ 180$
$\therefore \%$ profit $=\frac{180-160}{160} \times 100 \%=12.5 \%$
2B. 8 HKCEEMA 2007-T- 6
(a) Selling price $=\$ 400 \times(1-20 \%)=\$ 320$
(b) \% profit $=\frac{70}{320-70} \times 100 \%=28 \%$

2B. 9 HKCEEMA 2011-I-7
2B. 9 HKCEE MA2011-[-7
(a) Selling price $=\$ 360 \times(1-45 \%)=\$ 198$
(a) Selling price $=\$ 360 \times(1-45 \%)=\$ 198$
(b) Cost $=\$ 360 \div(1+80 \%)=\$ 200>\$ 198$ b) Cost $=\$ 36$

2B. 10 HKDSE MA SP-I-4
(a) Cost $=\$ 560 \div(1+40 \%)=\$ 400$
(b) $\%$ profit $=\frac{460-400}{400} \times 100 \%=15 \%$

### 28.11 HKDSEMA PP-T-4

Sclling price $=\$ 360 \times(1+30 \%)=\$ 468$
Scling price $=\$ 360 \times(1+30 \%)=\$ 468$
$\Rightarrow$ Marked price $=\$ 468 \div(1-20 \%)=\$ 585$

## 2B.12 HKDSEMA 2014-I-6

 (a) Selling price $=\$ 255 \times(1-40 \%)=\$ 153$ (b) Cost $=\$ 153 \div(1+2 \%)=\$ 150$
## 2B. 13 HKDSEMA $2015-\mathrm{T}-6$

(a) Selling price $=\$ 250 \times(1+20 \%)=\$ 300$
(b) Marked price $=\$ 300 \div(1-25 \%)=\$ 400$

## 2B. 14 HKDSE MA 2018-1-7

Let the marked price be $\$ x$. Then
Cost $=\$ x \div(1+30 \%)=\$ \frac{10}{13} x$
Selling price $=\$ x \times(1-40 \%)=\$ 0.6 x$
$0.6 x+88=\frac{10}{13} x \Rightarrow x=520$
$\therefore$ The marked price is $\$ 520$.

2B. 15 HKDSE MA 2019 I-5
(a) Marked price $=\$ 690 \div\binom{ 1}{25 \%}=\$ 920$ (b) Cost $\$ 690 \div(1+15 \%)=\$ 600$
**2A 9 HKDSE MA $2020-I-5$
Letx be the number of fermale applicanss.
Then, the rumber of male applicants is $x(1+28 \%)=1.28 x$.

## $128 x-x=91$

$x=325$
$=416$

```
2C Interest
2C.1 HKCEE MA 1983(A/B)-I-6
1000(1+10%)}\mp@subsup{)}{}{3}-1000=1000\timesr%\times
 331=30r
 r=11.03 (2 dp.
2C.2 HKCEE MA 1991-I -3
(a) }£150000\div15=f1000
(b) Amount = 10000+10000\times14.00% }\times\frac{30}{3.65
 =(f)10120
(c) $10120\times14.50=$146740
2C. }3\mathrm{ HKCEE MA 1993-1-1(a)
Interest =$100 }\times3%\times\frac{6}{12}=$1.
2C.4 HKCEE MA 1996-1-12
(a) (i) Table 1
 44
 |
```



```
 (ii) Amount =112.41+7493.79=($)7606.20
 (ii) Total interest
 1750.00+626.25+500.64\div373.15
 +243.75+112.41
 =($)2606.20
 Table 2
 2 2
 |
 286.35
|5
 *)
 Since the savings ($15240) would not be enough for an-
 other instalment ($15552), he cannot.
2C.5 HKCEEMA 2000-I-10
(a)}x=1.1\mathrm{ or -2
(b) 10000(1+r%)}\mp@subsup{)}{}{2}+9000(1+r%)=2200
 10(1+r%)2+9(1+r%)-22=0
 1+r%=1.1 or -2 (rejected)
 r=10
2C.6 HKCEE MA 2004-I-3
Interest =$5000(1+2%) 3}-$500
 = $30.6 (nearest dollar)
```


## 3 Indices and Logarithms

3A Laws of indices
3A. 1 HKCEE MA 1987(A) I-3(a)
Simplify $\sqrt{\frac{3^{5 k+2}}{27^{k}}}$.
3A. 2 HKCEE MA 1990-I-2(a)
Simplify $\frac{a}{\sqrt{a}}$, expressing your answer in index form.
3A. 3 HKCEE MA 1993-I - 5(b)
Simplify and express with positive indices $x\left(\frac{x^{-1}}{y^{2}}\right)^{-3}$.
3A. 4 HKCEE MA 1994 I 7(a)
Simplify $\frac{\left(a^{4} b^{2}\right)^{2}}{a b}$ and express your answer with positive indices.
3A. 5 HKCEEMA 1996-I-2
Simplify $\frac{a^{\frac{5}{4}} \sqrt[4]{a^{3}}}{a^{-2}}$.
3A. 6 HKCEE MA 1997-I-2(a)
Simplify $\frac{x^{3} y^{2}}{x^{-3} y}$ and express your answer with positive indices.
3A. 7 HKCEE MA 1998 -I - 4
Simplify $\frac{a^{3} a^{4}}{b^{-2}}$ and express your answer with posivive indices.
3A. 8 HKCEEMA 1999 I-1
Simplify $\frac{\left(a{ }^{3}\right)^{2}}{a}$ and express your answer with positive indices
3A. 9 HKCEE MA $2000-\mathrm{I}-2$
Simplify $\frac{x^{-3} y}{x^{2}}$ and express your answer with positive indices.
3A. 10 HKCEE MA 2001-I-1
Simplify $\frac{m^{3}}{(m n)^{2}}$ and express your answer with positive indices.

## 3A. 11 HKCEEMA 2002-I-1

Simplify $\frac{\left(a b^{2}\right)^{2}}{a^{5}}$ and express your answer with positive indices.
3A. 12 HKCEEMA 2003-I-4
Solve the equation $4^{x+1}=8$.
3A. 13 HKCEE MA 2004-I-1
Simplify $\frac{\left(a^{-1} b\right)^{3}}{b^{2}}$ and express your answer with positive indices.
3A. 14 HKCEE MA 2005-1 2
Simplify $\frac{\left(x^{3} y\right)^{2}}{y^{5}}$ and express your answer with positive indices.
3A. 15 HKCEEMA 2006-1-1
Simplify $\frac{\left(a^{3}\right)^{5}}{a^{-6}}$ and express your answer with positive indices.
3A. 16 HKCEEMA $2007 \mathrm{I}-2$
Simplify $\frac{m^{6}}{m^{9} n^{-5}}$ and express your answer with positive indices
3A. 17 HKCEE MA 2008-I 1
Simplify $\frac{(a b)^{3}}{a^{2}}$ and express your answer with positive indices.
3A. 18 HKCEE MA 2009-I-2
Simplify $\frac{x^{2}}{\left(x^{-7} y\right)^{3}}$ and express your answer with positive indices.
3A. 19 HKCEEMA 2010-I-1
Simplify $a^{14}\left(\frac{b^{3}}{a^{2}}\right)^{5}$ and express your answer with positive indices.
3A:20 HKCEE MA 2011-I-2
Simplify $\frac{x^{65}}{\left(x^{4}, y^{3}\right)^{2}}$ and express your answer with positive indices.
3A. 21 HKDSE MA SP-I-1
Simplify $\frac{(x y)^{2}}{x^{5} y^{6}}$ and express your answer with positive indices.
3A. 22 HKDSEMA PP - $1-1$
Simplify $\frac{\left(m^{5} n^{-2}\right)^{6}}{m^{4} n^{-3}}$ and express your answer with positive indices.

3A. 23 HKDSE MA $2012 \quad \mathrm{I}-1$
Simplify $\frac{m^{-12} n^{3}}{n^{3}}$ and express your answer with positive indices.
3A. 24 HKDSE MA 2013-I-1
Simplify $\frac{x^{20} y^{13}}{\left(x^{5} y\right)^{6}}$ and express your answer with positive indices.
3A. 25 HKDSEMA 2014-I 1
Simplify $\frac{\left(x y^{-2}\right)^{3}}{y^{4}}$ and express your answer with positive indices.
3A. 26 HKDSE MA $2015 \mathrm{I}-1$
Simplify $\begin{gathered}m^{9} \\ \left(m^{3} n^{-7}\right)^{5}\end{gathered}$ and express your answer with positive indices.
3A. 27 HKDSEMA 2016-I-1
Simplify $\frac{\left(x^{8} y^{7}\right)^{2}}{x^{5} y^{-6}}$ and express your answer with positive indices.
3A. 28 HKDSE MA 2017-I-2
Simplify $\frac{\left(m^{4} n^{1}\right)^{3}}{\left(m^{-2}\right)^{5}}$ and express your answer with positive indices.
3A. 29 HKDSE MA 2018-I-2
Simplify $\frac{x y^{7}}{\left(x^{-2} y^{3}\right)^{4}}$ and express your answer with positive indices.
3A. 30 HKDSEMA 2020-I 1
Simplify $\frac{\left(m n^{-2}\right)^{5}}{m^{4}}$ and express your answer with positive indices.

## 3B Logarithms

3B. 1 HKCEE MA 1986(A)-I-5(a)
Evaluate $\log _{2} 8+\log _{2} \frac{1}{16}$

3B. 2 HKCEE MA 1987(A)-I 3(b)
Simplify $\frac{\log a^{3} b^{2}-\log a b^{2}}{\log \sqrt{a}}$.

3B. 3 HKCEE MA 1988 -I-6
Give that $\log 2=r$ and $\log 3=s$, express the following in terms of $r$ and $s$ :
(a) $\log 18$,
(b) $\log 15$.

3B. 4 HKCEE MA 1990-I 2(b)
Simplify $\frac{\log \left(a^{2}\right)+\log \left(b^{4}\right)}{\log \left(a b^{2}\right)}$, where $a, b>0$.

3B. 5 HKCEE MA $1991-\mathrm{I}-7$
(Also as 6C.8.)
Let $\alpha$ and $\beta$ be the roots of the equation $10 x^{2}+20 x+1=0$. Without solving the equation, find the values of
(a) $4^{\alpha} \times 4^{\beta}$,
(b) $\log _{10} \alpha+\log _{10} \beta$

3B. 6 HKCEE MA 1992-I 2(a)
If $\log x=p$ and $\log y=q$, express $\log x y$ in terms of $p$ and $q$.
3B. 7 HKCEE MA 1994-I 7(b)
If $\log 2=x$ and $\log 3=y$, express $\log \sqrt{12}$ in terms of $x$ and $y$.

3B. 8 HKCEE MA 1997 -I 2(b)
Simplify $\frac{\log 8+\log 4}{\log 16}$.

3B. 9 HKDSE MA SP - I-17
A researcher defined Scale $A$ and Scale $B$ to represent the magnitude of an explosion as shown in the table:

It is given that $M$ and $N$ are the magnitudes of an explosion on Scale $A$ and Scale $B$ respectively, while $E$ is the relative energy released by the explosion. If the magnitude of an explosion is 6.4 on Scale $B$, find the magnitude of the explosion on Scale $A$.

3B. 10 HKDSE MA 2014-I-15
The graph in the figure shows the linear relation between $\log _{4} x$ and $\log _{8} y$. The slope and the intercept on the horizontal axis of the graph are $\frac{-1}{3}$ and 3 respectively. Express the relation between $x$ and $y$ in the form $y=A x^{k}$, where $A$ and $k$ are constants.


## 3B. 11 HKDSE MA 2017 I 15

Let $a$ and $b$ be constants. Denote the graph of $y=a+\log _{b} x$ by $G$. The $x$ intercept of $G$ is 9 and $G$ passes through the point $(243,3)$. Express $x$ in terms of $y$.

3C Exponential and logarithmic equations
3C. 1 HKCEE MA 1980(3)-I 7
Find $x$ if $\log _{3}(x-3)+\log _{3}(x+3)=3$.
3C. 2 HKCEE MA 1981(1) I 5 \& HKCEE MA 1981(2)-1-6
Solve $4^{x}=10 \quad 4^{x+1}$.
3C. 3 HKCEE MA 1982(1/2) I 2
If $\left\{\begin{array}{l}4^{x-y}=4 \\ 4^{x+y}=16\end{array}\right.$, solve for $x$ and $y$.
3C. 4 HKCEEMA 1985(B) $1-3$
Solve $2^{2 x}-3\left(2^{x}\right) \quad 4=0$.
3C. 5 HKCEE MA 1986(A) I 5(b)
If $2 \log _{10} x-\log _{10} y=0$, show that $y=x^{2}$.
3C. 6 HKCEEMA 1987(B) I-3
Solve the equation $3^{2 x}+3^{x}-2=0$.
3C. 7 HKCEE MA 1993 I 5(a)
If $9^{x}=\sqrt{3}$, find $x$.
3C. 8 HKCEEMA 1995 I-7
Solve the following equations without using a calculator:
(a) $3^{x}=\frac{1}{\sqrt{27}}$;
(b) $\log x+2 \log 4=\log 48$.

3A Laws of indices
3A. 1 HKCEE MA 1987(A)-I -3(a) $\sqrt{\frac{3^{5 k+2}}{27^{k}}}=\left(\frac{3^{5 k+2}}{3^{3 k}}\right)^{\frac{1}{2}}=\left(3^{2 k+2}\right)^{\frac{1}{2}}=3^{k+1}$

3A. 2 HKCEE MA 1990-I-2(a) $\frac{a}{\sqrt{a}}=a^{1-\frac{1}{2}}=a^{\frac{1}{3}}$

3A. 3 HKCEE MA 1993-I-S(b)
$x\left(\frac{x^{-1}}{y^{2}}\right)^{-3}=x\left(\frac{x^{+3}}{y^{-6}}\right)=x^{4} y^{5}$
3A. 4 HKCEEMA 1994 1-7(a) $\frac{\left(d^{4} b^{-2}\right)^{2}}{a b}=\frac{a^{8} b^{-4}}{a b}=\frac{a^{8-1}}{b^{1+4}}=\frac{a^{7}}{b^{5}}$

3A. 5 HKCEE MA 1996 -I-2 $\frac{a^{\frac{5}{4} \sqrt[4]{a^{3}}}}{a^{-2}}=\frac{a^{\frac{5}{3}} \frac{{ }^{\frac{3}{2}}}{a^{-2}}}{a^{-2}}=a^{\frac{5}{4}+\frac{3}{3}-(-2)}=a^{4}$

3A. 6 HKCEE MA 1997-I - 2(a)
$\frac{\left.x^{3}\right)^{2}}{x^{-3} y^{2}}=x^{3-(-3)} y^{2-1}=x^{6} y$
3A. 7 HKCEE MA 1998 -1-4 $\frac{a^{3} a^{4}}{b^{-2}}=a^{3+4} b^{2}=a^{7} b^{2}$

3A. 8 HKCEE MA 1999 - I-1 $\frac{\left(a^{3}\right)^{2}}{a} \frac{a^{-6}}{a}=\frac{1}{a^{1+6}}=\frac{1}{a^{7}}$

3 A. 9 HKCEEMA $2000-\mathrm{I}-2$
$\frac{x^{-3} y}{x^{2}}=\frac{y}{x^{2+3}}=\frac{y}{x^{5}}$
3A. 10 HKCEEMA 2001-I-1 $\frac{m^{3}}{(m n)^{2}}=\frac{m^{3}}{m^{2} n^{2}}=\frac{m}{n^{2}}$ A. 11 HKCEEMA 2002-I $\frac{\left(a b^{2}\right)^{2}}{a^{5}}=\frac{a^{2} b^{4}}{a^{5}}=\frac{b^{4}}{a^{5}}=\frac{b^{4}}{a^{3}}$

3A. 12 HKCEE MA $2003-\mathrm{I}-4$ $2^{2(x+1)}=2^{3} \Rightarrow 2 x+2=3 \Rightarrow x=\frac{1}{2}$
A. 13 HKCEE MA 2004-1-1 $\frac{\left(a^{-1} b\right)^{3}}{b^{2}}=\frac{a^{-3} b^{3}}{b^{2}}=\frac{b^{3-2}}{a^{3}}=\frac{b}{a^{3}}$

3A. 14 HKCEEMA 2005-I
$\frac{\left(x^{3} y\right)^{2}}{y^{5}}=\frac{x^{5} y^{2}}{y^{5}}=\frac{x^{6}}{y^{3}}$
3A. 15 HKCEEMA 2006 -I-$\frac{\left(a^{3}\right)^{5}}{a^{-6}}=\frac{a^{15}}{a^{-6}}=a^{15} \quad(6)=a^{21}$
3A. 16 HKCEEMA 2007-I-2 $\frac{m^{6}}{m^{9} n^{-5}}=\frac{n^{5}}{m^{9-6}}=\frac{n^{5}}{m^{3}}$
3A. 17 HKCEEMA $2008-\mathrm{I}-1$ $\frac{(a b)^{3}}{a^{2}}=\frac{a^{3} b^{3}}{a^{2}}=a b^{3}$ 3A. 18 HKCEE MA 2009-I - 2 $\frac{x^{2}}{\left(x^{-7} y\right)^{3}}=\frac{x^{2}}{x^{-21} y^{3}}=\frac{x^{2+21}}{y^{3}}=\frac{x^{22}}{y^{3}}$ 3A. 19 HKCEE MA $2010 \sim \mathrm{~T}-1$ $a^{14}\left(\frac{b^{3}}{a^{2}}\right)^{5}=a^{14} \cdot \frac{b^{15}}{a^{10}}=a^{4} b^{15}$ 3A. 20 HKCEEMA 2011-1-2 $\frac{x^{65}}{\left(x^{4} y^{3}\right)^{2}}=\frac{x^{65}}{x^{8} y^{6}}=\frac{x^{57}}{y^{6}}$
3 A. 21 HKDSEMASP- $1-1$
$\frac{(x y)^{2}}{x y^{6}}=\frac{x^{2} y^{2}}{x^{-5} y^{6}}=\frac{x^{2+5}}{y^{5-2}}=\frac{x^{7}}{y^{4}}$
3A. 22 HKDSEMAPP-I-1 $\frac{\left(m^{5} n^{-2}\right)^{6}}{m^{4} n^{-3}} \frac{m^{30} n^{-12}}{m^{4} n^{3}}=\frac{m^{30-4}}{n^{-3+12}}=\frac{m^{26}}{n^{9}}$ 3 A. 23 HKDSEMA 2012-I-1 $\frac{m^{-12} n^{8}}{n^{3}}=\frac{n^{8-3}}{m^{12}}=\frac{n^{5}}{m^{12}}$
3A. 24 HKDSEMA 2013-I$\frac{x^{20} y^{13}}{\left(x^{5} y\right)^{6}}=\frac{x^{20} y^{13}}{x^{30} y^{6}}=\frac{y^{7}}{x^{10}}$ A. 25 HKDSEMA 2014-I$\frac{\left(x y^{-2}\right)^{3}}{y^{4}}=\frac{x^{3} y^{-6}}{y^{4}}=\frac{x^{3}}{y^{4+6}}=\frac{x^{3}}{y^{10}}$ 3A. 26 HKDSE MA $2015-1$ $\frac{m^{9}}{\left(m^{3} n^{-7}\right)^{5}}=\frac{m^{9}}{m^{15} n^{-35}}=\frac{n^{35}}{m^{6}}$ 3A 27 HKDSE MA 2016-I $\frac{\left(x^{8} y^{7}\right)^{2}}{x^{5} y^{-6}}=\frac{x^{15} y^{14}}{x^{5} y^{6}}=x^{16-5} y^{14}(-6)=x^{14} y^{20}$

3A. 28 HKDSEMA 2017-1-2 $\frac{\left(m^{4} n^{-1}\right)^{3}}{\left(m^{-2}\right)^{5}}=\frac{m^{12} n^{-3}}{m^{-10}}=\frac{\left.n^{12-( }\right)}{n^{3}}=\frac{m^{22}}{n^{3}}$
3A. 29 HKDSEMA $2018-1-2$ $\frac{x y^{7}}{\left(x^{-}-y^{3}\right)^{4}}=\frac{x y^{7}}{x^{-8} y^{12}}=\frac{x^{1+8}}{y^{12-7}}=\frac{x^{9}}{y^{5}}$
3A. 30 HKDSE MA 2020 $-\mathrm{I}-1$
$\frac{\left(m n^{-2}\right)^{3}}{m^{-4}}=m^{5}(-1)_{n}-26$
$=m^{9} n^{-10}$
$=\frac{m \text { P }}{n^{10}}$
3B Logarithms
3B. 1 HKCEE MA 1986(A)-I-5(a)
$\log _{2} 8+\log _{2} \frac{1}{16}=\log _{2} 2^{3}+\log _{2} 2^{-4}=3+(-4)=-1$
3B. 2 HKCEE MA 1987(A) I-3(b)
$\frac{\log a^{3} b^{2}-\log a b^{2}}{\log \sqrt{a}}=\frac{\log \frac{a^{3} b^{2}}{a b^{2}}}{\frac{1}{2} \log a}=\frac{\log a^{2}}{\frac{1}{2} \log a}=\frac{2 \log a}{\frac{1}{2} \log a}=4$
3B. 3 HKCEE MA 1988-T-6
(a) $\log 18=\log 2 \cdot 3^{2}=\log 2+2 \log 3=r+2 s$
(b) $\log 15=\log \frac{3 \times 10}{2}=\log 3+1-\log 2=s+1-r$
3B. 4 HKCEE MA 1990-1-2(b)
$\frac{\log \left(a^{2}\right)+\log \left(b^{4}\right)}{\log \left(a b^{2}\right)}=\frac{\log a^{2} b^{4}}{\log a b^{2}}=\frac{\log \left(a b^{2}\right)^{2}}{\log a b^{2}}=\frac{2 \log a b^{2}}{\log a b^{2}}=2$
3B.5 HKCEE MA 1991-I-7
$\{\alpha+\beta=2$
$\left\{\alpha \beta=\frac{1}{10}\right.$
(a) $4^{\alpha} \times 4^{\beta}=4^{\alpha+\beta}=4^{-2}=\frac{1}{16}$
(b) $\log _{10} \alpha+\log _{10} \beta=\log _{10} \alpha \beta=\log _{10} \frac{1}{10}=-1$
3B. 6 HKCEEMA 1992-I- $z(\mathrm{a})$
$\log x y=\log x+\log y=p+q$
3B. 7 HKCEEMA 1994 I-7(b)
$\log \sqrt{12}=\frac{1}{2} \log 2^{2} \cdot 3=\frac{1}{2}(2 \log 2+\log 3)=\frac{2 x+y}{2}$
3B. 8 HKCEE MA 1997-1-2(b)
$\frac{\log 8+\log 4}{\log 16} \frac{3 \log 2+2 \log 2}{4 \log 2}=\frac{5 \log 2}{4 \log 2}=\frac{5}{4}$
3B9 HKDSEMASP-I-17
Method I
$6.4=\log _{8} E \Rightarrow E=8^{6.4}$
$\therefore M=\log _{4} E=\log _{4}\left(8^{6.4}\right)=\frac{\log _{2} 8^{6.4}}{\log _{2} 4}$

$$
=\frac{\log _{2} 2^{2(6,4)}}{\log _{2} 2^{2}}=\frac{19.2}{2}=9.6
$$

Method? 2

$$
\begin{aligned}
&\left\{\begin{array} { l } 
{ M = \operatorname { l o g } _ { 4 } E } \\
{ N = \operatorname { l o g } _ { 8 } E }
\end{array} \Rightarrow \left\{\begin{array}{l}
E=4^{M} \\
E=8^{N}
\end{array} \Rightarrow \begin{array}{l}
4^{M} \\
=2^{2 M}
\end{array}=8^{3 N}\right.\right. \\
& M=\frac{3}{2} N=\frac{3}{2}(6.4)=9.6
\end{aligned}
$$

3B. 10 HKDSEMA 2014-I - 15

## Method l

From the graph. $\left(\log _{4} x, \log _{8} y\right)=(3,0)$ and $S l o p c=\frac{-1}{3}$
Using point-slope form, the equation is:
$\log _{8} y-0=\frac{-1}{3}\left(\log _{4} x-3\right)$

$$
\begin{aligned}
\log _{8} y & =\frac{-1}{3} \log _{4} x+1 \\
& =\log _{4}\left(x \frac{1}{\top} \cdot 4\right)
\end{aligned}
$$

$\frac{\log _{2} y}{\log _{2} 8}=\frac{\log _{2} 4 x \text { ㄱ }}{\log _{2} 4}$
$\frac{\log _{2} y}{3}=\frac{\log _{2} 4 x^{\text {弚 }}}{2}$
$\log _{2} y=\frac{3}{2} \log _{2} 4 x^{-\frac{1}{7}}$
$=\log _{2}\left(4 x^{\frac{-1}{\top}}\right)^{\frac{3}{2}}=\log _{2} 8 x^{\frac{-1}{2}}$
$\Rightarrow y^{-8 x}$
Mechod2
$\left(\log _{4} x, \log _{8} y\right)=(3,0) \Rightarrow(x, y)=(64,1)$
Let the point of the line culing the vertical axis be $(0, b)$.
$\frac{b-0}{0-3}=\frac{-1}{3} \Rightarrow b=1$
$\therefore\left(\log _{4} x, \log _{8} y\right)=(0,1) \Rightarrow(x, y)=(1,8)$
Patting into $y=A x^{k},\left\{\begin{array}{l}8=A\end{array}\right.$
Hence. $y=8 x \frac{1}{2}$.
Method 3
$x=A x^{k} \Rightarrow \log _{2} y=\log _{2} A x^{k}=\log _{2} A+k \log _{2} x$ $\frac{\log _{8} y}{\log _{8} 2}=\log _{2} A+k \frac{\log _{4} x}{\log _{1} 2}$
$\log _{8} y=\log _{2} A+2 k \log _{4}$
$\log _{8} y=\frac{2 k}{3} \log _{4} x+\frac{1}{3} \log _{2} A$
From theory of straight lines,
$\left\{\frac{-1}{3}=\right.$ Slope $=\frac{2 k}{3} \Rightarrow k=\frac{-1}{2}$
$\left\{\begin{array}{l}3=x \text {-intercept }=-\frac{\frac{1}{2} \log _{2} A}{\frac{2 k}{3}}=\frac{-1}{2 k} \log _{2} A \Rightarrow A=2^{3}=8\end{array}\right.$
Hence, $y=8 x^{\frac{1}{2}}$.

3B.11 HKDSEMA 2017-I- 15
$G$ passes ihrough $(9,0)$ and $(243,3)$
$\Rightarrow\left\{\begin{array}{l}0=a+\log _{b} 9 \\ 3=a+\log _{b} 243\end{array} \Rightarrow 3=\log _{b} 243-\log _{b} 9=\log _{b} 243\right.$
$\Rightarrow\left\{\begin{array}{l}3=a+\log _{b} 243\end{array} \Rightarrow 3=\log _{b} 243-\log _{b} 9=\log _{b}\right.$
$\Rightarrow b^{3}=27 \Rightarrow b=9 \Rightarrow a=-\log _{b} 9=-2$
$\therefore y=-2+\log _{3} x \Rightarrow \log _{9} x=y+2 \Rightarrow x=3^{y+2}$

## 3C Exponential and logarithmic equations

3C. 1 HKCEEMA 1980(3)-I-7
$\log _{3}(x-3)+\log _{3}(x+3)=3$
$\log _{3}(x-3)(x+3)=3$

3C. 2 HKCEE MA 1981(1) - I-5 \& 1981(2)-1-6 $4^{x}=10-4^{x+1}$
$4^{x}=10-4^{x} .4$
$(1+4) 4^{x}=10$
$4^{x}=2 \Rightarrow x=\frac{1}{2}$

3C.3 HKCEEMA 1982(1/2)-1-2
$\left\{\begin{array}{l}4^{x-y}=4 \Rightarrow x \quad y=1 \\ 4^{x+y}=16 \Rightarrow x+y=2\end{array} \Rightarrow\left\{\begin{array}{l}x=\frac{3}{2} \\ y=\frac{1}{2}\end{array}\right.\right.$

3C. 4 HKCEEMA $1985(\mathrm{~B})-\mathrm{I}-3$
$2^{3 x} 3\left(2^{x}\right) \quad 4=0$
$\begin{array}{ll}\left(2^{x}\right)^{2} & 3\left(2^{x}\right) \\ \left(2^{x}-4\right) & 4=0 \\ \left.2^{x}+1\right) & =0\end{array}$
$\begin{aligned} 2^{x} & =4 \text { or }-1 \text { (rejected) } \Rightarrow x=2\end{aligned}$

3C. 5 HKCEEMA 1986(A)-I-5(b)
$2 \log _{10} x-\log _{10} y=0$
$\log _{10} x^{2}=\log _{10} y$

3C. 6 HKCEE MA 1987(B) $-\mathrm{I}-3$
$3^{2 x}+3^{x}-2=0$
$\left(3^{x}+2\right)\left(3^{x}-1\right)=0$
$3^{x}=-2$ (rejected) or $1 \Rightarrow x=0$

3C. 7 HKCEE MA $1993-\mathrm{I}-5(\mathrm{a})$
$9^{x}=\sqrt{3}$
$3^{2 x}=3^{\frac{1}{4}} \Rightarrow 2 x=\frac{1}{2} \Rightarrow x=\frac{1}{4}$

3C8 HKCEE MA 1995-I-7
(a) $3^{x}=\frac{1}{\sqrt{27}}=27^{\frac{-1}{2}}=\left(3^{3}\right)^{\frac{-1}{7}}$
$x=\frac{-3}{2}$
(b) $\log x+2 \log 4=\log 48$
$\log x+\log 4^{2}=\log 48$
$\log 16 x=\log 48 \Rightarrow 16 x=48 \Rightarrow x=3$

## 4 Polynomials

4A Factorization, H.C.F. and L.C.M. of polynomials
4A. 1 HKCEE MA 1980(1/1*/3) I 2
Factorize
(a) $a(3 b-c)+c-3 b$,
(b) $x^{4}-1$.

4A. 2 HKCEE MA 1981(2/3) 15
Factorize $(1+x)^{4}-\left(1-x^{2}\right)^{2}$.
4A. 3 HKCEE MA 1983(A/B) - I-1
Factorise $\left(x^{2}+4 x+4\right)-(y-1)^{2}$.
4A. 4 HKCEE MA 1984(A/B) I-4
Factorize
(a) $x^{2} y+2 x y+y$
(b) $x^{2} y+2 x y+y-y^{3}$.

4A. 5 HKCEE MA 1985(A/B) I-1
(a) Factorize $a^{4}-16$ and $a^{3}-8$.
(b) Find the L.C.M. of $a^{4}-16$ and $a^{3}-8$.

4A. 6 HKCEE MA 1986(A/B) I 1
Factorize
(a) $x^{2}-2 x-3$,
(b) $\left(a^{2}+2 a\right)^{2}-2\left(a^{2}+2 a\right)-3$

4A. 7 HKCEE MA 1987(A/B) I 1
Factorize
(a) $x^{2}-2 x+1$,
(b) $x^{2}-2 x+1-4 y^{2}$.

4A. 8 HKCEE MA 1993-I 2(e)
Find the H.C.F. and L.C.M. of $6 x^{2} y^{3}$ and $4 x y^{2} z$.
4A. 9 HKCEE MA 1995 I $\mathrm{I}(\mathrm{b})$
Find the H.C.F. of $(x-1)^{3}(x+5)$ and $(x-1)^{2}(x+5)^{3}$.

## 4A. 10 HKCEE MA 1997 -I

## Factorize

(a) $x^{2}-9$,
(b) $a c+b c-a d-b d$.

4A. 11 HKCEE MA 2003-I 3
Factorize
(a) $x^{2}-(y-x)^{2}$,
(b) $a b-a d-b c+c d$.

4A. 12 HKCEE MA 2004-I 6

## Factorize

(a) $a^{2}-a b+2 a-2 b$,
(b) $169 y^{2}-25$.

4A. 13 HKCEE MA 2005 - I 3
Factorize
(a) $4 x^{2}-4 x y+y^{2}$,
(b) $4 x^{2}-4 x y+y^{2}-2 x+y$.

4A. 14 HKCEE MA 2007 I - 3
Factorize
(a) $r^{2}+10 r+25$,
(b) $r^{2}+10 r+25-s^{2}$.

4A. 15 HKCEE MA 2009-I 3
Factorize
(a) $a^{2} b+a b^{2}$,
(b) $a^{2} b+a b^{2}+7 a+7 b$.

4A. 16 HKCEE MA 2010-I - 3
Factorize
(a) $m^{2}+12 m n+36 n^{2}$,
(b) $m^{2}+12 m n+36 n^{2}-25 k^{2}$.

4A. 17 HKCEE MA 2011-1-3
Factorize
(a) $81 m^{2}-n^{2}$,
(b) $81 m^{2} \quad n^{2}+18 m-2 n$

## 4A. 18 HKDSEMASP-I-3

## Factorize

(a) $3 m^{2}-m n-2 n^{2}$,
(b) $3 m^{2} m n-2 n^{2}-m+n$

4A. 19 HKDSEMA PP -I-3

## Factorize

(a) $9 x^{2}-42 x y+49 y^{2}$,
(b) $9 x^{2}-42 x y+49 y^{2}-6 x+14 y$.

4A. 20 HKDSE MA 2012-I-3
Factorize
(a) $x^{2}-6 x y+9 y^{2}$,
(b) $x^{2}-6 x y+9 y^{2}+7 x-21 y$.

4A. 21 HKDSE MA 2013-I-3

## Factorize

(a) $4 m^{2}-25 n^{2}$,
(b) $4 m^{2}-25 n^{2}+6 m-15 n$

## 4A. 22 HKDSEMA 2014-I-2

## Factorize

(a) $a^{2}-2 a-3$,
(b) $a b^{2}+b^{2}+a^{2}-2 a-3$.

4A. 23 HKDSEMA 2015-I-4
Factorize
(a) $x^{3}+x^{2} y-7 x^{2}$,
(b) $x^{3}+x^{2} y-7 x^{2}-x-y+7$

4A. 24 HKDSE MA 2016 I 4
Factorize
(a) $5 m-10 n$,
(b) $m^{2}+m n \quad 6 n^{2}$,
(c) $m^{2}+m n-6 n^{2}-5 m+10 n$.

4A. 25 HKDSEMA 2017-I-3

## Factorize

(a) $x^{2}-4 x y+3 y^{2}$,
(b) $x^{2}-4 x y+3 y^{2}+11 x-33 y$.

4A. 26 HKDSEMA 2018 I-5
Factorize
(a) $9 r^{3}-18 r^{2} s$.
(b) $9 r^{3}-18 r^{2} s-r s^{2}+2 s^{3}$.

## 4A. 27 HKDSE MA 2019-I - 4

## Factorize

(a) $4 m^{2}-9$.
(b) $2 m^{2} n+7 m n-15 n$,
(c) $4 m^{2}-9-2 m^{2} n-7 m n+15 n$.

4A. 28 HKDSEMA $2020-\mathrm{I}-2$
Factorize
(a) $\alpha^{2}+\alpha-6$,
(b) $\alpha^{4}+\alpha^{3}-6 \alpha^{2}$.

## 4B Division algorithm, remainder theorem and factor theorem

## 4B. 1 HKCEE MA 1980(1*/3) 1-13(a)

It is given that $f(x)=2 x^{2}+a x+b$.
(i) If $f(x)$ is divided by $(x-1)$, the remainder is -5 . If $f(x)$ is divided by $(x+2)$, the remainder is 4 Find the values of $a$ and $b$.
(ii) If $f(x)=0$, find the value of $x$.

4B. 2 HKCEE MA 1981(2) I 3 and HKCEE MA 1981(3) - I - 2
Let $f(x)=(x+2)(x-3)+3$. When $f(x)$ is divided by $\left(\begin{array}{ll}x & k\end{array}\right)$, the remainder is $k$. Find $k$.
4B. 3 HKCEE MA 1984(A/B) - I - 1
If $3 x^{2}-k x-2$ is divisible by $x-k$, where $k$ is a constant. find the two values of $k$.
4B. 4 HKCEE MA 1985(A/B) I-4
Given $f(x)=a x^{2}+b x-1$, where $a$ and $b$ are constants. $f(x)$ is divisible by $x-1$. When divided by $x+1$, $f(x)$ leaves a remainder of 4. Find the values of $a$ and $b$.

4B. 5 HKCEE MA 1987(A/B) $-1-2$
Find the values of $a$ and $b$ if $2 x^{3}+a x^{2}+b x-2$ is divisible by $x-2$ and $x+1$.
4B. 6 HKCEE MA 1989-I-3
Given that $(x+1)$ is a factor of $x^{4}+x^{3}-8 x+k$, where $k$ is a constant,
(a) find the value of $k$
(b) factorize $x^{4}+x^{3}-8 x+k$

## 4B. 7 HKCEE MA 1990-1-7

(a) Find the remainder when $x^{1000}+6$ is divided by $x+1$
(b) (i) Using (a), or otherwise, find the remainder when $8^{1000}+6$ is divided by 9 . (ii) What is the remainder when $8^{1000}$ is divided by 9 ?

## 4B. 8 HKCEE MA 1990 I-11

(Continued from 15B.6.)
A solid right circular cylinder has radius $r$ and height $h$. The volume of the cylinder is $V$ and the total surface area is $S$.
(a) (i) Express $S$ in terms of $r$ and $h$
(ii) Show that $S=2 \pi r^{2}+\frac{2 V}{r}$
(b) Given that $V=2 \pi$ and $S=6 \pi$, show that $r^{3}-3 r+2=0$. Hence find the radius $r$ by factorization.
(c) [Out of syllabus]

## 4B. 9 HKCEE MA $1992-\mathrm{I}-2$ (b)

Find the remainder when $x^{3}-2 x^{2}+3 x-4$ is divided by $x-1$.
4B. 10 HKCEE MA 1993-I - 2(d)
Find the remainder when $x^{3}+x^{2}$ is divided by $x-1$.

## 4B. 11 HKCEE MA $1994-\mathrm{I}-3$

When $(x+3)(x-2)+2$ is divided by $x-k$, the remainder is $k^{2}$. Find the value(s) of $k$.

4B. 12 HKCEE MA 1995 - I - 2
(a) Simplify $(a+b)^{2}-(a-b)^{2}$.
(b) Find the remainder when $x^{3}+1$ is divided by $x+2$.

4B. 13 HKCEE MA 1996-I -4
Show that $x+1$ is a factor of $x^{3}-x^{2}-3 x-1$.
Hence solve $x^{3}-x^{2}-3 x-1=0$. (Leave your answers in surd form.)

## 4B. 14 HKCEE MA 1998-I-9

Let $f(x)=x^{3}+2 x^{2}-5 x-6$.
(a) Show that $x-2$ is a factor of $f(x)$
(b) Factorize $f(x)$.

4B. 15 HKCEE MA 2000-I - 6
Let $f(x)=2 x^{3}+6 x^{2}-2 x \quad$ 7. Find the remainder when $f(x)$ is divided by $x+3$.
4B. 16 HKCEE MA 2001 - -2
Let $f(x)=x^{3}-x^{2}+x-1$. Find the remainder when $f(x)$ is divided by $x-2$.
4B. 17 HKCEE MA 2002-I-4
Let $f(x)=x^{3}-2 x^{2}-9 x+18$.
(a) Find $f(2)$.
(b) Factorize $f(x)$.

4B.18 HKCEE MA 2005-1-10
It is known that $f(x)$ is the sum of two parts, one part varies as $x^{3}$ and the other part varies as $x$.
Suppose $f(2)=-6$ and $f(3)=6$.
(a) Find $f(x)$.
(b) Let $g(x)=f(x) \quad 6$.
(i) Prove that $x-3$ is a factor of $g(x)$.
(ii) Factorize $g(x)$.

4B. 19 HKCEE MA 2007-I - 14
(a) Let $f(x)=4 x^{3}+k x^{2}-243$, where $k$ is a constant. It is given that $x+3$ is a factor of $f(x)$.
(i) Find the value of $k$.
(ii) Factorize $f(x)$.

4B.20 HKDSE MA SP - I - 10
(a) Find the quotient when $5 x^{3}+12 x^{2}-9 x-7$ is divided by $x^{2}+2 x-3$.
(b) Let $g(x)=\left(5 x^{3}+12 x^{2}-9 x-7\right)-(a x+b)$, where $a$ and $b$ are constants. It is given that $g(x)$ is divisible by $x^{2}+2 x-3$
(i) Write down the values of $a$ and $b$.
(ii) Solve the equation $g(x)=0$.

## 4B. 21 HKDSEMA PP-I- 10

Let $f(x)$ be a polynomial. When $f(x)$ is divided by $x-1$, the quotient is $6 x^{2}+17 x-2$. It is given that $f(1)=4$.
(a) Find $f(-3)$.
(b) Factorize $f(x)$

4B. 22 HKDSE MA 2012-I - 13
(To continue as 7B.17.)
(a) Find the value of $k$ such that $x-2$ is a factor of $k x^{3}-21 x^{2}+24 x-4$.

## 4B. 23 HKDSE MA 2013-I-12

Let $f(x)=3 x^{3}-7 x^{2}+k x-8$, where $k$ is a constant. It is given that $f(x) \equiv(x-2)\left(a x^{2}+b x+c\right)$, where $a, b$ and $c$ are constants.
(a) Find $a, b$ and $c$.
(b) Someone claims that all the roots of the equation $f(x)=0$ are real numbers. Do you agree? Explain your answer.

## 4B. 24 HKDSE MA 2014-I-7

Let $f(x)=4 x^{3} \quad 5 x^{2}-18 x+c$, where $c$ is a constant. When $f(x)$ is divided by $x-2$, the remainder is 33 .
(a) Is $x+1$ a factor of $f(x)$ ? Explain your answer.
(b) Someone claims that all the roots of the equation $f(x)=0$ are rational numbers. Do you agree? Explain your answer.

## 4B.25 HKDSE MA 2015-I 11

Let $f(x)=(x-2)^{2}(x+h)+k$, where $h$ and $k$ are constants. When $f(x)$ is divided by $x-2$, the remainder is -5 . It is given that $f(x)$ is divisible by $x-3$.
(a) Find $h$ and $k$.
(b) Someone claims that all the roots of the equation $f(x)=0$ are integers. Do you agree? Explain your answer.

## 4B. 26 HKDSE MA 2016-I - 14

Let $p(x)=6 x^{4}+7 x^{3}+a x^{2}+b x+c$, where $a, b$ and $c$ are constants. When $p(x)$ is divided by $x+2$ and when $p(x)$ is divided by $x-2$, the two remainders are equal. It is given that $p(x) \equiv\left(l x^{2}+5 x+8\right)\left(2 x^{2}+m x+n\right)$, where $l, m$ and $n$ are constants.
(a) Find $l, m$ and $n$.
(b) How many real roots does the equation $p(x)=0$ have? Explain your answer.

## 4B.27 HKDSE MA 2017 I- 14

Let $f(x)=6 x^{3}-13 x^{2}-46 x+34$. When $f(x)$ is divided by $2 x^{2}+a x+4$, the quotient and the remainder are $3 x+7$ and $b x+c$ respectively, where $a, b$ and $c$ are constants.
(a) Find $a$.
(b) Let $g(x)$ be a quadratic polynomial such that when $g(x)$ is divided by $2 x^{2}+a x+4$, the remainder is $b x+c$.
(i) Prove that $f(x)-g(x)$ is divisible by $2 x^{2}+a x+4$.
(ii) Someone claims that all the roots of the equation $f(x)-g(x)=0$ are integers. Do you agree? Explain your answer.

## 4B. 28 HKDSE MA $2018-\mathrm{I}-12$

Let $f(x)=4 x(x+1)^{2}+a x+b$, where $a$ and $b$ are constants. It is given that $x-3$ is a factor of $f(x)$. When $f(x)$ is divided by $x+2$, the remainder is $2 b+165$.
(a) Find $a$ and $b$.
(b) Someone claims that the equation $f(x)=0$ has at least one irrational root. Do you agree? Explain your answer.

## 4B. 29 HKDSE MA 2019 - I- 11

Let $p(x)$ be a cubic polynomial. When $p(x)$ is divided by $x-1$, the remainder is 50 . When $p(x)$ is divided by $x+2$, the remainder is 52 . It is given that $p(x)$ is divisible by $2 x^{2}+9 x+14$.
(a) Find the quotient when $p(x)$ is divided by $2 x^{2}+9 x+14$
(b) How many rational roots does the equation $p(x)=0$ have? Explain your answer.

## 4 Polynomials

## 4A Factorization, H.C.F. and L.C.M. of

 polynomials4A. 1 HKCEE MA $1980(1 / 1 * / 3)-1-2$
(a) $a(3 b \quad c)+c \quad 3 b=(3 b-c)(a-1)$
(b) $x^{4} \quad 1=\left(\begin{array}{ll}x & 1\end{array}\right)(x+1)\left(x^{2}+1\right)$

4A. 2 HKCEE MA 1981(2/3)-I-5
$(1+x)^{4}-\left(1-x^{2}\right)^{2}=\left[\left(1+x^{2}\right)\right]^{2}-\left(1 \quad x^{2}\right)^{2}$
$\begin{aligned}= & \left(1+x^{2}\right)-\left(1 x^{2}\right)\left[(1+x)^{2}+\left(1-x^{2}\right)\right] \\ & =\left[(1+x)^{2}-\left(1-x^{2}\right)\right](1+2)^{2} \\ & =\left(2 x+2 x^{2}\right)(2+2 x)=4 x(1+x)^{2}\end{aligned}$
4A. 3 HKCEE MA $1983(A-B)-\mathrm{I}-1$
$\left(x^{2}+4 x+4\right)-(y-1)^{2}=(x+2)^{2}-(y-1)^{2}$

$$
=(x+y+3)(x+y+1)
$$

A. 4 HKCEE MA 1984(AB) -1 - 4
(a) $x^{2} y+2 x y+y \quad y\left(x^{2}+2 x+1\right)=y(x+1)^{2}$
(b) $x^{2} y+2 x y+y \quad y^{3}=y(x+1)^{2} \quad y^{3}$

$$
\begin{aligned}
& =y\left[(x+1)^{2}-y^{2}\right) \\
& =y(x+1 \quad y)(x+1+y)
\end{aligned}
$$

4A. 5 HKCEE MA $1985(\mathrm{~A} / \mathrm{B})-\mathrm{I}-1$
(a) $a^{4}-16=\left(\begin{array}{ll}a & 2\end{array}\right)(a+2)\left(a^{2}+4\right)$
$3=(a-2)\left(a^{2}+2 a+4\right)$
(b) L.C.M $=(a-2)(a+2)\left(a^{2}+4\right)\left(a^{2}+2 a+4\right)$

4A. 6 HKCEE MA $1986(\mathrm{~A} / \mathrm{B})-\mathrm{I}-1$
(a) $x^{2}-2 x-3=\left(\begin{array}{ll}x & 3)(x+1)\end{array}\right.$
b) $\left(a^{2}+2 a\right)^{2}-2\left(a^{2}+2 a\right)-3$
$=\left[\left(a^{2}+2 a\right)-3\right]\left[\left(a^{2}+2 a\right)+1\right] \quad(a+3)(a-1)(a+1)^{2}$
4. 7 HKCEE MA 1987(A/B)-I-1
(a) $x^{2}-2 x+1=(x-1)^{2}$
(b) $x^{2}-2 x+1 \quad 4 y^{2}=(x-1)^{2}-(2 y)^{2}$

$$
\begin{aligned}
& =(x-1)^{2}-(2 y)^{-2} \\
& =\left(\begin{array}{lll}
x & 1 & 2 y)(x-1+2 y
\end{array}\right)
\end{aligned}
$$

4A. 8 HKCEE MA $1993-1-2(\mathrm{e})$
H.C.E $=2 x y^{2} . \quad$ L.C.M. $=12 x^{2} y^{3} z$
4. 9 HKCEE MA 1995-1-1(b)
H.C F: $=(x-1)^{2}(x+5)$
A. 10 HKCEE MA $1997-\mathrm{I}-$
(a) $x^{2} \quad 9=(x-3)(x+3)$
(b) $a c+b c \quad a d-b d=c(a+b) \quad d(a+b)=(a+b)(c-d)$

4A. 11 HKCEE MA 2003-I-3
(a) $\left.x^{2}-\left(\begin{array}{ll}y & x\end{array}\right)^{2}=\left[\begin{array}{ll}x-(y) & x\end{array}\right)\right]\left(x+\left(y^{\prime}-x\right)\right]=y\left(\begin{array}{ll}2 x & y\end{array}\right)$ (b) $a b \quad a d-b c+c d=a(b-d)-c(b \quad d)=(b-d)(a-c)$

```
4.12 HKCEEMA 2004-1-6
 (a) \mp@subsup{a}{}{2}}ab+2a-2b=a(a\quadb)+2(a\quadb)=(a-b)(a+2
(b) }169\mp@subsup{y}{}{2}-25=(13y\mp@subsup{)}{}{2}-\mp@subsup{5}{}{2}=(13y-5)(13y+5
4A.13 HKCEE MA 2005-I-3
(a) 4\mp@subsup{x}{}{2}}4xy+\mp@subsup{y}{}{2}=(2x y
(b) }\begin{array}{rl}{4\mp@subsup{x}{}{2}-4xy+\mp@subsup{y}{}{2}-2x+y}&{=(2x-y\mp@subsup{)}{}{2}-(2x-y)}\\{}&{=(\begin{array}{ll}{2x}&{y)(2x-y}\end{array})}
4A.14 HKCEE MA 2007 - I-3
(a) }\mp@subsup{r}{}{2}+10r+25=(r+5\mp@subsup{)}{}{2
(b) }\mp@subsup{r}{}{2}+10r+25\quad\mp@subsup{s}{}{2}=(r+5\mp@subsup{)}{}{2}\quad\mp@subsup{s}{}{2}=(r+5\quads)(r+5+s
4A.15 HKCEE MA 2009 I-3
(a) }\mp@subsup{a}{}{2}b+a\mp@subsup{b}{}{2}=ab(a+b
(b) }\mp@subsup{a}{}{2}b+a\mp@subsup{t}{}{2}+7a+7b=ab(a+b)+7(a+
 =(a+b)(ab+7)
4A.16 HKCEE MA 2010-1-3
(a) }\mp@subsup{m}{}{2}+12mn+36\mp@subsup{n}{}{2}=(m+6n\mp@subsup{)}{}{2
(b) m}\mp@subsup{m}{}{2}+12mn+36\mp@subsup{n}{}{2}-25\mp@subsup{k}{}{2}=(m+6n\mp@subsup{)}{}{2}\quad(5k\mp@subsup{)}{}{2
 =(m+6n-5k)(m+6n+5k)
4A.17 HKCEE MA 2011-T-3
(a) }81\mp@subsup{m}{}{2}\quad\mp@subsup{n}{}{2}=(9m-n)(9m+n
(b) }81\mp@subsup{m}{}{2}\quad\mp@subsup{n}{}{2}+18m\quad2n=(9m-n)(9m+n)+2(9m-n
 =(9m n)(9m+n+2)
A. }18\mathrm{ HKDSE MA SP-I - 3
(a) }3\mp@subsup{m}{}{2}mn-2\mp@subsup{n}{}{2}=(3m+2n)(m-n
```



```
(b) }\begin{array}{rl}{3\mp@subsup{m}{}{2}-mn 2\mp@subsup{n}{}{2}}\end{array}\quad\begin{array}{rl}{m+n}&{=(3m+2n)(m-n) (m-n)}\\{}&{=(m-n)(3m\div+2n-1)}
4A.19 HKDSE MA PP-I-3
(a) }9\mp@subsup{x}{}{2}-42xy+49\mp@subsup{y}{}{2}=(3x-7y\mp@subsup{)}{}{2
(b) }9\mp@subsup{x}{}{2}-42xy+49\mp@subsup{y}{}{2}-6x+14y=(3x-7y\mp@subsup{)}{}{2}-2(3x\quad7y
 =(3x 7y)(3x-7y-2)
4A. 20 HKDSE MA 2012-I-3
(a) }\mp@subsup{x}{}{2}-6xy+9\mp@subsup{y}{}{2}=(\begin{array}{ll}{x}&{3y}\end{array}\mp@subsup{)}{}{2
(b) \mp@subsup{x}{}{2}}6xy+9\mp@subsup{y}{}{2}+7x-21y=(\begin{array}{ll}{x}&{3y\mp@subsup{)}{}{2}\div7(x-3y)}
 =(x-3y)(x-3y+7)
4A. 21 HKDSE MA 2013-1-3
(a) }4\mp@subsup{n}{}{2}-25\mp@subsup{n}{}{2}=(2n 5n)(2m+5n
(b) }4\mp@subsup{m}{}{2}-25n\mp@subsup{n}{}{2}+6m\quad15
 =(2m-5n)(2m+5n)+3(2m-5n)
 =(2m-5n)(2m+5n+3)
 =(\begin{array}{ll}{2x}&{y)}\end{array})(2x-y 1
4A.16 HKCEEMA 2010-1-3
 ={2m-5n)(2m+5n+3)
```

A. 22 HKDSE MA 2014-I-2
(a) $a^{2}-2 a-3=(a-3)(a+1)$
(b) $a b^{2}+b^{2}+a^{2}-2 a-3=b^{2}(a+1)+\left(\begin{array}{ll}a & 3\end{array}\right)(a+1)$ $=(a+b)\left(b^{2}+a-3\right)$

4A. 23 HKDSE MA 2015 - I-4
(a) $x^{3}+x^{2} y \quad 7 x^{2}=x^{2}(x+y-7)$
(b) $x^{3}+x^{2} y-7 x^{2} \quad x-y+7=x^{2}(x+y-7) \quad(x+y-7)$ $=(x+y-7)\left(x^{2}-1\right)$ $=(x+y-7)(x-1)(x+1)$

4A. 24 HKDSE MA 2016-I-4
(a) $5 m-10 n=5(m \quad 2 n)$
(b) $m^{2}+m n-6 n^{2}=(m+3 n)(m-2 n)$
(c) $m^{2}+m n \quad 6 n^{2} \quad 5 m+10 n$
$=(m+3 n)(m-2 n)-5(n t-2 n)=(m-2 n)(m+3 n \quad 5)$
A. 25 HKDSE MA 2017-I -3
(a) $x^{2}-4 x y+3 y^{2}=\left(\begin{array}{ll}x & 3 y)(x\end{array} \quad y\right)$
(b) $x^{2}-4 x y+3 y^{2}+11 x-33 y=\left(\begin{array}{ll}x & 3 y\end{array}\right)(x-y)+11(x \quad 3 y)$ $=\left(\begin{array}{ll}x & 3 y\end{array}\right)(x-y+11)$

4A. 26 HKDSE MA 2018-I-5
(a) $9 r^{3}-18 r^{2} s=9 r^{2}(r \quad 2 s)$
(b) $9 r^{3} \quad 18 r^{2} s-r s^{2}+2 s^{3}=9 r^{2}(r-2 s)-s^{2}(r-2 s)$
A. 27 HKDSE MA 2019-I-4
(a) $4 m^{2}-9=(2 m-3)(2 m+3)$
(b) $2 n^{2} n+7 m n-15 n=n\left(2 m^{2}+7 m-5\right)=n(2 n-3)(n+5)$
(c) $4 m^{2}-9 \quad 2 m^{2} n \quad 7 m+15 n$
$=(2 m-3)(2 m+3)-n(2 m-3)(m+5)$
$=(2 m 3)[(2 m+3)-\pi(m+5)]$
$=(2 m-3)(2 m-m n-5 n+3)$
4 4.28 FIXDSE MA $2020-$ I~ 2
2 a
$\alpha^{2}+\alpha \quad 6=(\alpha+3)\left(\begin{array}{ll}\alpha & 2\end{array}\right)$
b $\quad \alpha^{4}+\alpha^{3}-6 \alpha^{2}=\alpha^{2}\left(\alpha^{2}+\alpha-6\right)$
$=\alpha^{2}(\alpha+3)(\alpha-2)$

4B Division algorithm, remainder theorem and factor theorem
4B. 1 HKCEE MA $1980\left(1^{*} / 3\right)-I-13(\mathrm{a})$
(a) (i)
$\left\{\begin{array}{c}5=f(1)=24 a+b \Rightarrow a+b=7 \\ 4=f(-2)=8 \quad 2 a+b \Rightarrow 2 a-b=4\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}a=-1 \\ b=-6\end{array}\right.$
(ii) $f(x)=0$

$$
2 x^{2}-x \quad 6=0
$$

$$
\begin{aligned}
2 x-x \quad 6 & =0 \\
(2 x+3)(x-2) & =0 \Rightarrow x=-\frac{3}{2} \text { or } 2
\end{aligned}
$$

4B. 2 HKCEE MA 1981(2) - I -3 and 1981(3) $-\mathrm{I}-2$

$$
\begin{aligned}
k=f(k) & =(k+2)(k-3)+3 \\
k & =k^{2}-k 3
\end{aligned}
$$

$k^{2}-2 k \quad 3=0$
$(k-3)(k+1)=0 \Rightarrow k=3$ or -1
4B. 3 HKCEE MA 1984(A/B) -I- 1
$\because x-k$ is a factor
$\because x-k$ is a factor
$\because 3(k)^{2} k(k) \quad 2=0 \Rightarrow k^{2}=1 \Rightarrow k= \pm 1$
4BA HKCEE MA 1985(A/B) - $1-4$
$\left\{\begin{array}{l}0=f(1)=a+b \quad 1 \Rightarrow a+b=1 \\ 4=f(-1)=a \quad b-1 \Rightarrow a-b=5\end{array} \Rightarrow\left\{\begin{array}{l}a=3 \\ b=-2\end{array}\right.\right.$
4B. 5 HKCEE MA 1987(A/B) - I - 2
$\left\{2(2)^{3}+a(2)^{2}+b(2)-2=0\right.$
$\left\{\begin{array}{l}2(1)^{3}+a(-1)^{2}+b(-1)-2=0\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}4 a+2 b=14 \\ a-b=4\end{array} \Rightarrow\left\{\begin{array}{l}a=1 \\ b=5\end{array}\right.\right.$
4B. 6 HKCEE MA $1989-\mathrm{I}-3$
(a) $(-1)^{4}+(-1)^{3}-8(1)+k=0 \Rightarrow k=-8$
(b) $x^{4}+x^{3}-8 x+k=x^{4}+x^{3} \quad 8 x-8$
$=x^{3}(x+1)-8(x+1)$
$=(x+1)\left(x^{3} \quad 8\right)$
$=(x+1)(x-2)(x+1)$
$=(x+1)(x-2)\left(x^{2}+2 x+4\right)$
4B. 7 HKCEE MA $1990-1-7$
(a) Remainder $=(-1)^{1000}+6=7$
(b) (i) By (a), the remainder when $(8)^{1000}+6$ is divided by ( 8 ) $+1=9$ is 7 .
(ii) Remainder $=7-6=$

## B. 8 HKCEE MA 1990-1-11

(a) (i) $S=2 \pi r^{2}+2 \pi r h$
(ii) $V=\pi r^{2} h \Rightarrow h=\frac{V}{\pi r^{2}}$

$$
\therefore S=2 \pi r^{2}+2 \pi r\left(\frac{V r^{2}}{\pi r^{2}}\right)=2 \pi r^{2}+\frac{2 V}{r}
$$

(b) $6 \pi=2 \pi r^{2}+\frac{2(2 \pi)}{r}$
$3 r=r^{3}+2 \Rightarrow r^{3}-3 r+2=0$
Since $(1)^{3}-3(1)+2=0, r-1$ is a factor
$3 r+2=(r-1)\left(r^{2}+r-2\right)=0$ $\begin{aligned}(1)(r+2)(r-1) & =0 \\ r & =-2(\text { rej }) \text { or }\end{aligned}$

## 4B. 9 HKCEE MA 1992-1-2(b)

Remainder $=(t)^{3}-2(1)^{2}+3(1)-4=-2$
4B. 10 HKCEE MA 1993-1-2(d)
Remainder $=(1)^{3}+(1)^{2}=2$

## 4B. 11 HKCEEMA 1994-1-3

Remainder $=k^{2}=(k+3)(k-2)+2$
$k^{2}+k-4=k^{2} \Rightarrow k=4$

## B. 12 HKCEEMA 1995-1-2

(a) $(a+b)^{2} \quad\left(\begin{array}{ll}a & b\end{array}\right)^{2}=[(a+b) \quad(a b)]\left[(a+b)+\left(\begin{array}{ll}a & b\end{array}\right)\right]$
(b) Remainder $=(-2)^{3}+1=-7$

## 4B. 13 HKCEEMA 1996-I-4

$\because(-1)^{3}-(-1)^{2}-3(-1)-1=0$
$x+1$ is a factor
$x^{3}-x^{2}-3 x-1=0$
$(x+1)\left(x^{2}-2 x-1\right)=0$

$$
x=1 \text { or } \frac{2 \pm \sqrt{4+4}}{2}=1 \text { or } 1 \pm \sqrt{2}
$$

4B. 14 HKCEE MA 1998-I-9
(a) $\because f(2)=(2)^{3}+2(2)^{2}-5(2)-6=0$
$x-2$ is a factor
(b) $f(x)=\left(\begin{array}{ll}x & 2\end{array}\right)\left(x^{2}+4 x+3\right) \quad\left(\begin{array}{ll}x & 2\end{array}\right)(x+1)(x+3)$

## 4B. 15 HKCEE MA 2000-1-6

Remainder $=f(3)=2(-3)^{3}+6(-3)^{2}-2(-3)-7=-1$
4B. 16 HKCEE MA 2001 - I - 2
Remainder $=f(2)=(2)^{3}-(2)^{2}+(2)-1=5$

## 4 B .17 HKCEEMA 2002-I-4

(a) $f(2)=(2)^{3} \quad 2(2)^{2} \quad 9(2)+18=0$
(b) $: f(2)=0$
$\therefore 2$ is a factor of $f(x)$.
$f(x)=(x-2)\left(x^{2}-9\right)=(x-2)(x-3)(x+3)$

## 4B. 18 HKCEE MA 2005 - I- 10

(a) Let $f(x)=k x^{3}+k x$
$\left\{\begin{array}{l}-6=f(2)=8 h+2 k \Rightarrow 4 h+k=-3\end{array} \Rightarrow\left\{\begin{array}{l}h=1\end{array}\right.\right.$
$\left\{\begin{array}{l}6=f(3)=27 h+3 k \Rightarrow 9 h+k=2\end{array} \Rightarrow\left\{\begin{array}{l}k=-7 \\ k=\end{array}\right.\right.$ $\therefore f(x)=x^{3} \quad 7 x$
(b) $g(x)=x^{3}-7 x-6$
(i) $\because g(3)=(3)^{3}-7(3)-6=0$
$\therefore x \quad 3$ is a factor of $g(x)$.
(ii) $g(x)=(x-3)\left(x^{2}+3 x+2\right)=(x-3)(x+1)(x+2)$

## 4B. 19 HKCEEMA 2007 -I-14

(a) (i) $0=f(-3)=4(-3)^{3}+k(-3)^{2}-243 \Rightarrow k=39$
(ii) $f(x)=(x+3)\left(4 x^{2}+27 x 81\right.$
$=(x+3)(4 x-9)(x+9)$

## 4B. 2

## HKDSEMASP-I-10 <br> $\begin{aligned} &\left.x^{2}+2 x-3\right) \frac{5 x+2}{5 x^{3}+12 x^{2}-9 x^{2}-7} \\ & \frac{5 x^{3}+10 x^{2}-15 x}{2 x^{2}+6 x-7} \\ & \frac{2 x^{2}+4 x-6}{2 x}\end{aligned}$

$\therefore$ Quotient $=5 x+2$
(b) (i) From (a),
$5 x^{3}+12 x^{2}-9 x-7=(5 x+2)\left(x^{2}+2 x-3\right)+(2 x-1)$ Hence, $\left(5 x^{3}+12 x^{2} \quad 9 x \quad 7\right)(2 x \quad 1)$ is a multiple of $x^{2}+2 x-3$.
(ii) $\quad(5 x+2)\left(x^{2}+2 x-3\right)=0$ $x=-\frac{2}{5}$ or $(x+3)(x-1)=0 \Rightarrow x=\frac{2}{5}$ or 3 or 1

## 4B. 21 HKDSE MA PP-I-10

(a) Since it is given that the remainder when $f(x)$ is divided by $x-1$ is 4 ,
$f(x) \quad(x-1)\left(6 x^{2}+17 x-2\right)+4$
$\therefore f(-3)=(-3-1)\left[6(-3)^{2}+17(-3)-2\right] \div 4=0$
(b) From (a), $x+3$ is a factor of $f(x)$.
$\therefore f(x)=6 x^{3}+11 x^{2}-19 x+6$
$=(x+3)\left(6 x^{2} \quad 7 x+2\right)=\left(\begin{array}{ll}x+3)(3 x & 1\end{array}\right)\left(\begin{array}{ll}x & 2\end{array}\right)$

## 4B. 22 HKDSE MA 2012-1- 13

(a) $0=k(2)^{3}-21(2)^{2}+24(2)-4 \Rightarrow k=5$

4B. 23 HKDSE MA 20B - 1-12
(a) Given: $x-2$ isa factor
$\therefore 0=3(2)^{3} \quad 7(2)^{2}+k(2)-8 \Rightarrow k=6$
Hence, $f(x)=3 x^{3}-7 x^{2}+6 x-8=(x-2)\left(3 x^{2}-x+4\right)$
$\Rightarrow a=3, b=-1, c=4$
(b) $\Delta$ of $3 x^{2}-x+4=-47<0$
$\therefore$ Roots for $3 x^{2}-x+4=0$ are notreal.
Hence, $f(x)=0$ only bas 1 real root. Dis sagreed.

## 4B. 24 HKDSEMA2014-I-7

(a) $33=f(2)=32 \quad 20 \quad 36+c \Rightarrow c=9$
$\begin{array}{lll}\Rightarrow f(x)=4 x^{3} & 5 x^{2}-18 x & 9 \\ \because f(1) & 4 & 5+18\end{array}$
$\therefore x+1$ is a factor of $f(x)$.
(b) $f(x)(x+1)\left(4 x^{2}-9 x-9\right)(x+1)(4 x+3)(x-3)$
$\therefore$ The rootsare $-1, \frac{-3}{4}$ and 3 , whichare all rational. Yes.

## 4B.25 HKDSEMA 2015-I-11

(a) $\{-5=f(2)=k$
c) $\left\{\begin{array}{l}0=f(3)=(3-2)^{2}(3+h)+k\end{array} \Rightarrow\left\{\begin{array}{l}n=2 \\ k=-5\end{array}\right.\right.$
(b) $f(x)=\left(\begin{array}{ll}x & 2\end{array}\right)^{2}(x+2)-5=x^{3}-2 x^{2}-3 x+3$ $=(x-3)\left(x^{2}+x-1\right)$
$\therefore$ The roots of $f(x)=0$ are 3 and $\frac{-1 \pm \sqrt{1+4}}{2}=$ $\frac{-1 \pm \sqrt{5}}{2}$, which are not integers. Disagreed.

4B. 26 HKDSE MA 2016-I- 14
$\begin{aligned} p(2) & =p(2) \\ 96-56+4 a-2 b+c & =9+56+4 a+2 b+c\end{aligned}$
Thus, we have
$6 x^{4}+7 x^{3}+a x^{2} \quad 28 x+c \equiv\left(b x^{2}+5 x+8\right)\left(2 x^{2}+m x+n\right)$ $\{6=2 l \Rightarrow l=3$
$\Rightarrow\left\{\begin{array}{c}7=(3) m+10 \Rightarrow m=1 \\ 28=8(1)+5 n \Rightarrow n=\end{array}\right.$
(b) $p(x)=\left(3 x^{2}+5 x+8\right)\left(2 x^{2}-x-4\right)$
$\Delta$ of $3 x^{2}+5 x+8=71<0 \Rightarrow$ No real roa $\Delta$ of $2 x^{2}-x-4=33<0 \Rightarrow 2$ distinctreal roots $\therefore p(x)=0$ has 2 real roots.

4B. 27 HKDSEMA 2017 -I- 14
(a) Usi ngthedi visionalalgorithm,
$f(x) \equiv(3 x+7)\left(2 x^{2}+a x+4\right)+(b x+c) \quad \Rightarrow$
相 Method 1
Expand and compare coefficients of like terms.
Method 2
$f(0)=34=28+c \Rightarrow c=6$
$\left\{\begin{array}{l}f(1)=-19=10(6+a)+(b+6) \Rightarrow 10 a+b=-85 \\ f(2)=-62=13(12+2 a)+(2 b)\end{array}\right.$
$f(2)=-62=13(12+2 a)+(2 b+6) \Rightarrow 13 a+b=-112$
$f \quad b=5, a=-9$ $\Rightarrow \quad b=5, a=-9$
(b) (i) $\left\{\begin{array}{l}f(x)=(3 x+7)\left(2 x^{2}-9 x+4\right)+(b x+c)\end{array}\right.$ $\left\{g(x)=k\left(2 x^{2}-9 x+4\right)+(b x+c)\right.$ $f(x)-g(x)=(3 x+7)\left(2 x^{2} \quad 9 x+4\right)-k\left(2 x^{2}-9 x+4\right.$ $=\left(2 x^{2} \quad 9 x+4\right)(3 x+7-k)$.
which has a factor of $2 x^{2}-9 x+4$ indeed.
(ii) Roots of $2 x^{2}-9 x+4=(2 x-1)(x-4)$ are 4 and $\frac{1}{2}$. whichis not an integer. Disagreed.

4B. 28 HKDSE MA 2018-1-12
(a) $\left\{\begin{array}{l}0=f(3)=192+3 a+b \Rightarrow 3 a+b=-192\end{array}\right.$
(a) $\{2 b+165=f(-2)=-8-2 a+b \Rightarrow 2 a+b=-173$ $\Rightarrow\left\{\begin{array}{l}a=19 \\ b=-135\end{array}\right.$
(b) $f(x)=4 x(x+1)^{2} \quad 19 x \quad 135=4 x^{3}+8 x \quad 15 x \quad 135$ $\begin{aligned} & =(x-3)\left(4 x^{2}+20 x+45\right) \\ & 20 \pm \sqrt{400720}\end{aligned}$
Roots of $f(x)=0$ are 3 and $\frac{-20 \pm \sqrt{400} \quad 720}{8}$ which are unreal. Disagreed.

## 4B. 29 HKDSEMA 2019-I-11

(a) Let $p(x)=(a x+b)\left(2 x^{2}+9 x+14\right)$.
$\{50=p(1)=25(a+b) \Rightarrow a+b=2$
$(-52=p(-2)=4(-2 a+b) \Rightarrow 2 a-b=-13$
$\Rightarrow\left\{\begin{array}{l}a=5 \\ b=3\end{array} \Rightarrow\right.$ Required quotient $=a x+b=5 x \quad 3$
(b) $p(x)=0 \Rightarrow 5 x-3=0$ or $2 x^{2}+9 x+14 \quad 0$
$p(x)=0 \Rightarrow 5 x-3=0$ or $2 x^{2}+$
$\because \Delta$ of $2 x^{2}+5 x+14=-31<0$
. $2 x^{2}+9 x+14=0$ has no real rt . and thus no rational rt
$\therefore$ The only real root of $p(x)=0$ is $\frac{3}{5}$ whi chi srati onal.
i.e. There is 1 rational root.

## 5 Formulas

5.1 HKCEE MA $1980\left(1 / 1^{*}\right)-\mathrm{I}-7$

Given that $a\left(1+\frac{x}{100}\right)=b\left(1-\frac{x}{100}\right)$, express $x$ in terms of $a$ and $b$.
5.2 HKCEE MA 1981(2)-I - 2

If $x=\left(a+b y^{2}\right)^{\frac{1}{3}}$, express $y$ in terms of $a, b$ and $x$.
5.3 HKCEE MA 1993 I-2(b)

If $2 x y+3=6 x$, express $y$ in terms of $x$.

### 5.4 HKCEE MA 1996-I-1

Make $r$ the subject of the formula $h=a+r\left(1+p^{2}\right)$.
If $h=8, a=6$ and $p=4$, find the value of $r$.
5.5 HKCEE MA 1998 -I - 5

Make $x$ the subject of the formula $b=2 x+(1-x) a$.
5.6 HKCEE MA $1999 \quad 1 \quad 2$

Make $x$ the subject of the fonnula $a=b+\frac{c}{x}$.
5.7 HKCEE MA 2000-1-1

Let $C=\frac{5}{9}(F-32)$. If $C=30$, find $F$.
5.8 HKCEE MA 2001 -I- 6

Make $x$ the subject of the formula $y=\frac{1}{2}(x+3)$.
If the value of $y$ is increased by 1 , find the corresponding increase in the value of $x$.

### 5.9 HKCEE MA 2003 I-1

Make $m$ the subject of the fornula $m x=2(m+c)$.
5.10 HKCEE MA 2004-I-2

Make $x$ the subject of the formula $y=\frac{2}{a-x}$.
5.11 HKCEE MA 2005 I -1

Make $a$ the subject of the fonnula $P=a b+2 b c+3 a c$.
5.12 HKCEE MA 2007 I-1

Make $p$ the subject of the formula $5 p-7=3(p+q)$.
5.13 HKCEE MA 2008 I-6

It is given that $\begin{aligned} & 2 s+t \\ & s+2 t\end{aligned}=\frac{3}{4}$.
(a) Express $t$ in terms of $s$.
(b) If $s+t=959$, find $s$ and $t$.
5.14 HKCEE MA 2009 - I-1

Make $n$ the subject of the formula $3 n \frac{5 m}{2}=4$.
5.15 HKCEE MA 2010-I - 5

Consider the formula $3(2 c+5 d+4)=39 d$.
(a) Make $c$ the subject of the above formula.
(b) If the value of $d$ is decreased by $l$, how will the value of $c$ be changed?
5.16 HKCEE MA 2011 I 1

Make $k$ the subject of the formula $\frac{m k-t}{k+t}=4$.
5.17 HKDSE MA SP - I 2

Make $b$ the subject of the formula $a(b+7)=a+b$.
5.18 HKDSE MA PP - I-2

Make $a$ the subject of the formula $\frac{5+b}{1-a}=3 b$.
5.19 HKDSE MA 2012 I-2

Make $a$ the subject of the formula $\frac{3 a+b}{8}=b-1$.
5.20 HKDSE MA 2013 I 2

Make $k$ the subject of the fonnula $\frac{3}{h}-\frac{1}{k}=2$.
5.21 HKDSE MA 2014-I- 5

Consider the formula $2(3 m+n)=m+7$.
(a) Make $n$ the subject of the above formula.
(b) If the value of $m$ is increased by 2 , write down the change in the value of $n$.

### 5.22 HKDSE MA 2015-I-2

Make $b$ the subject of the formula $\frac{4 a+5 b-7}{b}=8$.
5.23 HKDSE MA 2016 I 2

Make $x$ the subject of the formula $A x=(4 x+B) C$.
5.24 HKDSE MA 2017-I - 1

Make $y$ the subject of the formula $k=\frac{3 x y}{y}$.
5.25 HKDSE MA 2018-I-1

Make $b$ the subject of the formula $\frac{a+4}{3}=\frac{b+1}{2}$.
5.26 HKDSE MA 2019-I 1

Make $h$ the subject of the formula $9(h+6 k)=7 h+8$.

5 Formulas
5.1 HKCEE MA 1980(1/1*)-1-7
$\frac{a(100+x)}{100}=\frac{b(100 x)}{100}$
$100 a+a x=100 b-b x \Rightarrow x=\frac{100(b \quad a)}{a+b}$
5.2 HKCEE MA 1981(2)-I-2
$x^{3}=a+b y^{2}$
$y^{2}=\frac{x^{3}-a}{b} \Rightarrow y= \pm \frac{\overline{x^{3}-a}}{b}$
5.3 HKCEE MA 1993-1-2(b)
$y=\frac{6 x-3}{2 x}$
54 HKCEE MA 1996-I-1
$r=\frac{h-a}{1+p^{2}}$
Hence, $r=\frac{(8)-(6)}{1+(4)^{2}}=\frac{2}{17}$
5.5 HKCEEMA 1998-I-5
$x=\frac{b-a}{2-a}$
5.6 HKCEE MA 1999-1-2
$x=\frac{c}{a-b}$
5.7 HKCEE MA 2000-1-1
(30) $=\frac{5}{9}(F-32) \quad \Rightarrow \quad F=96$
5.8 HKCEE MA 2001~I-6
$x=2 y 3$
If $y^{\prime}=y+1, \quad x^{\prime}=2 y^{\prime}-3$
$\therefore$ Increase in $x=x^{2(y+1)-3=2 y-1} \quad x=(2 y-1)-(2 y-3)=2$
5. 9 HKCEE MA 2003 -I-1
$m=\frac{2 c}{x-2}$
5.10 HKCEEMA 2004-1-2

Method l ay-xy 2

$$
a y-2=x y \quad \Rightarrow \quad x=\frac{a y-2}{y}
$$

Method 2

$a=\frac{2}{y}+x \Rightarrow x=a \begin{aligned} & 2 \\ & y\end{aligned}$
5.11 HKCEE MA 2005-1-1
$a=\frac{P \quad 2 b c}{b+3 c}$
5.12 HKCEE MA $2007-1-1$
$p=\frac{3 q+7}{2}$
5.13 HKCEEMA 2008-I-6
(a) $4(2 s+t)=3(s+2 t) \Rightarrow t=\frac{5}{2} s$

(b) $s+\left(\frac{5}{2} s\right)=959 \Rightarrow s=254 \Rightarrow t=\frac{5}{2}(254)=635$	$\begin{array}{l}\text { 5.26 HKDSE MA 2019 } \\ h=\frac{8-54 k}{2}=4-27 k\end{array}$

5.14 HKCEE MA 2009 - I-1
$n=\frac{8+5 m}{3}$
5.15 HKCEE MA 2010-1-5
(a) $c=4 d-2$
(a) $c=4 d-2$
(b) $d^{\prime}=d^{d-1} \Rightarrow \quad c^{\prime}=4 d^{\prime}-2$

Change in $c=c^{\prime}-c=(4 d-6)-(4 d-2)=-4$ i.e. a decrease of 4 .
5.16 HKCEE MA $2011-\mathrm{I}-1$
$k=\frac{5 \mathrm{t}}{m-4}$
5.17 HKDSEMA SP-I-2
$b=\frac{6 a}{1-a}$
5.18 HKDSE MA PP-I-2
$a=\frac{2 b-5}{3 b}$
5.19 HKDSEMA 2012-I - 2
$a=\frac{7 b 8}{3}$
5.20 HKDSE MA 2013-I-2
$k=\frac{h}{3-2 h}$
5.21 HKDSE MA 2014-1-5
(a) $n=\frac{7-5 m}{2}$
(b) $\begin{aligned} n^{\prime} \quad m+2 \Rightarrow n^{\prime} & =\frac{7-5 m^{\prime}}{2} \\ & =\frac{7-3(m+2)}{2}=\frac{-3-5 m}{2}\end{aligned}$
$\therefore$ Change in $n=n^{\prime}-n=\frac{-3-5 m}{2} \quad \frac{7-5 m}{2}=-5$
5.22 HKDSE MA 2015-1-2
$b=\frac{4 a 7}{3}$
5.23 HKDSE MA 2016-1-2
$x=\frac{B C}{A-4 C}$
5.24 HKDSE MA $2017-\mathrm{I}-1$
$y=\frac{3 x}{k+1}$
5.25 HKDSE MA 2018-1-1
$b=\frac{2 a+5}{3}$
5.26 HKDSE MA 2019-I-1

## 6 Identities, Equations and the Number System

## 6A Simple equations

6A. 1 HKCEE MA 1980(1*/3)-I 13(b)
Solve the equation $1-2 x=\sqrt{2-x}$.

6A. 2 HKCEE MA 1982(2/3) I-7
Solve $x-\sqrt{x+1}=5$.

6A. 3 HKCEE MA 1984(A) - I - 3
Expand $(1+\sqrt{2})^{4}$ and express your answer in the form $a+b \sqrt{2}$ where $a$ and $b$ are integers.

6A. 4 HKCEE MA 1984(A/B) I-6
Solve $x-5 \sqrt{x}-6=0$.

## 6A.5 HKCEE MA 2003-I - 6

There are only two kinds of tickets for a cruise: first-class tickets and econorny class tickets. A total of 600 tickets are sold. The number of economy-class tickets sold is three times that of first classtickets sold. If the price of a first class ticket is $\$ 850$ and that of an economy class ticket is $\$ 500$, find the sum of money for the tickets sold.

## 6A. 6 HKCEE MA 2004 I 7

The prices of an orange and an apple are $\$ 2$ and $\$ 3$ respectively. A sum of $\$ 46$ is spent buying some oranges and apples. If the total number of oranges and apples bought is 20 , find the number of oranges bought.

## 6A. 7 HKCEE MA 2007 - -7

The consultation fees charged to an elderly patient and a non elderiy patient by a doctor are $\$ 120$ and $\$ 160$ respectively. On a certain day, there were 67 patients consulted the doctor and the total consultation fee charged was $\$ 9000$. How many elderly patients consulted the docror on that day?

6A. 8 HKCEE MA 2008 -I - 3
(a) Write down all positive integers $m$ such that $m+2 n=5$, where $n$ is an integer.
(b) Write down all values of $k$ such that $2 x^{2}+5 x+k \equiv(2 x+m)(x+n)$, where $m$ and $n$ are positive integers.

## 6A. 9 HKCEE MA 2009-I-6

The total number of stamps owned by John and Mary is 300 . If Mary buys 20 stamps from a post office, the number of stamps owned by her will be 4 times that owned by John. Find the number of stamps owned by John.

6A. 10 HKCEE MA 2010 I 6
The cost of a bottle of orange juice is the same as the cost of 2 bottles of milk. The total cost of 3 bottles of orange juice and 5 bottles of milk is $\$ 66$. Find the cost of a bottle of milk.

## 6A. 11 HKDSE MA SP - $1-5$

In a football league, each team gains 3 points for a win, 1 point for a draw and 0 point for a loss. The champion of the league plays 36 games and gains a total of 84 points. Given that the champion does not lose any games, find the number of games that the champion wins.

## 6A. 12 HKDSE MA 2012-I - 5

There are 132 guards in an exbibition cence consising of 6 zones. Each zone has the same number of guards. In each zone, there are 4 more fernale guards than male guards. Find the number of male guards in the exhibition centre.

## 6A. 13 HKDSE MA 2013-I - 4

The price of 7 pears and 3 oranges is $\$ 47$ while the price of 5 pears and 6 oranges is $\$ 49$. Find the price of a pear.

## 6A.14 HKDSE MA 2015-I-7

The number of apples owned by Ada is 4 imes that owned by Billy. If Ada gives 12 of her apples to Billy, thēy will have the same number of âpples. Find the total number of apples owned by Ada and Billy.

## 6A. 15 HKDSE MA 2017 - I-4

There are only two kinds of admission tickets for a theatre: regular tickets and concessionary tickets. The prices of a regular ticket and a concessionary ticket are $\$ 126$ and $\$ 78$ respectively. On a certain day, the number of regular tickets sold is 5 times the number of concessionary tickets sold and the sum of money for the admission tickets sold is $\$ 50976$. Find the total number of admission tickets sold that day

## 6A.16 HKDSE MA 2019-I-3

The length and the breadth of a rectangle are 24 cm and $(13+r) \mathrm{cm}$ respectively. If the length of a diagonal of the rectangle is $(17-3 r) \mathrm{cm}$, find $r$.

## 6B Nature of roots of quadratic equations

6B. 1 HKCEEMA 1988-I 4
The quadratic equation $9 x^{2}-(k+1) x+1=0 \ldots \ldots \ldots$.(*) has equal roots.
(a) Find the two possible values of the constant $k$.
(b) If $k$ takes the negative value obtained, solve equation (*).

6B. 2 HKCEE MA 2007-I-5
Let $k$ be a constant. If the quadratic equation $x^{2}+14 x+k=0$ has no real roots, find the range of values of $k$.

## 6B. 3 HKCEE AM $1980-\mathrm{I}$ _1

Find the range of values of $k$ for which the equation $2 x^{2}+x+5=k(x+1)^{2}$ has no real roots.

## 6B. 4 HKCEE AM 1998-I-3

The quadratic equations $x^{2}-6 x+2 k=0$ and $x^{2}-5 x+k=0$ have a common root $\alpha$. (i.e. $\alpha$ is a root of both equations.)
Show that $\alpha=k$ and hence find the value(s) of $k$.

## 6C Roots and coefficients of quadratic equations

6C. 1 HKCEE MA 1980( $1 / 1 * / 3$ )-I-3
What is the product of the roots of the quadratic equation $2 x^{2}+k x-5=0$ ?
If one of the roots is 5 , find the other root and the value of $k$.
6C. 2 HKCEE MA 1982(2/3)-1-1
If $a-b=10$ and $a b=k$, express $a^{2}+b^{2}$ in terms of $k$
6C. 3 HKCEE MA 1983(B) I 14
(To continue as 10C.1.)
$\alpha$ and $\beta$ are the roots of the quadratic equation $x^{2}-2 m x+n=0$, where $m$ and $n$ are real numbers.
(a) Find, in terns of $m$ and $n$,
(i) $(m-\alpha)+(m-\beta)$,
(ii) $(m-\alpha)(m-\beta)$.
(b) Find, in terrns of $m$ and $n$, the quadratic equation having roots $m-\alpha$ and $m-\beta$.

## 6C. 4 HKCEE MA 1985(A/B) I-5

Let $\alpha$ and $\beta$ be the roots of $x^{2}+k x+1=0$, where $k$ is a constant.
(a) Find, in terms of $k$,
(i) $(\alpha+2)+(\beta+2)$,
(ii) $(\alpha+2)(\beta+2)$.
(b) Suppose $\alpha+2$ and $\beta+2$ are the roots of $x^{2}+p x+q=0$, where $p$ and $q$ are constants. Find $p$ and $q$ in terms of $k$.

6C. 5 HKCEE MA 1986(A/B) I-7
If $\frac{1}{m}+\frac{1}{n}=\frac{1}{a}$ and $m+n=b$, express the following in terms of $a$ and $b$
(a) $m n$,
(b) $m^{2}+n^{2}$.

6C. 6 HKCEE MA 1987(A/B) 1-5
$\alpha$ and $\beta$ are the roots of the quadratic equation $k x^{2}-4 x+2 k=0$, where $k(k \neq 0)$ is a constant. Express the following in terms of $k$ :
(a) $\alpha^{2}+\beta^{2}$,
(b) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}$.

6C. 7 HKCEEMA 1990-I 6
In the figure, the curve $y=x^{2}+p x+q$ cuts the $x$ axis at the two points $A(\alpha, 0)$ and $B(\beta, 0) \cdot M(2,0)$ is the mid point of $A B$.
(a) Express $\alpha+\beta$ in terms of $p$. Hence find the value of $p$.
(b) If $\alpha^{2}+\beta^{2}=26$, find the value of $q$.


## 6C. 8 HKCEE MA. 1991-I-7

(Also as 3B.5.)
Let $\alpha$ and $\beta$ be the roots of the equation $10 x^{2}+20 x+1=0$. Without solving the equation, find the values of
(a) $4^{\alpha} \times 4^{\beta}$,
(b) $\log _{10} \alpha+\log _{10} \beta$.

6C. 9 HKCEE MA 1993-I 2(f)
If $(x-1)(x+2)=x^{2}+r x+s$, find $r$ and $s$.

## 6C. 10 HKCEE MA 1993 -I 6

The length $\alpha$ and the breadth $\beta$ of a rectangular photograph are the roots of the equation $2 x^{2}-m x+500=0$. The photo graph is mounted on a piece of rectangular cardboard, leaving a uniform border of width 2 as shown in the figure.
(a) Find the area of the photograph.
(b) Find, in terms of $m$,
(i) the perimeter of the photograph,
(ii) the area of the border.


## 6C. 11 HKCEE MA 1995-I-8

In the figure, the line $y=k(k>0)$ cuts the curve $y=x^{2}-3 x-4$ at the points $A(\alpha, k)$ and $B(\beta, k)$.
(a) (i) Find the value of $\alpha+\beta$.
(ii) Express $\alpha \beta$ in terms of $k$.
(b) If the line $A B$ cuts the $y$-axis at $P$ and $B P=2 P A$, find the value of $k$.


## 6C. 12 HKCEE MA 1997 I 8

The roots of the equation $2 x^{2}-7 x+4=0$ are $\alpha$ and $\beta$.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Find the quadratic equation whose roots are $\alpha+2$ and $\beta+2$.

6C. 13 (HKCEE AM 1984 I 5)
Let $\alpha$ and $\beta$ be the roots of the equation $x^{2}-2 x-\left(m^{2}-m+1\right)=0$, where $m$ is a real number.
(a) Show that $(\alpha-\beta)^{2}>0$ for any value of $m$.
(b) Find the minimum value of $\sqrt{(\alpha-\beta)^{2}}$.

## 6C. 14 HKCEE AM 1987-I -5

The equation $x^{2}+4 x+p=0$, where $p$ is a real constant, has distinct real roots $\alpha$ and $\beta$.
(a) Find the range of values of $p$.
(b) If $\alpha^{2}+\beta^{2}+\alpha^{2} \beta^{2}+3(\alpha+\beta)-19=0$, find the value of $p$.

## 6C. 15 HKCEE AM 1989 I 11 [Difficult]

(a) Let $\alpha, \beta$ be the roots of the equation $x^{2}+p x+q=0 \ldots \ldots\left(^{*}\right)$, where $p$ and $q$ are real constants. Find, in terms of $p$ and $q$,
(i) $\alpha^{2}+\beta^{2}$,
(ii) $\alpha^{3}+\beta^{3}$,
(iii) $\left(\alpha^{2}-\beta-1\right)\left(\beta^{2}-\alpha-1\right)$.
(b) If the square of one root of $\left({ }^{*}\right)$ minus the other root equals 1 , use (a), or otherwise, to show that $q^{2}-3(p-1) q+(p-1)^{2}(p+1)=0 \ldots \ldots \ldots$ ( $\left.^{* *}\right)$.
(c) Find the range of values of $p$ such that the quadratic equation $\left(^{(* *)}\right.$ in $q$ has real roots.
(d) Suppose $k$ is a real constant. If the square of one root of $4 x^{2}+5 x+k=0$ minus the other root equals 1 , use the result in (b), or otherwise, to find the value of $k$.

## 6C. 16 HKCEEAM 1990-I 4

$\alpha, \beta$ are the roots of the quadratic equation $x^{2}-(k+2) x+k=0$.
(a) Find $\alpha+\beta$ and $\alpha \beta$ in terms of $k$.
(b) If $(\alpha+1)(\beta+2)=4$, show that $\alpha=-2 k$. Hence find the two values of $k$.

6C. 17 HKCEE AM 1991 - I-7
(To continue as 10C.10.)
$p, q$ and $k$ are real numbers satisfying the following conditions: $\left\{\begin{array}{l}p+q+k=2, \\ p q+q k+k p=1\end{array}\right.$.
(a) Express $p q$ in terms of $k$.
(b) Find a quadratic equation, with coefficients in terms of $k$, whose roots are $p$ and $q$.

## 6C. 18 HKCEE AM 1992-I -9

$\alpha, \beta$ are the roots of the quadratic equation $x^{2}+(p+1) x+(p-1)=0$, where $p$ is a real number.
(a) Show that $\alpha, \beta$ are real and distinct.
(b) Express $(\alpha-2)\left(\begin{array}{ll}\beta & 2\end{array}\right)$ in terms of $p$.
(c) Given $\beta<2<\alpha$.
(i) Using the resultof (b), show that $p<-\frac{5}{3}$.
(ii) If $(\alpha-\beta)^{2}<24$, find the range of possible values of $p$. Hence write down the possible integral value(s) of $p$.

## 6C. 19 HKCEEAM 1993 I 3

$\alpha, \beta$ are the roots of the equation $x^{2}+p x+q=0$ and $\alpha+3, \beta+3$ are the roots of the equations $x^{2}+q x+p=0$. Find the values of $p$ and $q$.

## 6C. 20 (HKCEE AM 1995 I 10) [Difficult]

(To continue as 10C.13.)
Let $f(x)=12 x^{2}+2 p x-q$ and $g(x)=12 x^{2}+2 q x-p$, where $p, q$ are distinct real numbers. $\alpha, \beta$ are the roots of the equation $f(x)=0$ and $\alpha, \gamma$ are the roots of the equation $g(x)=0$.
(a) Using the fact that $f(\alpha)=g(\alpha)$, find the value of $\alpha$. Hence show that $p+q=3$.
(b) Express $\beta$ and $\gamma$ in ternns of $p$.

## 6C. 21 HKCEE AM1998-I-2

$\alpha, \beta$ are the roots of the quadratic equation $x^{2}-2 x+7=0$. Find the quadratic equation whose roots are $\alpha+2$ and $\beta+2$.

## 6C. 22 HKCEE AM 2000-I - 7

$\alpha$ and $\beta$ are the roots of the quadratic equation $x^{2}+\left(\begin{array}{ll}p & 2\end{array}\right) x+p=0$, where $p$ is real.
(a) Express $\alpha+\beta$ and $\alpha \beta$ in terms of $p$.
(b) If $\alpha$ and $\beta$ are real such that $\alpha^{2}+\beta^{2}=11$, find the value(s) of $p$.

6C. 23 (HKCEE AM 2011-I - 7)
Let $\alpha$ and $\beta$ be the roots of the quadratic equation $x^{2}+(k+2) x+k=0$, where $k$ is real.
(a) Prove that $\alpha$ and $\beta$ are real and distinct.
(b) If $\alpha=\sqrt{\beta^{2}}$, find the value of $k$.

6C. 24 HKDSE MA PP - I- 17
(a) Express $\frac{1}{1+2 i}$ in the form of $a+b i$, where $a$ and $b$ are real numbers.
(b) The roots of the quadratic equation $x^{2}+p x+q=0$ are $\frac{10}{1+2 i}$ and $\frac{10}{12 i}$. Find
(i) $p$ and $q$,
(ii) the range of values of $r$ such that the quadratic equation $x^{2}+p x+q=r$ has real roots.

6D Complex numbers
6D. 1 HKDSE MA PP - $\mathrm{I}-17$
(a) Express $\frac{1}{1+2 i}$ in the form of $\alpha+b i$, where $a$ and $b$ are real numbers.

6A Simple equations
6A. 1 HKCEE MA 1980(1*/3) $-\mathrm{I}-13(\mathrm{~b})$ $\begin{aligned}(1-2 x)^{2} & =2-x\end{aligned}$ $(4 x+1)(x-1)=0 \Rightarrow x=\frac{1}{4}$ or $1($ rejected $)$

> 6A. $2 \frac{\text { HKCEE MA } 1982(2 / 3)-\mathrm{I}-7}{x-5} \sqrt{x+1}$ $(x-5)^{2}=x+1$ $x^{2}-11 x+24=0 \Rightarrow x=8$ or 3 (rej ected)

6A. 3 HKCEE MA 1984(A) -I-3 $(1+\sqrt{2})^{4}=\left[(1+\sqrt{2})^{2}\right]^{2}=(1 \div 2 \sqrt{2}+2)^{2}$

$$
=(3 \div 2 \sqrt{2})^{2}
$$

$$
=9+12 \sqrt{2}+8=17+12 \sqrt{2}
$$

## 6A. 4 HKCEE MA 1984(A/B)-I-6

$\operatorname{Let} \sqrt{x}=u \Rightarrow \quad u^{2}-5 u \quad 6=0$
$\sqrt{x}=6$ or -1 (rejected) $\Rightarrow x=36$
6A.5 HKCEE MA 2003-1-6
Let $x$ and $y$ frst- and ec onomy-classtickets be sold r ©pecivively.
$\left\{\begin{array}{l}x+y=600\end{array} \Rightarrow\left\{\begin{array}{l}x=150\end{array}\right.\right.$
$\therefore$ Sum of money $=150 \times \$ 850+450 \times \$ 500=$ $\$ 352500$
6A. 6 HKCEE MA 2004-T-7
Let $x$ oranges and $y$ apples be bought.
$\{2 x+3 y=46 \Rightarrow\{x=14$
$\left\{\begin{array}{l}x+y=20\end{array} \Rightarrow\left\{\begin{array}{l}y=6\end{array}\right.\right.$

6A. 7 HKCEEMA 2007-1-7
Let there be $x$ elderly patiens.
Then there wer e $67-x$ non-elderly patients.
$120 x+160(67-x)=9000$
$10720-40 x=9000$
$\quad \begin{array}{r}x=(10720- \\ \text { Ther ewer } 43 \text { elderly pati ents. }\end{array}$.

6A. 8 HKCEEMA 2008-I -3
(a) $m=1$ or 3 (correspoading $n=2$ or 1 )
(b) $2 x^{2}+5 x+k \equiv 2 x^{2}+(m+2 n) x+m n$

Comparing coefficients of like terms, $\left\{\begin{array}{l}5=m+2 n \\ k=m n\end{array}\right.$

- Possible values of $k$ are $(1)(2)=2$ and $(3)(1)=3$ only

6A.9 HKCEEMA 2009-1-6
Let John own $x$ stamps.
Then Mary owns $300-x$ s tamps.
$(300-x)+20=4$
$320=5 x \Rightarrow x=64$
John owns 64 stamps.
6A. 10 HKCEE MA 2010 I 6
Let $\$ 2 x$ and $\$ x$ be the costs of 1 orange juice and $I$ botlle of mik res pectively.
$\begin{aligned} 11 x & =66 \Rightarrow x=6\end{aligned}$
$\therefore$ The cost of a bottle of milk is $\$ 6$.
6A. 11 HKDSE MA SP-I-5
Let the champion win $x$ games.
$3(x)+1(36-x)=84$
$2 x=48$
The champion wins 24 games.

6A. 12 HKDSE MA 2012-I-5
Let there bex male guands.
Then there are $132 x$ female guards.
$132 x-5$ guands.
$\frac{132 x}{6}=\frac{x}{6}+4$
Thereare 54 male guards.
6A. 13 HKDSEMA 2013-I-4
Let the pr icesof a pear and an orange be $\$ x$ and $\$ y$ res pecively.
$\begin{cases}7 x+3 y=47 & \text { (1) } \\ 5 x+6 y=49 & \text { (2) }\end{cases}$
$\begin{cases}5 x+6 y=49 \quad \text { (2) }\end{cases}$
2(1)-(2): $9 \mathrm{x}=45 \Rightarrow x=5$
$\therefore$ The price of a pear is $\$ 5$
$\therefore$ The price of a pear is $\$ 5$
6A. 14 HKDSE MA 2015-I-7
Let Ada and Billy own $4 x$ and $x$ apples.
$4 x \quad 12=x+12$
$3 x=24$
Billy owns 8 apples and Ada $4(8)=32$ apples.
6A. 15 HKDSE MA 2017-I-4
Let $x$ regular and $y$ concessionary tickets be sold that day.
$\{x=5 y$
$126 x+78 y=50976 \Rightarrow\left\{\begin{array}{l}y=72 \\ x=5(72)=360\end{array}\right.$
. $360+72=432$ tickets were sdd that day
6A. 16 HKDSE MA 2019-1-3
$(17-3 r)^{2}=24^{2}+(13+r)^{2}$
$289-102 r+9 r^{2}=576+169 \div 26 r+r^{2}$
$8 r^{2}-128 r-456=0 \Rightarrow r=-3$ or 19 (rejected)

## 6B. 1 HKCEEMA 1988-1-4

(a) $\begin{aligned} \Delta & =0 \\ (k+1)^{2} \quad 36 & =0\end{aligned}$

$$
\begin{aligned}
&(k+1)^{2} \begin{array}{c}
36
\end{array}=0 \\
& k+1= \pm 6 \quad \Rightarrow \quad k=5 \text { or }-7
\end{aligned}
$$

(b) When $k=-7$, (*) becomes
$9 x^{2}+6 x+1=0$
$(3 x+1)^{2}=0 \Rightarrow x=-\frac{1}{3}$ (repeated)
6B. 2 HKCEEMA 2007 -I-5
$\begin{aligned} \Delta & <0 \\ 4^{2}-4 k & <0\end{aligned}$
$4 k>196 \Rightarrow k>49$

## 6B. 3 HKCEEAM $1980-\mathrm{I}-1$

$2 x^{2}+x+5=k(x+1)^{2} \Rightarrow\left(\begin{array}{ll}2 & k\end{array}\right) x^{2}+\left(\begin{array}{ll}1 & 2 k\end{array}\right) x+\left(\begin{array}{ll}5 & k\end{array}\right)=0$ No real roots $\Rightarrow$
$(1-2 k)^{2}-4(2-k)(5 \quad k)<0$
24k $39<0 \Rightarrow k<39 / 24$

## 6BA HKCEE AM 1998-I-3

$\begin{cases}\alpha^{2}-6 \alpha+2 k=0 & \text { (1) }\end{cases}$
$\left\{\begin{array}{l}\alpha^{2}-5 \alpha+k=0\end{array}\right.$
(1)-(2) $\Rightarrow-\alpha+k=0 \Rightarrow \alpha=k$

Hence the equation becomes
$k^{2}-6 k+2 k=0$
2 $4 k=0 \Rightarrow k=0$ or 4

## 6C Roots and coefficients of quadratic equations

6C. 1 HKCEE MA $1980(1 / 1 * / 3)-\mathrm{I}-3$
product of $\mathrm{t}=-5 / 2, \mathrm{k}=9$
6C. 2 HKCEEMA 1982 $2 / 3$ ) $-1-1$
$a^{2}+b^{2}=\left(\begin{array}{ll}a & b\end{array}\right)^{2} \quad 2 a b=(10)^{2}-2(k)=100-2 k$
6C. 3HKCEE MA 1983(B) -1-14
(a) $\left\{\begin{array}{l}\alpha+\beta=2 m\end{array}\right.$
(i) $\left(\begin{array}{ll}m & \alpha)+\left(\begin{array}{ll}m & \beta)=2 m \quad(\alpha+\beta)=2 m \quad(2 m)=0\end{array}\right)=0,\end{array}\right.$
$\begin{array}{lll}\text { (i) } & \left(\begin{array}{ll}m & \alpha\end{array}\right)+\left(\begin{array}{ll}m & \beta)=2 m\end{array} \quad(\alpha+\beta)=2 m\right. \\ \text { (ii) }\left(\begin{array}{lll}m & \alpha\end{array}\right)\left(\begin{array}{ll}m & \beta)=m^{2} \\ (\alpha+\beta) m+\alpha \beta\end{array}\right.\end{array}$
(b) By (a), the equation is
$x^{2}($ sum $) x+($ product $)=0$

6C. 4 HKCEE MA 1985(A/B)-I -5

## $\{\alpha+\beta=k$

$\{\alpha \beta=1$
(a) (i) $(\alpha+2)+(\beta+2)=(\alpha+\beta)+4=4 \quad k$
(ii) $(\alpha+2)(\beta+2)=\alpha \beta+2(\alpha+\beta)+4=5 \quad 2 k$
(b) $\begin{aligned} p & =- \text { (sum of roots) }=-(4-k)=k-4 \\ q & =\text { product of roots }=5 \quad 2 k\end{aligned}$

6C. 5 HKCEEMA 1986(A/B)-I-7
(a) $\frac{1}{a}={ }_{m}^{1}+{ }_{n}^{1}={ }_{m n}^{m+n}=\frac{b}{m n} \Rightarrow m n=\frac{b}{a}$
(b) $m^{2}+n^{2}=(m+n)^{2}-2 m n=(b)^{2}-2\left(\frac{b}{a}\right)=b^{2}-\frac{2 b}{a}$

6C. 6 HKCEE MA 1987(A/B) I-5
$\left\{\begin{array}{l}\alpha+\beta=\frac{4}{k} \\ \alpha \beta=2\end{array}\right.$
(a) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\left(\frac{4}{k}\right)^{2}-2(2)=\frac{16}{k^{2}}-4$
(b) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{\frac{16}{k^{2}}}{2}=\frac{8}{k^{2}} \quad 2$

6C. 7 HKCEEMA 1990-I-6
(a) $\alpha+\beta=-p \Rightarrow-2=\frac{\alpha+\beta}{2}=\frac{-p}{2} \Rightarrow p=4$
(b) $\begin{aligned} \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta & =26 \\ 4^{2} \quad 2(g) & =26\end{aligned}$
$4^{2} \quad 2(g)=26 \Rightarrow g=-5$
6C. 8 HKCEE MA 1991- $1-7$
$\left\{\begin{array}{l}\alpha+\beta=\frac{20}{10}=2 \\ \alpha \beta=\frac{1}{10}\end{array}\right.$
$\alpha \beta=\frac{1}{10}$
(a) $4^{\alpha} \times 4^{\beta}=4^{\alpha+\beta}=4^{-2}=\frac{1}{16}$
(b) $\log _{10} \alpha+\log _{10} \beta=\log _{10} \alpha \beta=\log _{10} \frac{1}{10}=1$

## 6C. 9 HKCEE MA 1993-1-2(f)

$\begin{array}{rc}r=\text { (sum of roots) } & s=\text { product of roots } \\ & =-[1+(-2)]=1\end{array}$
6C. 10 HKCEEMA 1993-1-6
(a) From the equation, $\alpha \beta=\frac{500}{2}=250$
$\therefore$ Area of photograph $=250$
(b) (i) Perimeter $=2(\alpha+\beta)=2\left(\frac{m}{2}\right)=m$
(ii) Area of border $=(\alpha+4)(\beta+4) \quad \alpha \beta$
$=4(\alpha+\beta)+16=4 m+16$
6C. 11 HKCEEMA1995-I-8
(a) $\alpha$ and $\beta$ are the roots of the equation $(k)=x^{2}-3 x-4$ (i) $\alpha+\beta=3$
(ii) $\alpha \beta=4 k$
(b) $B P=2 P A \Rightarrow \beta=2(-\alpha)=-2 \alpha$

Hence, $\alpha+\beta=4 \Rightarrow \alpha+(2 \alpha)=3$
$(-3)(6)=\beta=3 \Rightarrow \beta=6$

6C. 12 HKCEE MA 1997 -I- 8
(a) $\alpha+\beta=\frac{7}{2}, \quad \alpha \beta=\frac{4}{2}=2$
(b) Sum of roots $=(\alpha+2)+(\beta+2)$

$$
\begin{aligned}
& =(\alpha+\beta)+(\beta+2)+\left(\frac{7}{2}\right)+4=\frac{15}{2},
\end{aligned}
$$

Product of roots $=(\alpha+2)(\beta+2)$

$$
\begin{aligned}
& =\alpha \beta+2(\alpha+\beta)+4 \\
& =(2)+2\left(\frac{7}{2}\right)+4=13
\end{aligned}
$$

Hence, required equation is $x^{2}-\frac{15}{2} x+13=0$ $\Rightarrow 2 x^{2}-\frac{2}{15 x+26}=0$

6C. 13 (HKCEE AM 1984-1-5)
(a) $\left\{\begin{array}{l}\alpha+\beta=2 \\ \alpha \beta=-\left(m^{2}-m+1\right)\end{array}\right.$
for any value of $m$.
(b) From (a), minimum of $(\alpha-\beta)^{2}=754$
$\therefore$ minimu m of $\frac{(\alpha \beta)^{2}}{(\alpha)}=7 / 4$
6C. 14 HKCEE AM 1987-1-5
(a) $\Delta>0 \Rightarrow 16-4 p>0 \Rightarrow p<4$
(b) $\left\{\begin{array}{l}\alpha+\beta=4\end{array}\right.$
$\left\{\begin{array}{l}\alpha \beta=p\end{array}\right.$
$0=\alpha^{2}+\beta^{2}+\alpha^{2} \beta^{2}+3(\alpha+\beta) \quad 19$
$\begin{aligned} & =(\alpha+\beta)^{2}-2 \alpha \beta+(\alpha \beta)^{2}+3(\alpha+\beta)-19 \\ & =(4)^{2}-2(p)+(p)^{2}+3(-4)\end{aligned}$
$=(4)^{2}-2(p)+(p)^{2}+3(-4)-19$
$=p^{2}-2 p-15=(p-5)(p+$
$\Rightarrow p=5$ (rejected) or-3

6C. 15 HKCEE AM 1989-1-11
(a) $\left\{\begin{array}{l}\alpha+\beta=-p \\ \alpha \beta=9\end{array}\right.$
(i) $\begin{aligned} \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta & =(p)^{2} \quad 2 q \\ & =p^{2}-2 q\end{aligned}$
(ii) $\begin{aligned} \alpha^{3}+\beta^{3} & =(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \\ & =(\alpha+\beta)\left[(\alpha+\beta)^{2}-3 \alpha \beta\right]\end{aligned}$
$=(\alpha+\beta)\left((\alpha+\beta)^{2}-3 \alpha \beta\right]$
$=(-p)\left[(-p)^{2} \quad 3(q)\right]=3 p q \quad p^{3}$
(iii) $\left(\alpha^{2}-\beta-1\right)\left(\beta^{2}-\alpha-1\right)$
$=\alpha^{2} \beta^{2}-\left(\alpha^{3}+\beta^{3}\right)\left(\alpha^{2}+\beta^{2}\right)+\alpha \beta+(\alpha+\beta)+1$
$=(q)^{2}-\left(3 p q-p^{3}\right)-\left(p^{2}-2 q\right)+(\alpha)+(-p)+1$ $=(q)^{2}-\left(3 p q-p^{3}\right)-\left(p^{2}-2 q\right)+(q)+(-p)+1$
$p^{3} \quad p^{2}+q^{2}-3 p q+3 q-p+1$
(b) The piven in orm
$\alpha^{2}-\beta=1$ or $\beta^{2} \quad \alpha=1$
$\Rightarrow\left(\alpha^{2}-\beta-1\right)\left(\beta^{2}-\alpha-1\right)=0$
$\begin{aligned} \Rightarrow(\alpha-\beta-1)\left(\beta^{2}-\alpha-1\right) & =0 \\ p^{3} & p^{2}+q^{2} 3 p q+3 q \quad p+1\end{aligned}$
$\left.\begin{array}{cc}q^{2} & 3(p \quad 1) q+p^{3} \\ q^{2}-3(p & p^{2} \\ 1\end{array}\right) q+p^{2}(p \quad 1)=0$
$q^{2}\left(p(p) q+p^{2}(p 1)-(p-1)=0\right.$
$q^{2}-3\left(p-(p-1)\left(p^{2}-1\right)=0\right.$
$q^{2}-3(p-1) q \div(p-1)^{2}(p+1)=0$
$\begin{aligned} & \\ & 9\left(\begin{array}{ll}p & 1)^{2} \\ (p-1)^{2} & (9-4(p+1)\end{array}\right)^{2}(p+1) \geq 0 \\ &(p-4(p+1)\end{aligned}$

$$
\begin{aligned}
-1)^{2}(9-4(p+1)) & \geq 0 \\
(p-1)^{2}(5-4 p) & \geq 0
\end{aligned}
$$

$$
\text { Since }(p-1)^{2} \geq 0,5-4 p \geq 0 \Rightarrow p<\frac{5}{4}
$$

(d) $4 x^{2}+5 x+k=0 \Leftrightarrow x^{2}+\frac{5}{4} x+\frac{k}{4}=0$

$$
\text { Put } p=\frac{5}{4} \text { and } q=\frac{k}{4} \text { into (b): }
$$

$$
\left(\frac{k}{4}\right)^{2}-3\left(\frac{1}{4}\right)\left(\frac{k}{4}\right)+\left(\frac{1}{4}\right)^{2}\left(\frac{9}{4}\right)=0
$$

$$
4 k^{2}-12 k+9=0 \Rightarrow k=\frac{3}{2}
$$

6C. 16 HKCEE AM 1990-I-4
(a) $\alpha+\beta=k+2, \quad \alpha \beta=k$
(b)
$(\alpha+1)(\beta+2)=4$
$\alpha \beta+2 \alpha+\beta+2=4$
$\alpha \beta+(\alpha+\beta)+\alpha+2=4$
$(k+2)+(k)+\alpha+2=4 \Rightarrow \alpha=2$
Hence, putting $\alpha=2 k$ into the equation:
$(-2 k)^{2}-(k+2)(-2 k)+k=0$

$$
6 k^{2}-3 k=0 \Rightarrow k=0 \text { or } \frac{1}{2}
$$

6C. 17 HKCEE AM 1991-1-7
(a) From the first equation, $p+q=2 k$

From the second equation, $p q+k(p+q)=1$

$$
\begin{aligned}
p q & =1 \quad k(2 k) \\
& =(k+1)^{2}
\end{aligned}
$$

(b) Sum of roots $=p+q=2 k$

Product of roots $=(k+1)^{2}$

- Required equation: $x^{2}-(2-k) x+(k+1)^{2}=0$
(2) $\Delta=(p+1)^{2} \quad 4(\rho \quad 1)=p^{2}-2 p+5$

Hence, the two mots are real and distincl
(b) $\begin{cases}\alpha+\beta & (p+1)\end{cases}$
(b) $\left\{\begin{array}{l}\alpha+\beta \\ \alpha \beta=p-1\end{array}\right.$
$\therefore(\alpha-2)(\beta-2)=\alpha \quad 2(\alpha+\beta)+4$
(c) $\beta<2<\alpha=(p-1)+2(p+1) \div 4=3 p \div 5$ $\beta<2<\alpha \quad \underset{(\alpha)}{ } \quad \alpha \quad 2>0$ and $\beta \quad 2<0$
$(\beta-2)<0$
$3 p+5<0 \Rightarrow p<-\frac{5}{3}$
(ii) $(\alpha \beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta<24$
$(p+1)^{2}-4(p-1)<24$
1 $\sqrt{20}<p<1+\sqrt{2}$
Together with (c)(i), $1 \quad \sqrt{20}<p<-\frac{5}{3}$
$\therefore$ Possible integral values $=-3$ and 2

```
6C. 19 HKCEE AM 1993-I-3
\(\left\{\alpha+\beta=-p \quad\right.\) and \(\left\{\begin{array}{l}(\alpha+3)+(\beta+3)= \\ (\alpha+3)(p)\end{array}\right.\) \(\{\alpha \beta=q\)
\[
\left\{\begin{array}{l}
(\alpha+\beta=-q-6
\end{array}\right.
\]
\[
\left\{\begin{array} { l }
{ - p = - q - 6 } \\
{ q = 4 p }
\end{array} \quad 9 \Rightarrow \left\{\begin{array}{l}
p=1 \\
q=-5
\end{array}\right.\right.
\]
\[
\begin{cases}\alpha+\beta=-q-6 \\ \alpha \beta=p & 3(\alpha+\beta)-9=4 p\end{cases}
\]
```

6C. 20 (HKCEE AM $1995-\mathrm{I}-10$ )
(a) $\quad f(\alpha)=g(\alpha)$
$12 \alpha^{2}+2 p \alpha-q=12 \alpha^{2}+2 q \alpha-$
$2 \alpha(\rho-g)=(p$ gi $(\because p, q$ are distinct)
$2 \alpha=-1 \Rightarrow \alpha=\frac{1}{2}$
(b) $\alpha+\beta=-\frac{2 p}{12} \Rightarrow \beta=\frac{-p}{6}+\frac{1}{2}$
$\alpha \gamma=\frac{-p}{12} \Rightarrow \gamma=\frac{-p}{12} \div \frac{-1}{2} \frac{p}{6}$

## 6C. 21 HKCEE AM 1998 - I-2

$\left\{\begin{array}{l}\alpha+\beta=2 \\ \alpha \beta=7\end{array}\right.$
sum of roots $=(\alpha+2)+(\beta+2)=(\alpha+\beta)+4$
( 2 ) $+4=6$
$\begin{aligned} & \\ & =\alpha+2(\alpha+\beta)+4 \\ & =(7)+2(2) \div 4=15\end{aligned}$ Required equation: $x^{2} \quad 6 x+15=0$

## 6C. 22 HKCEE AM $2000-$ - -

(a) $\alpha+\beta=2 \quad p, \alpha \beta=p$
(b) $\quad \alpha^{2}+\beta^{2}=11$
$(\alpha+\beta)^{2} \quad 2 \alpha \beta=11$
$(2 p)^{2}-2(p)=11$
$p^{2} \quad 6 p 7=0 \Rightarrow p=7$ or -1

6C. 23 (HKCEE AM 2011-I-7)
6D Complex numbers
6D. 1 HKDSEMA PP-I-17
(a) $\left.\frac{1}{1+2 i}=\frac{1(1-2 l)}{(1+2 i)(1} 2 i\right)=\frac{1-2 i}{1^{2}+2^{2}}=\frac{1}{5}-\frac{2}{5} i$
(a) $\begin{aligned} \Delta=(k+2)^{2} \quad 4 k & =k^{2}+4 \\ & \geq 0 \div 4>0\end{aligned}$
(b) If $\alpha=\sqrt{\beta^{2}}$ and $\alpha \neq \beta$ (from (a)),
) If $\alpha=\sqrt{\beta^{3}}$ and $\alpha \neq \beta$ (from
$\begin{aligned} & \text { then } \alpha=-\beta . \\ & \therefore \alpha+\beta=0\end{aligned}$
$\Rightarrow k=-2$

6C. 24 HKDSE MA PP-I- 17
(a) $\frac{1}{1+2 i}=\frac{1(1 \quad 2 i)}{(1+2 i)(1-2 i)}=\frac{1}{1^{2}+2^{2}}=\frac{1}{5}-\frac{2}{5} i$
(b) (i) $\mathrm{By}\left(\mathrm{a}\right.$ ), the roots are $10\left(\frac{1}{5}-\frac{2}{5} i\right)=2 \quad 4 i$ and $2+4 i$.
$\therefore\{p=$ (sum of roots) $=4$
$\therefore\left\{\begin{array}{l}p=\text { product of roots }=2^{2}+4^{2}=20 \\ q\end{array}\right.$
(ii) The equation becomes $x^{2} \quad 4 x+(20-r)=0$.
$16 \quad 4(20 \quad r) \geq 0 \Rightarrow r \geq 16$

## 7 Functions and Graphs

## 7A General functions

7A. 1 HKCEE MA 1992-I-4
(a) Factorize
(i) $x^{2}-2 x$,
(ii) $x^{2}-6 x+8$.
(b) Simplify $\frac{1}{x^{2}-2 x}+\frac{1}{x^{2} \quad 6 x+8}$.

7A. 2 HKCEE MA 1993 I 2(a)
Let $f(x)=\frac{x^{2}+1}{x-1}$. Find $f(3)$.
7A. 3 HKCEEMA 2006 -I_ 10
Let $f(x)=(x-a)\left(\begin{array}{ll}x & b\end{array}\right)(x+1)-3$, where $a$ and $b$ are positive integers with $a<b$. It is given that $f(1)=1$.
(a) (i) Prove that $\left(\begin{array}{ll}a & 1\end{array}\right)\left(\begin{array}{ll}b & 1\end{array}\right)=2$.
(ii) Write down the values of $a$ and $b$.
(b) Let $g(x)=x^{3}-6 x^{2} \quad 2 x+7$. Using the results of (a)(ii), find $f(x)-g(x)$. Hence find the exact values of all the roots of the equation $f(x)=g(x)$.

## 7A. 4 HKDSE MA 2016-I 3

Simplify $\frac{2}{4 x 5}+\frac{3}{16 x}$.

7A. 5 HKDSE MA 2019 I 2
Simplify $\frac{3}{7 x-6} \quad \frac{2}{5 x-4}$.

## 7B Quadratic functions and their graphs

## 7B. 1 HKCEE MA 1982(1/2/3) I-11

In the figure, $O$ is the origin. The curve $C_{1}: y=x^{2}-10 x+k$ (where $k$ is a fixed constant) intersects the $x$-axis at the points $A$ and $B$.
(a) By considering the sum and the product of the roots of $x^{2}-10 x+k=0$, or otherwise,
(i) find $O A+O B$,
(ii) find $O A \times O B$ in tenns of $k$.
(b) $M$ and $N$ are the mid-points of $O A$ and $O B$ respectively (see the figure).
(i) Find $O M+O N$.
(ii) Find $O M \times O N$ in terns of $k$.
(c) Another curve $C_{2}: y=x^{2}+p x+r$ (where $p$ and $r$ are fixed constants) passes through the points $M$ and $N$.
(i) Using the results in (b) or otherwise, find the value of $p$ and express $r$ in terms of $k$.


## 7B. 2 HKCEE MA 1992-1~9

The figure shows the graph of $y=2 x^{2}-4 x+3$, where $x \geq 0$. $P(a, b)$ is a variable point on the graph. A rectangle $O A P B$ is drawn with $A$ and $B$ lying on the $x$ and $y$ axes respectively
(a) (i) Find the area of rectangle $O A P B$ in terms of $a$
(ii) Find the two values of $a$ for which $O A P B$ is a square.
(b) Suppose the area of $O A P B=\frac{3}{2}$.
(i) Show that $4 a^{3} \quad 8 a^{2}+6 a-3=0$.
(ii) [Out of syllabus]


## 7B. 3 HKCEE MA 1994 I 8

In the figure, the curve $y=x^{2}+b x+c$ meets the $y$-axis at $C(0,6)$ and the $x$ axis at $A(\alpha, 0)$ and $B(\beta, 0)$, where $\alpha>\beta$.
(a) Find $c$ and hence find the value of $\alpha \beta$.
(b) Express $\alpha+\beta$ in terms of $b$.
(c) Using the results in (a) and (b), express $(\alpha-\beta)^{2}$ in terns of $b$. Hence find the area of $\triangle A B C$ in terms of $b$.


## 7B. 4 HKCEE MA 1999 I-7

The graph of $y=x^{2}-x-6$ cuts the $x$-axis at $A(a, 0), B(b, 0)$ and the $y$-axis at $C(0, c)$ as shown in the figure. Find $a, b$ and $c$.


## 7B. 5 HKCEE MA 2004-1 4

In the figure, the graph of $y=x^{2}+10 x \quad 25$ touches the $x$-axis at $A(a, 0)$ and cuts the $y$-axis at $B(0, b)$. Find $a$ and $b$.


## 7B. 6 HKCEE MA 2008-I - 11

Consider the function $f(x)=x^{2}+b x \quad 15$, where $b$ is a constant. It is given that the graph of $y=f(x)$ passes through the point $(4,9)$.
(a) Find $b$. Hence, or otherwise, find the two $x$-intercepts of the graph of $y=f(x)$.
(b) Let $k$ be a constant. If the equation $f(x)=k$ has two distinct real roots, find the range of values of $k$.
(c) Write down the equation of a straight line which intersects the graph of $y=f(x)$ at only one point.

## 7B. 7 HKCEEMA 2009-I_12

In the figure, $R$ is the vertex of the graph of $y=2\left(\begin{array}{ll}x & 11\end{array}\right)^{2}+23$.
(a) Write down
(i) the equation of the axis of symmetry of the graph,
(ii) the coordinates of $R$.
(b) It is given that $P(p, 5)$ and $Q(q, 5)$ are two distinct points lying on the graph. Find
(i) the distance between $P$ and $Q$;
(ii) the area of the quadrilateral $P Q R S$, where $S$ is a point lying on the $x$ axis.


7B. 8 HKCEE MA $2010 \quad 1-16$
(To continue as 7E.1.)
Let $f(x)=\frac{1}{2} x-\frac{1}{144} x^{2}-6$.
(a) (i) Using the method of completing the square, find the coordinates of the vertex of the graph of $y=f(x)$.

7B. 9 HKCEE MA 2011-I-11
(Continued from 8C.20.)
It is given that $f(x)$ is the sum of two parts, one part varies as $x^{2}$ and the other part varies as $x$. Suppose
that $f(-2)=28$ and $f(6)=-36$.
(a) Find $f(x)$.
(b) The figure shows the graph of $y=3(x-6)^{2}+k$ and the graph of $y=f(x)$, where $k$ is a constant. The two graphs have the same vertex.
(i) Find the value of $k$.
(ii) It is given that $A$ and $B$ are points lying on the graph of $y=3(x-6)^{2}+k$ while $C$ and $D$ are points lying on the graph of $y=f(x)$. Also, $A B C D$ is a rectangle and $A B$ is parallel to the $x$ axis. The $x$ coordinate of $A$ is 10 . Find the area of the rectangle $A B C D$.


## 7B. 10 HKCEE AM 1988-I-10

(To continue as 10C.9.)
Let $f(x)=x^{2}+2 x-1$ and $g(x)=x^{2}+2 k x \quad k^{2}+6$ (where $k$ is a constant.)
(a) Suppose the graph of $y=f(x)$ cuts the $x$ axis at the points $P$ and $Q$, and the graph of $y=g(x)$ cuts the $x$-axis at the points $R$ and $S$.
(i) Find the lengths of $P Q$ and $R S$.
(ii) Find, in terms of $k$, the $x$-coordinate of the mid-point of $R S$.

If the mid points of $P Q$ and $R S$ coincide with each other, find the value of $k$.
(b) If the graphs of $y=f(x)$ and $y=g(x)$ intersect at only one point, find the possible values of $k$; and for each value of $k$, find the point of intersection.

## 7B. 11 HKCEE AM $1991-\mathrm{I}-9$

(To continue as 10C.11.)
Let $f(x)=x^{2}+2 x-2$ and $g(x)=-2 x^{2} \quad 12 x-23$.
(a) Express $g(x)$ in the form $a(x+b)^{2}+c$, where $a, b$ and $c$ are real constants. Hence show that $g(x)<0$ for all real values of $x$.
(b) Let $k_{1}$ and $k_{2}\left(k_{1}>k_{2}\right)$ be the two values of $k$ such that the equation $f(x)+k g(x)=0$ has equal roots. (i) Find $k_{1}$ and $k_{2}$

## 7B. 12 (HKCEE AM 1993 I 10 )

$C(k)$ is the curve $y=\frac{1}{k+1}\left\{2 x^{2}+(k+7) x+4\right\}$, where $k$ is a real number not equal to -1 .
(a) If $C(k)$ cuts the $x$ axis at two points $P$ and $Q$ and $P Q=1$, find the value(s) of $k$.
(b) Find the range of values of $k$ such that $C(k)$ does not cut the $x$-axis.
(c) (i) Find the points of intersection of the curves $C(1)$ and $C(-2)$.
(ii) Show that $C(k)$ passes through the two points in (c)(i) for all values of $k$.

## 7B. 13 HKCEE AM 1998-I-11

Let $f(x)=x^{2}-k x$, where $k$ is a real constant, and $g(x)=x$
(a) Show that the least value of $f(x)$ is $\frac{k^{2}}{4}$ and find the corresponding value of $x$.
(b) Find the coordinates of the two intersecting points of curves $y=f(x)$ and $y=g(x)$.
(c) Suppose $k=3$.
(i) In the same diagram, sketch the graphs of $y=f(x)$ and $y=g(x)$ and label their intersecting points.
(ii) Find the range of values of $x$ such that $f(x) \leq g(x)$.

Hence find the least value of $f(x)$ within this range of values of $x$.
(d) Suppose $k=\frac{3}{2}$. Find the least value of $f(x)$ within the range of values of $x$ such that $f(x) \leq g(x)$.

## 7B. 14 HKCEE AM 2000-I - 12

Consider the function $f(x)=x^{2}-4 m x-\left(5 m^{2}-6 m+1\right)$, where $m>\frac{1}{3}$.
(a) Show that the equation $f(x)=0$ has distinct real roots.
(b) Let $\alpha$ and $\beta$ be the roots of the equation $f(x)=0$, where $\alpha<\beta$
(j) Express $\alpha$ and $\beta$ in terms of $m$.
(ii) Furthermore, it is known that $4<\beta<5$.
(1) Show that $1<m<\frac{6}{5}$.
(2) The following figure shows three sketches of the graph of $y=f(x)$ drawn by three students. Their teacher points out that the three sketches are all incorrect. Explain why each of the sketches is incorrect



Sketch B


Sketch C

## 7B. 15 HKCEE AM 2002-11

Let $f(x)=x^{2}-2 x-6$ and $g(x)=2 x+6$. The graphs of $y=f(x)$ and $y=g(x)$ intersect at points $A$ and $B$ (see the figure). $C$ is the vertex of the graph of $y=f(x)$.
(a) Find the coordinates of points $A, B$ and $C$.
(b) Write down the range of values of $x$ such that $f(x) \leq g(x)$. Hence write down the value(s) of $k$ such that the equation $f(x)=k$ has only one real root in this range.

## 7B. 16 HKCEE AM 200317

Let $f(x)=(x-a)^{2}+b$, where $a$ and $b$ are real. Point $P$ is the vertex of the graph of $y=f(x)$.
(a) Write down the coordinates of point $P$.
(b) Let $g(x)$ be a quadratic function such that the coefficient of $x^{2}$ is 1 and the vertex of the graph of $y=g(x)$ is the point $Q(b, a)$. It is given that the graph of $y=f(x)$ passes through point $Q$.
(i) Write down $g(x)$ and show that the graph of $y=g(x)$ passes through point $P$.
(ii) Furthermore, the graph of $y=f(x)$ touches the $x$-axis. For each of the possible cases, sketch the graphs of $y=f(x)$ and $y=g(x)$ in the same diagram.

7B. 17 HKDSE MA 2012-1 13
(Continued from 4R.22.)
(a) Find the value of $k$ such that $x-2$ is a factor of $k x^{3}-21 x^{2}+24 x-4$
(b) The figure shows the graph of $y=15 x^{2}-63 x+72$. $Q$ is a variable point on the graph in the first quadrant. $P$ and $R$ are the feet of the perpendiculars from $Q$ to the $x$ axis and the $y$ axis respectively.
(i) Let ( $m, 0$ ) be the coordinates of $P$. Express the area of the rectangle $O P Q R$ in terms of $m$.
(ii) Are there three different positions of $Q$ such that the area of the rectangle $O P Q R$ is 12 ? Explain your answer.


7B. 18 HKDSEMA 2015 I 18
(To continue as 7e.2.)
Let $f(x)=2 x^{2}-4 k x+3 k^{2}+5$, where $k$ is a real constant.
(a) Does the graph of $y=f(x)$ cut the $x$ axis? Explain your answer.
(b) Using the method of completing the square, express, in terms of $k$, the coordinates of the vertex of the graph of $y=f(x)$.

7B. 19 HKDSEMA 2016-I-18
(To continue as 7E.3.)
Let $f(x)=\frac{-1}{3} x^{2}+12 x \quad 121$.
(a) Using the method of completing the square, find the coordinates of the vertex of the graph of $y=f(x)$.

## 7B. 20 HKDSE MA 2017-I 18

The equation of the parabola $\Gamma$ is $y=2 x^{2}-2 k x+2 x-3 k+8$, where $k$ is a real constant. Denote the straight line $y=19$ by $L$.
(a) Prove that $L$ and $\Gamma$ intersect at two distinct points.
(b) The points of intersection of $L$ and $\Gamma$ are $A$ and $B$.
(i) Let $a$ and $b$ be the $x$ coordinates of $A$ and $B$ respectively. Prove that $(a \quad b)^{2}=k^{2}+4 k+23$.
(ii) Is it possible that the distance between $A$ and $B$ is less than 4 ? Explain your answer.

7B. 21 HKDSE MA 2018 -I- 18
It is given that $f(x)$ partly varies as $x^{2}$ and partly varies as $x$. Suppose that $f(2)=60$ and $f(3)=99$.
(a) Find $f(x)$.
(b) Let $Q$ be the vertex of the graph of $y=f(x)$ and $R$ be the vertex of the graph of $y=27-f(x)$.
(i) Using the method of completing the square, find the coordinates of $Q$.

## 7B. 22 HKDSE MA 2020 - I -

Let $p(x)=4 x^{2}+12 x+c$, where $c$ is a constant. The equation $p(x)=0$ has equal roots. Find
(a) $c$,
(b) the $x$-intercept(s) of the graph of $y=\mathrm{p}(x)-169$.

## 7B. 23 HKDSE MA $2020-\mathrm{I}-17$

Let $g(x)=x^{2}-2 k x+2 k^{2}+4$, where $k$ is a real constant.
(a) Using the method of completing the square, express, in terms of $k$, the coordinates of the vertex of the graph of $y=g(x)$.
(b) On the same rectangular coordinate system, let $D$ and $E$ be the vertex of the graph of $y=\mathrm{g}(x+2)$ and the vertex of the graph of $y=-\mathrm{g}(x-2)$ respectively. Is there a point $F$ on this rectangular coordinate system such that the coordinates of the circumcentre of $\triangle D E F$ are $(0,3)$ ? Explain your answer.
(4 marks)

## 7C Extreme values of quadratic functions

7C. 1 HKCEE MA 1985(A/B)-I-13
(Continued from 14A. 3 and to continue as 10C.2.)
In the figure, $A B C$ is an equilateral triangle. $A B=2, D, E, F$ are points on $A B, B C, C A$ respectively such that $A D=B E=C F=x$.
(a) By using the cosine formula or otherwise, express $D E^{2}$ in terms of $x$.
(b) Show that the area of $\triangle D E F=\frac{\sqrt{3}}{4}\left(3 x^{2}-6 x+4\right)$.

Hence, by using the method of completing the square, find the value of $x$ such that the area of $\triangle D E F$ is smallest.


7C. 2 HKCEE MA 1982(1/2)-I - 12
(Continued from 8C.1.)
The price of a certain monthly magazine is $x$ dollars per copy. The total profit on the sale of the magazine is $P$ dollars. It is given that $P=Y+Z$, where $Y$ varies directly as $x$ and $Z$ varies directly as the square of $x$. When $x$ is $20, P$ is 80000 ; when $x$ is $35, P$ is 87500 .
(a) Find $P$ when $x=15$.
(b) Using the method of completing the square, express $P$ in the form $P=a \quad b(x \quad c)^{2}$ where $a, b$ and $c$ are constants. Find the values of $a, b$ and $c$.
(c) Hence, or otherwise, find the value of $x$ when $P$ is a maximum.

## 7C. 3 HKCEEMA 1988-I - 10

(Continued from 8C.5.)
A variable quantity $y$ is the sum of two parts. The first part varies directly as another variable $x$, while the second part varies directly as $x^{2}$. When $x=1, y=-5$; when $x=2, y=-8$.
(a) Express $y$ in terms of $x$. Hence find the value of $y$ when $x=6$.
(b) Express $y$ in the form $(x \quad p)^{2}-q$, where $p$ and $q$ are constants. Hence find the least possible value of $y$ when $x$ varies.

## 7C. 4 HKCEE MA $2011-\mathrm{I}-12$

In the figure, $A B C D$ is a trapezium, where $A B$ is parallel to $C D . P$ is a point lying on $B C$ such that $B P=x \mathrm{~cm}$. It is given that $A B=3 \mathrm{~cm}, B C=11 \mathrm{~cm}$, $C D=k \mathrm{~cm}$ and $\angle A B P=\angle A P D=90^{\circ}$
(a) Prove that $\triangle A B P \sim \triangle P C D$.
(b) Prove that $x^{2} \quad 11 x+3 k=0$.
(c) If $k$ is an integer, find the greatest value of $k$.


## 7C. 5 HKCEE AM 1986 I-3

The maximum value of the function $f(x)=4 k+18 x \quad k x^{2}$ ( $k$ is a positive constant) is 45 . Find $k$.

## 7C. 6 HKCEE AM 1996-I-4

Given $x^{2} \quad 6 x+11=(x+a)^{2}+b$, where $x$ is real.
(a) Find the values of $a$ and $b$. Hence write down the least value of $x^{2}-6 x+11$.
(b) Using (a), or otherwise, write down the range of possible values of $\frac{1}{x^{2}-6 x+11}$.

## C. 7 HKDSE MA $2013-\mathrm{I}-17$

(a) Let $f(x)=36 x-x^{2}$. Using the method of completing the square, find the coordinates of the vertex of the graph of $y=f(x)$.
(b) The length of a piece of string is 108 m . A guard cuts the string into two pieces. One piece is used to enclose a rectangular restricted zone of area $A \mathrm{~m}^{2}$. The other piece of length $x \mathrm{~m}$ is used to divide this restricted zone into two rectangular regions as shown in the figure.
(i) Express $A$ in terms of $x$.
(ii) The guard claims that the area of this restricted zone can be greater than $500 \mathrm{~m}^{2}$. Do you agree? Explain your answer. $\square$

## 7D Solving equations using graphs of functions

## 7D. 1 HKCEE MA 1980(3) I 16




Figure (2)
(a) Figure (1) shows the graph of $y=25 x-x^{3}$ for $0 \leq x \leq 5$. By adding a suitable straight line to the graph, solve the equation $30=25 x-x^{3}$, where $0 \leq x \leq 5$. Give your answers correct to 2 significant figures.
(b) Figure (2) shows a right pyramid with a square base $A B C D$. $A B=b$ units and $A E=5$ units. The height of the pyramid is $h$ units and its volume is $V$ cubic units.
(i) Express $b$ in terms of $h$. Hence show that $V=\frac{2}{3}\left(25 h-h^{3}\right)$.
(ii) Using (a), find the two values of $h$ such that $V=20$. (Your answers should be correct to 2 significant figures.)
(iii) [Out of syllabus]

7D. 2 HKCEE MA 1981(I)-I-11
A piece of wire 20 cm long is bent into a rectangle. Let one side of the rectangle be $x \mathrm{~cm}$ long and the area be $y \mathrm{~cm}^{2}$.
(a) Show that $y=10 x-x^{2}$
(b) The figure shows the graph of $y=10 x-x^{2}$ for $0 \leq x \leq 10$. Using the graph, find
(i) the value of $y$, correct to 1 decimal place, when $x=3.4$,
(ii) the values of $x$, correct to 1 decimal place when the area of the rectangle is $12 \mathrm{~cm}^{2}$
(iii) the greatestarea of the rectangle,
(iv) [Out of syllabus]


## 7D. 3 HKCEE MA 1983(A) - I - 14

Equal squares each of side $k \mathrm{~cm}$ are cut from the four corners of a square sheet of paper of side 7 cm (see Figure (1)). The remaining part is folded along the dotted lines to form a rectangular box as shown in Figure (2).
(a) Show that the volume $V$ of the rectangular box, in $\mathrm{cm}^{3}$, is $V=4 k^{3}-28 k^{2}+49 k$
(b) Figure (3) shows the graph of $y=4 x^{3}-28 x^{2}+49 x$ for $0 \leq x \leq 5$. Draw a suitable straight line in Figure (3) and use it to find all the possible values of $x$ such that $4 x^{3}-28 x^{2}+49 x-20=0$.
(Give the answers to 1 decimal place.)
(c) Using the results of (a) and (b), deduce the values of $k$ such that the volume of the box is $20 \mathrm{~cm}^{3}$.
(Give the answers to 1 decimal place.)
(d) [Out of syllabus]


Figure (1)


Figure (2)


## D. 4 HKCEEMA 1985(A)-1-12

The figure shows the graph of $y=x^{3}+x$ for $-1 \leq x \leq 2$.
(a) (i) Draw a suitable straight line in the figure and hence find, correct to 1 decimal place, the real root of the equation $x^{3}+x-1=0$.
(ii) [Out of syllabus. The result $x=0.68$ (correct to $2 \mathrm{~d} . \mathrm{p}$.) is ob tained for the equation in (i).]
(b) (i) Expand and simplify the expression $(x+1)^{4}-(x-1)^{4}$.
(ii) Using the result in (a)(ii), find, correct to 2 decimal places, the real root of the equation $(x+1)^{4} \quad\left(\begin{array}{ll}x & 1\end{array}\right)^{4}=8$.

7D. 5 HKCEE MA 1985(B) - I - 12
In Figure (1), $A B C$ is an isosceles triangle with $\angle A=90^{\circ}$. In Figure (1), ABC is an isosceles triangle with $\angle A=90^{\circ}$.
$P Q R S$ is a rectangle inscribed in $\triangle A B C . B C=16 \mathrm{~cm}$, $B Q=x \mathrm{~cm}$.
(a) Show that the area of $P Q R S=2\left(8 x \quad x^{2}\right) \mathrm{cm}^{2}$.
(b) Figure (2) shows the graph of $y=8 x-x^{2}$ for $0 \leq x \leq 8$. Using the graph,

(i) find the value of $x$ such that the area of $P Q R S$ is greatest;

(ii) find the two values of $x$, correct to 1 decimal place, such that the area of $P Q R S$ is $28 \mathrm{~cm}^{2}$.
(c) [Out of syllabus]


7D. 6 HKCEE MA 1986(B) - I 14
The figure shows the graph of $y=a x^{2}+b x+c$.
(a) Find the value of $c$ and hence the values of $a$ and $b$.
(b) Solve the following equations by adding a suitable straight line to the figure for each case. Give your answers correct to 1 decimal place.
(i) $(x+2)(x-3)=-1$,
(ii) [Out of syllabus]


## 7D. 7 HKCEE MA 1987(A) I-14

The figure shows the graph of $y=x^{3}-6 x^{2}+9 x$.
(a) By adding suitable straight lines to the figure, find, cor rect to 1 decimal place, the real roots of the following equations:
(i) $x^{3}-6 x^{2}+9 x-1=0$,
(ii) [Out of syllabus]
(b) [Out of syllabus]
(c) From the figure, find the range of values of $k$ such that the equation $x^{3}-6 x^{2}+9 x-k=0$ has three distinct real roots.


## TD. 8 HKCEE MA 1997 I- 13

Miss Lee makes and sells handmade leather belts and handbags. She finds that if a batch of $x$ belts is made, where $1 \leq x \leq 11$, the cost per belt $\$ B$ is given by $B=x^{2}-20 x+120$. The figure shows the graph of the function $y=x^{2}-20 x+120$.
(a) Use the given graph to write down the number(s) of belts in a batch that will make the cost per belt
(i) a minimum,
(ii) less than $\$ 90$.
(b) Miss Lee also finds that if a batch of $x$ handbags is made, where $1 \leq x \leq 8$, the cost per bandbag $\$ H$ is given by $H=x^{2}-17 x+c$ ( $c$ is a constant). When a batch of 3 handbags is made, the cost per handbag is $\$ 144$.
(i) Find $c$.
(ii) [Out of syllabus The following result is obtained: When $H=120, x=6$.]
(iii) Miss Lee made a batch of 10 belts and a batch of 6 handbags. She managed to sell 6 belts at $\$ 100$ each and 4 handbags at $\$ 300$ each while the remain ing belts and handbags sold at half of their respective cost. Find her gain or loss.

70. 9 HKCEE MA 2000-I - 18
$\xrightarrow{\ldots}\lceil\mathrm{hcm}$


Figure (1)


Figure (2)
Figure (1) shows a solid hemisphere of radius 10 cm . It is cut into two portions, $P$ and $Q$, along a plane parallel to its base. The height and volume of $P$ are $h \mathrm{~cm}$ and $V \mathrm{~cm}^{3}$ respectively. It is known that $V$ is the sum of two parts. One part varies directly as $h^{2}$ and the other two parts. One part varies directly as $h^{2}$ and the other
part varies directly as $h^{3} . V=\frac{29}{3} \pi$ when $h=1$ and $V=81 \pi$ when $h=3$.
(a) Find $V$ in terms of $h$ and $\pi$.
(b) A solid congruent to $P$ is carved away from the top of $Q$ to form a container as shown in Figure (2).
(i) Find the surface area of the container (excluding the base).
(ii) It is known that the volume of the container is $\frac{1400}{3} \pi \mathrm{~cm}^{3}$. Show that $h^{3}-30 h^{2}+300=0 .-500$
(iii) Using the graph in Figure (3) and a suitable method, find the value of $h$ correct to 2 deci mal places.

## 7E Transformation of graphs of functions

7E. 1 HKCEEMA 2010-I-16
(Continued from 7B.8.)
Let $f(x)=\frac{1}{2} x \quad \frac{1}{144} x^{2} \quad 6$.
(a) (i) Using the method of completing the square, find the coordinates of the vertex of the graph of $y=f(x)$.
(ii) If the graph of $y=g(x)$ is obtained by translating the graph of $y=f(x)$ leftwards by 4 units and upwards by 5 units, find $g(x)$.
(iii) If the grpah of $y=h(x)$ is obtained by translating the graph of $y=2^{f(x)}$ leftwards by 4 units and upwards by 5 units, find $h(x)$.
(b) A researcher performs an experiment to study the relationship between the number of bacteria $A$ ( $u$ hundred million) and the temperature $\left(s^{\circ} \mathrm{C}\right.$ ) under some controlled conditions. From the data of $u$ and $s$ recorded in Table (1), the researcher suggests using the formula $u=2^{f(s)}$ to describe the relationship

$s$	$a_{1}$	$a_{2}$	$a_{3}$	$a_{4}$	$a_{5}$	$a_{6}$	$a_{7}$
$u$	$b_{1}$	$b_{2}$	$b_{3}$	$b_{4}$	$b_{5}$	$b_{6}$	$b_{7}$

(i) According to the formula suggested by the researcher, find the temperature at which the number of the bacteria is 8 hundred million.
(ii) The researcher then performs another experiment to study the relationship between the number of bacteria $B$ ( $v$ hundredmillion) and the temperature $\left(t^{\circ} \mathrm{C}\right)$ under the same controlled conditions and the data of $v$ and $t$ are recorded in Table (2).

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline t & \left|\left|a_{1}-4\right| a_{2}-4\right| a_{3}-4 \mid & a_{4}-4 \mid & a_{5}-4 \mid & a_{6}-4 & a_{7}-4 \\
\hline \nu & \left|\mid b_{1}+5\right. & b_{2}+5 & b_{3}+5 & b_{4}+5 & b_{5}+5 & b_{6}+5 & b_{7}+5 \\
\hline
\end{array} \\
& \text { Table (2) }
\end{aligned}
$$

Using the formula suggested by the research, propose a formula to express $v$ in terms of $t$.

## 2E. 2 HKDSEMA 2015-I- 18

(Continued from 7B.18.)
Let $f(x)=2 x^{2}-4 k x+3 k^{2}+5$, where $k$ is a real constant.
(a) Does the graph of $y=f(x)$ cut the $x$ axis? Explain your answer.
(b) Using the method of completing the square, express, in terms of $k$, the coordinates of the vertex of the graph of $y=f(x)$.
(c) In the same rectangular system, let $S$ and $T$ be moving points on the graph of $y=f(x)$ and the graph of $y=2-f(x)$ respectively. Denote the origin by $O$. Someone claims that when $S$ and $T$ are nearest to each other, the circumcentre of $\triangle O S T$ lies on the $x$ axis. Is the claim correct? Explain your answer.

## 7E. 3 HKDSEMA 2016-I- 18

(Continued from 78.19.)
Let $f(x)=\frac{-1}{3} x^{2}+12 x-121$.
(a) Using the method of completing the square, find the coordinates of the vertex of the graph of $y=f(x)$.
(b) The graph of $y=g(x)$ is obtained by translating the graph of $y=f(x)$ vertically. If the graph of $y=g(x)$ touches the $x$-axis, find $g(x)$.
(c) Under a transformation, $f(x)$ is changed to $\frac{-1}{3} x^{2}-12 x-121$. Describe the geometric meaning of the transformation.

## T. 4 HKDSEMA 2018-I 18

It is given that $f(x)$ partly varies as $x^{2}$ and partly varies as $x$. Suppose that $f(2)=60$ and $f(3)=99$.
(a) Find $f(x)$.
(b) Let $Q$ be the vertex of the graph of $y=f(x)$ and $R$ be the vertex of the graph of $y=27 \quad f(x)$.
(i) Using the method of completing the square, find the coordinates of $Q$.
(ii) Write down the coordinates of $R$.
(iii) The coordinates of the point $S$ are $(56,0)$. Let $P$ be the circumcentre of $\triangle Q R S$. Describe the geometric relationship between $P, Q$ and $R$. Explain your answer.

7E. 5 HKDSE MA 2019 I-19
(To continue as 16C.56.)
Let $\left.f(x)=\frac{1}{1+k}\left(\begin{array}{ll}x^{2}+(6 k & 2\end{array}\right) x+(9 k+25)\right)$, where $k$ is a positive constant. Denote the point $(4,33)$ by $F$.
(a) Prove that the graph of $y=f(x)$ passes through $F$.
(b) The graph of $y=g(x)$ is obtained by reflecting the graph of $y=f(x)$ with respect to the $y$-axis and then translating the resulting graph upwards by 4 units. Let $U$ be the vertex of the graph of $y=g(x)$. Denote the origin by 0 .
(i) Using the method of completing the square, express the coordinates of $U$ in terms of $k$.

## 7 Functions and Graphs

7A General functions
7A. 1 HKCEE MA 1992-I-4
(a) (i) $x^{2}-2 x=x(x-2)$
(ii) $x^{2}-6 x+8=(x-2)(x-4)$
(b) $\frac{1}{x^{2}-2 x}+\frac{1}{x^{2}-6 x+8} \frac{1}{x(x-2)}+\frac{1}{(x-2)(x-4)}$

$$
\begin{aligned}
& =\frac{(x-4)+(x)}{x(x-2)(x-4)} \\
& =\frac{2 x-4}{x(x-2)(x-4)} \\
& =\frac{2(x-2)}{x(x-2)(x-4)}=\frac{2}{x(x-4)}
\end{aligned}
$$

7A. 2 HKCEE MA 1993 -1-2(a)
$f(3)=\frac{(3)^{2}+1}{(3)-1}=5$
7A. 3 HKCEE MA 2006-I- 10
(a) (i) $1=f(1)=(1-a)(1-b)(2)-3$
$\Rightarrow(a-1)(b-1)=2$
(ii) Since $a-1$ and $b-1$ are both integers and $b-1>a-1$.

$$
\left\{\begin{array} { l } 
{ a - 1 = 1 } \\
{ b - 1 = 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=2 \\
b=3
\end{array}\right.\right.
$$

(b) $f(x)-g(x)$
$f(x)-g(x)$
$=(x-3)(x+1)-3-\left(x^{3}-6 x^{2}-2 x+7\right)$
$=2 x^{2}+3 x-4$
$\begin{aligned} f(x) & =g(x)\end{aligned}$

$$
x==\frac{-3 \pm \sqrt{9+32}}{4}=\frac{-3 \pm \sqrt{41}}{4}
$$

7A. 4 HKDSEMA 2016-I-3
$\frac{2}{4 x-5}+\frac{3}{1-6 x}=\frac{2(1-6 x)+3(4 x-5)}{(4 x-5)(1-6 x)}$
$=\frac{-5}{(4 x-5)(1-6 x)}$
7A. 5 HKDSE MA 2019-I-2
$\frac{3}{7 x-6}-\frac{2}{5 x-4}=\frac{3(5 x-4)-2(7 x-6)}{(7 x-6)(5 x-4)} \quad(7 x-6)(5 x 4)$

## 7B Quadratic functions

7B. 1 HKCEE MA 1982(1/2/3)-1-11
(a) Since $O A$ and $O B$ are the roots of the equation,
(i) $O A+O B=10$
(ii) $O A \times O B=k$
(b) (i) $O M+O N=\frac{O A}{2}+\frac{O B}{2}=\frac{O A+O B}{2}=5$
(ii) $O M \times O N=\left(\frac{O A}{2}\right)^{\frac{2}{2}}\left(\frac{O B}{2}\right)=\frac{2 A \times O B}{4}=\frac{k}{4}$
(c) (i) $-p=O M+O N=5 \Rightarrow p=5$
$r=O M \times O N=\frac{k}{4}$
(ii) $O M+O N=5 \Rightarrow O N=5-2=3$

$$
\therefore \frac{k}{4}=O M \times O N \Rightarrow k=4 \times 2 \times 3=24
$$

## TB. 2 HKCEEMA 1992-1-9

(a) (i) $b=2 a^{2}-4 a+3$
(ii) When $a=2 a^{2}-4 a+3$.
$2 a^{2}-5 a+3=0 \Rightarrow a=1$ or $\frac{3}{2}$

$$
\text { (b) (i) } \begin{aligned}
2 a^{3}-4 a^{2}+3 a & =\frac{3}{2} \\
4 a^{3}-8 a^{2}+6 a & =3 \\
4 a^{3}-8 a^{2}+6 a-3 & =0
\end{aligned}
$$

(ii) [Out of syllabus]

## 7B. 3 HKCEEMA 994 -I- 8

(a) $c=y$-intercept $=6$
$\therefore \alpha \beta=$ product of roots $=6$
(b) $\alpha+\beta=$ sum of roots $=-b$
(c) $\begin{aligned}(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta & =(-b)^{2}-4(6) \\ & =b^{2}-24\end{aligned}$

$$
\begin{aligned}
\therefore \text { Area of } \triangle A B C & =\frac{1}{2}(\alpha-\beta)(6) \\
& =3(\alpha-\beta)=3 \sqrt{b^{2}-24}
\end{aligned}
$$

## 7B. 4 HKCEE MA 1999-I-7 <br> $c=y$-intercept $=-6$

When $y=0 . x^{2}-x-6=0 \Rightarrow x=-2$ or 3
$\therefore a=-2, b=3$
7B5 HKCEE MA 2004-I-4
$b=y$-intercept $=-25$
Put $(a, 0): 0=-a^{2}+10 a-25 \Rightarrow a=5$ (repeated)
7B. 6 HKCE EMA 2008-1-11
(a) Put $(4,9): 9=(4)^{2}+b(4)-15 \Rightarrow b=2$ $\begin{aligned} \text { Hence, } & 0 \text {-intercept } \\ = & =-5 \text { and } 3\end{aligned}$
(b) $x^{2}+2 x-15=k \Rightarrow x^{2}+2 x-(15+k)=0$ $\because 2$ distinctroots

$$
4+4(15+k)>0 \Rightarrow k>-16
$$

(c) When $\Delta=0$, there i sonly 1 intersection. i.e. $k=-16$. $\therefore$ Required line is $y=-16$.

7B. 7 HKCEEMA 2009-I-12
(a) (i) $x=11$
(b) (i) Put $y=5$ $5: \quad 5=-2(x-11)^{2}+23$
$(x-11)^{2}=9 \Rightarrow x=11 \pm 3=8$ or 14 $(x-11)^{2}=9 \Rightarrow x=11 \pm 3=8$ or
Distance between $P$ and $Q=14-8=6$
(ii) Regardiess of the position of $S$, for $\triangle P Q S$, $P Q=6$. Corresponding height $=5$ $\therefore$ Area of $P Q R S$
$=$ Area of $\triangle P Q R+$ Ar eaof $\triangle P Q S$
$=\frac{1}{2}(6)(23-5)+\frac{1}{(6)(5)}-6 Q$
$=\frac{1}{2}(6)(23-5)+\frac{1}{2}(6)(5)=69$
7B. 8 HKCEEMA 2010-I-16
(a) (i) $f(x)=\frac{-1}{144}\left(x^{2}-72 x\right)-6$

$$
\begin{aligned}
& =\frac{-1}{144}\left(x^{2}-72 x+36^{2}-36^{2}\right)-6 \\
& =\frac{-1}{144}(x-36)^{2}+3 \Rightarrow \text { Vertex }=(36,3)
\end{aligned}
$$

TB9 HKCEEMA 2011-T-11
(a) Let $f(x)=h x^{2}+k x$.

$$
\left\{\begin{array} { l } 
{ 2 8 = f ( - 2 ) = 4 h - 2 k } \\
{ - 3 6 = f ( 6 ) = 3 6 h + 6 k }
\end{array} \Rightarrow \left\{\begin{array}{l}
h=1 \\
k=-12
\end{array}\right.\right.
$$

$$
\therefore f(x)=x^{2}-12 x
$$

(b) (i) $f(x)=x^{2}-12 x=\left(\begin{array}{ll}x & 6\end{array}\right)^{2}-36 \Rightarrow k=-36$
(i) Put $x=10$.
$y=3(10-6)^{2}-36=2 \Rightarrow A=(10,2)$ $y=(10)^{2}-12(10)=-20 \Rightarrow D=(10,-20)$ Since the graphs are symmetric about the common axis of symmetry $x=6$,
$B=(6-(10-6), 2)=(2,2)$
$C=(10-(10-6),-20)=(2,-20)$
Area of $A B C D=(2-(-20))(10-2)=176$
7B. 10 HKCEEAM 1988-I-10
(a) (i) For $f(x),\left\{\begin{array}{l}\text { Sum of } \mathrm{rts}=-2 \\ \text { Prod of } \mathrm{rt}=-1\end{array}\right.$

For $g(x),\left\{\begin{array}{l}\text { Sum of rts }=2 k \\ \text { Prod of } r \text { ts }=k^{2}-6\end{array}\right.$
$\begin{aligned} P Q & =\frac{\text { Diflerence of } \pi \text { s of } f(x)}{\sqrt{(-2)^{2}-4(1)}-\sqrt{8}} \\ & =\frac{1}{2}\end{aligned}$
$=\sqrt{(-2)^{2}-4(1)}-\sqrt{ }$
$\begin{aligned} R S & =\text { Difference of rts of } g(x) \\ & =\sqrt{(2 k)^{2}-4\left(k^{2}-6\right)}=\sqrt{24}\end{aligned}$
(ii) Mid-pt of $R S=\left(\frac{\text { Sum of } r t s}{2}, 0\right)=(k ; 0)$

$$
\text { If this is also the mid-point of } P Q . k=\frac{-2}{2}=-1 \text {. }
$$

(b) $\left\{y=f(x) \Rightarrow x^{2}+2 x-1=-x^{2}+2 k x-k^{2}+6\right.$ $y=g(x)$
$2 x^{2}+2(1-k) x+k^{2}-7=0 \ldots(*)$
$\Delta=4(1-k)^{2}-8\left(k^{2}-7\right)=0$
$k^{2}+2 k-15=0 \Rightarrow k=5$ or 3
For $k=-5,(*)$ becomes $2 x^{2}+12 x+18=0$
$\begin{aligned} 2(x+3)^{2} & =0 \\ x & =-3\end{aligned}$
$\begin{aligned} \Rightarrow \text { Intersection }=\left(-3,(-3)^{2}+2(-3)-1\right) & =(-3,2)\end{aligned}$
For $k=3$, ( $(*)$ becomes $2 x^{2} \quad 4 x+2=0$ $2(x-1)^{2}=0$
$\Rightarrow$ Intersection $=\left(1,1^{2}+2(1)-1\right)=(1,2)$

7B. 11 HKCEEAM 1991-I-9
(a) $g(x)=-2 x^{2}-12 x-23=-2\left(x^{2}+6 x+9-9\right)-25$ $=-2(x+3)^{2}-5$ $\leq-5<0$
(b) (i) $\begin{aligned} f(x)+k g(x) & =0 \\ \left(x^{2}+2 x-2\right)+k\left(-2 x^{2}-12 x-23\right) & =0\end{aligned}$ $(1-2 k) x^{2}+2(1-6 k) x-(2+23)=0$ $(1-2 k) x^{2}+2(1-6 k) x-(2+23 k)=0$ $\begin{aligned} \text { Eq uarts } \Rightarrow \Delta & =0 \\ 4(1-6 k)^{2}+4(1 & 2 k)(2+23 k)\end{aligned}$ $\begin{aligned} E q & 2 k)(2+23 k)\end{aligned}$ $\begin{aligned} 10 k^{2}-7 k-3 & =0 \\ k & =1 \text { or }\end{aligned}$
$\therefore k_{1}=1, k_{2}=\frac{-3}{10}$

7B. 12 (HKCEE AM 1993-I-10)
(a) Put $y=0: \frac{1}{k+1}\left[2 x^{2}+(k+7) x+4\right]=0$

$$
\begin{aligned}
& \text { Sum of } \mathrm{rts}=-\frac{k+7}{2}, \text { Product of } \mathrm{rts}=2 \\
& P Q=\text { Difference of } \mathrm{rts} \\
& 1=\sqrt{\left(\frac{k+7}{2}\right)^{2}-4(2)} \\
& 1=\frac{(k+7)^{2}}{4}-8 \\
& (k+7)^{2}=36
\end{aligned}
$$

(b) Method 1

From (a), $P Q$ does not exist when
$\left(\frac{k+7}{2}\right)^{2}-8<0$
$(k+7)^{2}<32$
$-7-\sqrt{32}<k<-7+\sqrt{32}$
Method 2

$$
\begin{aligned}
\left(\frac{k+7}{k+1}\right)^{2}-4\left(\frac{2}{k+1}\right)\left(\frac{4}{k+1}\right) & <0 \\
(k+7)^{2}-32 & <0 \\
(k+7)^{2} & <32 \\
-7-\sqrt{32} & <k<-7+\sqrt{32}
\end{aligned}
$$

(c) (i) $C(1): y=\frac{1}{2}\left(2 x^{2}+8 x+4\right)=x^{2}+4 x+2$ $C(-2): y=-1\left(2 x^{2}+5 x+4\right)=-2 x^{2}-5 x-4$ $\Rightarrow 3 x^{2}+9 x+6=0$

$$
\begin{aligned}
& x=-2 \text { or }-1 \Rightarrow y=-2 \text { or }-1 \\
& \text { ectionare }(-2,-2) \text { and }(-1,-1) .
\end{aligned}
$$

$\therefore$ Pis of intersectionare $(-2,-2)$ and $(-1,-1)$.
(ii) Put $x=-2$ into $C(k)$ : RHS $=\frac{1}{k+1}\left[2(-2)^{2}+(k+7)(-2)+4\right]$

$$
=\frac{1}{k+1}(-2 k-2)=-2
$$

$\therefore(-2,-2)$ is on $C(k)$ for any $k$
Pult $x=-1$ inn $C(k)$ :
RHS $=\frac{1}{k+1}\left[2(-1)^{2}+(k+7)(-1) \div 4\right]$
$=\frac{1}{k+1}(-k-1)=-1$
$\therefore \quad(-1,-1)$ is on $C(k)$ for any $k$
B. 13 HKCEEAM 1998-I-1
(a) $f(x)=x^{2}-k x=x^{2}-k x+\left(\frac{k}{2}\right)^{2}-\left(\frac{k}{2}\right)^{2}$

$$
\left.\begin{array}{rl} 
& =(x
\end{array} \frac{k}{2}\right)^{2}-\frac{k^{2}}{4} .
$$

(b) $\left\{\begin{array}{l}y=x^{2}-k x \\ y=-x\end{array} \Rightarrow x^{2}-k x=-x\right.$
$x(x \quad k+1)=0$
$x=0$ ort $-1 \Rightarrow y=0$ or $1-$
$\therefore$ The intersections are $(0,0)$ and $(k-1,1 \quad k)$.
(c) (i)

(ii) $f(x) \leq g(x) \Rightarrow 0 \leq x \leq 2$
$\therefore$ Least valu coff $(x)=\frac{(3)^{2}}{4}=-\frac{9}{4}$


7B. 14 HKCEEAM 2000-I-12
(a) $\begin{aligned} \Delta \text { of } f(x) & =(4 m)^{2}+4\left(5 m^{2}-6 m+1\right) \\ & =36 m^{2}-24 m+4\end{aligned}$
$=4(3 m \quad 1)^{2} \geq 0$
Since $m \neq \frac{1}{3}, \Delta \neq 0$.
Thus, $\Delta>0$, and $f(x)$ bas 2 di stinctreal roots.
(b) (i) $x=\frac{4 m \pm \sqrt{\Delta}}{2} \quad \frac{4 m \pm 2(3 m \quad 1)}{2}$
$\Rightarrow \beta=\frac{4 m+2(3 m \quad 1)^{2}}{2}=5 m \quad 1$ $\alpha=\frac{4 m-2(3 m 1)}{2}=-m+1$
(ii) (1) $4<\beta=5 m-1<5 \Rightarrow 5<5 m<6$
(2) Sketch A

The parabola should open upwards as the leadi ing coefficient is positive.
Sketch B:
$1<m<\frac{5}{3} \Rightarrow \frac{-1}{5}<\alpha=m+1<0$
The root s boul doe larger than -1 .
Stetch C
$f(x)=x^{2}-4 m x \quad\left(5 m^{2}-6 m+1\right)$
$=x^{2} \quad 4 m x+4 m^{2}-9 m^{2}+6 m-1$
$=(x-2 m)^{2}$
$=(x-2 m)^{2} \quad\left(\begin{array}{ll}3 m & 1)^{2}\end{array}\right.$
$\Rightarrow$ Min value of $f(x)=-\left(\begin{array}{ll}3 m & 1\end{array}\right)^{2}$ Thus $<\frac{5}{5} \Rightarrow-4.225<-(3 m \quad 1)^{2}<-4$ Thus the mi malue should be smalle r than 1 .

## 7. 15 HKCEE AM $2002-1$

(a) $f(x)=x^{2}-2 x-6=(x-1)^{2}-7 \Rightarrow C=(1,7)$
$\left\{\begin{array}{lll}y=x^{2} & 2 x & 6\end{array}\right.$
$\left\{\begin{array}{l}y=3 x+6\end{array}\right.$
$\Rightarrow x^{2} \quad 2 x \quad 6=2 x+6$
$\Rightarrow \begin{array}{cc}x^{2} & 4 x-12=0 \Rightarrow x=6 \text { or }-2\end{array}$
$A=(2,2(2)+6)=(-2,2)$
$B=(6,2(6)+6)=(6,18)$
(b) $f(x) \leq g(x)$ when $-2 \leq x \leq 6$

In this range. the horizontal line $y=k$ intersects the parabo la $y=f(x)$ at one point, an dthus $f(x)=k$ has only ne root
$2<k \leq 6$ or $k=-7$

## 7B. 16 HKCEEAM 2003-17

Let $f(x)=-(x-a)^{2}+b$, where $a$ and $b$ are real. Point $P$ is the vertex of the graph of $y=f(x)$.
(a) $P=(a, b)$
(b) (i) $g(x)=(x-b)^{2}+a$

Si nce $Q(b, a)$ is on the graph of $y=f(x)$,
$a=(b a)^{2}+b \Rightarrow(b-a)^{2}=b-a$
$\begin{aligned}a) & =\left(\begin{array}{ll}a & b\end{array}\right)^{2}+a \\ & =\left(\begin{array}{ll}b & a\end{array}\right)+a=\end{aligned}$
$\begin{aligned}(a, b) & =P \text { lics on } y\end{aligned}=g(x)$.
(ii) $y=f(x)$ touches the $x$-axis $\Rightarrow b=0$

From (b)(i), $\quad(b a)^{2} \quad(b-a)=0$

$$
\begin{aligned}
(b-a)(b-a-1) & =0 \\
\Rightarrow a=b \text { or } a & =b-1
\end{aligned}
$$

Thus, thereare two cases:
Case 1: $a=b=0$


Case 2: $a=1, b=0$


7B. 17 HKDSE MA 2012-1-13
(a) $0=k(2)^{3} \quad 21(2)^{2}+24(2)-4 \Rightarrow k=5$
(b) $P=(m, 0) \Rightarrow O=\left(m, 15 m^{2}-63 m+7\right)$ Area of $O P Q R=m\left(15 m^{2} \quad 63 m+72\right)$
$=15 m^{3}-63 m^{2}+72 m$
(c) $\quad 15 m^{3} \quad 63 m^{2}+72 m=12$
$3\left(5 m^{2} \quad 21 m^{2}+24 m \quad 4\right)=0$
$(m-2)\left(5 m^{2}-11 m+2\right)=0 \quad(b y(a))$
$(m-2)(5 m-1)(m-2)=0$
$m=2 \frac{1}{5}$ or -2 (rejecte das $P$ is in Quad I)

7B. 18 HKDSE MA 2015-I-18
(a) $\Delta=(-4 k)^{2} \quad 4(2)\left(3 k^{2}+5\right)=-8 k^{2} \quad 40$
$\therefore$ In does not eut the $x$-axis
(b) $f(x)=2 x^{2}-4 k x+3 k^{2}+5$
$=2\left(x^{2}-2 k x+k^{2} k^{2}\right)+3 k^{2}+5$
$=2(x-k)^{2}+k^{2}+5$
$\therefore$ Ver tex $=\left(k, k^{2}+5\right)$
7B. 19 HKDSEMA 2016-T-18
(a) $f(x)=-\frac{1}{3}\left(x^{2}-36 x\right)-121$

$$
\begin{aligned}
& =-\frac{1}{3}\left(x^{2}-36 x+18^{2}-18^{2}\right) \quad 121 \\
& =\frac{1}{3}(x \quad 18)^{2}-13 \\
\therefore & \text { Vettex }=(18,13)
\end{aligned}
$$

7B. 20 HKDSEMA 2017-I-18
(a) $\left\{\begin{array}{l}y=2 r^{2}-2 k x+2 x-3 k+8 \\ y=19\end{array}\right.$
$\left\{\begin{array}{l}y=219 \\ y=19\end{array}\right.$
$\Rightarrow 2 x^{2}+2(1-k) x-(3 k \div 11)=0$
$\Delta=4(1-k)^{2}+8(3 k+11)$
$\begin{aligned} & =4\left(k^{2}-2 k+1+6 k+22\right) \\ & =4\left(k^{2}+4 k+2\right)\end{aligned}$
$=4\left(k^{2}+4 k+23\right)$
$=4(k+2)^{2}+76 \geq 76>0$
(b) (i)

There are 2 distinct inters ections
$\left.\qquad \begin{array}{rl}\left\{\begin{aligned} a+b & =-\frac{2(1-k)}{2}=k-1 \\ & -(3 k+11)\end{aligned}\right. \\ \begin{array}{rl}(a b-b)^{2} & =(a+b)^{2}-4 a b \\ & =(k-1)^{2}+2(3 k+1\end{array}\end{array} . \begin{array}{rl}(a)\end{array}\right)$
(ii) $\begin{aligned}(a-b)^{2} & =(k+2)^{2}+19\end{aligned}$ Minimu mvalue of $(a-b)^{2}=19$ $\Rightarrow$ Minimum distance of $A B=\sqrt{19}>4$ No

## 7B. 21 HKDSE MA 2018-1-

(a) Let $f(x)=h x^{2}+k x$
$\left\{\begin{array}{l}60=f(2)=4 h+2 k \\ 99=f(3)=9 h+3 k\end{array} \Rightarrow\left\{\begin{array}{l}h=3 \\ k=24\end{array}\right.\right.$
$99=f(3)=9 h+3 k$
$\therefore f(x)=3 x^{2}+24 x$
(b) (i) $f(x)=3\left(x^{2}+8 x\right)=3\left(x^{2}+8 x+16-16\right)$
$=3(x+4)^{2}-48$
3.22 HKDSE MA 2020-I-7


## 7C Extreme values of quadratic functions

7C. 1 HKCEE MA 1985(A/B) $-\mathrm{I}-13$
(a) $D E^{2}=B D^{2}+B E^{2}-2 \cdot B D \cdot B E \cos \angle B$ $=(2-x)^{2}+x^{2}-Z X(2 \quad x)(x) \cos 6 \sigma^{\circ}$ $=3 x^{2}-6 x+4$
(b) Area of $\triangle D E F=\frac{1}{2} D E \cdot D E \sin 60^{\circ}$

$$
\begin{aligned}
= & \frac{1}{2}\left(3 x^{2}-6 x+4\right) \cdot \frac{\sqrt{3}}{2} \\
= & \frac{\sqrt{3}}{4}\left(3 x^{2}-6 x+4\right) \\
= & \frac{3 \sqrt{3}}{4}\left(x^{2}-2 x+\frac{4}{3}\right) \\
= & \frac{3 \sqrt{3}}{4}\left(x^{2}-2 x+1+\frac{1}{3}\right) \\
= & \frac{3 \sqrt{3}}{4}(x-1)^{2}+\frac{\sqrt{3}}{4}
\end{aligned}
$$

. Minimum area is attained when $x=1$.

## 7C. 2 HKCEE MA 1982(1/2)-I-12

## (a) Let $P=a x+b x^{2}$

$\{80000=20 a+400 b \Rightarrow a+20 b=4000$
$\left\{\begin{array}{l}80000=20 a+400 b \Rightarrow a+20 b=4000 \\ 87500=35 a+1225 b \Rightarrow a+35 b=2500\end{array}\right.$
$\Rightarrow\{a=6000$
$\Rightarrow\left\{\begin{array}{l}a=-100\end{array} \Rightarrow P=6000 x-100 x^{2}\right.$
He nce, when $x=15, P=5000(15) \quad 100(15)^{2}=67500$.
(b) $P=100\left(x^{2} 60 x\right)=-100\left(x^{2}-60 x+30^{2} \quad 30^{2}\right)$ $=90000(x-30)^{2}$
i.e. $a=90000, b=1, c=30$
(c) When $P$ is maximum, $x=30$.

7C3 HKCEEMA 1988~I-10
(a) Let $y=a x+b x^{2}$

$$
\left\{\begin{array} { l } 
{ - 5 = a + b } \\
{ - 8 = 2 a + 4 b }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=-6 \\
b=1
\end{array} \Rightarrow y=x^{2} \quad 6 x\right.\right.
$$

Hence, when $x=6, y=(6)^{2} \quad 6(6)=0$
(b) $y=x^{2}-6 x+9-9=\left(\begin{array}{ll}x & 3\end{array}\right)^{2}-9$
$\therefore$ Leastpossib levalue of $y=-9$
7C. 4 HKCEEMA 2011-I-12
(a) $\angle C=180^{\circ}-\angle B=90^{\circ}$ (int. $\angle \mathrm{s}, A B / / D C$ ) $\angle D P C=180^{\circ} \quad \angle A P D-\angle A P B \quad$ (adj. $\angle$ s on st. line)
$=90^{\circ}-\angle A P B$
$\angle P A B=180^{\circ}-\angle B-\angle A P B \quad(\angle \mathrm{su} \mathrm{m}$ of $\triangle)$ $=90^{\circ}-\angle A P B=\angle D P C$
In $\triangle A B P$ and $\triangle P C D$,

$$
\begin{array}{rll}
\triangle A B P \text { and } \triangle P C D, & \text { (proved) } \\
\angle D P C=\angle C=90^{\circ} & \text { (proved) } \\
\angle P D C=\angle P A B & =\angle A P B & \text { ( } \angle \text { sum of } \triangle) \\
\therefore \triangle A B P \sim \triangle P C D & \text { (AAA) }
\end{array}
$$

(b) $\frac{A B}{A_{3}^{P}}=\frac{P C}{C D} \quad$ (corr. sides, $\sim \Delta s$ ) $\frac{3}{x}=\frac{\frac{C D}{11} x}{k}$
$3 k=11 x \quad x^{2} \Rightarrow x^{2} \quad 11 x+3 k=0$
(c) $\Delta \geq 0 \Rightarrow(-11)^{2} \quad 4(3 k) \geq 0 \Rightarrow k \leq \frac{12}{12}$

```
g(x)=\mp@subsup{x}{}{2}-2tx+2\mp@subsup{x}{}{2}+4
```

```
 \(=x^{2}-2 x+\left(\frac{2 t}{2}\right)^{\prime}+2 x^{3}+4-\left(\frac{2 k}{2}\right)^{2}\)
```

```
 \(=x^{2}-2 x+\left(\frac{2 t}{2}\right)^{\prime}+2 x^{3}+4-\left(\frac{2 k}{2}\right)^{2}\)
```

    \(=(x-k)^{2}+x^{2}+4\)
    
( $\mathbf{x}, k^{2}+4$ ).
-




along bex xarib, we mor that $\varepsilon=\left(k+2-\left(k^{2}+4\right)\right)=\left(k+2,-k^{2}-4\right)$.

$x=\left(\frac{(k 2)+(k+2)}{2} \frac{\left(k^{2}+4\right)+\left(-k^{2}-4\right)}{2}\right.$
$=(k, 0)$

The sibpeof OM $\times$ The ilipe of 1 DE $=-1$
$0-3 .\left(k^{2}+4\right)-\left(-k^{2}-4\right)$
$k-2)-(k+2)=1$
$-6\left(x^{2}+4\right)$
$3 e^{2}+2 k+12=0$
$\Delta=2^{2}-4(3)(12)$
$=-140$


C. 5 HKCEE AM 1986-I-3
$f(x)=-k x^{2}+18 x+4 k$
$=-k\left[x^{2}-\frac{18}{k} x+\left(\frac{9}{k}\right)^{2}-\left(\frac{9}{k}\right)^{2}\right]+4 k$
$=-k\left(x \frac{9}{k}\right)^{2}+\frac{81}{k}+4 k$
$\therefore \frac{81}{k}+4 k=45$
$4 k^{2}-45 k+81=0 \Rightarrow k=\frac{9}{4}$ or 9
7C. 6 HKCEE AM 1996-I-4
(a) $x^{2}-6 x+11 \quad(x-3)^{2}+2$
$x^{2}-6 x+11 \quad(x-3)$
$\therefore a=-3, b=2$
(b) $x^{2}-6 x+11 \geq 2 \Rightarrow \frac{1}{x^{2}-6 x+11} \leq \frac{1}{2}$
$\therefore 0<\frac{1}{x^{2}-6 x+11} \leq \frac{1}{2}$
7C. 7 HKDSE MA 2013-T-17
(a) $f(x)=-x^{2}+36 x=-\left(x^{2}-36 x+18^{2}-18^{2}\right)$
$\therefore$ Vertex $=(18,324)=-(x-18)^{2}+324$
$\therefore$ Vertex $=(18,324)$
(b) (i) $A=x\left(\frac{108-3 x}{2}\right)=\frac{3}{2}\left(36 x-x^{2}\right)$
(ii) Max value of $A=\frac{3}{2}(324)$ (by (a))
: No.

7D Solving equations using graphs of functions

## 7D. 1 HKCEE MA 1980(3) -I- 16

(a) $30=25 x-x^{3} \Rightarrow\left\{\begin{array}{l}y=25 x-x^{3}\end{array}\right.$
$y=30$
$A C^{2}=b^{2}+b^{2}=2 b^{2}$ or 42

$$
\begin{aligned}
A C^{2} & =b^{2}+b^{2}=2 b^{2} \\
S^{2} & =h^{2}+\left(\frac{A C}{2}\right)^{2} \\
25 & =h^{2}+\frac{1}{2} b^{2} \Rightarrow b=\sqrt{50-2 h^{2}} \\
V=\frac{1}{b^{2} / h} & =\frac{1}{3}\left(50-2 h^{2}\right) h \\
& =\frac{2}{3}\left(25 h-h^{3}\right)
\end{aligned}
$$

(ii) $20=\frac{2}{3}\left(25 h-h^{3}\right) \Rightarrow 20=25 h-h^{3}$ From (3), $h=1.3$ or 4.2 .
70. 2 HKCEE MA $1981(1)-1-11$
(a) Onc side $=x \mathrm{~cm}$

The other side $=\frac{20-2 x}{2}=10 \quad x(\mathrm{~cm})$
$\therefore y x(10-x)=10 x-x^{2}$
(b) (i) $y=18.4$
(ii) Add $y=12 \quad \Rightarrow \quad x=t .4$ or 8.6
(iii) Greatest area $=y$-coordinate of vertex $=25$
D. 3 HKCEE MA 1983(A) $-\mathrm{I}-14$
(a) $V=k(7-2 k)^{2}=4 k^{3}-28 k^{2}+49 k$
(b) $4 x^{3}-28 x^{2}+49 x=20 \Rightarrow\left\{\begin{array}{l}y=4 x^{3}-28 x^{2}+49 x \\ y=20\end{array}\right.$

Add $y=20 \Rightarrow x=0.6,19$ or 4
(c) $k=0.6$ or 1.9 or 4.5 (rejected)
D. 4 HKCEE MA 1985(A)-I- 12
(a) (i) $x^{3}+x-1=0 \Rightarrow\left\{\begin{array}{l}y=x^{3}+x \\ y=1\end{array}\right.$ Add $y=1 \quad \Rightarrow \quad x=0.7$
(b) (i) $(x+1)^{4}-(x-1)^{4}$ $=\left[(x+1)^{+}+(x-1)^{-}\left[\left[(x+1)^{2}-(x-1)^{2}\right]\right.\right.$
$\left(2 x^{2}+2\right)(4 x)=8 x^{3}+8 x$
(ii) $8 x^{3}+8 x=8 \Rightarrow x^{3}+x-1=0$ By (a)(ii), $x=0.69$.

7D. 5 HKCEE MA $1985(B)-I-12$
(a) Since $\triangle A B C$ and thus $\triangle B P Q$ are right-angled isosceles, $Q R=(16-2 x) \mathrm{cm}$.
$\therefore$ Area of $P Q R S=x(16-2 x)=2\left(8 x-x^{2}\right)\left(\mathrm{cm}^{2}\right)$
(b) (i) The greatest area is altained when $x=4$
(ii) $28=2\left(8 x-x^{2}\right) \quad, y=8 x-x^{2}$
$14=8 x-x^{2} \Rightarrow\left\{\begin{array}{l}y=8 x \\ y=14\end{array}\right.$
Add $y=14 \Rightarrow x=2.6$ or 5.4 .

## 7D. 6 HKCEE MA 1986(B)-I-14

(a) $c=y$-intercept $=6$

Roots $=2$ and $3 \Rightarrow\left\{\begin{array}{l}\frac{c}{a}=(-2)(3) \Rightarrow a=1 \\ -\frac{b}{a}=(-2)+(3) \Rightarrow b=1\end{array}\right.$
(b) (i) $(x+2)(x-3)=-1 \Rightarrow\left\{\begin{array}{l}y=x^{2}+x+6 \\ y=-1\end{array}\right.$

Add $y=1 \Rightarrow x=220=-$

7D. 7 HKCEE MA 1987(A) - $1-14$
(a) (i) $x^{3}-6 x^{2}+9 x-1=0 \Rightarrow\left\{\begin{array}{l}y=x^{3}-6 x^{2}+9 x \\ y=1\end{array}\right.$

$$
\text { Add } y=1 \Rightarrow x=0.1,2.3 \text { or } 3.5
$$

$\left\{y=x^{3} \quad 6 x^{2}+9 x\right.$
(c) $\left\{\begin{array}{l}y=x^{3} \\ y=k\end{array}\right.$

To have 3 intersections, $0<k<4$.

7D. 8 HKCEE MA $1997-\mathrm{I}-13$
(a) (i) 10
(ii) $1.8<x \leq 16 \Rightarrow 2 \leq x \leq 16$
(b) (i) Put $x=3$ and $A=144$ : $144=3^{2}-51+$
(iii) Total cost $=10 \times \$ 20+6 \times 120=\$ 520$

Total proceeds
$=6 \times \$ 100+4 \times \$ 300+4 \times \$ 10+2 \times \$ 00$
$=6 \times \$ 100$
$=\$ 1960$
$\therefore$ Gain $=1960-520=(\$) 1440$
7D. 9 HKCEE MA 2000-I - 18
(a) Let $V=a h^{2}+b h^{3}$
$\left\{\begin{array}{l}\frac{2 S \pi}{3}=a+b \\ 81 \pi=9 a+27 b\end{array} \Rightarrow\left\{\begin{array}{l}a=10 \pi \\ b=-\frac{\pi}{3}\end{array}\right.\right.$
$\therefore V=10 h^{2}-\frac{\pi}{3} h^{3}$
(b) (i) Surface area $=$ Surface area of original hemisphere (i) $\begin{aligned} \text { Surface area } & =\text { Surface area of original } \\ & =2 \pi(10)^{2}=200 \pi\left(\mathrm{~cm}^{2}\right)\end{aligned}$
(ii) $\frac{1}{2} \cdot \frac{4}{3} \pi(10)^{3}-2\left(10 h^{2}-\frac{\pi}{3} h^{3}\right)=\frac{1400}{3} \pi$
$\frac{2000}{3} \pi-20 h^{2}+\frac{2 \pi}{3} h^{3}=\frac{1400}{3} \pi$
(iii) $\left\{\begin{array}{l}y=x^{3}-30 x^{2} \\ y=-300\end{array}\right.$

Add $y=-300$ to the graph $\Rightarrow h=3.35$

## 7E Transformation of graphs of function

7E. 1 HKCEE MA 2010-I - 16
(a) (i) $f(x)=\frac{-1}{144}\left(x^{2}-72 x\right)-6$
$=\frac{-1}{144}\left(x^{2}-72 x+36^{2}-36^{2}\right)-6$
$=\frac{-1}{144}(x-36)^{2}+3$
$\therefore$ Vertex $=(36,3)$
(ii) $g(x)=f(x+4)+5=\frac{-1}{144}(x-32)^{2}+8$
(iii) $h(x)=2^{f(x+4)}+5=2^{\frac{71}{7}(x-32)^{2}+3}+5$
(b) (i) When $u=8,8=2^{f(s)}$

$$
3=f(s)=\frac{-1}{144}(s-36)^{2}+3
$$

$\therefore$ The temperature is $36^{\circ} \mathrm{C}$
(ii) From the table, $\left\{\begin{array}{l}r=s-4 \\ v=u+5\end{array}\right.$

Hence, $u=2^{f(x)}$ becomes: $v-5=2^{f(t+4)}$
$\Rightarrow \nu=2^{f(t+4)}+5=2^{-\frac{1}{14}(x-32)^{2}+3}+5$

7E. 2 HKDSE MA 2015-1-18
(a) $\Delta=(-4 k)^{2}-4(2)\left(3 k^{2}+5\right)=-8 k^{2}-40$

It does not cut the $x$-axis. $\leq-40<0$
(b) $f(x)=2 x^{2} \quad 4 k x+3 k^{2}+5$
$\begin{aligned} & =2\left(x^{2}-2 k x+k^{2}-k^{2}\right)+3 k^{2}+5 \\ & =2(x-k)^{2}+k^{2}+5\end{aligned}$
verlex $=\left(k, h^{2}+5\right)$
(c)

$S$ and $T$ are nearest to each other when they are the vertices of the two parabolas respectively. Since $O S \neq O T, \triangle O S T$ is not isosceles, and thus the $x$-axis is not the $\perp$ bisector of ST. NOT correct.

7E. 3 HKDSEMA 2016-I-18
(a) $f(x)=-\frac{1}{3}\left(x^{2}-36 x\right)-121$
$=-\frac{1}{3}\left(x^{2}-36 x+18^{2}-18^{2}\right)-121$
$=\frac{1}{3}(x 18)^{\prime} 13$
$\therefore$ Vertex $=(18,-13)$
(b) $g(x)=f(x)+13=-\frac{1}{3}(x-18)^{2}$
(c) $-\frac{1}{3} x^{2}-12 x-121=f(-x)$

Hence, the transfornation is a reflection in the $y$ axis

7E. 4 HKDSE MA 2018-I-18
(a) Let $f(x)=h x^{2}+k x$.
$\left\{\begin{array}{l}60=f(2)=4 h+2 k \\ 99=f(3)=9 h+3 k\end{array} \Rightarrow\left\{\begin{array}{l}h=3 \\ k=24\end{array}\right.\right.$
$\therefore f(x)=3 x^{2}+24 x$
(b) (i) $f(x)=3\left(x^{2}+8 x\right)=3\left(x^{2}+8 x+16-16\right)$ $Q=(-4,-48)=3(x+4)^{2}-48$
(ii) $R=(-4,75)$
(iii) $Q R=75-(-48)=123$
$S Q=\sqrt{60^{2}+48^{2}}=\sqrt{5904}$
$R S=\frac{\sqrt{60^{2}+75^{2}}}{}=\sqrt{9225}$
Hence, $Q R^{2}=S Q^{2}+R S^{2} . \triangle Q R S$ is right- $\angle$ ed at $S$. (converse of Pyth. thm)
$\therefore P$ is the mid-point of $Q R$
7E. 5 HKDSE MA 2019-I- 19
(a) $f(4)=\frac{1}{1+k}\left((4)^{2}+(6 k-2)(4)+(9 k+25)\right)$

$$
=\frac{1}{1+k}(33+33 k)=33
$$

## Hence, the graph passes through $F$.

(b) (i) $g(x)=f(-x)+4$

$$
\begin{aligned}
= & \frac{1}{1+k}\left((-x)^{2}+(6 k-2)(-x)+(9 k+25)\right) \div 4 \\
& =\frac{1}{1+k}\left(x^{2}-(6 k-2) x+(3 k-1)^{2}\right. \\
& \left.\quad-(3 k-1)^{2}+(9 k+25)\right)+4 \\
& =\frac{1}{1+k}\left((x-3 k+1)^{2}-9 k^{2}+3 k+24\right)+4 \\
& =\frac{1}{1+k}\left((x-3 k+1)^{2}-3(1+k)(3 k-8)\right)+4 \\
& =\frac{1}{1+k}(x-3 k+1)^{2}-3(3 k-8)+4 \\
& =1-\overline{1}(x-3 k+1)^{2}+28-9 k \\
\therefore U & =(3 k-1,28-9 k)
\end{aligned}
$$

## 8 Rate, Ratio and Variation

## 8A Rate and Ratio

8A. 1 HKCEE MA 1980(1) I 8
A factory employs 10 skilled, 20 semi skilled, and 30 unskilled workers. The daily wages per worker of the three kinds are in the ratio $4: 3: 2$. If a skilled worker is paid $\$ 120$ a day, find the mean daily wage for the 60 workers.

8A. 2 HKCEE MA 1981(1/2/3) I 9
Normally, a factory produces 400 radios in $x$ days. If the factory were to produce 20 more radios each day, then it would take 10 days less to produce 400 radios. Calculate $x$.

8A. 3 HKCEE MA 1983(A/B) - I 4
If $a: b=3: 4$ and $a: c=2: 5$, find
(a) $a: b: c$,
(b) the value of $\frac{a c}{a^{2}+b^{2}}$.

## 8A. 4 HKCEE MA 1989-I - 1

The monthly income of a man is increased from $\$ 8000$ to $\$ 9000$.
(a) Find the percentage increase.
(b) After the increase, the ratio of his savings to his expenditure is $3: 7$ for each month. How much does he save each month?

## 8A. 5 HKCEE MA 1989-I 5

(a) Solve the simultaneous equations $\left\{\begin{array}{l}x+2 y=5 \\ 5 x-4 y=4\end{array}\right.$


## 8A. 6 HKCEE MA 1991 I-3

A man buys some British pounds ( $£$ ) with 150000 Hong Kong dollars (HK\$) at the rate $£ 1=\mathrm{HK} \$ 15.00$ and puts it on fixed deposit for 30 days. The rate of interest is $14.60 \%$ per annum.
(a) How much does he buy in British pounds?
(b) Find the amount in British pounds at the end of 30 days.
(Suppose 1 year $=365$ days and the interest is calculated at simple interest.)
(c) If he sells the amount in (b) at the rate of $£ 1=\mathrm{HK} \$ 14.50$, how much does he get in Hong Kong dollars?

8A. 7 HKCEE MA 1991 I-4
Let $2 a=3 b=5 c$.
(a) Find the ratio $a: b: c$.
(b) If $a b+c=55$, find $c$.

8A. 8 HKCEE MA 1995-I 5
It is given that $x:(y+1)=4: 5$.
(a) Express $x$ in terms of $y$.
(b) If $2 x+9 y=97$, find the values of $x$ and $y$.

8A. 9 HKCEE MA 2005 -I 5
The ratio of the number of marbles owned by Susan to the number of marbles owned by Teresa is $5: 2$. Susan has $n$ marbles. If Susan gives 18 of her own marbles to Teresa, both of them will have the same number of marbles. Find $n$.

## 8A. 10 HKCEE MA 2011-I 6

In a summer camp, the ratio of the number of boys to the number of girls is $7: 6$. If 17 boys and 4 girls leave the summer camp, then the number of boys and the number of girls are the same. Find the original number of girls in the summer camp.

## 8A. 11 HKDSE MA PP I-5

The ratio of the capacity of a bottle to that of a cup is $4: 3$. The total capacity of 7 bottles and 9 cups is 11 litres. Find the capacity of a bottle.

8A. 12 HKDSEMA 2018 I 9
A car travels from city $P$ to city $Q$ at an average speed of $72 \mathrm{~km} / \mathrm{h}$ and then the car travels from city $Q$ to city $R$ at an average speed of $90 \mathrm{~km} / \mathrm{h}$. It is given that the car travels 210 km in 161 minutes for the whole journey. How long does the car take to travel from city $P$ to city $Q$ ?

## 8A. 13 HKDSE MA 2019-I 7

In a playground, the ratio of the number of adults to the number of children is $13: 6$. If 9 adults and 24 children enter the playground, then the ratio of the number of adults to the number of children is $8: 7$. Find the original number of adults in the playground.

8A. 14 HKDSE MA 2020 I 4
Let $a, b$ and $c$ be non-zero numbers such that $\frac{a}{b}=\frac{6}{7}$ and $3 a=4 c$. Find $\frac{b+2 c}{a+2 b}$.

## 8B Travel graphs

## 8B. 1 HKCEE MA 1984(B)-1-3

The figure shows the travel graphs of two cyclists $A$ and $B$ travelling on the same road between towns $P$ and Q, 14 km apart.
(a) For how many minutes does $A$ rest during the journey?
(b) How many km away from $P$ do $A$ and $B$ meet?


## 8B.2 HKDSE MA SP $-\mathrm{I}-12$

The figure shows the graph for John driving from town $A$ to town $D$ (via town $B$ and town $C$ ) in a mom ing. The journey is divided into three parts: Part I (from $A$ to $B$ ), Part II (from $B$ to $C$ ) and Part III (from $C$ to $D$ ).
(a) For which part of the journey is the average speed the lowest? Explain your answer.
(b) If the average speed for Part II of the journey is $56 \mathrm{~km} / \mathrm{h}$, when is John at $C$ ?
(c) Find the average speed for John driving from $A$ to $D$ in $\mathrm{m} / \mathrm{s}$.


## 8B. 3 HKDSE MAPP-I- 12

The figure shows the graphs for Ada and Billy running on the same straight road between town $P$ and town $Q$ during the period 1:00 to 3:00 in an afternoon. Ada runs at a constant speed. It is given that town $P$ and town $Q$ are 16 km apart.
(a) How long does Billy rest during the period?
(b) How far from town $P$ do Ada and Billy meet during the period?
(c) Use average speed during the period to dete mine who runs faster. Explain your answer.


## 8B. 4 HKDSEMA 2014-I-10

Town $X$ and Town $Y$ are 80 km apart. The figure shows the graphs for car $A$ and car $B$ travelling on the same straight road between town $X$ and town $Y$ during the period 7:30 to 9:30 in a moming. Car $A$ travels at a constant speed during the period $\mathrm{Car} B$ comes to rest at $8: 15$ in the moming.
(a) Find the distance of car $A$ from town $X$ at $8: 15$ in the morning.
(b) At what time after 7:30 in the morring do car $A$ and car $B$ first meet?
(c) The driver of car $B$ claims that the average speed of car $B$ is higher than that of car $A$ during the period 8:15 to 9:30 in the morning. Do you agree? Explain your answer.


## C Variation

8C. 1 HKCEE MA 1982(1/2)-I 12
(To continue as 7 C .2 .
The price of a certain monthly magazine is $x$ dollars per copy. The total profit on the sale of the magazine is $P$ dollars. It is given that $P=Y+Z$, where $Y$ varies directly as $x$ and $Z$ varies directly as the square of $x$. When $x$ is $20, P$ is 80000 ; when $x$ is $35, P$ is 87500
(a) Find $P$ when $x=15$.

## C. 2 HKCEEMA 1984(B) I 14

A school and a youth centre agree to share the total expenditure for a camp in the ratio $3: 1$. The total expenditure $\$ E$ for the camp is the sum of two parts: one part is a constant $\$ C$, and the other part varies directly as the number of participants $N$. If there are 300 participants, the school has to pay $\$ 7500$. If there are 500 participants, the school has to pay $\$ 12000$
(a) Find the total expenditure for the camp, when the school has to pay $\$ 7500$.
(b) Find the value of $C$.
(c) Express $E$ in terms of $N$.
(d) If the youth centre has to pay $\$ 4750$, find the number of participants.

## C. 3 HKCEE MA 1986(B) I

If given that $z$ varies directly as $x^{2}$ and inversely as $y$. If $x=1$ and $y=2$, then $z=3$,
Find $z$ when $x=2$ and $y=3$
8C. 4 HKCEE MA 1987(B) I-14
Given $p=y+z$, where $y$ varies directly as $x, z$ varies inversely as $x$ and $x$ is positive. When $x=2, p=7$ when $x=3, p=8$.
(a) Find $p$ when $x=4$

## 8C. 5 HKCEEMA 1988- -10

(To continue as 7C.3.)
A variable quantity $y$ is the sum of two parts. The first part varies directly as another variable $x$, while the second part varies directly as $x^{2}$. When $x=1, y=-5$; when $x=2, y=-8$.
(a) Express $y$ in terns of $x$. Hence find the value of $y$ when $x=6$.

## C. 6 HKCEE MA 1991-I 2

In a joint variation, $x$ varies directly as $y^{2}$ and inversely as $z$. Given that $x=18$ when $y=3, z=2$,
(a) express $x$ in terms of $y$ and $z$,
(b) find $x$ when $y=1, z=4$.

## 8C. 7 HKCEE MA 1994 I 4

Suppose $x$ varies directly as $y^{2}$ and inversely as $z$ When $y=3$ and $z=10, x=54$.
(a) Express $x$ in terms of $y$ and $z$
(b) Find $x$ when $y=5$ and $z=12$

## C. 8 HKCEE MA 1997 -I-7

The ratio of the volumes of two similar solid circular cones is $8: 27$.
(a) Find the ratio of the height of the smaller cone to the height of the larger cone
(b) If the cost of painting a cone varies as its total surface area and the cost of painting the smaller cone is $\$ 32$, find the cost of painting the larger cone.

## 8. Rate, Ratio and Variation

## 8C. 9 HKCEE MA 1998-I 12

The monthly service charge $\$ S$ of mobile phone network $A$ is partly constant and partly varies directly as the connection time $t$ minutes. The monthly service charges are $\$ 230$ and $\$ 284$ when the connection times are 100 minutes and 130 minutes respectively.
(a) Express $S$ in terms of $t$.
(b) The service charge of mobile phone network $B$ only varies directly as the connection time. The charge is $\$ 2.20$ per minute. A man uses about 110 minutes connection time every month. Should he join network A or B in order to save money? Explain your answer

## 8C. 10 HKCEE MA 1999 I-6

$y$ varies partly as $x$ and partly as $x^{2}$. When $x=2, y=20$ and when $x=3, y=39$. Express $y$ in terms of $x$.
8C. 11 HKCEE MA 2000-I - 18
The figure shows a solid hemisphere of radius 10 cm . It is cut into two portions, $P$ and $Q$, along a plane parallel to its base. The height and volume of $P$ are $h \mathrm{~cm}$ and $V \mathrm{~cm}^{3}$ respectively.
It is known that $V$ is the sum of two
parts. One part varies directly as $h^{2}$ and the other part varies directly as $h^{3} . V=\frac{29}{3} \pi$ when $h=1$ and $V=81 \pi$ when $h=3$.
(a) Find $V$ in terms of $h$ and $\pi$.


## 8C. 12 HKCEE MA 2001 - 13

$S$ is the sum of two parts. One part varies as $t$ and the other part varies as the square of $t$. The table below shows certain pairs of the values of $S$ and $t$.

$S$	0	33	56	69	72	65	48	21
$t$	0	1	2	3	4	5	6	7

(a) Express $S$ in terns of $t$
(b) Find the value(s) of $t$ when $S=40$.
(c) Using the data given in the table, plot the graph of $S$ against $t$ for $0 \leq t \leq 7$ in the following figure. Read from the graph the value of $t$ when the value of $S$ is greatest.


60

## 8C. 13 HKCEE MA 2002 I 11

(To continue as 15 C .8 .)
The area of a paper boolmark is $A \mathrm{~cm}^{2}$ and its perimeter is $P \mathrm{~cm} . A$ is a function of $P$. Yt is known that $A$ is the sum of two parts, one part varies as $P$ and the other part varies as the square of $P$. When $P \quad 24, A 36$ and when $P=18, A=9$.
(a) Express $A$ in terms of $P$.
(b) (i) The best-selling paper bookmark has an area of $54 \mathrm{~cm}^{2}$. Find the perimeter of this bookmark.

## 8C. 14 HKCEE MA 2003 I 10

(To continue as 10C.5.)
The speed of a solar-powered toy can is $V \mathrm{~cm} / \mathrm{s}$ and the length of its solar panel is $L \mathrm{~cm}$, where $5 \leq L \leq 25$. $V$ is a function of $L$. It is known that $V$ is the sum of two parts, one part varies as $L$ and the other part varies as the square of $L$. When $L=10, V=30$ and when $L=15, V=75$.
(a) Express $V$ in terms of $L$.

## 8C. 15 HKCEE MA 2004 I 10

(To continue as 10C.6.)
It is known that $y$ is the sum of two parts, one part varies as $x$ and the other part varies as the square of $x$. When $x=3, y=3$ and when $x=4, y=12$.
(a) Express $y$ in terms of $x$.

## 8C. 16 HKCEE MA 2005 - I - 10

(To continue as 48.18.)
It is known that $f(x)$ is the sum of two parts, one part varies as $x^{3}$ and the other part varies as $x$.
Suppose $f(2)=-6$ and $f(3)=6$.
(a) Find $f(x)$.

## 8C. 17 HKCEE MA 2006-I - 15

The cost of a souvenir of surface area $A \mathrm{~cm}^{2}$ is $\$ C$. It is given that $C$ is the sum of two parts, one part varies directly as $A$ while the other part varies directly as $A^{2}$ and inversely as $n$, where $n$ is the number of souvenirs produced. When $A=50$ and $n=500, C=350$; when $A=20$ and $n=400, C=100$.
(a) Express $C$ in terms of $A$ and $n$.
(b) The selling price of a souvenir of surface area $A \mathrm{~cm}^{2}$ is $\$ 8 A$ and the profit in selling the souvenir is $\$ P$.
(i) Express $P$ in terms of $A$ and $n$.
(ii) Suppose $P: n=5: 32$. Find $A: n$.
(iii) Suppose $n=500$. Can a profit of $\$ 100$ be made in selling a souvenir? Explain your answer.
(iv) Suppose $n=400$. Using the method of completing the square, find the greatest profit in selling a souvenir.

8C. 18 HKCEE MA 2007-1-14
(Continued from 48.19.)
(a) Let $f(x)=4 x^{3}+k x^{2}-243$, where $k$ is a constant. It is given that $x+3$ is a factor of $f(x)$.
(i) Find the value of $k$.
(ii) Factorize $f(x)$.
(b) Let $\$ C$ be the cost of making a cubical handicraft with a side of length $x \mathrm{~cm}$. It is given that $C$ is the sum of two parts, one part varies as $x^{3}$ and the other part varies as $x^{2}$. When $x=5.5, C=7381$ and when $x=6, C=9072$.
(i) Express $C$ in terms of $x$.
(ii) If the cost of making a cubical handicraft is $\$ 972$, find the length of a side of the handicraft.

## 8C. 19 HKCEE MA 2010 I - 10

The cost of a tablecloth of perimeter $x$ metres is $\$ C$. It is given that $C$ is the sum of two parts, one part varies as $x$ and the other part varies as $x^{2}$. When $x=4, C=96$ and when $x=5, C=145$.
(a) Express $C$ in terms of $x$.
(b) If the cost of a tablecloth is $\$ 288$, find its perimeter.

## 8C. 20 HKCEE MA 2011-I-11

(To concinue as 7B.9.)
It is given that $f(x)$ is the sum of two parts, one part varies as $x^{2}$ and the other part varies as $x$. Suppose that $f(-2)=28$ and $f(6)=-36$.
(a) Find $f(x)$.

## 8C. 21 HKDSE MA SP-I- 11

In a factory, the production cost of a carpet of perimeter $s$ metres is $\$ C$. It is given that $C$ is a sum of two parts, one part varies as $s$ and the other part varies as the square of $s$. When $s=2, C=356$; when $s=5$, $C=1250$.
(a) Find the production cost of a carpet of perimeter 6 metres
(b) If the production cost of a carpet is $\$ 539$, find the perimeter of the carpet.

## 8C. 22 HKDSE MA PP I 11

Let $\$ C$ be the cost of manufacturing a cubical carton of side $x \mathrm{~cm}$. It is given that $C$ is partly constant and partly varies as the square of $x$. When $x=20, C=42$; when $x=120, C=112$.
(a) Find the cost of manufacturing a cubical carton of side 50 cm .
(b) If the cost of manufacturing a cubical carton is $\$ 58$, find the length of a side of the carton.

## 8C. 23 HKDSE MA 2012 I 11

(To continue as 15C.14.)
Let $\$ C$ be the cost of painting a can of surface area $A \mathrm{~m}^{2}$. It is given that $C$ is the sum of two parts, one part is a constant and the other part varies as $A$. When $A=2, C=62$; when $A=6, C=74$.
(a) Find the cost of painting a can of surface area $13 \mathrm{~m}^{2}$.

## 8C. 24 HKDSE MA 2013-I-11

The weight of a tray of perimeter $\ell$ metres is $W$ grams. It is given that $W$ is the sum of two parts, one part varies directly as $\ell$ and the other part varies directly as $\ell^{2}$. When $\ell=1, W=181$ and when $\ell=2, W=402$.
(a) Find the weight of a tray of perimeter 1.2 metres.
(b) If the weight of a tray is 594 grams, find the perimeter of the tray.

## 8C. 25 HKDSE MA 2014 I 13

It is given that $f(x)$ is the sum of two parts, one part varies as $x^{2}$ and the other part is a constant. Suppose that $f(2)=59$ and $f(7)=-121$.
(a) Find $f(6)$.
(b) $A(6, a)$ and $B(-6, b)$ are points lying on the graph of $y=f(x)$. Find the area of $\triangle A B C$, where $C$ is a point lying on the $x$ axis.

8C. 26 HKDSE MA 2015-I-10
When Susan sells $n$ handbags in a month, her income in that month is $\$ S$. It is given that $S$ is a sum of two parts: one part is a constant and the other part varies as $n$. When $n=10 . S=10600$; when $n=6$, $S=9000$
(a) When Susan sells 20 handbags in a month, find her income in that month.
(b) Is it possible that when Susan sells a certain number of handbags in a month, her income in that month is $\$ 18000$ ? Explain your answer.

## 8C. 27 HKDSE MA 2016-I-8

It is given that $f(x)$ is the sum of two parts, one part varies as $x$ and the other part varies as $x^{2}$. Suppose that
$f(3)=48$ and $f(9)=198$.
(a) Find $f(x)$.
(b) Solve the equation $f(x)=90$.

## 8C. 28 HKDSE MA 2017-I-8

It is given that $y$ varies inversely as $\sqrt{x}$. When $x=144, y=81$
(a) Express $y$ in terms of $x$.
(b) If the value of $x$ is increased from 144 to 324 , find the change in the value of $y$

8C. 29 HKDSE MA $2018 \mathrm{I}-18$ (To continue as 7 B .21 )
It is given that $f(x)$ partly varies as $x^{2}$ and partly varies as $x$. Suppose that $f(2)=60$ and $f(3)=99$.
(a) Find $f(x)$.

8C. 30 HKDSE MA 2019-I - 10
It is given that $h(x)$ is partly constant and partly varies as $x$. Supposc that $h(2)=-96$ and $h(5)=72$
(a) Find $h(x)$.
(b) Solve the equation $h(x)=3 x^{2}$

8C. 31 HKDSE MA $2020-\mathrm{I}-10$

The price of a brand $X$ souvenir of height $h \mathrm{~cm}$ is $\$ P . P$ is partly constant and partly varies as $h^{3}$. When $h=3, P=59$ and when $h=7, P=691$.
(a) Find the price of a brand $X$ souvenir of height 4 cm .
(b) Someone claims that the price of a brand $X$ souvenir of height 5 cm is higher than the total price of two brand $X$ souvenirs of height 4 cm . Is the claim correct? Explain your answer:
(2 marks)

## 8A Rate and Ratio

## A. 1 HKCEE MA 1980(1)-I-8

Daily wage of a skilled worker $=\$ 120$
Daiky wage of a semi-skilled worker $=\$ 120 \times \frac{3}{4}=\$ 90$
Daily wage of a unskilled worker $=\$ 120 \times \frac{2}{4}=\$ 60$
$\therefore$ Mean daily wage $=\frac{10 \times \$ 120+20 \times \$ 90+30 \times \$ 60}{10+20+30}$
$=\$ 80$

8A. 2 HKCEE MA 1981(1/2/3)-I-9
Original rate $=\frac{400}{x}$ radios $/ \mathrm{day}$
New rate $=\left(\frac{400^{x}}{x}+20\right)$ radios/day
$\therefore\left(\frac{400}{x}+20\right)\left(\begin{array}{ll}x & 10\end{array}\right)=400$
$(20+x)(x \quad 10)=20 x$
$x^{2}-10 x-200=0 \Rightarrow x=50$ or -40 (rejected)
8A. 3 HKCEEMA 1983(A/B)-1 -4
(a) $\left\{\begin{array}{l}a: b=3: 4 \quad=6: 8 \\ a: \quad c=2: \quad 5=6: 15\end{array} \Rightarrow a: b: c=6: 8: 15\right.$
(b) $\frac{a c}{a^{2}+b^{2}}=\frac{a c \times \frac{1}{c^{2}}}{\left(a^{2}+b^{2}\right) \times \frac{1}{2}}=\frac{\frac{s}{c}}{1+\left(\frac{b}{4}\right)^{2}}=\frac{\frac{5}{2}}{1+\left(\frac{4}{3}\right)^{2}}=\frac{9}{10}$

8A. 4 HKCEEMA 1989-I-1
(a) $\%$ fncrease $=\frac{9000-8000}{8000} \times 100 \%=12.5 \%$
(b) Amount saved $=\$ 9000 \times \frac{3}{3+7}=\$ 2700$

8A. 5 HKCEE MA $1989-\mathrm{I}-5$
(a) $2(1)+(2) \Rightarrow 7 x=14 \Rightarrow x=2 \Rightarrow y=\frac{3}{2}$
(b) From (a), $\frac{a}{c}=2, \frac{b}{c}=\frac{3}{2}$.

$$
\text { i.e. }\left\{\begin{array}{l}
a: c=2: 1=4: 2^{2} \\
b: c=3: 2
\end{array} \Rightarrow a: b: c=4: 3: 2\right.
$$

8A. 6 HKCEE MA 1991 -I -3
(a) $£ 150000 \div 15=£ 10000$
(b) Amount $=10000+10000 \times 14.60 \% \times \frac{30}{365}=(f) 10120$
(c) $\$ 10120 \times 14.50=\$ 146740$

8A. 7 HKCEE MA 1991-I-4
(a) $2 a=3 b \Rightarrow a: b=3: 2$
$3 b=5 c \Rightarrow b: c=5: 3$
$\therefore a: b: c=15: 10: 6$
(b) Let $a=15 k, b=10 k, c=6 k$.
$a-b+c=55$
$a-b 5+6 k=55$
$15 k-10 k+6 k=55 \Rightarrow k=5$
$15 k-10 k+6 k$
$\therefore c=6 k=30$

$$
\begin{aligned}
& \text { 8A.8 HKCEE MA 1995-1-5 } \\
& \text { (a) } \frac{x}{y+1}=\frac{4}{5} \Rightarrow 5 x=4(y+1) \Rightarrow x=\frac{4}{5}(y+1) \\
& \text { (b) } 2 x+9 y=97 \\
& 2 \cdot \frac{4}{5}(y+1)+9 y=97 \Rightarrow \frac{53}{5} y=\frac{477}{5} \Rightarrow y=9 \\
& \therefore x=\frac{4}{5}(9+1)=8
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8A. } 9 \text { HKCEEMA } 2005-\mathrm{I}-5 \\
& \text { Teresa has } \frac{2}{5} n \text { marbles. } \\
& n-18=\frac{2}{5} n+18 \Rightarrow \frac{3}{5} n=36 \Rightarrow n=60
\end{aligned}
$$

8A.10 HKCEEMA 2011-I-6
Let there be $x$ girls and $\frac{7}{6} x$ boys originally.
${ }_{6}{ }^{x-17=x \sim 4 \Rightarrow x=78}$
$\therefore$ There were 78 girls originally
8A. 11 HKDSE MA PP-I- 5
Let the capacity of a bottle and a cup be $x$ litres and $\frac{3}{4} x$ litres
$7 x+9\left(\begin{array}{c}3 \\ 4 \\ 4\end{array}\right)=11 \Rightarrow \frac{55}{4} x=11 \Rightarrow x=0.8$
The capacity of a botlle is 0.8 litres.
8A. 12 HKDSE MA 2018- 1 -9
Let $x$ mins be the time taken from $P$ to $Q$. Then the car took ( $161-x$ ) mins from 2 to $R$
$72 \times\left(\frac{x}{60}\right)+90 \times\left(\frac{161-x}{60}\right)=210$
The car takes $105 \frac{2}{2,} \quad \frac{10}{10}=210$
8A. 13 HKDSE MA 2019-I-7
Let the original numbers of adults and children be $13 k$ and $6 k$ respectively.
$\frac{13 k+9}{6 k+24}=\frac{8}{7} \Rightarrow 91 k-48 k=192-63 \Rightarrow k=3$
$\therefore$ Original number of adults was $13(3)=39$.

## 8A. 14 HKDSE MA 2020-I-4

## $8 B$ Travel graphs

8B. 1 HKCEE MA 1984(B)-I-3
(a) Rested from 12:17 pm. to $12: 32 \mathrm{p} . \mathrm{m} . \Rightarrow 15 \mathrm{~min}$ (b) 8 km

8B. 2 HKDSE MA SP-T-12
(a) Part I since the slope of the graph is the smallest.
(b) Time for Part II $=(18-4) \div 56=\frac{1}{4}$ (hours)

The time at $C$ is $8: 26$.
(c) Average speed $=\frac{27 \times 1000 \mathrm{~m}}{30 \times 60 \mathrm{~s}}-15 \mathrm{~m} / \mathrm{s}$

B3 3 HKDSEMAPP-1-12
(a) Billy rested from $1: 32$ to $2: 03 \Rightarrow 31 \mathrm{~min}$
(b) They meet at 2: 18 .
$\because$ Speed of Ada $=\frac{12}{2}=6(\mathrm{~km} / \mathrm{h})$
$\therefore$ Dist. from $P$ when they meat $=6 \times \frac{60+18}{60}=7.8(\mathrm{~km})$
(c) Average speed of Billy $=(16-2) \div 2=7(\mathrm{~km} / \mathrm{h})$

Billy nens faster.

3B. 4 HKDSE MA 2014-I 10
(a) Speed of $A=\frac{80}{2}=40(\mathrm{~km} / \mathrm{h})$
$\therefore$ Dist. from $X$ at $8: 15=40 \times \frac{45}{60}=30(\mathrm{~km})$
(b) They mect when $A$ is 44 km from $X$.

Time taken by $A=\frac{44}{40}=1.1$ (hour) $=1 \mathrm{hr} 6 \mathrm{mins}$ $\therefore$ The time is $8: 36$.
(c) Dist. travelled by $B=80 \quad 44=36(\mathrm{~km})$ Dist. travelled by $A=80-30=50(\mathrm{~km})$
$\therefore$ A has a higher speed as the time taken is the same. $\therefore$ NO

## 8C Variation

## C. 1 HKCEEMA 1982(1/2) $-1-12$

(a) Let $P=a x+b x^{2}$.
$80000=20 a+400 b \Rightarrow a+20 b=4000$
$\left\{\begin{array}{l}87500=35 a+1225 b \Rightarrow a+35 b=2500 \\ 870\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}a=6000\end{array}\right.$
$\Rightarrow P=6000 x-100$
Hence, when $x=15, P=5000(15)-100(15)^{2}=67500$
8 C .2 HKCEE MA. 1984(B)-I-14
(a) Total expenditure $=\$ 7500 \div \frac{3}{4}=\$ 10000$
(b) Let $E=C+k N$.
$\left\{\begin{array}{l}7500 \div \frac{3}{4}=C+k(300) \Rightarrow c+300 k=10000\end{array}\right.$
$\left\{12000 \div \frac{3}{4}=C+k(500) \Rightarrow C+500 k=16000\right.$
$\Rightarrow\{c=1000$
$\Rightarrow\left\{\begin{array}{l}k=30 \\ k=30\end{array}\right.$
(c) $E=1000+30 N$
(d) $4750 \div \frac{1}{4}=1000+30 \mathrm{~N} \Rightarrow N=60$

The number of participants is 60 .
SC. 3 HKCEE MA 1986(B) - I - 5
Let $z=\frac{k x^{2}}{y}$. Then (3) $\frac{k(1)^{2}}{(2)} \Rightarrow k=6$
$\therefore z=\frac{6 x^{2}}{y}$
Hence, when $x=2$ and $y=3, z=\frac{6(2)^{2}}{(3)}=8$.
8C. 4 HKCEE MA 1987(B)-I- 14
(a) Let $p=a x+\frac{b}{x}$.

$$
\begin{aligned}
& \left\{\begin{array} { l } 
{ 7 = 2 a + \frac { b } { 2 } \Rightarrow 4 a + b = 1 4 } \\
{ 8 = 3 a + \frac { b } { 3 } \Rightarrow 9 a + b = 2 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=2 \\
b=6
\end{array}\right.\right. \\
& \therefore p=2 x+\frac{6}{x} . \\
& \text { When } x=4, \quad p=2(4)+\frac{6}{(4)}=\frac{19}{2} .
\end{aligned}
$$

8C. 5 HKCEE MA 1988-I-10
(a) Let $y=a x+b x^{2}$
$\left\{\begin{array}{c}5=a+b \\ -8=2 a+4 b\end{array} \Rightarrow\left\{\begin{array}{l}a=-6 \\ b=1\end{array} \Rightarrow y=x^{2} \quad 6 x\right.\right.$
Hence, when $x=6, y=(6)^{2}-6(6)=0$
8C. 6 HKCEEMA 1991-1-2
(a) Let $x=\frac{k y^{2}}{z} \Rightarrow 18=\frac{k(3)^{2}}{2} \Rightarrow k=4 \Rightarrow x=\frac{4 y^{2}}{z}$
(b) $x=\frac{4(1)^{2}}{(4)}=1$

8C. 7 HKCEEMA 1994-I -4
(a) Let $x=\frac{k y^{2}}{z} \Rightarrow(54)=\frac{k(3)^{2}}{(10)} \Rightarrow k=60$
$\therefore x=\frac{60 y^{2}}{z}$
(b) $x=\frac{60(5)^{2}}{(12)}=125$

8C. 8 HKCEE MA $1997-17$
(a) Required ratio $=\sqrt[3]{\frac{8}{27}}=\frac{2}{3}$
(b) Cost of painting larger cone $=\$ 32 \times\left(\frac{3}{2}\right)^{2}=\$ 72$

## 3C. 9 HKCEE MA 1998-I-12 <br> (a) Let $S=a+b t$. <br> $\left\{\begin{array}{l}230=a+100 b \\ 284=a+130 b\end{array} \Rightarrow\left\{\begin{array}{l}a=50 \\ b=1.8\end{array}\right.\right.$ <br> $\therefore S=50 \div 1.8 t$

(b) Charge under $A=50+1.8(110)=(\$) 248$ Charge under $B=2.20 \times 110=(\$) 232<248$
$\therefore$ He should join $B$ to save money.

## 8C. 10 HKCEE MA 1999-I-6

Let $y=a x+b x^{2}$.
$\left\{\begin{array}{l}20=2 a+4 b \\ 39=3 a+9 b\end{array} \Rightarrow\left\{\begin{array}{l}a=5 \\ k=b\end{array} \Rightarrow y=5 x+3 x^{2}\right.\right.$

8C. 11 HKCEE MA 2000-1-18

$$
\begin{aligned}
& \text { (a) Let } V=a h^{2}+b h^{3} . \\
& \left\{\begin{array} { l } 
{ \frac { 2 9 \pi } { 3 } = a + b } \\
{ 8 1 \pi = 9 a + 2 7 b }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=10 \pi \\
b=-\frac{\pi}{3}
\end{array}\right.\right. \\
& \therefore V=10 h^{2}-\frac{\pi}{3} h^{3}
\end{aligned}
$$

8C. 12 HKCEEMA 2001-1-13
(a) Let $S=h t+k t^{2}$.
$\left\{\begin{array}{l}33=h+k \\ 56=2 h+4 k\end{array} \Rightarrow\left\{\begin{array}{l}h=38 \\ k=-5\end{array} \Rightarrow S=38 t-5 t^{2}\right.\right.$
(b)
$40=38 t \quad 5 r^{2}$
$5 t^{2}-38 t+40=$
$t=\frac{38 \pm \sqrt{644}}{10}\left(=\frac{19 \pm \sqrt{161}}{5}\right)$
(c) From the graph, $S$ is greatest when $t=3.8$.


8C. 13 HKCEE MA 2002-I- 1
(a) Let $A=h P+k P^{2}$
$\left\{\begin{array}{l}36=24 h+576 k \\ 9=18 h+324 k\end{array} \Rightarrow\left\{\begin{array}{l}h=-\frac{5}{2} \\ k=\frac{1}{6}\end{array} \Rightarrow A=\frac{5}{2} P+\frac{1}{6} P^{2}\right.\right.$
(b) (i) $\begin{aligned} 54 & =\frac{5}{2} P+\frac{1}{6} P^{2} \\ P^{2}-15 P-324 & =0 \Rightarrow P=27\end{aligned}$
$P^{2}-15 P-324=0 \Rightarrow P=27$ or 12 (rejected) $\therefore$ The perimeter is 27 cm .

## 3C. 14 HKCEE MA 2003-I - 10

(a) $L e t V=h L+k L^{2}$.
$\left\{\begin{array}{l}30=10 h+100 k \\ 75=15 h+225 k\end{array} \Rightarrow\left\{\begin{array}{l}h=1 \\ k=0.4\end{array} \Rightarrow V=0.4 L^{2}-L\right.\right.$

## 8C. 15 HKCEE MA 2004-I 10

(a) Let $y=h x+k x^{2}$
$\left\{\begin{array}{l}3=3 h+9 k \\ 12=4 h+16 k\end{array} \Rightarrow\left\{\begin{array}{l}h=-5 \\ k=2\end{array} \Rightarrow y=2 x^{2} \quad 5 x\right.\right.$
8C. 16 HKCEE MA 2005-I-10
(a) Let $f(x)=/ / x^{3}+k x$
$\{-6=f(2)=8 h+2 k \Rightarrow 4 h+k=-3 \Rightarrow\{h=1$
$6=f(3)=27 h+3 k \Rightarrow 9 h+k=2 \Rightarrow\left\{\begin{array}{l}l \\ k=-7\end{array}\right.$
$\therefore f(x)=x^{3} \quad 7 x$

## C. 17 HKCEE MA 2006-I - 15

(a) Let $C=h A+\frac{k A^{2}}{n}$

$$
\left\{\begin{array}{l}
350=50 h+\frac{k(50)^{2}}{500} \Rightarrow 10 h+k=70 \\
100=20 h+\frac{k(20)^{2}}{400} \Rightarrow 20 h+k=100
\end{array}\right.
$$

$\Rightarrow\left\{\begin{array}{l}h=3 \\ k=40\end{array} \Rightarrow C=3 A+\frac{40 A^{2}}{n}\right.$
(b) (i) $P=8 A \quad C=5 A-\frac{40 A^{2}}{n}$

$$
\begin{aligned}
& \text { (i) } P=8 A \quad C=5 A-\frac{1}{n} \\
& \text { (ii) } \quad 5 A-\frac{40 A^{2}}{n}=P
\end{aligned}
$$

$$
\begin{aligned}
5\left(\frac{A}{n}\right)-40\left(\frac{A}{n}\right)^{2} & =\frac{P}{n}=\frac{5}{32} \text { (both sides } \div n \text { ) } \\
256\left(\frac{A}{n}\right)^{2} 32\left(\frac{A}{n}\right)+1 & =0 \\
{\left[16\left(\frac{A}{n}\right)-1\right]^{2} } & =0 \Rightarrow \frac{A}{n}=\frac{1}{16}
\end{aligned}
$$

(iii) Put $n=500$ and $P=100$
$100=5 A-\frac{2}{25} A^{2} \Rightarrow 2 A^{2} \quad 125 A+2500=0$ $\because \Delta=-4375<0$
(iv) Pur $n=400$

$$
\begin{aligned}
& \text { Pux } n=400 . \\
& \begin{aligned}
P=5 A \quad \frac{1}{10} A^{2} & =\frac{-1}{10}\left(A^{2}-50 A\right) \\
& =\frac{-1}{10}\left(A^{2}-50 A+25^{2} \quad 25^{2}\right) \\
& =\frac{-1}{10}(A-25)^{2}+62.5
\end{aligned}
\end{aligned}
$$

$\therefore$ Greatest profit is $\$ 62.5$

8C. 18 HKCEE MA 2007-I- 1
(a) (i) $0=f(3)=4(-3)^{3}+k(-3)^{2}-243 \Rightarrow k=39$
(ii) $f(x)=(x+3)\left(4 x^{2} \div 27 x 81\right)$

$$
\left.\begin{array}{rl}
x & =(x+3)\left(4 x^{2}+27 x\right. \\
81
\end{array}\right) .
$$

(b) (i) Let $C=h x^{3}+k x^{2}$

Let $C=h x^{3}+k x^{2}$.
$\left\{\begin{array}{l}7381=h(5.5)^{3}+k(5.5)^{2} \\ 9077=h(6)^{3}+k(6)^{2}\end{array} \Rightarrow\left\{\begin{array}{l}h=16 \\ k=156\end{array}\right.\right.$
(ii)
. $C=16 x^{3}+156 x^{2}$
$4 x^{3}+39 x^{2} \quad 243=0$

$$
x=-3(\text { rej. ) or }-9(\text { rej. or } 2.25
$$

8C. 19 HKCEE MA 2010-I-10
(a) Let $C=h x+k x^{2}$.
$\left\{\begin{array}{l}96=4 h+16 k \\ 145=5 h+25 k\end{array} \Rightarrow\left\{\begin{array}{l}h=4 \\ k=3\end{array} \Rightarrow C=4 x+5 x^{2}\right.\right.$
(b) $4 x+5 x^{2}=288$
$5 x^{2}+4 x \quad 288=0 \Rightarrow x=7.2$ or -8 (rejected)

8C. 20 HKCEEMA 2011-I-11
(a) Let $f(x)=h x^{2}+k x$
$\left\{\begin{array}{c}28=f(2)=4 h-2 k \\ 36=f(6)=36 h+6 k\end{array} \Rightarrow\left\{\begin{array}{l}h=1 \\ k=-12\end{array}\right.\right.$
$f(x)=x^{2}-12 x$
(b) (i) $f(x)=x^{2} \quad$ 12x $=(x-6)^{2}-36 \Rightarrow k=-36$
(ii) Put $x=10$.
$y=3(10-6)^{2}-36=2 \Rightarrow A=(10,2)$
$y=(10)^{2}$
$y=(10)^{2} \quad 12(10)=-20 \Rightarrow D=(10,20)$
Since the graphs are symmerric about the common
$B=\left(6-\left(\begin{array}{ll}10 & 6\end{array}\right), 2\right)$,
$C=(10(10-6),-20)=(2,20)$
$\therefore$ Area of $A B C D=(2-(20))(10-2)=176$

8C. 21 HKDSE MA SP~1-11
(a) Let $C=h s+k s^{2}$
$\left\{\begin{array}{l}356=2 h+4 k \\ 1250=5 h+25 k\end{array} \Rightarrow\left\{\begin{array}{l}h=130 \\ k=24\end{array} \Rightarrow C=130 s+24 s^{2}\right.\right.$ When $s=6$, cost $=130(6)+24(6)^{2}=(\$) 1644$ $130 s+24 s^{2}=539$
$24 s^{2}+130 s \quad 539=0 \Rightarrow s=\frac{11}{4}$ or $\frac{49}{6}$ (rejected) .. The perimet er is $\frac{11}{4} \mathrm{~m}$

## 8C. 22 HKDSEMA PP-I- 11

(a) Let $C=h+k x^{2}$.
$\left\{\begin{array}{l}42=h+400 k \\ 112=h+14400 k\end{array} \Rightarrow\left\{\begin{array}{l}h=40 \\ k=0.005\end{array} \Rightarrow C=40+0.005 x^{2}\right.\right.$ When $x=50$, cost $=40+0.005(50)^{2}=(\$) 52.5$.
(b) $40+0.005 x^{2}=58$
$0.005 x^{2}=18 \Rightarrow x=60$
$\therefore$ The length of a side is 60 cm .

## 8 C 23 HKDSEMA 2012 -I-

(a) Let $C=h+k A$.
$62=h+2 k$
$74=h+6 k$$\Rightarrow\left\{\begin{array}{l}h=56 \\ k=3\end{array} \Rightarrow C=56+3 A\right.$
When $A=13$, cost $=56+3(13)=(\$) 95$
8C. 24 HKDSE MA 2013-1-11
(a) Let $W=h \ell+k \ell^{2}$
$\left\{\begin{array}{l}181=h+k \\ 402=2 h+4 k\end{array} \Rightarrow\left\{\begin{array}{l}h=161 \\ k=20\end{array} \Rightarrow W=161 \ell+20 \ell\right.\right.$
$\therefore$ When $\ell=1.2$, weig ht $=161(1.2)+20(1.2)^{2}=222(\mathrm{~g})$
(b) $\quad 161 \ell+20 \ell^{2}=594$
$20 \ell^{2}+161 \ell \quad 594=0 \Rightarrow \ell=\frac{11}{4}$ or $\frac{54}{5}$ (rejected)
$\therefore$ The perimeter is $\frac{11}{4} \mathrm{~m}$.
8C. 25 HKDSE.MA 2014-I- 13
(a) Let $f(x)=h x^{2} \div k$.
$\left\{\begin{array}{l}59=f(2)=4 h+k \\ -121=f(7)=49 h+k\end{array} \Rightarrow\left\{\begin{array}{l}h=-4 \\ k=75\end{array}\right.\right.$
$\therefore f(x)=4 x^{2}+75$
$f(x)=4 x^{2}+75$
$f(6)=4(6)^{3}+75=69$
(b) From (a), $a=b=-69$.
$\therefore$ Area of $\triangle A B C=\frac{(6 \quad(-6))(69)}{2}=414$

## 8C. 26 HKDSEMA 2015-I- 10

(a) Let $S=h+k n$.
$\left\{\begin{array}{l}16600=h+10 k \\ 9000=h+6 k\end{array} \Rightarrow\left\{\begin{array}{l}h=2400\end{array}\right.\right.$
$\left\{\begin{array}{l}9000=h+6 k\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}k=1900\end{array}\right.$
$\therefore S=-2400+1900 n$
$\therefore$ When $n=20$, income $=2400+1900(20)=(\$) 35600$
(b) $18000=-2400+1900 n \Rightarrow n=\frac{204}{19}$, not an integ er

NOT possible

## 8C. 27 HKDSE MA 2016-1-8

(a) Let $f(x)=h x+k x^{2}$.

$$
\left\{\begin{array} { l } 
{ 4 8 = f ( 3 ) = 3 h + 9 k } \\
{ 1 9 8 = f ( 9 ) = 9 h + 8 1 k }
\end{array} \Rightarrow \left\{\begin{array}{l}
h=13 \\
k=1
\end{array}\right.\right.
$$

$\therefore f(x)=13 x+x^{2}$
(b) $\quad 13 x+x^{2}=90$

8C. $28 \frac{\text { HKDSE MA 2017-I } 8}{k}$
(a) Let $y=\frac{k}{\sqrt{x}} \Rightarrow 81=\frac{k}{\sqrt{144}} \Rightarrow k=972$
(b) Change of $y=\frac{972}{\sqrt{(324)}} \quad 81=-27$

8C. 29 HKDSE MA 2018-I-18
(a) Let $f(x)=h x^{2}+k x$
$60=f(2)=4 h+2 k \Rightarrow h=3$
$99=f(3)=9 h+3 k \rightarrow\left\{\begin{array}{l}h=24\end{array}\right.$
$f(x)=3 x^{2}+24 x$

8C. 30 HKDSE MA 2019-1 - 10
(a) Let $h(x)=a+b x$
$\left\{\begin{array}{l}-96=h(-2)=a-2 b\end{array} \Rightarrow\left\{\begin{array}{l}a=48\end{array}\right.\right.$
$\left\{\begin{array}{l}72=h(5)=a+5 b\end{array}\right.$
(b) $-48+24 x=3 x^{2} \Rightarrow x^{2}-8 x+16=0$ $\Rightarrow x=4$ (repeated)
8C. 31 HKDSE MA $2020-\mathrm{I}-10$

suth. $h=3$ and $P=59$.
$39=k_{2}+k_{k}(3)^{3}$
$k_{1}+27 k_{2}=59-\cdots-\cdots(1)$
Scr. $b=7$ and $P=691$.
$691=k_{1}+k_{5}(7)^{3}$
$\mathrm{g}_{1}+3 \times 3 \mathrm{~s}_{2}=697-(2)$
(2)-(t):
$316 k_{2}=32$
$k=2$
$k_{2}=2$
${ }_{5}^{2}+27(2) 9$
$\underset{k_{1}=5}{27(2)}$
Towecfore $P=5+2 r^{\circ}$.
Whem $h \times 4$.
$P_{P=5+2(4)}$
$=133$
Therefore, boppiccof a brand $X$ cravenenit 5133.
wian 4 S
$P_{m=5}+2(s)^{\prime}$

$=2 \times 130$



## 9 Arithmetic and Geometric Sequences

## 9A General terms and summations of sequences

9A. 1 HKCEE MA $1980(1 / 1 * / 3)-\mathrm{I}-11$
Let $k>0$.
(a) (i) Find the common ratio of the geometric sequence $k, 10 k, 100 k$.
(ii) Find the sum of the first $n$ terms of the geometric sequence $k, 10 k, 100 k, \ldots$.
(b) (i) Show that $\log _{10} k, \log _{10} 10 k, \log _{10} 100 k$ is an arithmetic sequence.
(ii) Find the sum of the first $n$ terms of the arithmetic sequence $\log _{10} k, \log _{10} 10 k, \log _{10} 100 k, \ldots$. Also, if $n=10$, what is the sum?

9A. 2 HKCEE MA 1984(A/B) - I-10
$a$ and $b$ are positive numbers. $a,-2, b$ is a geometric sequence and $2, b, a$ is an arithmetic sequence.
(a) Find the value of $a b$.
(b) Find the values of $a$ and $b$.
(c) (i) Find the sum to infinity of the geometric sequence $a,-2, b, \ldots$.
(ii) Find the sum to infinity of all the terms that are positive in the geometric sequence $a,-2, b, \ldots$.

9A. 3 HKCEE MA 1986(A/B I) - B -9
$2,-1,-4, \ldots$ form an arithmetic sequence.
(a) Find
(i) the $n$th term,
(ii) the sum of the first $n$ terms,
(iii) the sum of the sequence from the 21st term to the 30th term.
(b) If the sum of the first $n$ terms of the sequence is less than -1000 , find the least value of $n$.

## 9A. 4 HKCEE MA 1989-I-9

The positive numbers $1, k, \frac{1}{2}, \ldots$ form a geometric sequence.
(a) Find the value of $k$, leaving your answer in surd form.
(b) Express the $n$th term $T(n)$ in terms of $n$.
(c) Find the sum to infinity, expressing your answer in the form $p+\sqrt{q}$, where $p$ and $q$ are integers.
(d) Express the product $T(1) \times T(3) \times T(5) \times \cdots \times T(2 n \quad 1)$ in terms of $n$.

## 9A. 5 HKCEE MA 1995-I-3

(a) Find the sum of the first 20 terms of the arithmetic sequence $1,5,9, \ldots$.
(b) Find the sum to infinity of the geometric sequence $9,3,1, \ldots$.

## 9A. 6 HKCEE MA 1996 - I 3

The $n$-th term $T_{n}$ of a sequence $T_{1}, T_{2}, T_{3}, \ldots$ is $73 n$.
(a) Write down the first 4 terms of the sequence.
(b) Find the sum of the first 100 terms of the sequence.

## 9A. 7 HKCEE MA $2003-\mathrm{I}-7$

Consider the arithmetic sequence $2,5,8 \ldots$. Find
(a) the 10 th term of this sequence,
(b) the sum of the first 10 terms of this sequence.

9A. 8 HKCEE MA 2005-I 7
The 1st term and the 2nd term of an arithmetic sequence are 5 and 8 respectively. If the sum of the first $n$ terms of the sequence is 3925 , find $n$.

## 9A. 9 HKDSE MA 2015-I - 17

For any positive integer $n$, let $A(n)=4 n-5$ and $B(n)=10^{4 n-5}$.
(a) Express $A(1)+A(2)+A(3)+\cdots+A(n)$ in terms of $n$.
(b) Find the greatest value of $r$ such that $\log (B(1) B(2) B(3) \ldots B(r)) \leq 8000$.

9A. 10 HKDSE MA 2016-I-17
The 1st term and the 38th term of an arithmetic sequence are 666 and 555 respectively. Find
(a) the common difference of the sequence,
(b) the greatest value of $n$ such that the sum of the first $n$ terms of the sequence is positive.

9A. 11 HKDSE MA 2018 - 16
The 3rd term and the 4th term of a geometric sequence are 720 and 864 respectively.
(a) Find the Ist term of the sequence.
(b) Find the greatest value of $n$ such that the sum of the $(n+1)$ th term and the $(2 n+1)$ th term is less than $5 \times 10^{14}$.

## 9A. 12 HKDSE MA 2019-I - 16

Let $\alpha$ and $\beta$ be real numbers such that $\left\{\begin{array}{l}\beta=5 \alpha-18 \\ \beta=\alpha^{2}-13 \alpha+63\end{array}\right.$.
(a) Find $\alpha$ and $\beta$.
(b) The 1 st term and the 2 nd term of an arithmetic sequence are $\log \alpha$ and $\log \beta$ respectively. Find the least value of $n$ such that the sum of the first $n$ terms of the sequence is greater than 888 .

9A. 13 HKDSE MA. 2020-I - 16
The 3rd term and the 6th term of a geometric sequence are 144 and 486 respectively.
(a) Find the lst term of the sequence. (2 marks)
(b) Find the least value of $n$ such that the sum of the first $n$ terms of the sequence is greater than $8 \times 10^{18}$.
(3 marks)

## 9B Applications

9B. 1 HKCEE MA $1981(1 / 2 / 3)-\mathrm{I}-10$
In Figure (1), $B_{1} C_{1} C D$ is a square inscribed in the right angled triangle $A B C . \angle C=90^{\circ}, B C=a, A C=2 a$, $B_{1} C_{1}=b$.


${ }^{\text {Figure (2) }}{ }^{C}$


Figure (3)
(a) Express $b$ in terms of $a$.
(b) $B_{2} C_{2} C_{1} D_{1}$ is a square inscribed in $\triangle A B_{1} C_{1}$ (see Figure (2)).
(i) Express $B_{2} C_{2}$ in terms of $b$.
(ii) Hence express $B_{2} C_{2}$ in terms of $a$.
(c) If squares $B_{3} C_{3} C_{2} D_{2}, B_{4} C_{4} C_{3} D_{3}, B_{5} C_{5} C_{4} D_{4}, \ldots$ are drawn successively as indicated in Figure (3),
(i) write down the length of $B_{5} C_{5}$ in ternss of $a$.
(ii) find, in termis of $a$, the sum of the areas of the infinitely many squares drawn in this way.

9B. 2 HKCEE MA 1982(1/2/3) I 10
(a) (i) Find the sum of all the multiples of 3 from 1 to 1000.
(ii) Find the sum of all the multiples of 4 from 1 to 1000 (including 1000).
(b) Hence, or otherwise, find the sum of all the integers from 1 to 1000 (including 1 and 1000) which are neither multiples of 3 nor multiples of 4 .

## 9 B 3 HKCEE MA 1983(A/B)-I-10

A ball is dropped vertically from a height of 10 m , and when it reaches the ground, it rebounds to a height of $10 \times \frac{3}{4} \mathrm{~m}$. The ball continues to fall and rebound again, each time rebounding to $\frac{3}{4}$ of the height from which it previously fell (see the figure).

(a) Find the total distance travelled by the ball just before it makes its second rebound.
(b) Find, in terms of $k$, the total distance travelled by the ball just before it makes its $(k+1)$ st rebound.
(c) Find the total distance travelled by the ball before it comes to rest.

## 9B. 4 HKCEE MA 1985(A/B) -I 14

$\$ P$ is deposited in a bank at the interest rate of $r \%$ per annum compounded annually. At the end of each year, $\frac{1}{3}$ of the amount in the account (including principal and interest) is drawn out and the remainder is redeposited at the same rate.
Let $\$ Q_{1}, \$ Q_{2}, \$ Q_{3}, \ldots$ denote respectively the sums of money drawn out at the end of the first year, second year, third year, ... .
(a) (i) Express $Q_{1}$ and $Q_{2}$ in terms of $P$ and $r$.
(ii) Show that $Q_{3}=\frac{4}{27} P(1+r \%)^{3}$.
(b) $Q_{1}, Q_{2}, Q_{3}, \ldots$ form a geometric sequence. Find the common ratio in terms of $r$.
(c) Suppose $Q_{3}=\frac{27}{128} P$.
(i) Find the value of $r$.
(ii) If $P=10000$, find $Q_{1}+Q_{2}+Q_{3}+\cdots+Q_{10}$. (Give your answer correct to the nearest integer.)


## In this quesiton you should leave your answers in surd form.

In the figure, $A_{1} B_{1} C_{1}$ is and equilateral triangle of side 3 and area $T_{1}$
(a) Find $T_{1}$.
(b) The points $A_{2}, \bar{B}_{2}$ and $C_{2}$ divide internally the line segments $A_{1} B_{1}, B_{1} C_{1}$ and $\bar{C}_{1} A_{1}$ respectively in the same ratio 1:2. The area of $\triangle A_{2} B_{2} C_{2}$ is $T_{2}$
(i) Find $A_{2} B_{2}$
(ii) Find $T_{2}$.
(c) Triangles $A_{3} B_{3} \bar{C}_{3}, A_{4} B_{4} \bar{C}_{4}, \ldots$ are constructed in a similar way. Their areas are $T_{3}, T_{4}, \ldots$, respectively. It is known that $T_{1}, T_{2}, T_{3}, T_{4}, \ldots$ forn a geometric sequence.
(i) Find the common ratio.
(ii) Find $T_{n}$.
(iii) Find the value of $T_{1}+T_{2}+\cdots+T_{n}$
(iv) Find the sum to infinity of the geometric sequence.

## 9B. 6 HKCEE MA $1988-\mathrm{I}-9$

(a) Write down the smallest and the largest multiples of 7 between 100 and 999.
(b) How many multiples of 7 are there between 100 and 999 ? Find the sum of these multiples.
(c) Find the sum of all positive three digit integers which are NOT divisible by 7 .

## 9B. 7 HKCEE MA $1990 \mathrm{I}-14$

The positive integers $1,2,3 \ldots$ are divided into groups $G_{1}, G_{2}, G_{3}, \ldots$, so that the $k^{\text {th }}$ group $G_{k}$ consists of $k$ consecutive integers as follows:

$$
\begin{aligned}
G_{1} & : 1 \\
G_{2} & : 2,3 \\
G_{3} & : 4,5,6 \\
& \ldots \cdots \cdots \cdots \\
& \ldots \ldots \ldots \ldots \\
& \ldots \cdots \cdots \cdots \\
G_{k-1} & : u_{1}, u_{2}, \ldots, u_{k} 1 \\
G_{k} & : v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \\
& \ldots \ldots \ldots \ldots \\
& \ldots \ldots \ldots \ldots
\end{aligned}
$$

(a) (i) Write down all the integers in the $6^{\text {th }}$ group $G_{6}$.
(ii) What is the total number of integers in the first 6 groups $G_{1}, G_{2}, \ldots, G_{6}$ ?
(b) Find, in terms of $k$,
(i) the last integer $u_{k-1}$ in $G_{k-1}$ and the first integer $v_{1}$ in $G_{k}$,
(ii) the sum of all the integers in $G_{k}$.

9B. 8 HKCEE MA 1991-I-12


A maze is formed by line segments of lengths $d_{0}, d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with adjacent line segments perpendic ular to each other as shown in the figure. Let $d_{0}=10, d_{1}=8, d_{2}=10$ and $\frac{d_{n+2}}{d_{n}}=0.9$ when $n \geq 1$, i.e. $\frac{d_{3}}{d_{1}}=\frac{d_{5}}{d_{3}}=\cdots=0.9$ and $\frac{d_{4}}{d_{2}}=\frac{d_{6}}{d_{4}}=\cdot \cdot=0.9$.
(a) Find $d_{3}$ and $d_{5}$, and express $d_{2 n-1}$ in terms of $n$.
(b) Find $d_{6}$ and express $d_{2 n}$ in terms of $n$.
(c) Find, in terms of $n$, the sums
(i) $d_{1}+d_{3}+d_{5}+\cdots+d_{2 n-1}$,
(ii) $d_{2}+d_{4}+d_{6}+\cdots+d_{2 n}$.
(d) Find the value of the sum $d_{0}+d_{1}+d_{2}+d_{3}+\ldots$ to infinity.

## 9B. 9 HKCEE MA 1992-1-14

(a) Given the geometric sequence $a^{n}, a^{n-1} b, a^{n-2} b^{2}, \ldots, a^{2} b^{n-2}, a b^{n-1}$, where $a$ and $b$ are unequal and nonzero real numbers, find the common ratio and the sum to $n$ terms of the geometric sequence.
(b) A man joins a saving plan by depositing in his bank account a sum of money at the beginning of every year. At the beginning of the first year, he puts an initial deposit of $\$ P$. Every year afterwards, he deposits $10 \%$ more than he does in the previous year. The bank pays interest at a rate of $8 \%$ p.a., compounded yearly.
(i) Find, in terns of $P$, an expression for the amount in his account at the end of
(1) the first year,
(2) the second year
(3) the third year.
(Note: You need not simplify your expressions)
(ii) Using (a), or otherwise, show that the amount in his account at the end of the nth year is $\$ 54 P\left(1.1^{n}-1.08^{n}\right)$
(c) A flat is worth $\$ 1080000$ at the beginning of a certain year and at the same time, a man joins the saving plan in (b) with an initial deposit $\$ P=\$ 20000$. Suppose the value of the flat grows by $15 \%$ every year. Show that at the end of the $n$th year, the value of the flat is greater than the amount in the man's account.

## 9B. 10 HKCEE MA 1993-I - 10

Consider the food production and population problems of a certain country. In the 1st year, the country's annual food production was 8 million tonnes. At the end of the 1 st year its population was 2 million. It is assumed that the annual food production increases by 1 million tonnes each year and the population increases by $6 \%$ each year.
(a) Find, in million tonnes, the annual food production of the country in
(i) the 3rd year,
(ii) the $n$th year.
(b) Find, in million tonnes, the total food production in the first 25 years.
(c) Find the population of the country at the end of
(i) the 3 rd year,
(ii) the $n$th year.
(d) Starting from the end of the first year, find the minimum number of years it will take for the population to be doubled.
(e) If the 'annual food production per capita' (i.e. annual food production in a certain year ) is less than 0.2 tonne, the country will face a food shortage problem. Determine whether the country will face a food shortage problem or not at the end of the 100th year.

## 9B. 11 HKCEE MA 1994-I-15

Suppose the number of babies bom in Hong Kong in 1994 is 70000 and in subsequent years, the number of babies born each year increased by $2 \%$ of that of the previous year.
(a) Find the number of babies born in Hong Kong
(i) in the first year after 1994;
(ii) in the $n$th year after 1994
(b) In which year will the number of babies born in Hong Kong first exceed 90000 ?
(c) Find the total number of babies bom in Hong Kong from 1997 to 2046 inclusive.
(d) It is known that from 1901 to 2099, a year is a leap year if its number is divisible by 4
(i) Find the number of leap years between 1997 and 2046.
(ii) Find the total number of babjes born in Hong Kong in the leap years between 1997 and 2046.

## 9B. 12 HKCEE MA $1997-\mathrm{I}-10$

Suppose the population of a town grows by $2 \%$ each year and its population at the end of 1996 was 300000 . (a) Find the population at the end of 1998.
(b) At the end of which year will the population just exceed 330000 ?

## 9B. 13 HKCEEMA 1997 - I 15

As shown below, figure $A_{1}$ is a square of side $\ell$. To the middle of each of three sides of figure $A_{1}$, a square of side $\frac{\ell}{3}$ is added to give figure $A_{2}$.
Following the same pattern, squares of side $\frac{\ell}{9}$ are added to figure $A_{2}$ to give figure $A_{3}$. The process is repeated indefinitely to give figures $A_{4}, A_{5}, \ldots, A_{n}, \ldots$
(a) (i) Table 1 shows the numbers and the lengths of sides of the squares added when producing $A_{2}$ from $A_{1}, A_{3}$ from $A_{2}$ and $A_{4}$ from $A_{3}$. Complete Table 1.
(ii) Find the total area of all the squares in $A_{4}$.
(iii) As $n$ increases indefinitely, the total area of all the squares in $A_{n}$ tends to a constant $k$. Express $k$ in terms of $\ell$.
(b) The overlapping line segments in figures $A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots$ are removed to form figures $B_{1}, B_{2}, B_{3}$, $\ldots, B_{n}, \ldots$ as shown.
(i) Complete Table 2.
(ii) Write down the perimeter of $B_{n}$.

What would the perimeter of $B_{n}$. become if $n$ increases indefinitely?

Table 1	$A_{1} \rightarrow A_{2}$	$A_{2} \rightarrow A_{3}$	$A_{3} \rightarrow A_{4}$
Number of squares added	3	9	
Length of sides of the   squares added	$\frac{\ell}{3}$	$\frac{\ell}{9}$	



Table 2	$B_{1}$	$B_{2}$	$B_{3}$	$B_{4}$
Perimeter	$4 \ell$			

## 9B. 14 HKCEE MA $1998-1 \quad 13$

In Figure (1), $A_{1} B_{1} C_{1} D_{1}$ is a square of side $14 \mathrm{~cm} . A_{2}, B_{2}, C_{2}$ and $D_{2}$ divide $A_{1} B_{1}, B_{1} C_{1}, C_{1} D_{1}$ and $D_{1} A_{1}$ respectively in the ratio 3:4 and form the square $A_{2} B_{2} C_{2} D_{2}$. Following the same pattern, $A_{3}, B_{3}, C_{3}$ and $D_{3}$ divide $A_{2} B_{2}, B_{2} C_{2}, C_{2} D_{2}$ and $D_{2} A_{2}$ respectively in the ratio $3: 4$ and form the square $A_{3} B_{3} C_{3} D_{3}$. The process is repeated indefinitely to give squares $A_{4} B_{4} C_{4} D_{4}, A_{5} B_{5} C_{5} D_{5}, \ldots, A_{n} B_{n} C_{n} D_{n}, \ldots$.



Figure (2)
(a) Find $A_{2} B_{2}$.
(b) Find $A_{2} A_{3}: A_{1} A_{2}$
(c) An ant starts at $A_{1}$ and crawls along the path $A_{1} A_{2} A_{3} \ldots A_{n} \ldots$ as shown in Figure (2). Show that the total distance crawled by the ant cannot exceed 21 cm .

## 9B. 15 HKCEE MA 1999-I - 17

The manager of a factory estimated that in year 2000, the income of the factory will drop by $r \%$ each month from $\$ 500000$ in January to $\$ 284400$ in December.
(a) Find $r$ correct to the nearest integer.
(b) Suppose the factory's production cost is $\$ 400000$ in January 2000. The manager proposed to cut the cost by $\$ 20000$ every month (i.e., the cost will be $\$ 380000$ in February and $\$ 360000$ in March etc.) and claimed that it would not affect the monthly income.
(i) Using the value of $r$ obtained in (a), show that the factory will still make a profit for the whole year.
(ii) The factory will start a research project at the beginning of year 2000 on improving its production method. The cost of running the research project is $\$ 300000$ per month. The project will be stopped at the end of the $k$ th month if the total cost spent in these $k$ months on running the project exceeds the total production cost for the remaining months of the year
Show that $k^{2}-71 k+348<0$. Hence determine how long the research project will last.

## 9B. 16 HKCEEMA 2000-I -14

An auditorium has 50 rows of seats. All seats are numbered in numerical order from the first row to the last row, and from left to right, as shown in the figure. The first row has 20 seats. The second row has 22 seats. Each succeeding row has 2 more seats than the previous one.
(a) How many seats are there in the last row?
(b) Find the total number of seats in the first $n$ rows. Hence deternine in which row the seat numbered 2000 is located.


## 9B. 17 HKCEEMA 2001-I 12

$F_{1}, F_{2}, F_{3}, \ldots, F_{40}$ as shown below are 40 similar figures. The perimeter of $F_{1}$ is 10 cm . The perimeter of each succeeding figure is 1 cm longer than that of the previous one.

(a) (i) Find the perimeter of $F_{40}$.
(ii) Find the sum of the perimeters of the 40 figures.
(b) It is known that the area of $F_{1}$ is $4 \mathrm{~cm}^{2}$.
(i) Find the area of $F_{2}$.
(ii) Determine with justification whether the areas of $F_{1}, F_{2}, F_{3}, \ldots, F_{40}$ form an arithmetic sequence.

## 9B. 18 HKCEEMA 2001-I-14

(a) [Out of syllabus: The result "The solution to the equation $x^{5} \quad 6 x+5=0$ is $x \approx 1.091$ " is obtained.]
(b) From 1997 to 2000, Mr. Chan deposited $\$ 1000$ in a bank at the beginning of each year at an interest rate of $r \%$ per annum, compounded yearly. For the money deposited, the amount accumulated at the beginning of 2001 was $\$ 5000$. Using (a), find $r$ correct to 1 decimal place.

## 98. 19 HKCEE MA 2002-I-13

A line segment $A B$ of length 3 m is cut into three equal parts $A C_{1}, C_{1} C_{2}$ and $C_{2} B$ as shown in Figure (1).


On the middle part $C_{1} C_{2}$, an equilateral triangle $C_{1} C_{2} C_{3}$ is drawn as shown in Figure (2).
(a) Find, in surd form, the area of triangle $C_{1} C_{2} C_{3}$.
(b) Each of the line segments $A C_{1}, C_{1} C_{3}, C_{3} C_{2}$ and $C_{2} B$ in Figure (2) is further divided into three equal parts. Similar to the previous process, four smaller equilateral triangles are drawn as shown in Figure (3). Find, in surd form, the total area of all the equilateral triangles.

Figure (3)
(c) Figure (4) shows all the equilateral triangles so generated when the previous process is repeated again. What would the total area of all the equilateral triangles become if this process is repeated indefinitely? Give your answer in surd form.

## 9. Arithmetic and Geometric Sequences

9B. 20 HKCEEMA 2003 I- 15
Figure (1) shows an equilateral triangle $A_{0} B_{0} C_{0}$ of side 1 m . Another triangle $A_{1} B_{1} C_{1}$ is inscribed in triangle $A_{0} B_{0} C_{0}$ such that $\frac{A_{0} A_{1}}{A_{0} B_{0}}=\frac{B_{0} B_{1}}{B_{0} C_{0}}=\frac{C_{0} C_{1}}{C_{0} A_{0}}=k$. where $0<k<1$. Let $A_{1} B_{1}=x \mathrm{~m}$.
(a) (i) Express the area of triangle $A_{1} B_{0} B_{1}$ in terms of $k$.
(ii) Express $x$ in terms of $k$.
(iii) Explain why $A_{1} B_{1} C_{1}$ is an equilateral triangle.
(b) Another equilateral triangle $A_{2} B_{2} C_{2}$ in inscribed in triangle $A_{1} B_{1} C_{1}$ such that $\frac{A_{1} A_{2}}{A_{1} B_{1}}=\frac{B_{1} B_{2}}{B_{1} C_{1}}=\frac{C_{1} C_{2}}{C_{1} A_{1}}=k$ as shown in Figure (2).
(i) Prove that the triangles $A_{1} B_{0} B_{1}$ and $A_{2} B_{1} B_{2}$ are similar.
(ii) The above process of inscribing triangles is repeated indefinitely to generate equilateral triangles $A_{3} B_{3} C_{3}, A_{4} B_{4} C_{4}, A_{5} B_{5} C_{5}, \ldots$. Find the total area of the triangles $A_{1} B_{0} B_{1}, A_{2} B_{1} B_{2}, A_{3} B_{2} B_{3}, \ldots$.


Figure (1)


Figure (2)

## 9B. 21 HKCEE MA 2004-I-15

In Figure (1), $F_{1}, F_{2}, F_{3} \ldots$ are square frames. The perimeter of $F_{1}$ is 8 cm . Starting from $F_{2}$, the perimeter of each square frame is 4 cm longer than the perimeter of the previous frame.

$F_{2}$
Figure (1)
(a) (i) Find the perimeter of $F_{10}$
(ii) If a thin metal wire of length 1000 cm is cut into pieces and these pieces are then bent to form the above square frames, find the greatest number of distinct square frames that can be formed.
(b) Figure (2) shows three similar solid right pyramids $S_{1}, S_{2}$ and $S_{3}$. The total lengths of the four sides of the square bases of $S_{1}, S_{2}$ and $S_{3}$ are equal to the perimeters of $F_{1}, F_{2}$ and $F_{3}$ respectively.
(i) Do the volumes of $S_{1}, S_{2}$ and $S_{3}$ form a geometric sequence? Explain your answer.
(ii) When the length of the slant edge of $S_{1}$ is 5 cm , find the volume of $S_{3}$. Give the answer in surd form.

$S_{1}$

$S_{2}$

$S_{3}$

## 9B. 22 HKCEE MA 2005 I-16

Peter borrows a loan of \$200 000 from a bank at an interest rate of $6 \%$ per annum, compounded monthly. For each successive month after the day when the loan is taken, Ioan interest is calculated and then a monthly instalment of $\$ x$ is immediately paid to the bank until the loan is fully repaid (the last instalment may be less than $\$ x$ ), where $x<200000$.
(a) (i) Find the loan interest for the 1st month.
(ii) Express, in terms of $x$, the amount that Peter still owes the bank after paying the 1 st instalment.
(iii) Prove that if Peter has not yet fully repaid the loan after paying the $n$th instalment, he still owes the bank $\$\left\{200000(1.005)^{n}-200 x\left[(1.005)^{n}-1\right]\right\}$.
(b) Suppose that Peter's monthly instalment is $\$ 1800$ (the last instalment may be less than $\$ 1800$ ).
(i) Find the number of menths for Peter to fully repay the loan.
(ii) Peter wants to fully repay the loan with a smaller monthly instalment. He requests to pay a monthly instalment of $\$ 900$. However, the bank refuses his request. Why?

## 9B. 23 HKCEE MA 2008-I-16

In the current financial year of a city, the amount of salaries tax charged for a citizen is calculated according to the following rules:

Net chargeable income $(\$)$	Rate
On the first 30000	$a \%$
On the next 30000	$10 \%$
On the next 30000	$b \%$
Remainder	$24 \%$

The net chargeable income is equal to the net total income minus the sum of allowances. The salaries tax charged shall not exceed the standard rate of salaries tax applied to the net total income. The standard rate of salaries tax for the current financial year is $20 \%$.

## It is given that $a, 10, b, 24$ is an arithmetic sequence.

## (a) Find $a$ and $b$.

(b) Suppose that in the current financial year of the city, the sum of allowances of a citizen is $\$ 172000$. (i) Let $\$ P$ be the net total income of the citizen. If the citizen has to pay salaries tax at the standard rate, express the amount of salaries tax charged for the citizen in terms of $P$.
(ii) Find the least net total income of the citizen so that the salaries tax is charged at the standard rate.
(c) Peter is a citizen in the city. In the current financial year, the net total income and the sum of allowances of Peter are $\$ 1400000$ and $\$ 172000$ respectively. In order to pay his salaries tax, Peter begins to save money 12 months before the due day of paying salaries tax. A deposit of $\$ 23000$ is saved in a bank on the same day of each month at an interest rate of $3 \%$ per annum, compounded monthly. There are totally 12 deposits. Will Peter have enough money to pay his salaries tax on the due day? Explain your answer.

## 9B. 24 HKCEEMA 2009-I - 15

In a city, the taxi fare is charged according to the following table:

Distance travelled	
The first 2 km (under 2 km will be counted as 2 km )	$\$ 30$
Every 0.2 km thereafter (under 0.2 km will be counted as 0.2 km )	$\$ 2.4$

Assume that there are no other extra fares.
(a) A hired taxi in the city travels a distance of $x \mathrm{~km}$, where $x \geq 2$.
(i) Suppose that $x$ is a multiple of 0.2 . Prove that the taxi fare is $\$(6+12 x)$.
(ii) Suppose that $x$ is not a multiple of 0.2 . Is the taxi fare $\$(6+12 x)$ ? Explain your answer.
(b) If a hired taxi in the city travels a distance of 3.1 km , find the taxi fare.
(c) In the city, a taxi is hired for 99 journeys. The 1 st joumey covers a distance of 3.1 km . Starting from the 2nd journey, the distance covered by each joumey is 0.5 km longer than that covered by the previous joumey. The taxi driver claims that the total taxi fare will not exceed $\$ 33000$. Is the claim correct? Explain your answer.

## 98. 25 HKCEE MA 2010-I 17

Figure (1) shows the circle passing through the four vertices of the square $A B C D$. A rectangular coordinate system is introduced in Figure (1) so that the coordinates of $A$ and $B$ are $(0,0)$ and $(8,6)$ respectively.

(a) (i) Using a suitable transfornation, or otherwise, write down the coordinates of $D$. Hence, or other wise, find the coordinates of the centre of the circle $A B C D$.
(ii) Find the radius of the circle $A B C D$.
(b) A student uses the circle $A B C D$ of Figure (1) to design a logo the class association. The process of designing the logo starts by constructing the inscribed circle of the square $A B C D$ such that the inscribed circle touches $A B, B C, C D$ and $D A$ at $A_{1}, B_{1}, C_{1}$ and $D_{1}$ respectively. The region between the square $A B C D$ and its inscribed circle is shaded as shown in Figure (2). The inscribed circle of the square $A_{1} B_{1} C_{1} D_{1}$ is then constructed such that this inscribed circle touches $A_{1} B_{1}, B_{1} C_{1}, C_{1} D_{1}$ and $D_{1} A_{1}$ at $A_{2}$, $B_{2}, C_{2}$ and $D_{2}$ respectively. The region between the square $A_{1} B_{1} C_{1} D_{1}$ and its inscribed circle is also shaded. The process is carried in until the region between the square $A_{9} B_{9} C_{9} D_{9}$ and its inscribed circle is shaded.
(i) Find the ratio of the area of the circle $A_{1} B_{1} C_{1} D_{1}$ to the area of the circle $A B C D$.
(ii) Suppose that the ratio of the total area of all the shaded regions to the area of the circle $A B C D$ is $p: 1$. The student thinks that the design of the $\log 0$ is good when $p$ lies between 0.2 and 0.3 . According to the student, is the design of the logo good? Explain your answer.

## 9B. 26 HKCEEMA 2011-I-15

The figure shows a sequence of tables filled with integers. The 1st table consists of 1 row and 1 column and 1 is assigned to the cell of the 1 st table. For any integer $n>1$, the $n$th tableconsists of $n$ rows and $n$ columns and the integers in the cells of the $n$ table satisfy the following conditions:
(1) The integer in the cell at the top left cormer is $n$.
(2) In each rov, the integer in the cell of the $(r+1)$ th column is greater than that of the $r$ th column by 1 , where $1 \leq r \leq n \quad 1$.
(3) In each column, the integer in the cell of the $(r+1)$ th row is greater than that of the $r$ th row by 1 , where $1 \leq r \leq n-1$.

					L						
		3	4	4							
		1strow	2	3			5				
1	¢				2nd row	3	4		6	6	
st table				table				3 r	table		

(a) Construct and complete the 4th table.
(b) Find the sum of all integers in the 1st row of the 99th table.
(c) Find the sum of all integers in the 99th table.
(d) Is there an odd number $k$ such that the sum of all integers in the $k$ th table is an even number? Explain your answer.

## 9. 27 HKDSEMA SP-I- 15

The seats in a theatre are numbered in numerical order from the first row to the last row, and from leff to right, as shown in the figure. The first row has 12 seats. Each succeeding row has 3 more seats than the previous one. If the theatre cannot accommodate more than 930 seats, what is the greatest number of rows in the theatre?


## 98. 28 HKDSE MA PP-I- 19

The amount of investment of a commercial firm in the 1st year is $\$ 4000000$. The amount of investment in each successive year is $r \%$ less than the previous year. The amount of investmentin the 4th year is $\$ 1048576$.
(a) Find $r$
(b) The revenue made by the firm in the 1st year is $\$ 2000000$. The revenue made in each successive year is $20 \%$ less than the previous year
(i) Find the least number of years needed for the total revenue made by the firm to exceed $\$ 9000000$.
(ii) Will the total revenue made by the firm exceed $\$ 10000000$ ? Explain your answer.
(iii) The manager of the firm claims that the total revenue made by the firm will exceed the total amount of investment. Do you agree? Explain your answer

## 9B. 29 HKDSE MA 2012-1-19

In a city, the air cargo terminal $X$ of an airport handles goods of weight $A(n)$ tonnes in the $n$th year since the start of its operation, where $n$ is a positive integer. It is given that $A(n)=a b^{2 n}$, where $a$ and $b$ are positive constants. It is found that the weights of the goods handled by $X$ in the 1st year and the 2nd year since the start of its operation are 254100 tonnes and 307461 tonnes respectively.
(a) (i) Find $a$ and $b$. Hence find the weight of the goods handled by $X$ in the 4th year since the start of its operation.
(ii) Express, in terms of $n$, the total weight of the goods handled by $X$ in the first $n$ year since the start of its operation.
(b) The air cargo terminal $Y$ starts to operate since $X$ has been operated for 4 years. Let $B(m)$ tonnes be the weight of the goods handled by $Y$ in the $m$ th year since the start of its operation, where $m$ is a positive integer. It is given that $B(m)=2 a b^{m}$.
(i) The manager of the airport claims that after $Y$ has been operated, the weight of the goods handled by $Y$ is less than that handled by $X$ in each year. Do you agree? Explain your answer.
(ii) The supervisor of the airport thinks that when the total weight of the goods handled by $X$ and $Y$ since the start of the operation of $X$ exceeds 20000000 tonnes, new facilities should be installed to maintain the efficiency of the air cargo terminals. According to the supervisor, in which year since the start of the operation of $X$ should the new facilities be installed?

### 98.30 HKDSE MA 2013- -19

The development of public housing in a city is under study. It is given that the total fioor area of all public housing flats at the end of the 1st year is $9 \times 10^{6} \mathrm{~m}^{2}$ and in subsequent years, the total floor area of public housing flats built each year is $r \%$ of the total floor area of all public housing flats at the end of the previous year, where $r$ is a constant, and the total floor area of public housing flats pulled down each year is $3 \times 10^{5} \mathrm{~m}^{2}$. It is found that the total floor area of all public housing flats at the end of the 3 rd year is $1.026 \times 10^{7} \mathrm{~m}^{2}$.
(a) (i) Express, in terms of $r$, the total floor area of all public housing flats at the end of the 2nd year.
(ii) Find $r$.
(b) (i) Express, in terms of $n$, the total floor area of all public housing flats at the end of the $n$th year.
(ii) At the end of which year will the total floor area of all public housing flats first exceed $4 \times 10^{7} \mathrm{~m}^{2}$ ?
(c) It is assumed that the total floor area of public housing flats needed at the end of the $n$th year is $\left(a(1.21)^{n}+b\right) \mathrm{m}^{2}$, where $a$ and $b$ are constants. Some research results reveal the following information:

$n$	The total floo area of public housing flats needed at the end of the $n$th year $\left(\mathrm{m}^{2}\right)$
1	$1 \times 10^{7}$
2	$1.063 \times 10^{7}$

A research assistant claims that based on the above assumption, the total floor area of all public housing flats will be greater than the total floor area of public housing flats needed at the end of a certain year. Is the claim correct? Explain your answer.

## 9B. 31 HKDSEMA 2014-I-16

In the figure, the 1st pattern consists of 3 dots. For any positive integer $n$, the ( $n+1$ )st pattern is formed by adding 2 dots to the $n$th pattern. Find the least value of $m$ such that the total number of dots in the first $m$ patterns exceeds 6888 .


9B. 32 HKDSE MA 2017-I-16
A city adopts a plan to import water from another city. It is given that the volume of water imported in the lst year since the start of the plan is $1.5 \times 10^{7} \mathrm{~m}^{3}$ and in subsequent years, the volume of water imported each year is $10 \%$ less than the volume of water imported in the previous year.
(a) Find the total volume of water imported in the first 20 years since the start of the plan.
(b) Someone claims that the total volume of water imported since the start of the plan will not exceed $1.6 \times 10^{8} \mathrm{~m}^{3}$. Do you agree? Explain your answer.

9A. General terms and summations of sequences
9A. 1 HKCEE MA 1980(1/1*/3)-I-11
(a) (i) Common ratio $=\frac{10 k}{k}=10$
(ii) $S u m=\frac{k\left(10^{n} \quad 1\right)}{10-1}=\frac{k\left(10^{n} \quad 1\right)}{9}$
(b) (i) $\log 10 k-\log k=\log \frac{10 k}{k}=1$
$\log 100 k-\log 10 k=\log \frac{100 k}{10 k}=$
Since there is a common difference, il is an $A S$.
(ii) $\operatorname{Sum}=\frac{n}{2}[2(\log k)+(n-1)(1)]$
$=n \log k+2 n-2$
Sum $=10 \log k+20-2=10 \log k+18$
9A. 2 HKCEE MA $1984(\mathrm{~A} / \mathrm{B})-\mathrm{I}-10$
(a) $\because \frac{-2}{a}=\frac{b}{-2}=$ common ratio
$a-b=b-(2)=$
$a-b=b-(\quad) \quad a=2 b+2$
Pot into (a): $\quad(2 b+2)(b)=4$
$\begin{aligned}(2 b+2)(b) & =4 \\ b^{2}+b-2 & =0\end{aligned}$
$b=-2($ rejected $)$ or
$a=4 \div 1=4$
$a=4 \div 1=4$
(c) (i) Common ratio $=\frac{-2}{4}=\frac{-1}{2}$ $\therefore$ Sum to $\infty=\frac{4}{1-\left(\frac{-1}{2}\right)}=\frac{8}{3}$
(ii) The positive terms are the 1 st. 3 rd. 5 th. .... ones
$\therefore$ Common ratio $=\left(\frac{-1}{2}\right)^{2}=\frac{1}{4}$
$\Rightarrow$ Sum to $\infty=\frac{4}{1-\frac{1}{4}}=\frac{16}{3}$
9 A. 3 HKCEE MA 1986(A/B I)-B -9
(a) (i) Common difference $=1-2=-3$
$n$-th term $=2+\left(\begin{array}{ll}n & 1\end{array}\right)(-3)=5-3$
(ii) $\mathrm{Sum}=\frac{n}{2}[2+(5-3 n)]=\frac{7 n-6 n^{2}}{2}$
(iii) Required sum
$\begin{aligned} & \text { Required sum } \\ & =\frac{7(30)-6(30)^{2}}{2} \quad 7(20) \quad 6(20)^{2} \\ & 2\end{aligned}=-1465$
(b) $\frac{7 n-6 n^{2}}{2}<-1000$
$6 n^{2} \quad 7 n-2000>0$
$n<\frac{7-\sqrt{48049}}{n<12}>\frac{7+\sqrt{48049}}{12}$
$\therefore$ Least $n=19$
9AA HKCEE MA 1989-I-9
(a) $\frac{k}{1}=\frac{\frac{1}{2}}{k} \Rightarrow k=\frac{1}{\sqrt{2}}$
(b) $T(n)=\left(\frac{1}{\sqrt{2}}\right)^{n-1}=2^{\frac{1-n}{2}}$
(c) Sum to $\infty=\frac{1}{1-\frac{1}{\sqrt{2}}}=\frac{1+\frac{1}{\sqrt{2}}}{(1)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}}=2+\sqrt{2}$
(d) $T(1) \times T(3) \times T(5) \times \cdots \times T(2 n-1)$
$=2^{\frac{1-1}{2} \cdot 2^{2 l 2} \cdot 2^{\frac{15}{2}} \cdots \cdots \cdot 2^{\frac{1(2 n-1}{2}}}$
$=2^{0} \cdot 2^{-1} \cdot 2^{-2} \cdots \cdot \cdot 2^{-(n-1)}$
$=2^{-(1+2+\cdots+(n-1))}=2^{\frac{-n(n-1)}{2}}$
9A. 5 HKCEE MA 1995-I-3
(a) Sum $=\frac{20}{2}[2(1)+(20-1)(5-1)]=780$
(b) Sum to $\infty=\frac{9}{1-\left(\frac{3}{9}\right)}=\frac{27}{2}$

9A. 6 HKCEE MA 1996-I-3
(a) $4,1,-2,-5$
(b) $S u m=\frac{100}{2}[2(4)+(100-1)(1-4)]=14450$

9 A. 7 HKCEE MA $2003-\mathrm{I}-7$
9A. $7 \underline{\text { (a) } 10 \text { th cerm }=2+(10-1)(5-2)}=29$
(b) $\mathrm{Sum}=\frac{(2+29)(10)}{2}=155$

9A. 8 HKCEE MA 2005-I-7
$\left.{ }_{2}^{n}\left[\begin{array}{ll}2(5)+\left(\begin{array}{ll}n & 1\end{array}\right)(8 & 5\end{array}\right)\right]=3925$
$3 n^{2}+7 n-7850=0$

$$
\begin{aligned}
50 & =0 \\
n & =50 \text { or } \frac{-157}{3} \text { (rejected) }
\end{aligned}
$$

9A. 9 HKDSEMA 2015-1-17
(a) Common difference $=4$

Common difference $=4$
Sum $=\frac{n}{2}[2(4-5)+(n-1)(4)]=2 n^{2}-3 n$
(b) Note that $\log B(n)=A(n)$. Hence
$\log (B(1) B(2) B(3) . \quad B(n)) \leq 8000$
$A(1)+A(2)+A(3)+\cdots+A(n) \leq 8000$
$2 n^{2}-3 n-8000 \leq 8000$ $\begin{aligned} 2 n^{2}-3 n-8000 & \leq 0 \\ -64 & \leq n \leq 62.5\end{aligned}$
$\therefore$ Greatest $n=62$
9A. 10 HKDSE MA 2016- 1 -17
(a) Common difference $=\frac{555-666}{38-1}=3$
(b) $\frac{n}{2}[2(666)+(n-1)(3)]>0$
$n(1335-3 n)>0$
. Greatest $n=4440<n<44$
9A. 11 HKDSE MA 2018-I-16
(a) Common ratio $=\frac{864}{720}=1.2$
$\therefore$ lst term $=730 \div(1.2)^{2}=500$
(b) $\quad 500(1.2)^{n}+500(1.2)^{2 n}<5 \times 10^{14}$
$\left(1.2^{n}\right)^{2}+\left(1.2^{n}\right)-1 \times 10^{12}<0$
$-1000000.5<1.2^{n}<999999.5$
$n<\frac{\log 999999.5}{\log 1.2}=75.78$
$\therefore$ Least value of $n$ is 75

9A. 12 HKDSE MA 2019-1-16
(a) $\quad 5 \alpha-18=\alpha^{2}-13 \alpha+63$
$\Rightarrow \alpha^{2}-18 \alpha+81 \quad 0$
b) First tenn $=\log 9$

Common difference $=\log 27-\log 9=\log 3$
$\therefore \quad \frac{n}{2}[2 \log 9+(n-1) \log 3]>888$
$4 n \log 3+n^{2} \log 3 \quad n \log 3>1776$
$(\log 3) n^{2}+(3 \log 3) n \quad 1776>0$
The least $n$ is 60 . $n 2.53$ or $n>59.53$
9A. 13 HKDSEMA $2020-\mathrm{I}-16$

## Lad nodr be

$\left\{\begin{array}{l}\cos ^{-1} \times 144 \\ \operatorname{mos}^{4}=486\end{array}\right.$
$\left\{\begin{array}{l}\pi^{2}=144-\cdots-(1) \\ m^{\prime} r^{2} 486---(2)\end{array}\right.$
$(3)^{2}+(2)^{2}=$
$a^{2} 262144$
b $\begin{aligned} & \text { Therefor. ater } \\ & \text { sht } a=64 \\ & \text { inno }\end{aligned}$

$$
\begin{array}{rl}
644^{5} & 486 \\
r & =\frac{243}{32} \\
r=\frac{3}{2}
\end{array}
$$

$\xrightarrow[\frac{3}{2}-1]{\left.\frac{3}{2}\right)^{\circ}-1}>8 \times 10^{01}$
$\left(\frac{3}{2}\right)^{\circ}>6.35 \times 10^{4}+1$
$n>\operatorname{los}_{\frac{1}{2}}\left(6.25 \times 10^{10}+1\right) \quad\left(\because\left(\frac{3}{2}\right)\right)^{i s}$ is micaly itcreasing $)$ $n>95.381679 .1$

9B Applications
9B. 1 HKCEEMA 1981(1/2/3) $-1-10$
(a) By similar triangles. $\frac{b}{a}=\frac{2 a-b}{2 a}$

$$
\begin{aligned}
\frac{b}{a} & =\frac{2 a-b}{2 a} \\
\frac{b}{a} & =1-\frac{1}{2}\left(\frac{b}{a}\right) \\
\frac{3}{2} \cdot \frac{b}{a} & =1 \Rightarrow b=\frac{2}{3} d
\end{aligned}
$$

(b) (i) $B_{2} C_{2}=\frac{2}{3} b$
(ii) $B_{2} C_{2}=\frac{2}{3}\left(\frac{2}{3} a\right)=\frac{4}{9} a$
(c) (i) $B_{5} C_{5}=\left(\frac{2}{3}\right)^{5} a=\frac{32}{243} a$
(ii) $\mathrm{Sum}=\frac{\left(\frac{2}{3} a\right)^{2}}{1-\left(\frac{2}{3}\right)}=\frac{4}{3} a^{2}$

9B. 2 HKCEE MA 1982(1/2/3) $-\mathrm{I}-10$
(a) (i) $999=3(333)$

Sum of fillitios of 3
$3(1)+3(2)+3(3)+\cdots+3(333)$
$(3+999)(333)$
$=\frac{(3+999)(333)}{2}=166833$
(ii) Sum of all multiples of 4
$4(1)+4(2)+\cdots+4(250)$ $-\frac{(4+1000)(250)}{2}=125500$
(b) Required sum
$=$ Sum of all integers - Sum in (a) $=\frac{(1+1000)(1000)}{- \text { Sum in (b) }+ \text { Sum of all multiples of } 12}$ $=249999^{2}-166833-125500+\frac{(12+996)(83)}{2}$

3 HKCEE MA $1983(\mathrm{~A} B)-\mathrm{I}-10$
(a) Required distance $=10+2 \times\left(10 \times \frac{3}{4}\right)=25(\mathrm{~m})$

$$
\begin{aligned}
& \text { (b) Required distance } \\
& \begin{array}{l}
=10+2\left(10 \times \frac{3}{4}\right)+2\left(10 \times\left(\frac{3}{4}\right)^{2}\right) \\
+\cdots+2\left(10 \times\left(\frac{3}{4}\right)^{k}\right) \\
=10+\frac{2\left(10 \times \frac{3}{4}\right)\left[1-\left(\frac{3}{4}\right)^{k}\right]}{1 \frac{3}{4}_{4}^{4}} \\
=10+60\left[1-\left(\frac{3}{4}\right)^{k}\right]=70-60\left(\frac{3}{4}\right)^{k}(\mathrm{~m})
\end{array} \\
& \text { (c) Sum to } \infty=70 \mathrm{~m}
\end{aligned}
$$

(c) Sum to $\infty=70 \mathrm{~m}$
B. 4 HKCEE MA $1985(\mathrm{~A} / \mathrm{B})-\mathrm{I}-14$
(a) (i) $Q_{\mathrm{t}}=P(\mathrm{~J}+r \%) \times \frac{1}{3}=\frac{1}{3} P(1+r \%)$

$$
Q_{2}=P(1+r \%) \times \frac{\frac{3}{3}}{3} \times(1+r \%) \times \frac{1}{3}
$$

$$
=\frac{2}{9} P(1+r \%)^{2}
$$

(ii) $Q_{3}=P(1+r \%) \times \frac{2}{3} \times(1+r \%) \times \frac{2}{3} \times(1+r \%) \times \frac{1}{3}$

$$
=\frac{4}{27} P(1+r \%)^{3}
$$

(b) Common ratio $=\frac{2}{3}(1+r \%)$
 $\frac{729}{52}=(1+r \%)^{3} \Rightarrow$
(ii) $Q_{1}+Q_{2}+Q_{3}+\cdots+Q_{10}$ $=\frac{\frac{1}{3}(10000)(1+12.5 \%)\left(1-\left[\frac{2}{3}(1+12.5 \%)\right]^{10}\right)}{1}$ $=\frac{\frac{1}{3}(10000)\left(\frac{(2)}{8}\right)\left(1-0.75^{10}\right)}{1-0.75}=(\$) 14155$ (orst int)

9B. 5 HKCEE MA $1987(A / B)-1-10$
(a) $T_{1}=\frac{1}{2}(3)(3) \sin 60^{\circ}=\frac{9 \sqrt{3}}{4}$
(b) (i) $A_{2} B_{1}=3 \times \frac{2}{3}=2, B_{1} B_{2}=3 \times \frac{1}{3}=1$

$$
\therefore A_{2} B_{2}=\sqrt{2^{2}+1^{2}-2(2)(1) \cos 60^{\circ}}=\sqrt{3}
$$

(ii) Ratio in leogth $=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
& \Rightarrow \text { Ratio in area }=\left(\frac{1}{\sqrt{3}}\right)^{2}=\frac{1}{3} \\
& \therefore T_{2}=\frac{1}{3} T_{1}=\frac{3 \sqrt{3}}{4}
\end{aligned}
$$

(c) (i) $\frac{1}{3}$
(ii) $T_{n}=\frac{9 \sqrt{3}}{4} \cdot\left(\frac{1}{3}\right)^{n-1}=\frac{\sqrt{3}}{4 \cdot 3^{n-3}}$
(iii) $T_{1}+T_{2}+\cdots+T_{n}=\frac{\frac{9 \sqrt{3}}{4}\left(1-\frac{1}{3^{3}}\right)}{1-\frac{1}{3}}=\frac{27 \sqrt{3}}{8}\left(1-\frac{1}{3^{n}}\right)$
(iv) Sum to $\infty=\frac{27 \sqrt{3}}{8}$

9B. 6 HKCEEMA $1988-\mathrm{I}-9$
(a) Smallest: 105, Largest: 99
(b) 128 multiples

Sum $=\frac{-2}{2}(105+994)=70336$
(c) Sum $=\frac{900}{2}(100+999) \quad 70336=424214$
B. 7 HKCEE MA 1990 - I- 14
(a) (i) $G_{6}: 16,17,18,19,20,21$
(ii) Total number of integers $=1+2+3+4+5+6=2$
(b) (i) $\left.u_{k-1}=1+2+3+\cdots+\left(\begin{array}{ll}k \quad 1\end{array}\right)=\frac{k(k \quad 1}{2}\right)$
(ii) $\begin{aligned} v_{l} & =\frac{k(k-1)}{2}+1 \\ & =\frac{\left[\left(\frac{k k-1)}{2}+1\right)+\left(\frac{k(k-1)}{2}+k\right)\right](k)}{2} \\ & =\frac{[k(k-1)+1+k](k)}{2}=\frac{k\left(k^{2}+1\right)}{2}\end{aligned}$

9B. 8 HKCEE MA 1991-I-12
(a) $d_{3}=0.9 d_{1}=7.2 \quad d_{5}=0.9 d_{3}=6.4$
$\therefore d_{2 \pi-1}=0.9^{n-1} d_{1}=8 \cdot 0.9^{n-1}$
(b) $d_{6}=0.9 d_{4}=0.9^{2} d_{2}=8.1$
$\therefore d_{2 n}=0.9^{n}{ }^{\prime} d_{2} \quad 10 \cdot 0.9^{n-1}$
(c) (i) $d_{1}+d_{3}+\cdots+d_{2 n-1}=\frac{8\left(1-0.9^{n}\right)}{1-0.9}=80\left(1-0.9^{n}\right)$
(ii) $d_{2}+d_{4}+\cdots+d_{3 n}=\frac{10\left(1-09^{n}\right)}{1-0.9}=100\left(\begin{array}{ll}1 & 09^{n}\end{array}\right)$
(d) $d_{0}+d_{1}+\cdots=d_{0}+(80)+(100)=190$

9B. 9 HKCEE MA 1992-I- 14
(a) Common ratio $=\frac{a^{n} 1 b}{a^{n}}=\frac{b}{a}$

$$
\begin{aligned}
\therefore \text { Sum } & =\frac{a^{n}\left(1-\left(\frac{b}{d}\right)^{n}\right)}{1-\frac{a^{n}}{a}} \\
& =a^{n}\left(\frac{a^{n}-t^{n}}{a^{a}}\right) \cdot \frac{a}{a-b}=\frac{a\left(d^{n}-b^{n}\right)}{a-b}
\end{aligned}
$$

(b) (i) (1) $P(1+8 \%)=1.08 P$
(2) $(1.08 P+1.1 P)(1.08)=\left[(1.08)^{2}+(1.1)(1.08)\right] P$ 3) $\left\{\left[(1.08)^{2}+(1.1)(1.08)\right] P+(1.1)^{2} P\right\}(1.08)$ $=\left[(1.08)^{3}+(1.1)(1.08)^{2}+(1.1)^{2}(1.08)\right] P$
(ii) Take $a=1.08$ and $b=1.1$.

Amount
$\left[(1.08)^{n}+(1.1)(1.08)^{n-1}+(1.1)^{2}(1.08)^{n-2}\right.$
$\begin{array}{ll}1.08\left(1.08^{n}-1.1^{n}\right) & \left.+\cdots+(1.1)^{n}(1.08)\right] P\end{array}$
$=\frac{1.08\left(1.08^{n}-1.1^{n}\right)}{1.08-1.1^{2}} P$
$=(\$) 54\left(1.1^{n}-1.08^{n}\right) P$
(c) Value of flat at the end of the $n$th y year $=\$ 1080000(1.15)^{n}$ Amount in account $=\$ 54(20000)\left(1.1^{n} \quad 1.08^{n}\right)$
$=\$ 1080000\left(1.1^{n} 108^{n}\right)$
$<\$ 1080000\left(1.1^{n}\right)$
$<\$ 1080000\left(1.15^{n}\right)=$ Value of flat
9B. 10 HKCEE MA 1993-I- 10
(a) (i) Food pdin $=8+2(1)=10$ (mil. tonnes)
(ii) Food pdtn $=8+(n-1)(1)=7+n$ (mil. tonnes)
(b) Total $=\frac{25}{2}[2(8)+(25-1)(\mathrm{t})]=500$ (mil. tonnes)
(c) (i) Popln $=2(1+6 \%)^{2}=2.2472$ (mil.)
(ii) Popln $=2(1+6 \%)^{n}=2(1.06)^{n}{ }^{1}$ (mil.)
(d) Let it take $n$ years.
$(1.06)^{n}=2 \Rightarrow n=\frac{\log 2}{\log 1.06}=11.896$
$\therefore$ At least 12 years
(e) At the end of the 100 th year, $7+100$
Anl food pdtn per capita $=\frac{7+100}{2(1.06)^{100-1}}=0.167<0.2$ $\therefore$ YES.

9B. 11 HKCEE MA 1994-I-15
(a) (i) No. of babies $=70000(1+2 \%)=71400$
(ii) No. of babies $=70000(1+2 \%)^{n}=70000(1.02)^{n}$
(b) Let it happen in the $k$ th year after 1994.
$70000(1.02)^{k}>90000$

$$
1.02^{k}>\frac{9}{7} \Rightarrow k>\frac{\log \frac{9}{5}}{\log 1.02}=12.69
$$

It happens in 2007
(c) No. of years $=50$

Firsterm $=70000(1.02)^{3}$
$\therefore$ Total $=\frac{70000(1.02)^{3}\left(1.02^{50}\right.}{1)} \quad 6282944$ (nrst
int.)
(d) (i) Leap years: 2000, 2004, 2008, ,., 2044 $\Rightarrow$ No. of leap years $=\frac{2044-2000}{4}+1=12$
(ii) First term $=70000(1.02)^{6}$

Common ratio $=1.02^{4} 6\left[\left(102^{4}\right)^{12}-1\right.$
$=1517744{ }_{\text {(nearest integer) }}^{\left(1.02^{4}\right)}$

9B. 12 HKCEE MA 1997-1-10
(a) Population $=300000 \times(1+2 \%)^{2}=312120$
(b) Let ittake $n$ years.
$300000(1+2 \%)^{n}>330000$
$1.02^{\pi}>1.1$
$n \log 1.02>\log 1.1$
$n>\frac{\log 1.1}{\log 102}=4.81$
After 5 years, i.e. a the end of 2001.
9B. 13 HKCEE MA 1997-1-15

(a) (i) Table 1 | 3 | 9 | 27 |
| :--- | :--- | :--- |
| $\frac{\ell}{3}$ | $\frac{\ell}{9}$ | $\frac{\ell}{27}$ |

(ii) $\frac{\left.\overline{3} \overline{9} \frac{\overline{27}}{\text { Total area }=\ell^{2}+3\left(\frac{\ell}{3}\right)^{2}}+9\left(\frac{\ell}{9}\right)^{2}+27\left(\frac{\ell}{27}\right)^{2}\right)}{}$ $=\frac{820}{729} \ell^{2}$
(iii) $k=\ell^{2}+3\left(\frac{\ell}{3}\right)^{2}+9\left(\frac{\ell}{9}\right)^{2}+27\left(\frac{\ell}{27}\right)^{2}+$. $=\ell^{2}+\frac{\ell^{2}}{3}+\frac{\ell^{2}}{9}+\frac{\ell^{2}}{27}+\cdots$ $=\frac{\ell^{2}}{1-\frac{1}{3}}=\frac{3}{2} \ell^{2}$

(b) (i) Table 2	$4 \ell \mid 6 \ell$	$8 \ell \mid 10 \ell$

(ii) Perimeter of $B_{n}=4 \ell+(n-1)(2 \ell)=2 \ell+2 \ell n$, which becomes inininitel ylarge!

9B. 14 HKCEE MA $1998-1-13$
(a) $A_{2} B_{2}=\sqrt{8^{2}+\sigma^{2}}=10(\mathrm{~cm})$
(b) $A_{2} A_{3}=\frac{3}{3+4}(10)=\frac{30}{7}$ (cm)
$\therefore A_{2} A_{3}: A_{1} A_{2}=\frac{30}{7}: 6=5: 7$
(c) Total dist $=A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{4}+\ldots$

$$
<\frac{6}{1-\frac{5}{7}}=21(\mathrm{~cm})
$$

9B. 15 HKCEE MA 1999-I- 17
(a) $500000(1-r \%)^{11}=254400$

Total income
$=500000+500$
$=500000+500000(1-5 \%)+500000(1-5 \%)^{2}$
$=\frac{500000\left(1-0.95^{12}\right)}{1-0.95}=(\$) 4596399$
Total cost
$=\frac{12}{2}[2(400000)+(12-1)(-20000)]$ $=(\$) 3480000<(\$) 4596399$ Hence, there is still a profi.
(ii) $300000 k>3480000$
$-\frac{k}{2}[2(400000)+(k-1)(-20000)]+10000 k^{2}$ $300000 k>3480000-410000 k+10000 k^{2}$
$0>k^{2}-7!k+348$
The project will last for 5 months.

9B. 16 HKCEE MA 2000-I- 14
(a) Number of seats $=20+49(2)=118$
(b) Total number of seats in the first $n$ rows
$=\frac{n}{2}[2(20)+(n-1)(2)]=19 n+n^{2}$
$\therefore 19 n+n^{2} \geq 2000$
$n^{2}+19 n-2000 \geq 0$
$n \leq-14.28$ or $n \geq 36.22$
9B. 17 HKCEE MA 2001 - I-12
(a) (i) Perimeter $=10+39(1)=49(\mathrm{~cm})$
(ii) Sum $=\frac{(10+49)(40)}{2}=1180(\mathrm{~cm})$
(b) (i) Area of $F_{2}-\left(\text { Peri meter of } F_{2}\right)^{2}$

Area of $F_{2}=4 \times\left(\frac{11}{10}\right)^{2}=4.84\left(\mathrm{~cm}^{2}\right)$
(ii) Area of $F_{3}=4 \times\left(\frac{12}{10}\right)^{2}=5.76\left(\mathrm{~cm}^{2}\right)$
$\because 4.84-4=0.84$
$5.76-4.84=0.92 \neq 0.84$
$\therefore$ They do not form in AS.
9B. 18 HKCEEMA 2001-I-14
(b) $1000(1+r \%)^{4}+1000(1+r \%)^{3}$
$1000(1+r \%)^{2}+1000(1+r \%)=5000$
$\frac{1000(1+r \%)\left[(1+r \%)^{4}-1\right]}{(1+r \%)-1}=5000$
$(1+r \%)^{5}-(1+r \%)=5(1+r \%)-5$
$(1+r \%)^{5}-6(1+r \%)+5=0$
$\begin{aligned} \mathrm{By}(\mathrm{a}), \quad 1+r \% & =1.091 \\ r & =9.1\end{aligned}$

## 9B. 19 HKCEE MA 2002-I-13

(a) Area $=\frac{1}{2}(1)(1) \sin 60^{\circ}=\frac{\sqrt{3}}{4}\left(\mathrm{~m}^{2}\right)$
(b) Area of small $\Delta=\frac{\sqrt{3}}{4} \times\left(\frac{1}{3}\right)^{2}=\frac{\sqrt{3}}{4} \cdot \frac{1}{9}$
$\therefore$ Total area $=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} \cdot \frac{1}{9}$

$$
=\frac{\sqrt[4]{3}}{4} \cdot \frac{10^{4}}{9}=\frac{5 \sqrt{3}}{18}\left(\mathrm{~m}^{2}\right)
$$

(c) Total area $=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} \cdot \frac{1}{9}+\left(\frac{\sqrt{3}}{4} \cdot \frac{1}{9}\right) \cdot \frac{1}{9}+\ldots$

$$
=\frac{\frac{\sqrt{3}}{4}}{1-\frac{1}{9}}=\frac{9 \sqrt{3}}{32}\left(\mathrm{~m}^{2}\right)
$$

9B. 20 HKCEE MA 2003-I- 15
(a) (i) Area $=\frac{1}{2}(k)(1-k) \sin 60^{\circ}=\frac{\sqrt{3}}{4} k(1-k)\left(\mathrm{m}^{2}\right)$
(ii) $\overline{x=\sqrt{ } k^{2}+(1-k)^{2}-2(k)(1-k) \cos 60^{\circ}}$ (ii) $\begin{aligned} x & =\sqrt{k^{2}+(1-k)^{2}-2(k)(1-k) \cos 60^{\circ}} \\ & =\sqrt{1-2 k+2 k^{2}-\left(k-k^{2}\right)=\sqrt{1-3 k}+k^{2}}\end{aligned}$
(iii) $\because \triangle A_{1} B_{0} B_{1} \cong \triangle B_{1} C_{0} C_{1} \cong \triangle C_{1} A_{0} A_{1}$
$\therefore A_{1} B_{1}=B_{1} C_{1}=C_{1} A_{1}$
(b) (i) in $\triangle A_{1} B_{0} B_{1}$ and $\triangle A_{2} B_{1} B_{2}$

$$
\begin{aligned}
& \frac{A_{1} B_{0}}{B_{0} B_{1}}=\frac{1-k}{k} \quad \text { (given) } \\
& \frac{A_{2} B_{1}}{B_{1} B_{2}}=\frac{1-k}{k} \quad \text { (given) } \\
& \angle B_{0}=\angle B_{1} \quad 60^{\circ} \quad \text { (property of equil. } \triangle \text { ) }
\end{aligned}
$$$\frac{\text { Area of } A_{1} B_{1} C_{1}}{\text { Area of } A_{0} B_{0} C_{0}}=\left(\frac{x}{1}\right)^{2}=1-3 k+k^{2}$

$\therefore$ Total area $=\frac{\frac{\sqrt{3}}{4} k(1-k)}{1-\left(1-3 k+k^{2}\right)}$
$=\frac{\sqrt{3} k(1-k)}{4 k(3-k)}=\frac{\sqrt{3}(1-k)}{4(3-k)}$

9B. 21 HKCEE MA $2004-1-15$
(a) (i) Perimeler $=8 \div(10-1)(4)=44(\mathrm{~cm})$
(ii) Let $n$ frames can be formed.

$$
\begin{gathered}
\frac{n}{2}[2(8)+(n-1)(4)] \leq 1000 \\
10 n+2 n^{2} \leq 1000 \\
n^{2}+5 n-500 \leq 0
\end{gathered}
$$

$$
\begin{aligned}
& 20 \text { frames can be fommed. } \\
& \hline
\end{aligned}
$$

$=\left(\text { Peri of } S_{1}: \text { Peri of } S_{2}: \text { Peri of } S_{3}\right)^{3}$
$=\left(\right.$ Peri of $S_{1}:$ Peri of $S_{2}:$ Peri
$=(8: 12: 16)^{3}=8: 27: 81$
Since 8:27 $\neq 27: 81$, the volumes do not form a G.S
(ii) For $S_{1}$, Diag of base $=\sqrt{2^{2}+2^{2}}=\sqrt{8}(\mathrm{~cm})$

$$
\begin{array}{r}
\text { Height }=\sqrt{5^{2}-\left(\frac{\sqrt{8}}{2}\right)^{2}}=\sqrt{23}(\mathrm{~cm}) \\
\text { Volume }=\frac{1}{3}(2)^{2}(\sqrt{23})=\frac{4 \sqrt{23}}{3}\left(\mathrm{~cm}^{3}\right) \\
\therefore \text { Vol of } S_{3}=\frac{4 \sqrt{23}}{3} \cdot \frac{81}{8}=\frac{27 \sqrt{23}}{2}\left(\mathrm{~cm}^{3}\right)
\end{array}
$$

9B. 22 HKCEE MA 2005-1-16
(a) (i) Interest $=200000\left(1+\frac{6 \%}{12}\right)-200000$

$$
=200000(1.005-1)=(\$) 1000
$$

(ii) Amt owed $=\$(201000-x)$
(iii) Amount owed after 2nd instalment $=[200000(1.005)-x](1.005)-x$ $=200000(1.005)^{2}-x(1.005+1)$
Amount owed after 3rd instalment
$=\left[200000(1.005)^{2}-x(1.005+1)\right](1.005)-x$
$=\left[200000(1.005)^{3}-x\left(1.005^{2}+1.005+1\right)\right.$
$=20$.
. Amount owed affer $n$th instament
$=200000(1.005)^{n}$

$$
-x\left(1.005^{n-}\right.
$$

$=200000(1.005)^{n}-x\left(\frac{1.005^{n}-1}{1.005-1}\right)$
$=(\$) 200000(1.005)^{n}-200 x\left[(1.005)^{n}-1\right]$
(b) (i) Let the last instalment be the $(n+1)$ st one. $200000(1.005)^{n}-200(1800)\left(1.005^{n}-1\right)<1800$
$2000(1.005)^{n}-3600(1.005)^{n}+3600<18$ $2000(1.005)^{n}-3600(1.005)^{n}+3600<18$
$\begin{aligned} 1600(1.005)^{n} & >3582 \\ 1.005^{n} & >2.238\end{aligned}$
$n>\frac{\log 223875}{\log 1.005}$
$=161.586$
The last instalment is the 16 2nd one.
(ii) $200000(1.005)^{n}-200(900)\left(1.005^{n \prime}-1\right)<900$
which tas no solution.
i. Peter cannot fully repay the loan with $x=900$

## 9B. 23 HKCEE MA 2008-I- 16

(a) Common difference $=\frac{24-10}{2}=7$
$\therefore a=10-7=3, b=10^{2}+7=17$
(b) (i) $\operatorname{Tax}=(P-172000) \times 20 \%=(\$) 0.2 P-34400$
(ii) $0.2 P-34400=30000 \times 3 \% \div 30000 \times 10 \%$ $+30000 \times 17 \%+(P-172000) \times 24 \%$ $=9000+024 P-62880$
$\Rightarrow 19480=0.04 P \Rightarrow P=487000$
Hence, the least ner total income is $\$ 487000$.
(c) Total amount in bank $=\frac{23000\left(1+\frac{35}{12}\right)\left[\left(1+\frac{35}{12}\right)^{12}-1\right]}{\left(1+\frac{37}{12}\right)-1}$

$$
=(\$) 280526.37
$$

Tax payable $=(1400000-172000) \times 20 \%$
< (\$)280526 37
$\therefore$ He will have enough.

## 9B. 24 HKCEE MA $2009-\mathrm{I}-1$

(a) (i) Fare $=30+\frac{x-2}{0.2} \times 2.4=(\$) 6+12 x$
(ii) The fare will be $6+2 y$, where $y$ is the least multiple of 0.2 which is larger than $x$ of 0.2 w
$\therefore \mathrm{NO}$.
(b) Fare $=6+12(3.2)=(\$) 44.4$
(c) In the city, a taxi is hired for 99 journeys. The 1st joumey covers a distance of 3.1 km . Starting from the 2 nd journey, the dismance covered by each joumey is 0.5 km longer than that the total taxi fare will not exceed $\$ 33000$. Is the claim correct? Explain your answer.

9B. 25 HKCEE MA 2010-I-17
(a) (i) Rotate $B$ about $A$ anticlockwise through $90^{\circ}$
$\Rightarrow D=(-6,8)$
$\Rightarrow D=(-6,8)$
Cencre $=$ mid-pt of $B D=\left(\frac{-6+8}{2}, \frac{8+6}{2}\right)=(1,7)$
(ii) Radius $=\sqrt{(8-1)^{2}+(6-7)^{2}}=\sqrt{50}$
(b) (i) Radius of circle $A_{1} B_{1} C_{1} D_{1}=\frac{1}{2} A B=\frac{\sqrt{8^{2}+6^{2}}}{2}=5$
$\therefore \frac{\text { Area of circle } A_{1} B_{1} C_{1} D_{1}}{\text { Are }}$
$\left(\begin{array}{c}\left.\begin{array}{c}\text { Areatius of circle } A_{1} B_{1} C_{1} D_{1} \\ \text { Radius of circle } A B C D\end{array}\right)^{2}\end{array}=\left(\frac{5}{\sqrt{50}}\right)^{2}=\frac{1}{2}\right.$
(ii) Shaded area between sq. $A B C D$ and cl. $A_{1} B_{1} C_{1} D_{1}$
$=10^{2}-\pi(5)^{2}=100-25 \pi$
$\therefore$ Tolal shaded area
$=(100-25 \pi)+\frac{100-25 \pi}{2}+\frac{100-25 \pi}{2^{2}}$
$+\cdots+\frac{100-25 \pi}{29}$
$-\frac{(100-25 \pi)\left[1-\left(\frac{1}{2}\right)^{10}\right]}{1-4287845}$
$\therefore p=\frac{12.8784 \frac{1}{2} 5}{7(150)^{2}}$
$\therefore P=\frac{42.87845}{\pi(\sqrt{50})^{2}}=0.27297$
which is indeed between 0.2 and 0.3 .
Hence the design is good.

9B. 26 HKCEE MA 2011-I-15

(a) | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- |
|  | 5 | 6 | 7 |

5	5		7
5	6	7	8
6	7	8	9


6	7	8	9
7	8	9	10

(b) The ist row contains: $99,100, \ldots$ ( 99 integers) $\ldots$
$\Rightarrow$ Sum $=\frac{99}{2}[2(99)+98 \times 1]=14652$
(c) Sum of all integers in the 2nd row
$=$ Sum of all integers in the 1 st row $\div 99$
Sum of all integers in the 3rd row
$=$ Sum of all integers in the 1st row $+99 \times 2$
Similarly, sum of all integers in the ith row
$=$ Sum of all integers in the 1 st row $+99 \times\left(\begin{array}{ll}i & 1\end{array}\right)$
$\therefore$ Sum of all integers
of all integers in the 1st row $\times 99$

$$
\begin{aligned}
& -14652 \times 99+99 \times \frac{\begin{array}{c}
(1+98)(98)+9
\end{array}}{2} \\
& =1930797
\end{aligned}
$$

$$
=1930797
$$

(d) In the $k$ th able, Ist row: $k, k+1, \ldots, k+(k \quad 1)$
$\Rightarrow$ Sum $=\frac{[k+(2 k-1)](k)}{2}=\frac{(3 k-1) k}{2}$
$\therefore$ Sum of all integers
$=\frac{(3 k-1)}{2}{ }^{(k)} \times k+[k+2 k+3 k \div \cdot+(k-1) k]$
$=\frac{(3 k-1) k^{2}}{2}+k \times \frac{[1+(k-1)](k-1)}{2}$
$=\frac{(3 k-1) k^{2}}{2}+\frac{k^{2}(k-1)}{2}$
$=\frac{k^{2}\left(3 k^{2} 1+k-1\right)^{2}}{2}=k^{2}(2 k-1)$, which must be odd.
$\therefore$ NO.

## 9B. 27 HKDSEMASP 1-15

## Let there be $n$ rows.

$\frac{n}{2}[2(12) \div(n-1)(3)] \leq 930$

$$
\begin{aligned}
n(21+3 n) & \leq 930 \times 2 \\
n^{2}+7 n \quad 620 & \leq 0
\end{aligned}
$$

Greatest number of rows is 21 .

9B. 28 HKDSE MA PP-I-19
(a) $4000000(1-r \%)^{3}=104857$
$1-r \%=0.64 \Rightarrow r=36$
Let $n$ be the number of years.
$2000000+2000000(0.8)+$
$+\cdots+2000000(0.8)^{n-1}>9000000$
$\begin{aligned} \frac{1-0.8^{n}}{10.8} & >\frac{9000000}{2000000} \\ 0.8^{n} & >0.1\end{aligned}$
$\begin{aligned} 0.8^{n \prime} & >0.1 \\ n \log 0.8 & >\log 0\end{aligned}$
$n>\frac{\log 0.1}{\log 08}=10.319$
. The least number of years is 11 .
(ii) Total revenue $<\frac{2000000}{108}=10000000$ - No.
(iii) In $n$ years, total revenue $=\frac{2000000\left(1 \quad 0.8^{n}\right)}{0 .}$ $=10000000\left(1 \quad 0.8^{n}\right.$
Total investment $=\frac{4000000\left(1-0.64^{n}\right)}{=}$

$100000000(1-2.6414)$
9

Total revenue - Total investment
$=\frac{10000000}{9}\left[9\left(1 \quad 0.8^{n}\right)-10\left(1 \quad 0.64^{n}\right)\right]$
$=\frac{10000000}{9}\left[10\left(0.8^{2}\right)^{n}-9\left(0.8^{\prime \prime}\right)-1\right]$
$=\frac{10000000}{9}\left[10\left(0.8^{\prime \prime}\right)^{2} 9\left(0.8^{\prime \prime}\right)-1\right]$
$=\frac{10000000}{9}\left[10\left(0.8^{n}\right)+1\right]\left[\left(08^{n}\right)-1\right]$
$<0 \quad\left(\because 0.8^{n}<1\right.$ for any $n>0$ )
Hence, Total revenue $<$ Total investmen Thus the claim is disagreed.

9B. 29 HKDSE MA 2012-I-19
(a) (i)

## $\begin{cases}a b^{2} & 254100 \\ a b^{4}=307461\end{cases}$ <br> c $b=307461$

$\Rightarrow b^{2}=\frac{307461}{254100} \Rightarrow b=1.1 \Rightarrow a=210000$
$\therefore$ Required weight $=(210000)(1.1)^{2(4)}$

$$
=450000 \text { (tonnes, } 3 \text { s.f.) }
$$

(ii) $\quad$ Total weight $\left.=\frac{210000(1.1)^{2}\left[\left(1.1^{2}\right)^{n}\right.}{1} 1\right]$ $=1210000\left(1.21^{1}-1\right)$ (tonnes)
(b) (1) In the $m$ th year, $n=m+4$.

Then, $A(m+4)=a b^{2(m+4)}$ and $B(m)=2 a b^{2 n}$
$\Rightarrow A(m+4) \quad a b^{2 m} b^{8}$
$\begin{aligned} \Rightarrow-\frac{A(m+4)}{B(m)} & =\frac{a b^{m}}{\frac{2 a b^{m}}{}} \\ & =\frac{b^{8}}{2} b^{m}\end{aligned}$

$$
=\stackrel{2}{2}=72(1.1)^{m \prime \prime}>1
$$

$\therefore A(m+4)>B(m)$, and the claim is agreed.
(ii) Total weight by $Y$ in the fisst $n \quad 4$ years
$2(210000)(1.1)\left(1.1^{n} 41\right)$
$=4620000\left(1.1^{11-4}{ }^{1}\right.$
$1210000\left(1.21^{n}\right.$ 1)
$+4620000\left(1.1^{n-4} \quad 1\right)>20000000$
$121\left[\left(1.1^{n}\right)^{2} \quad\right.$ i $]+462\left(\frac{1.1^{n}}{1.1^{4}}-1\right)>2000$
$77.1561\left[\left(1.1^{n}\right)^{2}-1\right]+462\left(1.1^{11}-1.4641\right)>2928.2$
177.1561 $\left(1.1^{n}\right)^{2}+462\left(1.1^{11}\right)-3781.7703>0$

$$
\begin{gathered}
1.1^{n}<6.1047 \text { (rejected or } 1.1^{1}>3.4968 \\
\therefore n>\frac{\log 3.4968}{\log 1.1}=13.13
\end{gathered}
$$

. The 14th year since the start of $X$
B. 30 HKDSE MA 2013-I- 19
(a) (i) Total floor area $9 \times 10^{6}(1+r \%)-3 \times 10^{5}$

$$
\begin{aligned}
& =9 \times 10^{6}+9 r \times 10^{4}-3 \times 10 \\
& =(870 \div 9 r) \times 10^{4}\left(\mathrm{~m}^{2}\right)
\end{aligned}
$$

(ii) $\left[9 \times 10^{6}(1+r \%)-3 \times 10^{5}\right](1 \div r \%)$

$$
\begin{array}{ll}
150(1+r \%)^{2} & 5(1+r \%)-176=0 \\
1+r \%=\frac{11}{10} \text { or } \frac{-16}{15}(\mathrm{rej})
\end{array}
$$

(b) (i) Required area
$=9 \times 10^{6}(1.1)^{n-1}-3 \times 10^{5}(1.1)^{n-2}$

$-3 \times 10^{5}(1.1)^{n-3}$ $\begin{array}{ll} & \cdots \\ & 3 \times 10^{5}\end{array}$ $=9 \times 10^{6}(1.1)^{n-1}-3 \times 10^{5} \cdot \frac{(1.1)^{n-1}-1}{1.1-1}$ $=9 \times 10^{6}(1.1)^{n-1}-3 \times 10^{6}\left(1.1^{1 n-1}-1\right)$ $=\left[6(1: 1)^{n} 1+3\right] \times 10^{6}\left(\mathrm{~m}^{2}\right)$
(ii) $\left[6(1.1)^{n}{ }^{1}+3\right] \times 10^{6}>4 \times 10^{7}$

$$
\begin{aligned}
1.1^{n-1} & >\frac{37}{6} \\
n-1 & >\frac{\log \frac{37}{6}}{\log \lfloor .1}
\end{aligned} \Rightarrow n>20.0867 .
$$

$\therefore$ At the end of the 3 lst year.
(c) $\left\{a(1.21)^{1}+b=1 \times 10^{7}\right.$
$\Rightarrow(1.4641 \quad 1.21) a=(1.063-1) \times 10^{7}$
$\Rightarrow a=\frac{3 \times 10^{8}}{121} \Rightarrow b=7 \times 10^{6}$
If the claim happens at the end of the $n$th year,

$$
\begin{gathered}
{\left[6(1.1)^{n-1}+3\right] \times 10^{6}>\frac{3 \times 10^{5}}{121}(1.21)^{n}+7 \times 10^{6}} \\
\frac{6\left(1.1^{n}\right)}{1.1}+3>\frac{300}{123}\left(1.1^{n}\right)^{2}+7
\end{gathered}
$$

$300\left(1.1^{n}\right)^{2}-660\left(1.1^{n}\right)+484<0$
Since the inequality has no solution, the claim is wrong.

## 9 B. 31 HKDSEMA 2014 I-16

$\frac{m}{2}[2(3)+(m-1)(2)]>6888$

$$
\begin{aligned}
m(2+m) & >6888 \\
-2 m-6888 & >0
\end{aligned}
$$

$\begin{array}{ll}m^{2}+2 m-6888 & >0 \\ (m+84)(m \quad 82)>0\end{array}$
$m<-84$ (rejected) or $m>82$
B. 32 HKDSEMA $2017-1-16$
(a) Toral volume $=\frac{1.5 \times 10^{7}\left(1-0.9^{20}\right)}{1-0 .}=1317635018\left(\mathrm{~m}^{3}\right)$
(b) Total volume $<\frac{1.5 \times 10^{7}}{1-0.9}$

$$
\begin{aligned}
& 1-0.9 \\
& =1.5 \times 10^{7}<1.6 \times 10^{8}
\end{aligned}
$$

The claim is agreed.

## 10 Inequalities and Linear Programming

10A Linear inequalities in one unknown
10A. 1 HKCEE MA 1989 I-2
Consider $x+1>\frac{1}{5}(3 x+2)$.
(a) Solve the inequality.
(b) In addition, if $-4 \leq x \leq 4$, find the range of $x$.

10A. 2 HKCEEMA 1995 I- 1(a)
Solve the inequality $3 x+1 \geq 7$.
10A. 3 HKCEE MA 1999 -I 3
Find the range of values of $x$ which satisfy both $3 x-4>2(x)$ and $x<6$.
10A. 4 HKCEE MA $2000-\mathrm{I}-5$
Solve $\frac{11-2 x}{5}<1$ and represent the solution in the figure.


10A. 5 HKCEE MA $2002-17$
(a) Solve the inequality $3 x+6 \geq 4+x$.
(b) Find all integers which satisfy both the inequalities $3 x+6 \geq 4+x$ and $2 x-5<0$.

10A. 6 HKCEE MA 2003 I- 2
Find the range of values of $x$ which satisfy both $\frac{3-5 x}{4} \geq 2 \quad x$ and $x+8>0$.
10A. 7 HKCEE MA 2005 I-4
Solve the inequality $\frac{-3 x+1}{4}>x-5$.
Also write down all integers which satisfy both the inequalities $\frac{-3}{4}{ }^{x+1}>x \quad 5$ and $2 x+1 \geq 0$.
10A. 8 HKCEE MA $2006-\mathrm{I}-2$
(a) Solve the inequality $x+1<\frac{x+25}{6}$.
(b) Write down the greatest integer satisfying the inequality $x+1<\frac{x+25}{6}$.

10A. 9 HKCEEMA 2008 I-2
(a) Solve the inequality $\frac{14 x}{5} \geq 2 x+7$.
(b) Write down the least integer satisfying the inequality $\frac{14 x}{5} \geq 2 x+7$.

10A. 10 HKCEE MA 2010-I -2

(b) Write down the greatest integer satisfying the inequality in (a).

10A. 11 HKDSE MA 2012 I-6
(a) Find the range of values of $x$ which satisfy both $\frac{4 x+6}{7}>2\left(\begin{array}{ll}x & 3\end{array}\right)$ and $2 x-10 \leq 10$.
(b) How many positive integers satisfy both the inequalities in (a)?

10A.12 HKDSE MA 2013-I-5
(a) Solve the inequality $\frac{19-7 x}{3}>23-5 x$.
(b) Find all integers satisfying both the inequalities $\frac{19-7 x}{3}>23-5 x$ and $18 \quad 2 x \geq 0$.

10A. 13 HKDSE MA 2015 I-5
(a) Find the range of values of $x$ whichsatisfy both $\frac{7-3 x}{5} \leq 2(x+2)$ and $4 x \quad 13>0$.
(b) Write down the least integer which satisfies both inequalities in (a).

## 10A. 14 HKDSE MA 2016-I-6

Consider the compound inequality $x+6<6(x+11)$ or $x \leq 5 \ldots \ldots(*)$.
(a) Solve (*).
(b) Write down the greatest negative integer satisfifing (*).

10A. 15 HKDSE MA 2017 I -5
(a) Find the range of values of $x$ which satisfy both $7(x-2) \leq \frac{11 x+8}{3}$ and $6 \quad x<5$.
(b) How many integers satisfy both inequalities in (a)?

10A.16 HKDSEMA 2018-I 6
(a) Find the range of values of $x$ which satisfy both ${ }_{2}^{3-x}>2 x+7$ and $x+8 \geq 0$.
(b) Write down the greatest integer satisfying both inequalities in (a).

10A. 17 HKDSEMA $2019-\mathrm{I}-6$
(a) Solve the inequality $\frac{7 x+26}{4} \leq 2(3 x-1)$.
(b) Find the number of integers satisfying both inequalimes $\begin{gathered}7 x+26 \\ 4\end{gathered} \leq 2(3 x-1)$ and $45 \quad 5 x \geq 0$.

## 10A. 18 HKDSE MA 2020 I 6

## Consider the compound inequality

$$
3 x>\frac{7-x}{2} \text { or } 5+x>4
$$

$\qquad$ (*).
(a) Solve (").
(b) Write down the greatest negative integer satisfying (*).

10B Quadratic inequalities in one unknown
10B. 1 HKCEE MA 1982(1/2/3) $\mathrm{I}-3$
Solve $2 x^{2}-x<36$.
10B. 2 HKCEE MA 1988 -I 3
Solve the inequality $2 x^{2} \geq 5 x$.
10B. 3 HKCEE MA 1990-I-4
(a) Solve the following inequalities:
(i) $6 x+1 \geq 2 x-3$,
(ii) $(2-x)(x+3)>0$.
(b) Using (a), find the values of $x$ which satisfy both $6 x+1 \geq 2 x-3$ and $(2-x)(x+3)>0$.

10B. 4 HKCEEMA 1993-I-4
Solve the inequality $x^{2}-x-2<0$.
Hence solve the inequality $(y-100)^{2}-(y-100)-2<0$.
10B. 5 HKCEEMA 1996-I-5
Solve (i) $\frac{x+5}{2}>4$; (ii) $x^{2}-6 x+8<0$.
Hence write down the range of values of $x$ which satisfy both the inequalities in (i) and (ii).
10B. 6 HKCEE MA 1997 I-4
Solve (i) $2 x-17>0$, (ii) $x^{2}-16 x+63>0$.
Hence write down the range of values of $x$ which satisfy both the inequalities in (i) and (ii).
10B. 7 HKCEE MA 2001-1 4
Solve $x^{2}+x-6>0$ and represent the solution in the figure.


10B. 8 HKCEE AM $1985-1-3$
Solve the inequality $x^{2}-a x-4 \leq 0$, where $a$ is real.
If, among the possible values of $x$ satisfying the above inequality, the greatest is 4 , find the least.
10B. 9 HKCEE AM 1986 I 7
Solve $x>\frac{3}{x}+2$ for each of the following cases:
(a) $x>0$;
(b) $x<0$.

10B. 10 (HKCEE AM 1994-I-1)
Solve the mequality $\frac{2(x+1)}{x-2} \geq 1$ for each of the following cases:
(a) $x>2$;
(b) $x<2$.

10B. 11 HKCEE AM 1995-I-4
Solve the inequality $x{ }_{x}^{5}>4$ for each of the following cases:
(a) $x>0$;
(b) $x<0$.

10B. 12 (HKCEE AM 1996-I -3)
Solve the inequality $\frac{2 x-3}{x+1} \leq 1$ for each of the following cases:
(a) $x>-1$;
(b) $x<-1$.

10B. 13 HKCEE AM 1998-I 6(a)
Solve $x^{2}-6 x-16>0$.
10B. 14 (HKCEE AM 1999-I 2)
Solve the inequality $\begin{gathered}x \\ x-1\end{gathered}>2$ for each of the following cases:
(a) $x>1$;
(b) $x<1$.

10B. 15 (HKCEE AM 2000 I 1)
Solve the inequality $\frac{1}{x} \geq 1$ for each of the following cases:
(a) $x>0$;
(b) $x<0$.

10B. 16 HKCEE AM 2011-3
Solve the following inequalities:
(a) $5 x-3>2 x+9$;
(b) $x(x-8) \leq 20$;
(c) $5 x-3>2 x+9$ or $x(x-8) \leq 20$.

## 10C Problems leading to quadratic inequalities in one unknown

## 10C. 1 HKCEE MA 1983(B) I 14

$\alpha$ and $\beta$ are the roots of the quadratic equation $x^{2} \quad 2 m x+n=0$, where $m$ and $n$ are real numbers.
(a) Find, in terms of $m$ and $n$
(i) $(m-\alpha)+(m-\beta)$
(ii) $(m-\alpha)(m-\beta)$.
(b) Find, in terms of $m$ and $n$, the quadratic equation having roots $m \quad \alpha$ and $m-\beta$
(c) If $n=4$, find the range of values of $m$ such that the equation $x^{2} \quad 2 m x+n=0$ has real roots.

## 10C. 2 HKCEE MA 1985(A/B) I 13

In the figure, $A B C$ is an equilateral triangle. $A B=2 . D, E, F$ are points on $A B, B C, C A$ respectively such that $A D=B E=C F=x$.
(a) By using the cosine formula or otherwise, express $D E^{2}$ in terms of $x$.
(b) Show that the area of $\triangle D E F=\frac{\sqrt{3}}{4}\left(3 x^{2}-6 x+4\right)$.

Hence, by using the method of completing the square, find the value of $x$ such that the area of $\triangle D E F$ is smallest.
(c) If the area of $\triangle D E F \leq \frac{\sqrt{3}}{3}$, find the range of the values of $x$.


10C. 3 HKCEE MA 1987(B) - I 14
(Continued from 8C.4.)
Given $p=y+z$, where $y$ varies directly as $x, z$ varies inversely as $x$ and $x$ is positive. When $x=2, p=7$, when $x=3, p=8$.
(a) Find $p$ when $x=4$
(b) Find the range of values of $x$ such that $p$ is less than 13

## 10C. 4 HKCEE MA 1992 I 6

Find the range of values of $k$ so that the quadratic equation $x^{2}+2 k x+(k+6)=0$ has two distinct real roots.
10C. 5 HKCEE MA 2003-I - 10
(Continued from 8C.14.)
The speed of a solar powered toy can is $V \mathrm{~cm} / \mathrm{s}$ and the length of its solar panel is $L \mathrm{~cm}$, where $5 \leq L \leq 25$. $V$ is a function of $L$. It is known that $V$ is the sum of two parts, one part varies as $L$ and the other part varies as the square of $L$. When $L=10, V=30$ and when $L=15, V=75$
(a) Express $V$ in terms of $L$.
(b) Find the range of values of $L$ when $V \geq 30$.

10C. 6 HKCEE MA 2004-I-10
(Continued from 8 C .15.$)$
It is known that $y$ is the sum of two parts, one part varies as $x$ and the other part varies as the square of $x$. When $x=3, y=3$ and when $x=4, y=12$.
(a) Express $y$ in terms of $x$.
(b) If $x$ is an integer and $y<42$, find all possible value(s) of $x$.

10C. 7 HKCEE AM 1983-I - 1
Determine the range of values of $\lambda$ for which the equation $x^{2}+4 x+2+\lambda(2 x+1)=0$ has no real roots.

## 10C. 8 HKCEE AM 1988 -I- 5

Let $f(x)=x^{2}+4 m x+4 m+15$, where $m$ is a constant. Find the discriminant of the equation $f(x)=0$ Hence, or otherwise, find the range of values of $m$ so that $f(x)>0$ for all real values of $x$

## 10C. 9 HKCEE AM $1988-\mathrm{I}-10$

(Continued from 7B.10.)
Let $f(x)=x^{2}+2 x \quad 1$ and $g(x)=-x^{2}+2 k x \quad k^{2}+6$ (where $k$ is a constant.)
(a) Suppose the graph of $y=f(x)$ cuts the $x$-axis at the points $P$ and $Q$, and the graph of $y=g(x)$ cuts the $x$ axis at the points $R$ and $S$.
(i) Find the lengths of $P Q$ and $R S$
(ii) Find, in terms of $k$, the $x$-coordinate of the mid-point of $R S$.

If the mid points of $P Q$ and $R S$ coincide with each other, find the value of $k$.
(b) If the graphs of $y=f(x)$ and $y=g(x)$ intersect at only one point, find the possible values of $k$; and for each value of $k$, find the point of intersection.
(c) Find the range of values of $k$ such that $f(x)>g(x)$ for any real value of $x$.

10C. 10 HKCEE AM 1991-I-7
(Continued from 6C.17.)
$p, q$ and $k$ are real numbers satisfying the following conditions: $\left\{\begin{array}{l}p+q+k=2, \\ p q+q k+k p\end{array}\right.$
(a) Express $p q$ in terms of $k$.
(b) Find a quadratic equation, with coefficients in terms of $k$, whose roots are $p$ and $q$. Hence find the range of possible values of $k$.

## 10C. 11 HKCEE AM $1991-\mathrm{I}-9$

(Continued from 7B.11.)
Let $f(x)=x^{2}+2 x \quad 2$ and $g(x)=-2 x^{2} \quad 12 x \quad 23$.
(a) Express $g(x)$ in the form $a(x+b)^{2}+c$, where $a, b$ and $c$ are real constants. Hence show that $g(x)<0$ for all real values of $x$
(b) Let $k_{1}$ and $k_{2}\left(k_{1}>k_{2}\right)$ be the two values of $k$ such that the equation $f(x)+k g(x)=0$ has equal roots. (i) Find $k_{1}$ and $k_{2}$.
(ii) Show that $f(x)+k_{1} g(x) \leq 0$ and $f(x)+k_{2} g(x) \geq 0$ for all real values of $x$.
(c) Using (a) and (b), or otherwise, find the greatest and least values of $\frac{f^{\prime}(x)}{g(x)}$.

## 10C. 12 HKCEE AM 1995-I-1

Let $f(x)=x^{2}+\left(\begin{array}{ll}1 & m\end{array}\right) x+2 m \quad$, where $m$ is a constant. Find the discriminant of the equation $f(x)=0$. Hence find the range of values of $m$ so that $f(x)>0$ for all real values of $x$.

10C. 13 (HKCEE AM 1995 I 10) [Difficult]
(Continued from 6C.20.)
Let $f(x)=12 x^{2}+2 p x-q$ and $g(x)=12 x^{2}+2 q x-p$, where $p, q$ are distinct real numbers. $\alpha, \beta$ are the roots of the equation $f(x)=0$ and $\alpha, \gamma$ are the roots of the equation $g(x)=0$.
(a) Using the fact that $f(\alpha)=g(\alpha)$, find the value of $\alpha$. Hence show that $p+q=3$.
(b) Express $\beta$ and $\gamma$ in terms of $p$
(c) Suppose $-\frac{7}{24}<\beta^{3}+\gamma^{3}<\frac{7}{24}$.
(i) Find the range of possible values of $p$.
(ii) Furthermore, if $p>q$, write down the possible integral values of $p$ and $q$.

10C. 14 (HKCEE AM 1996 I 8)
The graph of $y=x^{2}-(k-2) x+k+1$ intersects the $x$-axis at two distinct points $(\alpha, 0)$ and $(\beta, 0)$, where $k$ is real.
(a) Find the range of possible values of $k$.
(b) Furthermore, if $-5<\alpha+\beta<5$, find the range of possible values of $k$.

## 10C. 15 (HKCEE AM 1997-I 8)

Let $\alpha$ and $\beta$ be the roots of the equation $x^{2}+(k+2) x+2(k-1)=0$, where $k$ is real.
(a) Show that $\alpha$ and $\beta$ are real and distinct.
(b) If the difference between $\alpha$ and $\beta$ is larger than 3 , find the range of possible values of $k$.

## 10C. 16 HKCEE AM 1999-I - 4

Let $f(x) \quad 2 x^{2}+2(k-4) x+k$, where $k$ is real.
(a) Find the discriminant of the equation $f(x)=0$.
(b) If the graph of $y=f(x)$ lies above the $x$ axis for all values of $x$, find the range of possible values of $k$.

## 10C. 17 HKCEE AM 2005-5

Find the range of values of $k$ such that $x^{2}-x-1>k(x-2)$ for all real values of $x$.
10C. 18 HKCEE AM 2006 - 4
If $k x^{2}+x+k>0$ for all real values of $x$, where $k \neq 0$, find the range of possible values of $k$.

## 10C. 19 HKCEE AM 2008-4

The graph of $y=k x^{2} \quad x+9 k$ lies below the $x$ axis, where $k \neq 0$ (see the figure). Find the range of possible values of $k$.


## 10C. 20 HKCEEAM 2010-4

It is given that $\left(\begin{array}{ll}k & 1\end{array}\right) x^{2}+k x+k \geq 0$ for all real values of $x$. Find the range of possible values of $k$.

## 10D Linear programming (with given region)

## 10D.1 HKCEE MA 1984(A/B)-I 8

In the figure, $\ell_{1}: 2 y=3, \ell_{2}: 3 x-2 y=0$. The line $\ell_{3}$ passes through $(0,10)$ and $(10,0)$.
(a) Find the equation of $\ell_{3}$.
(b) Find the coordinates of the points $A, B$ and $C$.
(c) In the figure, the shaded region, including the boundary, is determined by three inequalities. Write down these inequalities.
(d) $(x, y)$ is any point in the shadedregion, including the boundary, and $P=x+2 y-5$. Find the maximum and minimum values of $P$.


## 10D. 2 HKCEE MA 1988-I-12

In the figure, $L_{1}$ is the line $x=3$ and $L_{2}$ is the line $y=4 . L_{3}$ is the line passing through the points $(3,0)$ and $(0,4)$.
(a) Find the equation of $L_{3}$ in the form $a x+b y=c$, where $a, b$ and $c$ are integers.
(b) Write down the three constraints which determine the shaded region, including the boundary.
(c) Let $P=x+4 y$. If $(x, y)$ is any point satisfying all the constraints in (b), find the greatest and the least the constrain
values of $P$.
(d) If one more constraint $2 x-3 y+3 \leq 0$ is added, shade in the figure the new region satisfying all the four constraints.
For any point $(x, y)$ lying in the new region, find the least value of $P$ defined in (c).


## 10D. 3 HKCEEMA 1990 I 5

In the figure, the shaded region $A B C D E$ is bounded by the five given lines $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ and $\ell_{5}$. The line $\ell: x+4 y=0$ passes through the origin 0 .
Let $P=x+4 y \quad$ 2, where $(x, y)$ is any point in the shaded region including the boundary. Find the greatest and the least values of $P$.


## 10D. 4 HKCEEMA 1991-I - 8

In the figure, $L_{1}$ is the line $x=4, L_{2}$ is the line passing through the point $(0,2)$ with slope 1 , and $L_{3}$ is the line passing through the points $(5,0)$ and $(0,5)$.
(a) Find the equations of $L_{2}$ and $L_{3}$.
(b) Write down the three inequalities which determine the shaded region, including the boundary.
(c) Suppose $P=x+2 y-3$ and ( $x, y$ ) is any point satisfying all the inequalities in (b).
(i) Find the point $(x, y)$ at which $P$ is a minimum. What is this minimum value of $P$ ?
(ii) If $P \geq 7$, by adding a suitable straight line to the figure, find the range of possible values of $x$.


10D. 5 HKCEE MA 1992-I - 3
In this question, working steps are not required and you need to given the answers only-
In the figure, the shaded region, including the boundary, is determined by three inequalities.
(a) Write down the three inequalities.
(b) How many points $(x, y)$, where $x$ and $y$ are both integers, satisfy the three inequalities in (a)?


10D. 6 HKCEE MA 1993 I 1(d)
In this question, working steps are not required and you need to give the answers only.
In the figure, find a point $(x, y)$ in the shaded region (including the boundary) at which the value of $x+2 y$ is
(i) greatest,
(ii) least.

What are these greatest and least values?


## 10D. 7 HKCEE MA $1995-\mathrm{I}-12$

A box of Brand X chocolates costs $\$ 25$ and contains 20 chocolates. A box of Brand Y chocolates costs $\$ 37.50$ and contains 40 chocolates.
Mrs. Chiu wants to spend not more than $\$ 300$ to buy at least 240 chocolates for her students. She wants to buy at least 3 boxes of each brand of chocolates but not more than 10 boxes altogether.
(a) If Mrs. Chiu buys $x$ boxes of Brand X chocolates and $y$ boxes of Brand Y chocolates, then $x, y$ are integers such that $x \geq 3$ and $y \geq 3$. Write down the inequalities in terms of $x$ and $y$ which say
(i) the total number of chocolates is at least 240;
(ii) the total cost is not more than $\$ 300$;
(iii) the total number of boxes is not more than 10 .
(b) The points representing the ordered pairs ( $x, y$ ) satisfying all the constraints in (a) are contained in the shaded region in the graph below. List all these ordered pairs $(x, y)$.
(c) Find the least amount Mrs. Chiu has to pay in buying chocolates for her students.
(d) Mrs. Chiu goes to a shop to buy the chocolates. She finds that she can get a free gift for every purchase of $\$ 300$. In order to get the free gift, she decides to spend exactly $\$ 300$ on buying the chocolates. Find (i) all possible combinations $(x, y)$ of the numbers of boxes of Brand $X$ and Brand Y chocolates, and (ii) the greatest number of chocolates

Mrs. Chiu can buy.


10D. 8 HKCEE MA 1996-I 9
In the figure, $\mathscr{R}$ is the region (including the boundary) bounded by the three straight lines

$$
\begin{aligned}
& L_{1}: 3 x+2 y-7=0, \\
& L_{2}: 3 x-5 y+7=0
\end{aligned}
$$

$$
\text { and } L_{3}: 2 x-y-7=0
$$

$L_{1}$ and $L_{2}$ intersect at $A(1,2) . L_{2}$ and $L_{3}$ intersect at $B(6,5)$.
(a) Find the coordinates of $C$ at which $L_{1}$ and $L_{3}$ intersect.
(b) Write down the three inequalities which define the region $\mathscr{R}$.
(c) Find the maximum value of $2 x-2 y-7$. where $(x, y)$ is any point in the region $\mathscr{R}$.


## 10D. 9 HKCEE MA 2002-1-17

(a) The figure shows two straight lines $L_{1}$ and $L_{2} . L_{1}$ cuts the coordinate axes at the points $(5 k, 0)$ and $(0,9 k)$ while $L_{2}$ cuts the coordinate axes at the points $(12 k, 0)$ and $(0,5 k)$, where $k$ is a positive integer. Find the equations of $L_{1}$ and $L_{2}$.
(b) A factory has two production lines $A$ and $B$. Line $A$ requires 45 man-hours to produce an article and the production of each article discharges 50 units of pollutants. To produce the same article, line $B$ required 25 man hours and discharges 120 units of pollutants. The profit yielded by each article produced by the production line $A$ is $\$ 3000$ and the profit yielded by each article produced by the production line $B$ is $\$ 2000$.
(i) The factory has 225 man hours available and the total amount of pollutants discharged must not exceed 600 units. Let the number of articles produced by the production lines $A$ and $B$ be $x$ and $y$ respectively. Write down the appropriate inequalities and by putting $k=1$ in the figure, find the greatest possible profit of the factory.
(ii) Suppose now the factory has 450 man hours available and the total amount of pollutants discharged must not exceed 1200 units. Using the figure, find the greatest possible profit.

10D. 10 HKCEEMA 2009-I 16
(a) In the figure, the straight lines $L_{1}$ and $L_{2}$ are perpendicular to each other. The equations of the straight lines $L_{3}$ and $L_{4}$ are $x=8$ and $y=10$ respectively. It is given that $L_{1}$ and $L_{2}$ intersect at the point $(12,24)$ while $L_{1}$ and $L_{3}$ intersect at the point $(8,16)$.
(i) Find the equations of $L_{1}$ and $L_{2}$.
(ii) In the figure, the shaded region (including the boundary) represents the solution of a system of inequalities. Write down the system of inequalities.
(b) There are two kinds of dining tables placed in a restaurant: square tables and round tables. The manager of the restaurant wants to place at least 8 square tables and 10 round tables. Moreover, the number of round tables placed is not more than 2 times that of the square tables placed. Each square table occupies a floor area of $4 \mathrm{~m}^{2}$ and each round tables occupies a floor area of $8 \mathrm{~m}^{2}$. The floor area occu pied by the dining tables in the restaurant is at most $240 \mathrm{~m}^{2}$. On a certain day, the profits on a square table and a round table at $\$ 4000$ and $\$ 6000$ respectively.
The manager claims that the total profit on the dining tables can exceed $\$ 230000$ that day. Do you agree? Explain your answer.


10D. 11 HKDSE MA 2014-I - 18
(a) In the figure, the equation of the straight line $L_{1}$ is $6 x+7 y=900$ and the $x$ intercept of the straight line $L_{2}$ is 180. $L_{1}$ and $L_{2}$ intersect at the point $(45,90)$. The shaded region (including the boundary) represents the solution of a system of inequalities. Find the system of inequalities.
(b) A factory produces two types of wardrobes, $X$ and $Y$. Each wardrobe $X$ requires 6 man-hours for assembly and 2 man-hours for packing while each wardrobe $Y$ requires 7 man-hours for assembly and 3 man hours for packing. In a certain month, the factory has 900 man hours available for assembly and 360 man hours available for packing. The profits for producing a wardrobe $X$ and a wardrobe $Y$ are $\$ 440$ and $\$ 665$ re spectively. A worker claims that the total profit can exceed $\$ 80000$ that month. Do you agree? Explain your answer.


10 E Linear programming (without given region)

## 10E. 1 HKCEE MA 1980(1/1*/3) I 12

An airline company has a small passenger plane with a luggage capacity of 720 kg , and a floor area of $60 \mathrm{~m}^{2}$ for installing passenger seats. An economy class seat takes up $1 \mathrm{~m}^{2}$ of floor area while a first class seat takes up $1.5 \mathrm{~m}^{2}$. The company requires that the number of first class seats should not exceed the number of economy class seats. An economy class passenger cannot carry more than 10 kg of luggage while a firstclass passenger cannot carry more than 30 kg of luggage.
The profit from selling a first class ticket is double that from selling an economy-class ticket. If all tickets are sold out in every flight, find graphically how many economy-class seats and how many first class seats should be installed to give the company the maximum profit.
(Let $x$ be the number of economy-class seats installed, $y$ be the number of first-class seats installed.)


10E. 2 HKCEE MA 1981(1/2/3) I-8
An association plans to build a hostel with $x$ single rooms and $y$ double rooms satisfying the following onditions
(1) The hostel will accommodate at least 48 persons.
(2) Each single room will occupy an area of $10 \mathrm{~m}^{2}$, each double room will occupy an area of $15 \mathrm{~m}^{2}$ and the total available floor area for the rooms is $450 \mathrm{~m}^{2}$.
(3) The number of double rooms should not exceed the number of single rooms.

If the profits on a single room and a double room are $\$ 300$ and $\$ 400$ per month respectively, find graphically the values of $x$ and $y$ so that the total profit will be a maximum.


## 0. Inequalities and linear Programming

10E. 3 HKCEE MA 1983(A/B) I 12
(a) On the graph paper provided below, draw the following straight lines:

$$
y=2 x, \quad x+y=30, \quad 2 x+3 y=120
$$

(b) On the same graph paper, shade the region that satisfies all the following inequalities:

$$
\left\{\begin{array}{l}
y \geq 0 \\
y \leq 2 x \\
x+y \geq 30 \\
2 x+3 y \leq 120
\end{array}\right.
$$

c) It is given that $P=3 x+2 y$. Under the constraints given by the inequalities in (b),
(i) find the maximum and minimum values of $P$, and
(ii) find the maximum and minimum values of $P$ if there is the additional constraint $x \leq 45$.


10E. 4 HKCEE MA 1986(A/B) - I
(a) (i) On the graph paper provided, draw the following straight lines: $x+y=40, \quad x+3 y=60, \quad 7 x+2 y=140$.
(ii) On the same graph, paper, shade the region that satisfies all the following constraints $x \geq 0, \quad y \geq 0, x+y \geq 40, x+3 y \geq 60, \quad 7 x+2 y \geq 140$.
(b) A company has two workshops A and B. Workshop A produces 1 cabinet, 1 table and 7 chairs each day. Workshop B produces 1 cabinet, 3 tables and 2 chairs each day. The company gets an order for 40 cabinets, 60 tables and 140 chairs. The expenditures to operate Workshop A and Workshop B are respectively $\$ 1000$ and $\$ 2000$ each day. Use the result of (a)(ii) to find the number of days each workshop should operate to meet the order if the total expenditure in operating the workshops is to be kept to a minimum
(Denote the number of days that Workshops A and B should operate by $x$ and $y$ respectively.)


10E. 5 HKCEE MA 1987(A/B) - I 12
A factory produces three products $A, B$ and $C$ from two materials $M$ and $N$.
Each tonne of $M$ produces 4000 pieces of $A, 20000$ pieces of $B$ and 6000 pieces of $C$.
Each tonne of $N$ produces 6000 pieces of $A, 5000$ pieces of $B$ and 3000 pieces of $C$.
The factory has received an order for 24000 pieces of $A, 60000$ pieces of $B$ and 24000 pieces of $C$. The costs of $M$ and $N$ are respectively $\$ 4000$ and $\$ 3000$ per tonne. By following the steps below, detennine the least cost of the materials used so as the meet the order.
(a) Suppose $x$ tonnes of $M$ and $y$ tonnes of $N$ were used. By considering the requirement of $A, B$ and $C$ of the order, five constraints could be obtained. Three of them are:

$$
x \geq 0, \quad y \geq 0, \quad 4000 x+6000 y \geq 24000 .
$$

Write down the other two constraints on $x$ and $y$.
(b) On the graph paper provided, draw and shade the region which satisfies the five constraints in (a).
(c) Express the cost of materials in terms of $x$ and $y$.

Hence use the graph in (b) to find the least cost of materials used to meet the order.


## 10E. 6 HKCEE MA 1989-I-14

(a) In the figure, draw and shade the region that satisfies the following inequalities:

$$
\left\{\begin{array}{rl}
y & \geq 20 \\
2 x & y \\
x+y & \leq 40 \\
x
\end{array}\right.
$$

(b) The vitamin content and the cost of three types of food $X, Y$ and $Z$ are shown in the following table:

Food $X$	Food $Y$	Food $Z$
400	600	400
800	200	400


Vitamin A (units/kg)	400	600	400
Vitamin B (units/kg)	800	200	400
Cost (doll ars/kg)	6	5	4

A man wants to produce 100 kg of a mixture by mixing these three types of food. Let the amount of food $X$, food $Y$ and food $Z$ used by $x_{i} y$ and $z$ kilograms respectively.
(i) Express $z$ in terrns of $x$ and $y$
(ii) Express the cost of the mixture in terms of $x$ and $y$.
(iii) Suppose the mixture must contain at least 44000 units of vitamin A and 48000 units of vitamin B. Show that $\left\{\begin{aligned} y & \geq 20 \\ 2 x-y & \geq 40 \\ x+y & \leq 100\end{aligned}\right.$
(iv) Using the result in (a), determine the values of $x, y$ and $z$ so that the cost is the least.

## 10E. 7 HKCEEMA 1994-1-11

(a) Draw the following straight lines on the graph paper provided: $x+y=10, \quad x+2 y=12, \quad 2 x=3 y$.
(b) Mr. Chan intends to employ a contractor to build a rectangular nower bed $A B C D$ with length $A B$ equal to $x$ metres and width $B C$ equal to $y$ metres. This project includes building a wall of length $x$ metres along the side $A B$ and fences along the other three sides as shown in the figure.


Mr. Chan wishes to have the total length of the four sides of the flower bed $x \mathrm{~m} \longrightarrow$ less than 20 metres, and he also adds the condition that twice the length of the flower bed should not less than three times its width. However, no contractor will build the fences if their total length is less than 12 metres.
(i) Write down all the above constraints for $x$ and $y$.
(ii) Mr. Chan has to pay the contractor $\$ 500$ per metre for building the wall and $\$ 300$ per metre for building the fences. Find the length and width of the flower bed so that the total payment for building the wall and fences is the minimum.
Find also the minimum total payment.


## 10E. 8 HKCEE MA 1998-I-18

Miss Chan makes cookies and cakes for a school fair. The ingredients needed to make a tray of cookies and a tray of cakes are shown in the table.

	Four	Sugar	Eggs
Cookies	0.32 kg	0.24 kg	2
Cakes	0.28 kg	0.36 kg	10

Miss Chan has 4.48 kg of fiour, 4.32 kg of sugar and 100 eggs, from which she makes $x$ trays of cookies and $y$ trays of cakes.
(a) Write down the inequalties represent the constaints on $x$ and $y$. Let $\mathscr{R}$ be the region of point representing ordered pairs $(x, y)$ which satisfy these inequalities. Draw and shade the region $\mathscr{R}$ in the figure below.
(b) The profit from selling a tray of cookes is $\$ 90$, and that from selling a tray of cakes is $\$ 120$. If $x$ and are integers, find the maximum possible profit.


## 0E. 9 HKCEE MA 2000-I - 15

A company produces two brands, $A$ and $B$, of mixed nuts by putting peanuts and almonds together. A packe f brand $A$ mixed nuts contains 40 g of peanuts and 10 g of almonds. A packet of brand $B$ mixed nuts convins 30 g of peanuts and 25 g of almonds. The company has 2400 kg of peanuts, 1200 kg of almonds and 70 carto boxes. Each carton box can pack 1000 brand $A$ packets or 800 brand $B$ packets.
The profits generated by a box of brand $A$ mixed nuts and a box of brand $B$ mixed nuts are $\$ 800$ and $\$ 1000$ espectively. Suppose $x$ boxes of brand $A$ mixed nuts and $y$ boxes of brand $B$ mixed nuts are produced.
(a) Using the graph paper provided, find $x$ and $y$ so that the profit is the greatest.
(b) If the number of boxes of brand $B$ mixed nuts is to be smaller than the number of boxes of brand $A$ mixed nuts, find the greatest profit.


## 10E. 10 HKCEE MA 2001-I-15

(a) In Figure (1), shade the region that represents the solution to the following constraints: $\left\{\begin{array}{l}1 \leq x \leq 9, \\ 0 \leq y \leq 9,\end{array}\right.$ $5 x-2 y>15$
(b) A restaurant has 90 tables. Figure (2) shows its floor plan where a circle represents a table. Each table is assigned a 2 digit number from 10 to 99 . A rectangular coordinate system is introduced to the floor plan such that the table numbered $10 x+y$ is located at $(x, y)$ where $x$ is the tens digit and $y$ is the units digit of the table number. The table numbered 42 has been marked in the figure as an illustration.
The restaurant is partitioned into two areas, one smoking and one non smoking. Only those tables with the digits of the table numbers satisfying the constraints in (a) are in the smoking area.
(i) In Figure (2), shade all the circles which represent the tables in the smoking area.
(ii) [Probability]

Two tables are randomly selected, one after another and without replacement from the 90 tables. Find the probability that
(1) the first selected table is in the smoking area;
(2) of the two selected tables, one is in the smoking area, and the other is in the non smoking area
and its number is a multiple of 3 .


Figure (1)

Figure (2)

## 10 Inequalities and Linear Programming

10A Linear inequalities in one unknown
10A. 1 HKCEEMA $989-I-2$
(a) $5 x+5>3 x+2 \Rightarrow 2 x>3 \Rightarrow x>\frac{-3}{2}$
(b) $\frac{3}{2}<x \leq 4$

10A. 2 HKCEE MA 1995-I-1(a)
$3 x+1 \geq 7 \Rightarrow 3 x \geq 6 \Rightarrow x \geq 2$
10A. 3 HKCEEMA 1999-I-3
$3 x-4>2(x-1) \Rightarrow 3 x-4>2 x \quad 2 \Rightarrow x>2$ 'And' wihh $x<6$ : $2<x<6$

## 10A. 4 HKCEEMA 2000-1-5

$11-2 x<5 \Rightarrow 2 x>6 \Rightarrow x>3$

$$
\xrightarrow[-5-4-3-2-1012345]{+}
$$

10A. HKCEEMA $2002-\mathrm{I}-7$
(a) $3 x+6 \geq 4+x \Rightarrow 2 x \geq-2 \Rightarrow x \geq-1$
(b) $2 x-5<0 \Rightarrow x<\frac{5}{2}$
$\therefore$ And: $\quad 1 \leq x<\frac{5}{2}$

## 10A. 6 HKCEEMA2003-I -2

3 $\frac{5 x}{4} \geq 2-x \Rightarrow 3-5 x \geq 8-4 x \Rightarrow x \leq-5$
$x+8>0 \Rightarrow x>-8$
$\therefore$ And: $-8<x \leq 5$
10A. 7 HKCEEMA $2005-1-4$
$-3 x+1>4 x-20 \Rightarrow 7 x<21 \Rightarrow x<3$
$2 x+1 \geq 0 \Rightarrow x \geq \frac{-1}{2}$
$\therefore$ And: $\frac{-1}{2} \leq x<3$
10AS HKCEE MA 2006-I-2
(a) $6 x+6<x+25 \Rightarrow 5 x<19 \Rightarrow x<\frac{19}{5}$
(b) 3

## 10A. 9 HKCEEMA $2008-\mathrm{I}-2$

(a) $14 x \geq 10 x+35 \Rightarrow 4 x \geq 35 \Rightarrow x \geq \frac{35}{4}$
(b) 9

10A. 10 HKCEE MA 2010-I-2
(a) $29 x-2 \leq 21 x \Rightarrow 8 x \leq 22 \Rightarrow x \leq \frac{11}{4}$
(b) 2

10A. 11 HKDSEMA 2012-I-6
(a) $\frac{4 x+6}{7 x^{7}>2(x \quad 3) \Rightarrow 4 x+6>14 x-42 \Rightarrow x<\frac{24}{5}}$
$2 x \quad 10 \leq 10 \Rightarrow x \leq 10$
'And': $x<\frac{24}{5}$
(b) 4 (1,2,3 and 4)

10A. 12 HKDSEMA 2013-1-5
(a) $\frac{19-7 x}{3}>23-5 x \Rightarrow 19-7 x>69-15 x \Rightarrow x>\frac{25}{4}$
(b) $18 \quad 2 x \geq 0 \Rightarrow x \leq 9$

Integers satisfying both: 7,8 and 9
10A. 13 HKDSEMA $2015-\mathrm{I}-5$
(a) $\frac{7-3 x}{5} \leq 2(x+2) \Rightarrow 7-3 x \leq 10 x+20 \Rightarrow x \geq-1$
$4 x-13>0 \Rightarrow x>\frac{13}{4}$
.. 'And'. $x>\frac{13}{4}$
(b) 4

10A. 14 BKXSEMA $2016-\mathrm{I}-6$
(a) $x+6<6(x+11) \Rightarrow x>-12$
(b) -1

10A. 15 HKDSE MA 2017-I-5
(a) $7\left(\begin{array}{ll}x^{2} & 2\end{array}{ }^{11 x+8} \Rightarrow 21 x \quad 42 \leq 11 x+8 \Rightarrow x \leq 5\right.$ $x<5 \Rightarrow{ }^{3}>1$
'And': $1<x \leq 5$
(b) $4 \quad$ (2, 3, 4 and 5 )

10A. 16 HKDSEMA $2018-\mathrm{I}-6$
(a) $\frac{3-x}{2}>2 x+7 \Rightarrow 3-x>4 x+14 \Rightarrow x<\frac{-11}{5}$
$x+8 \geq 0 \Rightarrow x \geq-8$
$\therefore$ 'And': $-8 \leq x<\frac{-11}{5}$
(b) -3

10A. 17 HKDSEMA2019~I-6
(a) $\frac{7 x+26}{4} \leq 2\left(\begin{array}{ll}3 x & 1\end{array}\right) \Rightarrow 7 x+26 \leq 24 x \quad 8 \Rightarrow x \geq 2$
(b) $45-5 x \geq 0 \Rightarrow x \leq 9$

And: $2 \leq x \leq 9$
10A. 18 HKDSE MA 2020-I- 6

$$
6 \mathrm{an} \begin{array}{rlr}
3-x>\frac{7-x}{2} & \text { or } & 5+x>4 \\
6-2 x>7-x & \text { or } & x>-1 \\
x<-1 & \text { or } & x>-1
\end{array}
$$

Thereforc. $x$ can be any real pumbers cxecpt -1 .

10B Quadratic inequalities in one unknown
10B. 1 HKCEE MA 1982(1/2/3)-I-3
$2 x^{2} \quad x-36<0$
$(2 x-9)(x+4)<0 \Rightarrow 4<x<\frac{9}{2}$
10B. 2 HKCEE MA 1988 -I -3 $2 x^{2}-5 x \geq 0$
$x(2 x-5) \geq 0 \Rightarrow x \leq 0$ or $x \geq \frac{5}{2}$
10B. 3 HKCEE MA 1990-I-4
(a) (i) $6 x+1 \geq 2 x-3 \Rightarrow 4 x \geq 4 \Rightarrow x \geq-1$
(ii) $(2 x)(x+3)>0 \Rightarrow-3<x<2$
(b) $1 \leq x<2$

10B. 4 HKCEE MA 1993-I-4
$x^{2} \times 2<0 \Rightarrow(x+1)(x 2)<0 \Rightarrow-1<x<2$
Hence. $1<y-100<2 \Rightarrow 99<y<102$
10B. 5 HKCEE MA 1996-1-5
(i) $x+5>8 \Rightarrow x>3$
(ii) $(x$ 2) $(x-4)<0 \Rightarrow 2<x<4$

Hence, $3<x<4$
10B. 6 HKCEEMA $1997-\mathrm{I}-4$
(i) $2 x>17 \Rightarrow x>\frac{17}{2}$
(ii) $\left(\begin{array}{ll}x & 9\end{array}\right)\left(\begin{array}{ll}x & 7\end{array}\right)>0 \Rightarrow x<7$ or $x>9$

Hence, $x>9$

## 10B. 7 HKCEE.MA 2001-I-4

$x^{2}+x-6>0 \Rightarrow(x+3)(x \quad 2)>0 \Rightarrow x<-3$ or $x>2$

$$
\rightarrow
$$

10B. 8 HKCEE AM $1985-$ I-3
$x^{2}-a x-4 \leq 0 \Rightarrow \frac{a \sqrt{a^{2}+16}}{2}=\frac{a+\sqrt{a^{2}+16}}{2}$
$\frac{a+\sqrt{a^{2}+16}}{2}=4 \Rightarrow a^{2}+16=(8-a)^{2} \Rightarrow a=3$
$\Rightarrow$ Least possible value of $x=\frac{(3)-\sqrt{(3)^{2}+16}}{2}=1$
10B. 9 HKCEE AM 1986-I-7
(a) $x>\frac{3}{x}+2 \Rightarrow x^{2}>3+2 x$
$\stackrel{x}{\Rightarrow} x^{2}-2 x-3>0 \Rightarrow x<-1$ or $x>3$
$\because \begin{aligned} & x>0 \\ & x>3\end{aligned}$
$\therefore x>3$
(b) $x>\frac{3}{x}+2 \Rightarrow x^{2}<3+2 x$
$\Rightarrow x^{2}-2 x-3<0 \Rightarrow-1<x<3$
$\because x<0$
$\therefore-1<x<0$

10B. 10 (HKCEE AM 1994-[-1)
(a) $\frac{2(x+1)}{x-2} \geq 1 \Rightarrow 2 x+2 \geq x 2 \Rightarrow x \geq-4$
$\therefore x \geq-4$ 'and $x>2 \Rightarrow x>2$
(b) $\frac{2(x+1)}{x}>1 \Rightarrow 2 x+2 \leq x-2 \Rightarrow x \leq-4$

$$
\begin{aligned}
& \because x<2 \\
& \therefore x \leq 4 \text { and }^{\prime} x<2 \Rightarrow x \leq-4
\end{aligned}
$$

## 10B. 11 HKCEEAM $1995-1-4$

Solve the inequality $x-\frac{5}{x}>4$ for each of the following cases:
(a) $x-\frac{5}{x}>4 \Rightarrow x^{2}-5>4 x$

$$
\begin{array}{r}
\because x>0 \\
\therefore x>5
\end{array}
$$

$$
\Rightarrow x^{2}-4 x-5>0 \Rightarrow x<1 \text { or } x>5
$$

$\therefore x>5$
(b) $x-\frac{5}{x}>4 \Rightarrow x^{2} \quad 5<4 x$

$$
\Rightarrow x^{2}-4 x \quad 5<0 \Rightarrow-1<x<5
$$

$$
x<0
$$

$$
\begin{aligned}
& \because x<0 \\
& \therefore-1<x<0
\end{aligned}
$$

10B. 12 (HKCEE AM 1996-1-3)
(a) $\frac{2 x-3}{x+1}<1 \Rightarrow 2 x-3 \leq x+1 \Rightarrow x \leq 4$
$\because x+1<-1$
(b) $\frac{2 x}{x+1}{ }^{3}<1 \Rightarrow 2 x-3 \geq x+1 \Rightarrow x \geq 4$ $x<-1$
0B. 13 HKCEE AM 1998-I-6(a)
$x^{2}-6 x-16>0 \Rightarrow\left(\begin{array}{ll}x & 8\end{array}\right)(x+2)>0 \Rightarrow x<-2$ or $x>8$
10B. 14 (HKCEE AM 1999-I-2)
(a) $\frac{x}{x-1}>2 \Rightarrow x>2(x-1) \Rightarrow x<2$
$\because x>1$
(b) $\frac{x^{1}<x<2}{x .1}>2 \Rightarrow x<2(x-1) \Rightarrow x>2$ $x<1$
No solution
10B. 15 (HKCEE AM 2000-I-1)
Solve the inequality $\frac{1}{x} \geq 1$ for each of the following cases:
(a) $\frac{1}{x}>1 \Rightarrow 1 \geq x \Rightarrow x \leq 1$
$\stackrel{x}{\because} x>0$
$\therefore 0<x \leq 1$
(b) $\frac{1}{x} \geq 1 \Rightarrow 1 \leq x \Rightarrow x \geq 1$ $\because x<0$
No solution

## 10B. 16 HKCEE AM 2011-3

Solve the following inequalities:
(a) $5 x-3>2 x+9 \Rightarrow 3 x>12 \Rightarrow x>4$
(b) $x(x-8) \leq 20 \Rightarrow x^{2}-8 x-20 \leq 0 \Rightarrow-2 \leq x \leq 10$
(c) 'Or': $x \geq-2$

10C Problems leading to quadratic inequalities in one unknown

10C. 1 HKCEE MA 1983(B)-1 14
(a) $\left\{\begin{array}{l}\alpha+\beta=2 m \\ \alpha \beta=n\end{array}\right.$
(i) $(m-\alpha)+(m \quad \beta)=2 m \quad(\alpha+\beta)=2 m-(2 m)=0$
(i) $\left(\begin{array}{ll}m-\alpha)+(m \quad \beta)=2 m \quad(\alpha+\beta)=2 m \\ \text { (ii) }\left(\begin{array}{lll}m & \alpha\end{array}\right)\left(\begin{array}{ll}m & \beta\end{array}\right)=m^{2}-(\alpha+\beta) m+\alpha \beta\end{array}\right.$
(b) By (a), the equation is
$($ sum $) \quad x$ (product $)=0$
$x^{2}-(0) x+\left(n-m^{2}\right)=0 \Rightarrow x^{2}+n \quad m^{2}=0$
(c) $x^{2} \quad 2 m x+4=0 \quad \Delta>0$
$\begin{aligned} & \text { Real rools } \\ &(2 m)^{2}-4(4) \Delta\end{aligned}$
$\begin{aligned} & m^{2} \geq 4\end{aligned} \Rightarrow m \leq-2$ or $m \geq 2$
10C. 2 HKCEE MA 1985(A/B) - $\mathrm{I}-13$
(a) $D E^{2}=B D^{2}+B E^{2} \quad 2 \cdot B D \cdot B E \cos \angle B$
$\left.=(2, x)^{2} \div x^{2}-A x\right)(x) \cos 60$
$=3 x^{2}-6 x+4$
(b) Area of $\triangle D E F=\frac{1}{2} D E \cdot D E \sin 60^{\circ}$
$=\frac{1}{2}\left(\begin{array}{ll}3 x^{2} & 6 x+4)\end{array} \frac{\sqrt{3}}{2}\right.$ $=\frac{\sqrt{3}}{4}\left(3 x^{2} \quad 6 x+4\right)$
$=\frac{3 \sqrt{3}}{4}\left(\begin{array}{ll}x^{2} & 2 x+\frac{4}{3}\end{array}\right)$
$=\frac{3 \sqrt{3}}{4}\left(x^{2} \quad 2 x+1+\frac{1}{3}\right)$
$=\frac{3 \sqrt{3}}{4}(x-1)^{2}+\frac{\sqrt{3}}{4}$.
(c)

$$
\begin{aligned}
& \text { Minimum are a is attained whe } x=1 \\
& \frac{4}{3} \text {. } \\
& \left.\frac{4}{4} \quad 1\right)^{2}+\frac{\sqrt{3}}{4} \leq \frac{\sqrt{3}}{3} \\
& (x-1)^{2} \leq \frac{1}{9} \\
& -1
\end{aligned}
$$

$$
\frac{-1}{3} \leq x \quad 1 \leq \frac{1}{3} \Rightarrow \frac{2}{3} \leq x \leq \frac{4}{3}
$$

10C. 3 HKCEE MA 1987(B) - I-14
(a) Let $p=a x \div \frac{b}{x}$.
$\left\{\begin{array}{l}7=2 a+\frac{b}{2} \Rightarrow 4 a+b=14 \\ 8=3 a+\frac{b}{3} \Rightarrow 9 a+b=24\end{array} \Rightarrow\left\{\begin{array}{l}a=2 \\ b=6\end{array}\right.\right.$
$\therefore p=2 x+\frac{6}{x}$.
When $x=4, p=2(4)+\frac{6}{(4)}=\frac{19}{2}$
(b) $2 x+\frac{6}{x}<13$ $2 x^{2}+6<13 x \quad(\because$ given $x>0)$
$2 x^{2} \quad 13 x+6<0 \Rightarrow \frac{1}{2}<x<6$
10C. 4 HKCEEMA 1992-I-6
$\begin{aligned} \Delta & >0\end{aligned}$
$(2 k)^{2}+4(k+6)>0$
$(k+2)(k+3)>0 \Rightarrow k<-3$ or $k>-2$

## 10C. 5 HKCEEMA 2003 -I - -10

(a) $\operatorname{Let} V=h L+k L^{2}$.
$\left\{\begin{array}{l}30=10 h+100 k \\ 75=15 h+225 k\end{array} \Rightarrow\left\{\begin{array}{l}h=-1 \\ k=0.4\end{array} \Rightarrow V=0.4 L^{2}-L\right.\right.$
(b)
$0.4 L^{2} \quad L \geq 30$
$2 L^{2} \quad 5 L-150 \geq 0 \Rightarrow L \leq \frac{-15}{2}$ or $L \geq 10$ Since $5 \leq L \leq 25$, the solution is $10 \leq L \leq 25$.

## 10C. 6 HKCEEMA 2004-1-10

(a) Let $y=h x+k x^{2}$.

$$
\left\{\begin{array} { l } 
{ 3 = 3 h + 9 k } \\
{ 1 2 = 4 h + 1 6 k }
\end{array} \Rightarrow \left\{\begin{array}{l}
h=-5 \\
k=2
\end{array} \Rightarrow y=2 x^{2}-5 x\right.\right.
$$

(b) $2 x^{2}-5 x<42 \Rightarrow 2 x^{2}-5 x \quad 42<0 \Rightarrow-\frac{7}{2}<x<6$ Possible values of $x$ are 3, $2,1,0,1,2,3,4$ and 5 . 10C. 7 HKCEE AM 1983-I-
$x^{2}+4 x+2+\lambda(2 x+1)=0 \Rightarrow x^{2}+2(2+\lambda) x+(2+\lambda)=0$ No real roots $\Rightarrow$ 2 $\quad \Delta<0$

$$
\begin{array}{rl}
(2+\lambda)^{2} & 4(2+\lambda)<0 \\
\lambda^{2}+3 \lambda+2<0
\end{array}
$$

## 10C. 8 HKCEE AM 1988-I-5

$\Delta(4 m)^{2} \quad 4(4 m+15)=16 m^{2} \quad 16 m+60$
If $f(x)>$ Gor all real $x . \quad \Delta<0$

$$
4\left(4 m^{2} \quad 4 m+15\right)<0
$$

$$
(2 m+3)(2 m \quad 5)<0 \Rightarrow \frac{3}{2}<m<\frac{5}{2}
$$

10C9 HKCEE AM 1988-I-10
(a) (i) For $f(x),\left\{\begin{array}{l}\text { Sum of rts }=2 \\ \text { Prod of rts }=-1\end{array}\right.$

For $g(x),\left\{\begin{array}{l}\text { Sum of rts }=2 k\end{array}\right.$
$P Q=$ Differenceof rts of $f(x)$
$R=\sqrt{(2)^{2}-4(1)=\sqrt{8}}$
$=\frac{\sqrt{(2 k)^{2}} \quad 4\left(k^{2}-6\right)}{=}=\sqrt{24}$
(ii) Mid-pt of $R S=\left(\frac{\text { Sum of } \mathrm{rts}}{2}, 0\right)=(k, 0)$

$$
\text { If this is also the mid-point of } P Q, k=\frac{2}{2}=-1 \text {. }
$$

(b) $\left\{\begin{array}{l}y=f(x) \\ y=g(x)\end{array} \Rightarrow x^{2}+2 x-1=-x^{2}+2 k x-k^{2}+6\right.$

$$
2 x^{2}+2(1-k) x+k^{2} \quad 7=0 \ldots(*)
$$

$\left.\begin{array}{lll}4(1 & k\end{array}\right)^{2} \quad 8\left(k^{2} \quad 7\right)=0$
$k^{2}+2 k-15=0 \Rightarrow k=-5$ or 3
For $k=-5$, (*) becomes $\begin{aligned} 2 x^{2}+12 x+18=0 \\ 2(x+3)^{2}=0\end{aligned}$

$$
\begin{array}{r}
+3)=0 \\
x=3 \\
3)-1)=(
\end{array}
$$

$\Rightarrow$ Intersection $=\left(3,(3)^{2}+2(3)-1\right)=(3,2)$
For $k=3$, (*) becomes $2 x^{2}-4 x+2=0$
$\begin{aligned} 2(x-1)^{2} & =0 \\ x & =1\end{aligned}$
$\Rightarrow$ Intersection $=\left(1, z^{z}+2(1) \quad 1\right)=(1,2)$
(c)
$\begin{array}{ll}2 x^{2}+2(1-k) x+k^{2} & f(x)>8(x) \\ 7>0\end{array}$
This is true for all real $x, \quad \Delta<0$ $\begin{array}{ll}2 \\ +2 k & 15>0 \\ k & \end{array}$

10C. 10 HKCEE AM 1991-I-7
(a) From the first equation, $p \div q=2 \quad k$
Fr on the secon dequation, $\begin{aligned} p q+k(p+q) & =1 \\ p q & =1 \quad k(2 k \\ & =(k+1)^{2}\end{aligned}$
(b) Sum of roots $=p+q=2-$

Product of roots $=(k+1)^{2}$
$\therefore$ Required equation: $x^{2}-(2-k) x+(k+1)^{2}=0$
Hence,
$\left(\begin{array}{ll}k & 2)^{2}\end{array} \quad 4(k+1)^{2} \geq 0\right.$ $3 k^{2}+4 k \leq 0 \Rightarrow \frac{-4}{3} \leq k \leq 0$

10C. 11 HKCEE AM 1991-I-9
$\begin{array}{lll}\text { (a) } g(x)=-2 x^{2} & 12 x \quad 23=2\left(x^{2}+6 x+9\right. & 9)-25\end{array}$ $=-2(x+3)^{2}-$
$\leq-5<0$
(b) (i) $\left.\quad \begin{array}{rl}f(x)+\mathrm{kg}(x) & =0 \\ \left(x^{2}+2 x \quad 2\right)+k\left(2 x^{2}(12 x\right. & 23)\end{array}\right)$ $(1-2 k) x^{2}+2(1 \quad 6 k) x \quad(2+23 k)=0$
$\begin{aligned} \text { Equal rts } \Rightarrow \Delta & =0 \\ 4(1-6 k)^{2}+4(1 & 2 k)(2+23 k)\end{aligned}=0$ $0 k^{2} 7 k-3=0$ $k=1$ or $\frac{-3}{10}$
$\therefore k_{\mathrm{t}}=1, k_{2}=\frac{-3}{10}$
(ii) $f(x)+k_{1} g(x)$
$=\left(x^{2}+2 x-2\right) \quad\left(2 x^{2} \div 12 x+23\right)$
$=x^{2}-10 x \quad 25=(x+5) \geqq 0$
$f(x)+k_{2} g(x)$
$=\left(\begin{array}{ll}x^{2}+2 x & 2\end{array}\right)+\frac{3}{10}\left(2 x^{2}+12 x+23\right)$
$=\frac{8}{5}\left(x^{2}+\frac{7}{2} x+\frac{49}{16}\right)=\frac{8}{5}\left(x+\frac{7}{4}\right)^{2} \geq 0$
(c) $f(x)+k_{18}(x) \leq 0$

$$
\begin{aligned}
& f(x) \leq g(x) \\
& \frac{f(x)}{g(x)} \geq-1 \quad(: g(x)<\theta y(\mathrm{a}))
\end{aligned}
$$

$\therefore$ Least value $=1$
attained when $f(x)+k_{18}(x)=0 \Leftrightarrow x=5$ )
$f(x)+k_{2 g}(x) 0$

$$
\begin{aligned}
& f(x) \geq \frac{3}{10} g(x) \\
& \frac{f(x)}{g(x)}<\frac{3}{10}
\end{aligned}
$$

$\therefore$ Greatest value $=\frac{3}{10}$
(attained when $\left(x+\frac{7}{4}\right)^{2}=0 \Leftrightarrow x=\frac{7}{4}$ )

10C. 12 HKCEE AM 1995-1-1
$\Delta=\left(\begin{array}{ll}1 & m\end{array}\right)^{2} \quad 4(2 m-5)=m^{2} \quad 10 m+21$
If $f(x)>0$ for all rea $1 x \Delta<0$
$m^{2} \quad 10 m+21<0$
$(m-3)(m-7)<0 \Rightarrow 3<m<7$

```
10C. 13 (HKCEE AM 1995-1-10)
(a) \(\begin{aligned} & f(\alpha)=g(\alpha) \\ & 12 \alpha^{2}+2 p \alpha \\ & q=12 \alpha^{2}+2 q \alpha\end{aligned}\)
 \(2 \alpha(p-q)=12 \alpha^{2}+2 q(\cdots-p\) aredistinct)
 \(2 \alpha=1 \Rightarrow \alpha=\frac{-1}{2}\)
(b) \(\alpha+\beta=\frac{2 p}{12} \Rightarrow \beta=\frac{-p}{6}+\frac{1}{2}\)
 \(\alpha \gamma=\frac{-p}{12} \Rightarrow \gamma=\frac{-p}{12} \div \frac{1}{2}=\frac{p}{6}\)
(c) (i) \(\beta^{3}+\gamma^{3}=(\beta+\gamma)\left(\beta^{2}-\beta \gamma+\gamma^{2}\right)\)
 \(=\left(\frac{1}{2}\right)\left[\frac{p^{2}}{36}-\frac{p}{6}+\frac{1}{4} \quad \frac{p}{6}\left(\frac{-p}{6}+\frac{1}{2}\right)+\frac{p^{2}}{36}\right]\)
 \(=\frac{1}{2}\left(\frac{p^{2}}{12} \frac{p}{4}+\frac{1}{4}\right)\)
 Thus, the given inequality becomes
 \(\frac{7}{24}<\frac{p^{2}}{24}-\frac{p}{8}+\frac{1}{8}<\frac{7}{24}\)
 \(\Rightarrow 7<p^{2} \quad 3 p+3<7\)
 \(\Rightarrow\left\{\begin{array}{lll}p^{2} & 3 p & 4<0 \\ p^{2} & 3 p+10>0\end{array}\right.\)
 \(\Rightarrow\{1<p<4 \Rightarrow\)
 \(\Rightarrow\left\{\begin{array}{c}1<p<4 \\ \text { All real nos }\end{array} \Rightarrow-1<p<4\right.\)
```

    \(p=2\) and \(q=1\) (si nce \(p+q=3\)
    
## 10C.14 (HKCEE AM 1996-I-8)

The graph of $y=x^{2}-(k-2) x+k+1$ intersectstbe $x$-axis wo distinct point $(\alpha, 0)$ and $(\beta, 0)$, wher $\mathrm{e} k$ is real.
(a) Two distinct rooss $\begin{aligned} \Rightarrow(k-2)^{2} & \Delta>0 \\ 4(k+1) & >0\end{aligned}$
$(k-2)^{2} \quad 4(k+1)>0$
$k^{2}-8 k>0 \Rightarrow k<0$ or $k>8$
(b) $-5<\alpha+\beta<5 \Rightarrow 5<k \quad 2<5 \Rightarrow 3<k<7$ 'And' $3<k<0$

10C. 15 (HKCEE AM 1997-I-8)
(a) $\Delta=(k+2)^{2} \quad 8(k-1)=k^{2} \quad 4 k+12=(k-2) 48$

The roots ar ereal and distinct.
(b) $\left\{\begin{array}{l}\alpha+\beta=\quad(k+2) \\ \alpha \beta=2(k \quad 1)\end{array}\right.$
$\begin{aligned}(\alpha \beta)^{2} & >3 \\ (\alpha+\beta)^{2} & \end{aligned}$
$(\alpha+\beta)^{2}-4 \alpha \beta>9$
$\begin{aligned} &(k+2)^{2}-8(k-1) \\ &(k \quad 2)^{2}+8>9\end{aligned}$

$$
(k-2)^{2}>1 \Rightarrow k 2<1 \text { or } k-2>
$$

## 10C. 16 HKCEE AM 1999-I-4

Let $f(x)=2 x^{2}+2(k \quad 4) x+k$, where $k$ is real
(a) $\Delta=4\left(\begin{array}{ll}k & 4\end{array}\right)^{2} \quad 8 k=4 k^{2}-40 k+64$
(b) No intersection with $x$-axis $\Rightarrow \Delta<0$
$4\left(k^{2} \quad 10 k+16\right)<0$
2) $(k-8)<0 \Rightarrow 2<k<8$

10C. 17 HKCEE AM 2005-5
$x^{2} \quad x \quad 1>k(x-2) \Rightarrow x^{2}-(1+k) x+(2 k-1)>0$ If this is true for all real
$(1+k)^{2}-4(2 k-1)<0$
$-6 k+5<0 \Rightarrow 1<k<5$

```
10C. 18 HKCEE AM \(2006-4\)
f \(k x^{2}+x+k>0\) is true for all real \(x\),
 \(1^{2}-4 k^{2}<0 \quad\) and \(\quad k>0\)
 \(k^{2}>\frac{1}{4} \Rightarrow k<\frac{-1}{2}\) or \(k>\frac{1}{2}\)
\(\therefore k>\frac{1}{2}\)
10C. 19 HKCEE AM 2008-4
 \((-1)^{2}-4(k)(9 k)<0\)
 \(1-36 k^{2}<0\)
 \(k^{2}>\frac{1}{36} \Rightarrow k<\frac{-1}{6} \propto k>\frac{1}{6}\) (rejected)
10C.20 HKCEE AM 2010-4
\(k-1>0\) and \(\quad \Delta \leq 0\)
 \(3 k^{2}-4 k \geq 0 \Rightarrow k \leq 0\) or \(k \geq \frac{4}{3}\)
\(\Rightarrow k \geq \frac{4}{3}\)
```

10D Linear programming (with given region) 10D. 1 HKCEE MA 1984(A/B) $-1-8$
(a) (Two-pt form) $\ell_{3}: \frac{y \quad 0}{x-10}=\frac{10-0}{0-10} \Rightarrow y=x+10$
(Or intercept form) $\ell_{3}: \frac{x}{10}+\frac{y}{10}=1 \Rightarrow y=-x+10$
(b) $A: \begin{aligned} & \left\{\begin{array}{l}\ell_{1}: 2 y=3 \\ \ell_{2}: 3 x-2 y=0\end{array} \Rightarrow\left\{\begin{array}{l}x=1 \\ y=\frac{3}{2}\end{array} \Rightarrow A=\left(1, \frac{3}{2}\right)\right.\right. \\ & B:\left\{\begin{array}{l}\ell_{2}: 3 x \quad 2 y=0 \\ \ell_{3}: y=-x+10\end{array} \Rightarrow\left\{\begin{array}{l}x=4 \\ y=6\end{array} \Rightarrow B=(4,6)\right.\right. \\ & C:\left\{\begin{array}{l}\ell_{1}: 2 y=3 \\ \ell_{3}: y=-x+10\end{array} \Rightarrow\left\{\begin{array}{l}x=\frac{17}{2} \\ y=\frac{3}{2}\end{array} \Rightarrow A=\left(\frac{17}{2}, \frac{3}{2}\right)\right.\right.\end{aligned}$ $\left\{\begin{array}{l}2 y \geq 3\end{array}\right.$
(c) $\left\{\begin{array}{l}3 x-2 y \geq 0\end{array}\right.$
$\left\{\begin{array}{l}y \leq x+10\end{array}\right.$
(d) At $A, P=(1)+2\left(\frac{3}{2}\right)-5=-1$

At $B, P=(4)+2(6)-5=11$
At $C, P=\left(\frac{17}{2}\right)+2\left(\frac{3}{2}\right)-5=\frac{13}{2}$
$\therefore$ Max of $P=11$, min of $P=1$

10D. 2 HKCEEMA 1988-1-12
(a) (Two-pt form) $L_{3}: \frac{y-4}{x-0}=\frac{0-4}{3-0} \Rightarrow 4 x+3 y=12$ (Or intercept form) $L_{3}: \frac{x}{3}+\frac{y}{4}=1 \Rightarrow 4 x+3 y=12$ $\left\{\begin{array}{l}x \leq 3 \\ y \leq 4\end{array}\right.$ $4 x+3 y \geq 12$
(c) $\mathrm{At}(0,4), P=(0)+4(4)=16$ $\mathrm{At}(3,4), P=(3)+4(4)=19$
$\mathrm{At}(3,0), P=(3)+4(0)=3$ $\therefore$ Greatest $P=19$, least $P=3$
(d) $y$


At $(0,4), P=(0)+4(4)=16$
At $(0,4), P=(0)+4(4)=16$
At $(3,4), P=(3)+4(4)=19$
$\mathrm{At}(3,4), P=(3)+4(4)=19$
$\mathrm{Al}(3,3), P=(3)+4(3)=15$
At $(1.5,2), P=(1.5)+4(2)=9.5$
$\therefore$ Least $P=9.5$

## 10D. 3 HKCEEMA 1990-I- 5

By sliding the dashed line, $P$ attains its grealest value at $A$ and least value at $D$.
$A:\left\{\begin{array}{l}l_{1}: 2 x+3 y=18 \\ l_{5}: 2 x \quad y=-6\end{array} \Rightarrow\left\{\begin{array}{l}x=0 \\ y=6\end{array}\right.\right.$
$\therefore$ Greatest $P=(0)+4(6)-2=22$
$D:\left\{\begin{array}{l}\ell_{3}: y=2 \\ \ell_{4}: x+y=-3\end{array} \Rightarrow\left\{\begin{array}{l}x=1 \\ y=-2\end{array}\right.\right.$
$\therefore$ Least $P=(-1)+4(-2)-2=-11$


10D. 4 HKCEE MA $1991-1-8$
(a) (Slope-int form) $L_{2}: y=x+2$
(Two-pt form) $L_{3}: \frac{y 0}{x-5}=\frac{5-0}{0-5} \Rightarrow y=-x+5$
(Or intercept form) $L_{3}: \frac{x}{5}+\frac{y}{5}=1 \Rightarrow y=x+5$
$\{x \leq 4$
(b) $\{y \leq x+2$
$y \geq-x+5$
(c) (i) At $(4,6), P=(4)+2(6)-3=13$ At $(4,1), P=(4)+2(1)-3=3$
At $(1.5,3.5), P=(1.5)+2(3.5)-3=5.5$ $\therefore$ Min of $P=3$, atained at $(4,1)$
(ii) $P=x+2 y-3 \geq 7 \Rightarrow x+2 y \geq 10$ Draw it into the diagram:


The rangeof $x$ that covers the new feasible region is $2 \leq x \leq 4$.

## 10D5 HKCEE MA 1992- 1 - 3 <br> (a) $\left\{\begin{array}{l}\geq \frac{1}{2} \\ 2 x \quad y \geq 2 \\ 3 x+5 y \leq 30\end{array}\right.$ <br> 

10D. 6 HKCEE MA 1993-I-1 (d)
By sliding the given line,
(i) Greatest value $=(1)+2(4)=9$, at $(1,4)$
(ii) Least value $=(0)+2(-3)=-6$, at $(0,-3)$


10D. 7 HKCEE MA1995-1-12
(a) (i) $20 x+40 y \geq 240 \Rightarrow x+2 y \geq 12$ (ii) $25 x+37.5 y \leq 300 \Rightarrow 2 x+3 y \leq 24$ (iii) $x+y \leq 10$
(b) ( $x$ and $y$ must be integers!)
$(3,5),(3,6),(4,4),(4,5),(5,4),(6,3),(6,4),(7,3)$
(c) Cost $=25 x+37.5 y$

By sliding the line $25 x+37.5 y=0 \Rightarrow 2 x+3 y=0$, the least cost is attained at $(4,4)$.
Least cost $=25(4)+37.5(4)=(5) 250$
(d) (i) As Cost $=300$, the only two points lying on the line $25 x+37.5 y=300$ are $(x, y)=(3,6)$ and $(6,4)$.
(ii) Number of chocolates $=20 x+40 y$
$\mathrm{At}(3,6), \mathrm{Number}=20(3)+40(6)=300$
$\mathrm{At}(6,4)$, Number $=20(6)+40(4)=280$ $\therefore$ Greatest number $=300$


10D. 3 HKCEE MA 1996-I-9
(a) $c:\left\{\begin{array}{l}L_{1}: 3 x+2 y-7=0 \\ L_{3}: 2 x\end{array}\right.$ y $7=0 \quad\left\{\begin{array}{l}x=3 \\ y=1\end{array} \Rightarrow(3,-1)\right.$ $\left\{\begin{array}{l}3 x+2 y-7 \geq 0 \\ 3 x-5 y \geq 0\end{array}\right.$
(b) $\left\{\begin{array}{l}3 x-5 y+7 \geq 0 \\ 2 x-y-7 \leq 0\end{array}\right.$
(c) At $A, 2(1)-2(2)-7=-9$

At $C, 2(3)-2(-1)-7=1 \quad \Rightarrow \quad$ Max value $=1$

10D. 9 HKCEE MA 2002-1-17
(a) $L_{1}: \frac{x}{5 k}+\frac{y}{9 k}=1 \Rightarrow 9 x+5 y=45 k$
$L_{2}: \frac{x}{12 k}+\frac{y}{5 k}=1 \Rightarrow 5 x \div 12 y=60 k$
$\{45 x+25 y \leq 225 \Rightarrow 9 x+5 y \leq 45$
(b) (i) $\{50 x+120 y \leq 600 \Rightarrow 5 x+12 y \leq 60$ $x$ and $y$ are non-negative integers. Let the profit be $P=3000 x+2000 y$. By sliding the line $3 x+2 y=0$ in the graph with $k=1$,

$(5,0)$
$(12,0)$
the greatest possible profit is attained at (3.3) and $(5,0)$
Greatest profit $=3000(5)+0=(\varsigma) 15000$
$(45 x+25 y \leq 450 \Rightarrow 9 x+5 y \leq 90$
(ii)
$\{50 x+120 y \leq 1200 \Rightarrow 5 x+12 y \leq 120$ $x$ and $y$ are non-negative integers. By sliding the line $3 x+2 y=0$ in the graph with $k=2$,
 the greatest possible proft is attained at $(6,7)$
$\therefore$ Greates profit $=3000(6)+2000(7)=(\$) 32000$


10E Linear Programming (without given region)

10E. 1 HKCEE MA 1980(1/1*/3) - I-12
$10 x+30 y \leq 720 \Rightarrow x+3 y \leq 72$
$\left\{\begin{array}{l}x+1.5 y \leq 60 \Rightarrow 2 x+3 y \leq 120\end{array}\right.$
$\left\{\begin{array}{l}x+1.5 \\ x \geq y\end{array}\right.$
$x$ and $y$ are non-negative integers.
Let the profit be $P=k x+2 k y$.
$\therefore 48$ economy- and 8 frrst-class seats respectively


10E. 2 HKCEE MA 1981(1/2/3)-1-8
$\left\{\begin{array}{l}x+2 y \geq 48\end{array}\right.$
$10 x+15 y \leq 450 \Rightarrow 2 x+3 y \leq 90$
$x \geq y$
$x$ and $y$ are non-negative integers.
Let the profit be $P=300 x+400 y$. By sliding the line $P=0$, the maximum is atrained at $(x, y)=(36,6)$.


(c) (i) Max of $P=3(60)+2(0)=180$ Min of $P=3(10)+2(20)=70$
(ii) Max of $P=3(45)+2(10)=155$

Min of $P=3(10)+2(20)=70$ (unchanged)

10E. 4 HKCEE MA 1986(A/B)-I-11

$\left\{\begin{array}{l}x+y \geq 40 \\ x+3 y \geq 60 \\ 7 x+2 y \geq 10\end{array}\right.$
(b) Constraints: $\left\{\begin{array}{l}x+3 y \geq 60 \\ 7 x+2 y \geq 140\end{array}\right.$ $7 x+2 y \geq 140$
Let the cost be $C=1000 x+2000 y$. By sliding the line $C=0$, the minimum is attained at $(x, y)=(30,10)$ 30 days for $A$ and 10 days for $B$

10E. 5 HKCEE MA 1987 (A/B) $-1-12$
(a) $\left\{\begin{array}{l}20000 x+5000 y \geq 60000\end{array}\right.$
(a) $\left\{\begin{array}{l}20000 x+5000 y \geq 60000 \\ 6000 x+3000 y \geq 24000\end{array}\right.$

(c) Let the cost be $C=4000 x+3000 y$. By sliding the line $C=0$, the minimum is attained at $(3,2)$. $\therefore$ Least cost $=4000(3)+3000(2)=(\$) 18000$
10E. 6 HKCEE MA 1889-I-14
(a)

(b) (i) $z=100-x-$
(ii) Cost $=6 x+5 y+4 z \quad 6 x+5 y+4(100-x-y)$
(iii) $400 x+600 y+400 z \geq 44000$
$\Rightarrow 2 x+3 y+2(100-x-y) \geq 220 \Rightarrow y \geq 20$ $800 x+200 y+400 z \geq 48000$
$\Rightarrow 4 x+y+2(100 \quad x \quad y) \geq 240 \Rightarrow 2 x-y \geq 40$ $z \geq 0$
$\Rightarrow 100 \times y \geq 0 \Rightarrow x+y \leq 100$
(iv) By sliding the line Cost $=0$, the minimum is attained at $(30,20)$.
i.e. $x=30, y=20, z=100 \quad 30 \quad 20=50$

## 10E. 7 HKCEEMA 1994-I-11


(b) Let the profit be $P=90 x+120 y$. By sliding the line $P=0$ among the lattice points in $\mathscr{R}$, the maximum is attained at $\therefore$ Max profit $=90(6)+120(8)=(\$) 1500$

10E. 9 HKCEE MA $2000-\mathrm{I}-15$

## (a) The constraints are

$(1000(0.04 x)+800(0.03 y) \leq 2400 \Rightarrow 5 x+3 y \leq 300$ $\{1000(0.01 x)+800(0.25 y) \leq 1200 \Rightarrow x+2 y \leq 120$ $x+y \leq 70$
$x$ and $y$ are non-negative integers.
The feasible region consists of the lattice points in the shaded region below.
Let the profit be $P=800 x+1000 y$. By sliding the line $P=0$, the maximum is attained at $(x, y)=(20,50)$.
${ }_{7}{ }^{\circ}$

(b) Extra constraint: $x>y$

The new feasible ragion consists of the lattice points in the (darker) shaded region below.
$P$ now attains its maximum at $(36,34)$. (Note that $(35,35)$ is not in the feasible region.)
$\therefore$ Greatest profit $=800(36)+1000(34)=(\$) 62800$


10E. 10 HKCEE MA 2001-1-15

(b) (i)

$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
(ii) (1) Number of tables in the smoking area $=46$ $\therefore$ Prob $=\frac{46}{90}=\frac{23}{45}$
(2) Number of tables in the non-smoking area \& multiple of $3 \quad 14$
$\therefore$ Prob $\frac{46 \times 14 \times 21}{90 \times 89}=\frac{644}{4005}$

11A. 6 HKCEE MA 1995 -I - 1(c)
Find the size of an interior angle of a regular octagon (8-sided polygon)
11A. 7 HKCEE MA 1995-I - 1(d)
In the figure, $A B C D$ is a rectangle. Find $B D$.


11A. 8 HKCEE MA 1996-I - 10
In the figure, $A B=C D$ and $A E=B C$.
(a) Find $x$.
(b) Which two triangles in the figure are congruent?
(c) Find $\theta, y$ and $z$.


## 11A. 9 HKCEE MA 1998-I-2

In the figure, $C D E$ is a straight line. Find $x$ and $y$.


## 11A. 10 HKCEE MA 1999-I - 14

In the figure, $A B C D$ is a parallelogram. $E B D F$ is a straight line and $E B=D F$.
(a) Prove that $\angle A B E=\angle C D F$.
(b) Prove that $E A / / C F$.


11A. 11 HKCEEMA 2000 I 13
In the figure, $A B C D E$ is a regular pentagon and $C D F G$ is a square.
$B G$ produced meets $A E$ at $P$.
(a) Find $\angle B C G, \angle A B P$ and $\angle A P B$.


11A. 12 HKCEE MA 2002-I - 10
In the figure, $A B C$ is a triangle in which $\angle B A C=20^{\circ}$ and $A B=A C . D, E$ are points on $A B$ and $F$ is a point on $A C$ such that $B C=C E=E F=F D$.
(a) Find $\angle C E F$.
(b) Prove that $A D=D F$.


## 11A. 13 HKCEE MA $2004 \quad \mathrm{I}-12$

In the figure, $A E C, A F B, B C D$ and $D E F$ are straight lines. $A B=A C, C D=C E$ and $\angle C D E=36^{\circ}$.
(a) Find
(i) $\angle A E F$,
(ii) $\angle B A C$.
(b) Suppose $A F=F B$.
(i) Prove that $\angle A E B$ is a right angle.
(ii) If $A E=10 \mathrm{~cm}$, find the area of $\triangle A B C$.


## 11A. 14 HKCEE MA $2005-\mathrm{I}-8$

In the figure, $A B C D E F$ is a regular six-sided polygon. $A C$ and $B F$ intersect at $G$. Find $x, y$ and $z$.


11A. 15 HKCEE MA $2006 \quad$ I 5
In the figure, $A B C D$ is a parallelogram. $E$ is a point lying on $A D$ such that $A E=A B$. It is given that $\angle E B C=70^{\circ}$. Find $\angle A B E$ and $\angle B C D$.


## 11. Geometry of Rectilinear Figures

11A. 16 HKCEEMA 2007 -I - 8
In the figure, $A B C$ and $D E F$ are straight lines. It is given that $A C / / D F, B C=C F, \angle E B F=90^{\circ}$ and $\angle B E D=110^{\circ}$. Find $x, y$ and $z$


## 11A. 17 HKCEE MA 2008 T-9

In the figure, $A B / / C D . E$ is a point lying on $A D$ such that $A E=A C$. Find $x, y$ and $z$.


11A. 18 HKDSE MA 2020-I-8
In Figure 1, $B$ and $D$ are points lying on $A C$ and $A E$ respectively, $B E$ and $C D$ intersect at the point $F$. It is given that $A B=B E, B D / / C E, \angle C A E=30^{\circ}$ and $\angle A D B=42^{\circ}$

(a) Find $\angle B E C$.
(b) Let $\angle B D C=\theta$. Express $\angle C F E$ in terms of $\theta$.

## 11B Congruent and similar triangles

## 11B. 1 HKCEE MA 1982 (2) I- 13

In the figure, $\triangle A D B$ and $\triangle A C E$ are equilateral triangles. $D C$ and $B E$ intersect at $F$.
(a) Prove that $D C=B E$. [Hint: Consider $\triangle A D C$ and $\triangle A B E$.]


### 118.2 HKCEE MA 2001-I - 11

As shown in the figure, a piece of square paper $A B C D$ of side 12 cm is folded along a line segment $P Q$ so that the vertex $A$ coincides with the mid-point of the side $B C$. Let the new positions of $A$ and $D$ be $A^{\prime}$ and $D^{\prime}$ respectively, and denote by $R$ the intersection of $A^{\prime} D^{\prime}$ and $C D$.
(a) Let the length of $A P$ be $x \mathrm{~cm}$. By considering the triangle $P B A^{\prime}$, find $x$.
(b) Prove that the triangles $P B A^{\prime}$ and $A^{\prime} C R$ are similar.
(c) Find the length of $A^{\prime} R$.


## 11B. 3 HKCEE MA 2003-I- 8

The figure shows a parallelogram $A B C D$. The diagonals $A C$ and $B D$ cut at $E$.
(a) Prove that the triangles $A B C$ and $C D A$ are congruent.
(b) Write down all other pairs of congruent triangles.


## 11B. 4 HKCEE MA 2009-1-11

In the figure, $C$ is a pointlying on $D E . A E$ and $B C$ intersect at $F$. It is given that $A C=A D, B C=D E$ and $\angle B C E=\angle C A D$.
(a) Prove that $\triangle A B C \cong \triangle A E D$.
(b) If $A D / / B C$,
(i) prove that $\triangle A B F \sim \triangle D E A$;
(ii) write down two other triangles which are similar to $\triangle A B F$.


11B. 5 HKCEEMA 2010-I-9
In the figure, $A B=C D, A E / / C D, \angle B A E=108^{\circ}$ and $\angle B C D=126^{\circ}$.
(a) Find $\angle A B C$.
(b) Prove that $\triangle A B C \cong \triangle D C B$.


## 11B. 10 HKDSE MA 2016 I 13

In the figure, $A B C$ is a triangle. $D, E$ and $M$ are points lying on $B C$ such that $B D=C E, \angle A D C=\angle A E B$ and $D M=E M$.
(a) Prove that $\triangle A C D \cong \triangle A B E$.
(b) Suppose that $A D=15 \mathrm{~cm}, B D=7 \mathrm{~cm}$ and $D E=18 \mathrm{~cm}$.
(i) Find $A M$.
(ii) Is $\triangle A B E$ a right-angled triangle? Explain your answer.


11R.11 HKDSE MA 2017-I - 10
(To continue as 12A.31.)
In the figure, $O P Q R$ is a quadrilateral such that $O P=O Q=O R . O Q$ and $P R$ intersect at the point $S . S$ is the mid-point of $P R$.
(a) Prove that $\triangle O P S \cong \triangle O R S$.


## 11B. 12 HKDSEMA 2018 I 13

In the figure, $A B C D$ is a trapezium with $\angle A B C=90^{\circ}$ and $A B / / D C . E$ is a point lying on $B C$ such that $\angle A E D=90^{\circ}$.
(a) Prove that $\triangle A B E \sim \triangle E C D$.
(b) It is given that $A B=15 \mathrm{~cm}, A E=25 \mathrm{~cm}$ and $C E=36 \mathrm{~cm}$.
(i) Find the length of $C D$.
(ii) Find the area of $\triangle A D E$.
(iii) Is there a point $F$ lying on $A D$ such that the distance between $E$ and $F$ is less than 23 cm ? Explain your answer.


## 11B. 13 HKDSE MA 2019 I 14

In the figure, $A B C D$ is a square. It is given that $E$ is a point lying on $A D . B D$ and $C E$ intersect at the point $F$. Let $G$ be a point such that $B G / / E C$ and $C G / / D B$.
(a) Prove that
(i) $\triangle B C G \cong \triangle C B F$,
(ii) $\triangle B C F \sim \triangle D E F$.
(b) Suppose that $\angle B C F=\angle B G C$.
(i) Let $B C=\ell$. Express $D F$ in terms of $\ell$.
(ii) Someone claims that $A E>D F$. Do you agree? Explain your answer.


11B. 14 HKDSEMA 2020 I 18
In Figure 2, $U, V$ and $W$ are points lying on a circle. Denote the circle by $C$. TU is the tangent to $C$ at $U$ such that $I V W$ is a straight line.

(a) Prove that $\triangle U T V \sim \triangle W T U$.

## (2 marks)

(b) It is given that $V W$ is a diameter of $C$. Suppose that $T U=780 \mathrm{~cm}$ and $T V=325 \mathrm{~cm}$.
(i) Express the circumference of $C$ interms of $\pi$.
(ii) Someone claims that the perimeter of $\Delta U V W$ exceeds 35 m . Do you agree? Explain your answer.

## 11 Geometry of Rectilinear Figures

11.1 HKCEE MA $1980\left(1 / 1^{*} / 3\right)-\mathrm{I}-1$
$\begin{aligned} x^{\circ}+3 x^{\circ} & =(2 x+40)^{\circ} \quad(\text { ext. } \angle \text { of } \triangle) \\ x & =20\end{aligned}$
$x=20$
11.2 HKCEE MA $1980\left(\right.$ 1 $\left.^{*}\right)-\mathrm{I}-15$
(a) In $\triangle E M C$ and $\triangle A D C$
$\begin{aligned} & x=y \\ & \angle E C M=\angle A C D \\ & \text { (given) }\end{aligned}$
$\angle M E C=\angle D A C \quad(\angle$ sum of $\triangle)$
$\therefore \triangle E M C \sim \triangle A D C$ (AAA)
Hence, $\frac{E M}{A D}=\frac{E C}{A C}=\frac{1}{3} \quad($ corr. sides, $\sim \triangle \mathrm{s})$
$E M=\frac{1}{3} A D$

$$
=\frac{1}{3}\left(\frac{3}{4} A B\right)=\frac{1}{4} A B
$$

(b) $\because x=y$ (given)
$\therefore A B / / E M$ (corr. $\angle \mathrm{s}$ equal)
In $\triangle B D P$ and $\triangle E M P$,
$\angle B P D=\angle E P M \quad$ (vert. opp. $\angle \mathrm{s}$ ) $) ~$
$\angle P B D=\angle P E M \quad$ ( $) ~$
$\begin{aligned} \angle P D & =E M=\frac{1}{4} A B \quad \text { (proved) }\end{aligned}$
. $\triangle B D P \cong \triangle E M P \quad$ (AAS)
(c) $P D=P M$ (corr. sides. $\cong \triangle \mathrm{s}$ )
$\frac{C M}{C D}=\frac{E C}{A C}=\frac{1}{3} \quad$ (corr. sides, $\sim \Delta$ s )
$\Rightarrow D M=\frac{2}{3} C D=2 C M$
$\therefore P M=C M(=P D)$
(d) $\because P M=C M$ (proved)
$\therefore$ Area of $\triangle E M P=$ Area of $\triangle E M C$
$\because \triangle B D P \cong \triangle E M P$ (proved)
$\therefore$ Area of $\triangle B D P=$ Areaof $\triangle E M P$
Hence. Area of $\triangle B D P=\frac{1}{2}$ Area of $\triangle P E C$

113 HKCEE MA 1981(2)-I-14
(a) $\angle X A B+\angle Y B A=180^{\circ} \quad$ (int. $\angle \mathrm{s}, X A / / Y B$ ) $2 \angle P A B+2 \angle P B A=180^{\circ} \quad$ (given) $\angle P A B+\angle P B A=90$
$\therefore$ In $\triangle A B P$.
$\angle A P B=180^{\circ}-(\angle P A B+\angle P B A) \quad(\angle$ sum of $\mathbf{A})$ $=180^{\circ}-90^{\circ}$
$=90^{\circ}$
(b) Lct $Q$ be on $A B$ such that $\angle A P Q=\angle A P C$

In $\triangle A P C$ and $\triangle A P Q$,
$A P C$ and $\triangle A P Q$
$A P=A P$
$\angle C A P=\angle Q A P \quad$ (common
$\angle A P C=\angle A P Q \quad$ (by construction)
$\therefore \triangle A P C \cong \triangle A P Q$ (AAS)
$\therefore C P=P Q \quad$ (cort sides, $\cong \triangle \mathrm{s}$ )
$\angle Q P B=90^{\circ}-\angle A P Q=90^{\circ} \quad \angle A P C \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ )
$\angle Q P B=90^{\circ}-\angle A P Q=90^{\circ} \quad \angle A P C$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ )
$\Rightarrow \angle D P B=180^{\circ}-90^{\circ} \quad \angle A P C \quad$ (adj. $\angle \mathrm{s}$ on st. line)
$\begin{aligned} \Rightarrow \angle D P B & =180^{\circ}-90^{\circ} \quad \angle A P C \text { (adj. } \angle \mathrm{s} \text { on st. line) } \\ & =90^{\circ}-\angle A P C\end{aligned}$ $=90^{\circ}-\angle A P C$
$=\angle Q P B$
$\therefore$ In $\triangle B P D$ and $\triangle B P Q$,

$$
\begin{gathered}
\text { In } \triangle B P D \text { and } \triangle B P \text { } \\
P B=P B
\end{gathered}
$$

(common) $\angle P B D=\angle Q B P$
$\angle D P B=\angle Q P B$
$\angle D P B=\angle Q P B \quad$ (proved)
$\therefore \triangle B P D \cong \triangle B P Q$ (AAS)
$C P=D P \quad$ (corr. sides. $\cong \Delta \mathrm{s}$ )
(c) $\because A C=A Q \quad$ (corr. sides, $\cong \triangle \mathrm{s})$
$B D=B Q \quad($ corr. sides $\cong \triangle \mathrm{s})$
. $A C+B D=A Q+B Q=A B$

11.

HKCEE MA $1988-\mathrm{I}-8(\mathrm{a})$
(i)
(ii) $\angle A B C=90^{\circ} \quad$ (property of square)
$\angle P B C=60^{\circ}$ (property of square)
$\angle P B C=60^{\circ}$ (property of equil
$\Rightarrow \angle A B P=90^{\circ}-60^{\circ}=30^{\circ}$
$A B=B C \quad$ (property of square)
$=B P \quad$ (property of equi $1 \Delta$ )
$\Rightarrow \angle P A B=\angle A P B \quad$ (base $\angle$ s. isos. $\triangle$ )
$\angle P Q C=\begin{gathered}=\left(180^{\circ}-\angle P A 0^{\circ}\right) \div 2=75^{\circ} \quad(\angle \text { sum of } \triangle)\end{gathered}$
$\angle P Q C=180^{\circ}-\angle P A B=105^{\circ}$ (int. $\angle \mathrm{s}, A B / / D C$ )
11.5 HKCEE MA 1993(I)-I-1(c)
$\frac{x}{7}=\frac{3}{5} \quad\left(\right.$ intercept thm) $\Rightarrow x=\frac{21}{5}$
11.6 HKCEE MA 1995-I-1(c)

Required $\angle=(8-2) 180^{\circ} \div 8=135^{\circ} \quad$ ( $\angle$ sum of polygon)
11.7 HKCEE MA $1995-\mathrm{I}-1$ (d)
$A B=D C=5$ and $\angle A=90^{\circ}$ (property of rectangle)
$\therefore B D=\sqrt{A B^{2}+A D^{2}}=13$ (Pyth. thm)
11.8 HKCEE MA $1996-\mathrm{I}-10$
(a) $x=360^{\circ}-80^{\circ} \quad 60^{\circ}-80^{\circ}-75^{\circ}=65^{\circ}$
(c) In $\triangle \triangle B E, y+z=80^{\circ} \quad$ (ext. $\angle$ of $\triangle$ )
$\because \triangle A B E \cong \triangle C D B$
$\therefore \angle C D B=y$ (corr. $\angle s, \cong \triangle \mathrm{~s}$ )
$B D=B E \quad$ (corr, sides $\cong \triangle \mathrm{s})$
$\angle B D E=\angle B E D \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$
$=180^{\circ}-z \quad$ ( $65^{\circ}$ ) (adj. $\angle \mathrm{s}$ on st. linc)
$\angle \angle C D B+\angle B D E+75^{\circ}=180^{\circ} \quad$ (adj. $\angle \mathrm{s}$ on st. line) $y+\left(115^{\circ}-\bar{x}\right)+75^{\circ}=180^{\circ}$
Hence, $\left\{\begin{array}{l}z-y=10^{\circ} \\ y+z=80^{\circ}\end{array} \Rightarrow\left\{\begin{array}{l}y=35^{\circ} \\ z=45^{\circ}\end{array}\right.\right.$
$\begin{array}{rlll}\text {. } \text { In } \triangle B D E, \quad \theta & =180^{\circ} \quad 2 \angle B E D \quad(\angle \text { sum of } \triangle) \\ & =180^{\circ} \quad 2\left(115^{\circ} \quad \text { 2) }=40^{\circ}\right.\end{array}$
11.9 HKCEE MA 1998 - I-2
$x=180 \quad 120=60 \quad$ (adj. $\angle \mathrm{s}$ onst. linc) $y=(4-2) 180-80-140-x \quad$ ( $\angle$ sum of polygon) $=80$
11.10 HKCEEMA 1999-I-14
(a) $\angle A B E 180^{\circ}-\angle A B D$ (adj. $\angle$ s on st. line) $180^{\circ}-\angle C D B \quad$ (alt. $\angle \mathrm{s}, A B / / D C$ )
(b) In $\triangle A B E$ and $\triangle C D F$,
$A B=C D \quad$ (property of //aram)
$\begin{array}{cc}E B=F C & \text { (given) } \\ \angle A B E=\angle C D F & \text { (poved) }\end{array}$
$\triangle A B E \cong \triangle C D F$ (SAS)
$\Rightarrow \angle E=\angle F$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ )
$\Rightarrow E A / / C F$ (als. $\angle \mathrm{s}$ equat
11.11 HKCEE MA 2000-1-13
(a) $\angle A=\angle A B C=\angle B C D$ (given)
$=\left(5{ }^{2}\right) 180^{\circ} \div 5 \quad$ ( $\angle$ sum of polygon) $=108^{\circ}$
$\angle G C D=90^{\circ} \quad$ (property of square)
$\Rightarrow \angle B C G=108^{\circ}-90^{\circ}=18$
$B=C D=C G$ (given)
(base $\angle \mathrm{s}$, isos. $\triangle$ )
In $\triangle B C G, \angle G B C=\left(180^{\circ}-\angle B C G\right) \div 2 \quad(\angle$ sum of $\triangle)$
$\angle A B P=108^{\circ} \quad 81^{\circ}=27$
$\angle A P B=180^{\circ}-\angle A-\angle A B P=45^{\circ} \quad(\angle$ sum of $\triangle)$
11.12 HKCEE MA 2002-I - 10
(a) In $\triangle A B C, \angle B=\angle C \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ ) $=\left(180^{\circ}-20^{\circ}\right) \div 2 \quad(\angle$ sum of $\triangle)$
$\triangle C B E, \quad \angle E=\angle B=80^{\circ}$
$\begin{array}{ll}\angle E=\angle B=80^{\circ} & \text { (base } \angle \text { s. isos. } \triangle) \\ \angle E C B=180^{\circ}-2\left(80^{\circ}\right) & (\angle \text { sum of } \triangle)\end{array}$
$\angle E C F=80^{\circ} \quad 20^{\circ}=60^{\circ}$
Thus, $\triangle C E F$ is equilateral. $\Rightarrow \angle C E F=60^{\circ}$
(b) $\angle E D F=\angle D E F$
(basc $\angle \mathrm{s}$. isos. $\Delta$ )
$=180^{\circ}-\angle C E F-\angle B E C \quad$ (adj. $\angle \mathrm{s}$ on st line)
$\angle D F A=40^{\circ}-\angle A=20^{\circ} \quad($ ext $\angle$ of $\triangle)$
$\because \angle D F A=\angle D A F=20^{\circ} \quad$ (proved)
$A D=D F \quad$ (sides opp. equal $\angle s$ )
11.13 HKCEE MA 2004-1- 12
(a) (i) $\angle A E F=\angle C E D \quad$ (vert opp. $\angle \mathrm{s}$ ) $=\angle C D E \quad$ (base $\angle$ s, isos. $\Delta$ )
(ii) $\angle A B C=\angle A C B \quad$ (basc $\angle \mathrm{s}$, isos. $\triangle)$ $=\angle C D$
$=72^{\circ}$
$\therefore \angle B A C=180^{\circ} \quad 2\left(72^{\circ}\right)=36^{\circ} \quad(\angle$ sum of $\triangle)$
(b) (i)
$\because \angle F A E=\angle A E F=36^{\circ} \quad$ (proved)
$\therefore A F=F E \quad$ (sides opp. equal $\angle \mathrm{s}$ )
$A F=F B, F E=F B$ (given)
$\therefore \angle E F B=\angle A+\angle A E F=72^{\circ} \quad$ (ext. $\angle$ of $\triangle$ )
$\begin{aligned} \angle F E B & =\angle F B E \quad(\text { base } \angle \text { s, isos. } \triangle) \\ & =\left(180^{\circ}-\angle E F B\right) \div 2=54^{\circ}\end{aligned}$
Hence, $\angle A E B=\angle A E F+\angle F E B=36^{\circ}+54^{\circ}=90^{\circ}$
(ii) $A C=A B=\frac{A E}{\cos \angle A}=\frac{10}{\cos 36^{\circ}}$
$B E=A E \tan \angle A=10 \tan 36^{\circ}$
$\therefore$ Area of $\triangle A B C=\frac{1}{2} A C \cdot B E=44.9\left(\mathrm{~cm}^{2}, 3\right.$...f. $)$

### 11.14 HKCEE MA 2005-I-8

$x=(6-2) 180 \div 6=120$ ( $\angle$ sum of polygon)
In $\triangle A B C, \angle B=120^{\circ}$

$$
\begin{aligned}
& \begin{array}{ll}
\begin{array}{l}
A B \\
y^{\circ}=\angle B A C \quad \text { (given) }
\end{array} \text { (base }
\end{array} \\
& y=(180-\angle B) \div 2 \quad \text { (base } \angle \mathrm{s}, \mathrm{i} \text { sos. } \triangle \text { ) }
\end{aligned}
$$

$\angle A B G=\angle B A G=30^{\circ}$
$z^{\circ}=\angle A G B \quad$ (vert. opp. $\angle \mathrm{s}$ )
$z=180-30 \quad 30=120 \quad(\angle$ sum of $\Delta)$

### 11.15 HKCEE MA 2006-I-5

$\angle A B E=\angle A E B \quad$ (base $\angle \mathrm{s}$. isos. $\triangle$ ) $\begin{aligned} & \left.=\angle C B E=70^{\circ} \quad \text { (alt. } \angle \mathrm{s}, B C / / A D\right) \\ \angle B C D & \left.=180^{\circ}-\angle A B C \quad \text { (int. } \angle \mathrm{s}, A B / / D C\right)\end{aligned}$
$=180^{\circ}-\left(70^{\circ}-70^{\circ}\right)=40^{\circ}$

### 11.16 HKCEE MA 2007 -I- 8

$x=180^{\circ}-110^{\circ}=70^{\circ} \quad$ (adj. $\angle \mathrm{s}$ on st. line)
$\angle C B F=z$ (base $\angle \mathrm{s}$, isos. $\triangle$ )
$\angle E B C=110^{\circ} \quad$ (alt. $\angle \mathrm{s}, A C / / D F$
$z=110^{\circ} \quad 90^{\circ}=20^{\circ}$

### 11.17 HKCEE MA 2008 -I-9

$x=33^{\circ}$ (alk. $\angle \mathrm{s}$. CD//AB)
$y=43^{\circ}+x=76^{\circ} \quad(\operatorname{cxt} \angle$ of $\triangle)$
$\angle A C E=y=76^{\circ} \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ ) $z=180^{\circ}-\angle A C E-y^{\prime}=28^{\circ} \quad(\angle$ sum of $\triangle)$

### 1.18 HKDSE MA 2020-I - 8

8a
$A B=B E \quad$ (given)
$\angle A E B=\angle B A E \quad$ (base $\angle \mathrm{s}$, isos. $\triangle)$
$\angle A E B=30^{\circ}$
$\angle A D B=\angle B E D+\angle D B E \quad($ ext. $\angle$ of $\Delta)$
$42^{\circ}=30^{\circ}+\angle D B E$
$\angle D B E=12^{\circ}$
$\angle B E C=, \angle D B E \quad$ (alt. $\angle \mathrm{s}, B D / / C E$ ) $=12^{\circ}$
$\angle D C E=\angle B D C \quad$ (alt. $\angle \mathrm{s}, B D \| C E)$
$=\theta$
$\angle C E F+\angle C F E+\angle E C F=180^{\circ} \quad(\angle \mathrm{sum}$ of $\triangle)$
$12^{\circ}+\angle C F E+\theta=180^{\circ}$

## $11 B$ Congruent and similar triangles

11B. 1 HKCEE MA 1982(2)-I-13
(a) $\angle D A B=\angle E A C=60^{\circ} \quad$ (property of equii. $\triangle$ ) $\angle D A B+\angle B A C=\angle E A C+\angle B A C$ $\triangle D A C=\angle B A E$
In $\triangle A D C$ and $\triangle A B E$.
$D A=B A \quad$ (property of equil. $\triangle)$ $\begin{aligned} \angle D A C & =\angle B A E \quad \text { (proved) } \\ A C & =A E\end{aligned}$
$\begin{array}{cl}A C=A E & \text { (property of equil. } \triangle \text { ) } \\ \triangle A D C \cong \triangle A B E & (\mathrm{SAS})\end{array}$
$\therefore D C=B E \quad$ (cor
(corr. sides. $\cong \Delta \mathrm{s}$ )
118. 2 HKCEE MA $2001-I-11$
(a) $P A^{\prime}=P A=x \mathrm{~cm}$

In $\triangle P B A^{\prime}, \quad x^{2}=P B^{2}+B A^{\prime 2} \quad$ (Pyth. thm)

$$
\begin{aligned}
x^{2} & =P B^{2}+B A^{\prime \prime}(\text { Pyth. thm } \\
x^{2} & =(12-x)^{2} \div(12 \div 2)^{2} \\
x^{z} & =144-24 x+x^{z}+36 \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=(14-x)^{2}+(12 \div 2)^{2} \\
& x^{z}=14-24 x+x^{z}+36 \Rightarrow x=7.5
\end{aligned}
$$

(b) In $\triangle P B A^{\prime}$ and $\triangle A^{\prime} C R$.
$\angle B=\angle C=90^{\circ} \quad$ (given)
$\begin{aligned} \angle B P A^{\prime} & =180^{\circ} \quad \angle B- \\ & =90^{\circ}-\angle P A^{\prime} B\end{aligned}$
$\begin{aligned} \angle C A^{\prime} R & =180^{\circ}-\angle P A^{\prime} R \\ & =90^{\circ}-\angle P A^{\prime} B\end{aligned}$
$\Rightarrow \angle B A^{\prime} P=\angle C A^{\prime} R$
$\angle B A^{\prime} P=\angle C R A^{\prime}$
$\triangle \triangle P B A^{\prime} \sim \triangle A^{\prime} C R$

## ( $\angle$ sum of $\Delta$ )

 (AAA)(c) $\frac{P A^{\prime}}{P B}=\frac{A^{\prime} R}{A^{\prime} C} \quad$ (corr. sides, $\left.\sim \Delta \mathrm{s}\right)$ $\frac{7.5}{12-7.5}=\frac{A^{\prime} R}{6} \Rightarrow A^{\prime} R=10(\mathrm{~cm})$

11B. 3 HKCEE MA 2003 -I-8
(a) In $\triangle A B C$ and $\triangle C D A$,
$A B=C D \quad$ (property of $/ / \mathrm{gram}$ ) $\begin{array}{ll}B C=D A & \text { (property of } / / \text { gram } \\ A C=C A\end{array}$ $\begin{array}{ll}A C & =C A \\ \cong & \text { (common) }\end{array}$
(b) $\triangle A B D \cong \triangle C D B, \triangle A B E \cong \triangle C D E . \triangle A D E \cong \triangle C B E$
118. 4 HKCEE MA $2009-1-11$
(a) $\angle A D C=\angle A C E-\angle C A D$ (ext. $\angle$ of $\triangle$ ) $=\angle A C E B$
$=\angle A C B$
In $\triangle A B C$ and $\triangle A E D$,
$A C=A D \quad$ (given)
$B C=E D \quad$ (given)
$\begin{aligned} B C & =E D \quad \text { (given) } \\ \angle A C B & =\angle A D E \quad \text { (proved) }\end{aligned}$
$\therefore \triangle A B C \cong \triangle A E D$ (SAS)
(b) (i) In $\triangle A B F$ and $\triangle D E A$.
$\angle A F B=\angle D A E \quad$ (alt. $\angle \mathrm{s}, A D / / B C$ ) $\angle A B F=\angle D E A \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$ $\begin{array}{ll}\angle B A F=\angle E D A & (\angle \text { sum of } \triangle) \\ \triangle A B F \sim \triangle D E A & (A A A)\end{array}$
(ii) $\triangle C E F, \triangle C B A$
118. 5 HKCEE MA 2010-I-9
(a) $\angle E A C+\angle A C D=180^{\circ}$ (int. $\angle \mathrm{s}, A E / / C D$ )

In $\triangle A B C$. $\angle A B C+\angle B A C+\angle B C A=180^{\circ}$
$\left.\angle A B C+\left(108^{\circ}-\angle E A C\right)+\left(126^{\circ}-\angle A C D\right)=180^{\circ} \triangle\right)$
$\angle A B C+234^{\circ}-\left(180^{\circ}\right)=180^{\circ}$
$\angle A B C=126^{\circ}$
(b) In $\triangle A B$,
given)
$\begin{aligned} A B=D C & \text { (given) } \\ \angle A B C=\angle D C B=126^{\circ} & \text { (proved) }\end{aligned}$
$\begin{aligned} \angle A B C & =\angle D C B=126^{\circ} & & \text { (proved) } \\ B C & =C B & & \text { (common) }\end{aligned}$
$\therefore \triangle A B C \cong \triangle D C B \quad$ (SAS)

11B. 6 HKCEE MA 2011-I-9
(a) In $\triangle A B D$ and $\triangle A C D$.
$\begin{array}{cl}\angle B A D & \angle C A D \\ A D=A D & \text { (given) } \\ \text { (common) }\end{array}$
$\angle A B D=\angle A C D \quad$ (given)
$\therefore \triangle A B D \cong \triangle A C D$ (ASA)
(b) $\angle C A D=\angle B A D=31^{\circ}$ (given)
$\triangle A C D$
$\angle A D C=180^{\circ}-31^{\circ}-17^{\circ}=132^{\circ}$
$A D B=\angle A D C=132^{\circ}$
$D B=D C$
$\angle B D C=360^{\circ}-$
$\angle C B D=\angle B C D$
$=\left(180^{\circ}-96^{\circ}\right) \div 2=42^{\circ}$
$(\angle$ sum of $\Delta$ ) (corr. $\angle \mathrm{s} \cong \triangle \Delta \mathrm{s}$ ) (corr. sides. $\cong \triangle \triangle$
$(\angle \mathrm{s}$ at a pt) $)$ (base $\angle \mathrm{s}$, isos. $\triangle$ ) ( $\angle$ sum of $\Delta$ )
118.7 HKDSE MA 2013-1-7
(a) $\because B E=C E$ (given)
. $\angle B C E=\angle C B E$ (base $\angle \mathrm{s}$, isos. $\triangle$ )
$\triangle A B C$ and $\triangle D C B$,
$\angle B A C=\angle B D C \quad$ (given)
$\angle A C B=\angle D C B \quad$ (proved)
$\begin{array}{ll}B C=C B & \text { (proved) } \\ \text { (common) }\end{array}$
$\triangle A B C \cong \triangle D C B \quad$ (AAS)
(b) (i) $3(\triangle A B C \cong \triangle D C B, \triangle A B E \cong \triangle D C E, \triangle A B D \cong \triangle D C A)$
(ii) 4 (the 3 in (i) and $\triangle A D E \sim \triangle C B E$ )

## 11B. 8 HKDSE MA 2014-I-9 <br> (a) In $\triangle A B C$ and $\triangle B D C$, <br> $\begin{aligned} \angle C & =\angle C \quad \text { (common) } \\ \angle B A C & =\angle D B C \quad \text { ( }\end{aligned}$ $\angle B A C=\angle D B C \quad$ (given) $\angle A B C=\angle B D C \quad$ ( sum)

$\begin{array}{ll}\angle A B C=\angle B D C & (\angle \text { sum of } \triangle) \\ \triangle A B C \sim \triangle B D C & (\mathrm{AAA})\end{array}$
(b) $\frac{A C}{B C}=\frac{B C}{D C} \quad$ (corr. sides, $\sim \Delta \mathrm{s}$ )
$\frac{\overline{B C}}{2 s}=\overline{D C} \quad($ corr. sides, $\sim \Delta s)$
$\frac{25}{20}=\frac{20}{\overline{D C}}$
$D C=16$
$B C^{2}=20^{2}=40$
$B D^{2}+C D^{2}=12^{2}+16^{2}=400=B C^{2}$
$\therefore \triangle B C D$ is a right-Led $\triangle$. (converse of Pyth. thm)
(a) In $\triangle A B E$ and $\triangle B C F$
$A B=B C \quad$ (property of square)
$\begin{array}{ll}\angle B=\angle C=90^{\circ} \quad \text { (properly of square) } \\ A E=B F & \text { (given) }\end{array}$
$\therefore \triangle A B E \cong \triangle B C F$ (RHS)
(b) $\angle A E B=\angle B F C$ (corr. sides, $\cong \triangle s$ )

In $\triangle B E G$,
$\begin{aligned} \angle B G E & =180^{\circ} \quad \angle G B E \quad \angle G E B \text { ( } \angle \text { sum of } \triangle \\ & \left.=180^{\circ}-\angle G B E-\angle B F C \text { ( } \angle \text { s }\right)\end{aligned}$
$=180^{\circ}-\angle G B E-\angle B F C \quad$ (proved)
$=\angle B C F=90^{\circ} \quad(\angle$ sum of $\triangle)$
YES.
(c) $B E=C F=15 \mathrm{cin}$ (corr. sides, $\cong \triangle \mathrm{s}$ )
$B G=\sqrt{B E^{2}-E G^{2}}=12 \mathrm{~cm} \quad$ (Pyth. thm )

11B.10 HKDSE MA 2016-I-13
(a) $D E=E D$ (common)
$B D+D E=C E+E D$ (given)
$B E=C D$
In $\triangle A C D$ and $\triangle A B E$,
$B E=C D \quad$ (proved)
$\angle A E B=\angle A D C$
(given)
$A E=A D \quad$ (sides opp. equal $\angle \mathrm{s}$ )
(b) (i) $\because D M=E M$ (iven)
$A M \perp D E$ (property of isos. $\triangle$ )
$\therefore A M \perp D E$ (property of isos. $\triangle$ ) $\quad$ (Pyth. thm)
(ii) $A B=\sqrt{A M^{2}+B M^{2}}=20$ (cm) (Pyth. thm) $B E^{2}=25^{2}=625$
$A B^{2}+A E^{2}=A B^{2}+A D^{2} \quad$ (cort, sides, $\cong \triangle \mathrm{s}$ ) $\begin{aligned} & \\ & =20^{2}+15^{2}=625=B E^{2}\end{aligned}$ $\therefore$ YES. (converse of Pyth. thm)

11B. 11 HKDSEMA 2017-I-10
(a) $\because O P=O R$ and $P S=R S$ (given)

OS $\perp P R \quad$ (properily of isos. $\triangle$ )
In $\triangle O P S$ and $\triangle O R S$.
$O P=O R \quad$ (given)
$\begin{array}{ll}\angle O S P=\angle O S R & \text { (common) } \\ \text { (proved) }\end{array}$
$\therefore \triangle O P S \cong \triangle O R S$ (RHS)
11B. 12 HKDSE MA $2018-\mathrm{I}-13$
(a) $\angle C=180^{\circ} \angle B=90^{\circ}$ (int. $\angle \mathrm{s}, A B / / D C$ )
$\angle C=180^{\circ} \angle B=90^{\circ}$ (int. $\left.\angle \mathrm{Ls}, A B / / D C\right)$
$\angle B A E=180^{\circ}-\angle A B E-\angle A E B q u a d(\angle$ sum of $\triangle)$
$\begin{aligned} \angle B A E & =180^{\circ}-\angle A B E-\angle A E B q u a d(\angle \text { sum of } \triangle) \\ & =90^{\circ} \angle A E B \\ \angle C E D & =180^{\circ}-\angle A E D-\angle A E B \text { (adj. } \angle \text { s on st line) }\end{aligned}$
$\begin{aligned} \angle C E D & =180^{\circ}-\angle A E D \\ & =90^{\circ} \angle A E B\end{aligned}$
$B A E=\angle C E D$
In $\triangle A B E$ and $\triangle E C D$,

$$
\begin{aligned}
\angle B & =\angle C=90^{\circ} & & \text { (proved) } \\
\angle B A E & =\angle C E D & & \text { (proved) } \\
\angle B E A & =\angle C D E & & \text { ( } \angle \text { sum of } \triangle) \\
\therefore \triangle A B E & \sim \triangle E C D & & \text { (AAA) }
\end{aligned}
$$

(b) (i) $B E=\sqrt{A E^{2}-A B^{2}}=20 \mathrm{~cm}$ (Pyth. thm) $B E=\sqrt{A E}-A B^{2}=20 \mathrm{~cm} \quad$ (Pyth. th
$\frac{A B}{B E}=\frac{E C}{C D} \quad$ (cor. sides. $\left.\sim \Delta \mathrm{s}\right)$
$\frac{15}{20}=\frac{36}{C D}$
$C D=48 \mathrm{~cm}$
(ii) $D E=\sqrt{C D^{\frac{1}{1}}+C E^{3}}=60 \mathrm{~cm}$ (Pyth. thm) Area of $\triangle A D E=\frac{1}{2}(25)(60)=750\left(\mathrm{~cm}^{2}\right)$
(iii) $A D=\sqrt{25^{2}+60^{3}}=65(\mathrm{~cm}) \quad$ (Pyth. chm)

Let $\ell \mathrm{cm}$ be the shortest dista
$\frac{A D \cdot \ell}{2}=$ Area of $\triangle A D E$
$\begin{aligned} 2 & =\text { Area of } \triangle A D E \\ \ell & =2 \times 750 \div 65\end{aligned}$
$=23.077>23$
$\therefore$ NO.
11B. 13 HKDSE MA $2020-\mathrm{I}-18$


The cloin is apred with

## 12 Geometry of Circles

## 12A Angles and chords in circles

12A. 1 HKCEE MA 1980(1/1*/3)-1 10
(Continued from 15A.1.)
$A, B$ and $C$ are three points on the line $O X$ such that $O A=2, O B=3$ and $O C=4$. With $A, B, C$ as centres and $O A, O B, O C$ as radii, three semi-circles are drawn as shown in the figure. A line $O Y$ cuts the three semi circles at $P, Q, R$ respectively.
(a) If $\angle Y O X=\theta$, express $\angle P A X, \angle Q B X$ and $\angle R C X$ in terms of $\theta$.
(b) Find the following ratios:
area of sector $O A P$ : area of sector $O B Q$ : area of sector $O C R$.
(c) If $R D \perp O X$, calculate the angle $\theta$.


12A. 2 HKCEE MA 1980(1*) - I 14
In the figure, $A B=A C, A D=A E, x=y$. Straight lines $B^{\prime} D$ and $C E$ intersect at $K$.
(a) Prove that $\triangle A B D$ and $\triangle A C E$ are congruent.
(b) Prove that $A B C K$ is a cyclic quadrilateral.
(c) Besides the quadrilateral $A B C K$, there is another cyclic quadrilateral in the figure. Write it down (proof is not required).


12A. 3 HKCEE MA 1981(2) I 7
In the figure, $O$ is the centre of circle $A B C . \angle O A B=40^{\circ}$. Calculate $\angle B C A$.


12A.A HKCEE MA 1982(2) -I 6
In the figure, $O$ is the centre of the circle $B A D . B O C$ and $A D C$ are straight lines. If $\angle A D O=50^{\circ}$ and $\angle A C B=20^{\circ}$, find $x, y$ and $z$.


## 12A. 5 HKCEE MA 1982(2) I 13

In the figure, $\triangle A D B$ and $\triangle A C E$ are equilateral triangles. $D C$ and $B E$ intersect at $F$.
(a) Prove that $D C=B E$. [Hint: Consider $\triangle A D C$ and $\triangle A B E$.]
(b) (i) Prove that $A, D, B$ and $F$ are concyclic.
(ii) Find $\angle B F D$.
(c) Let the mid points of $D B, B C$ and $C E$ be $X, Y$ and $Z$ respectively. Find the angles of $\triangle X Y Z$.


## 12A. 6 HKCEEMA 1989-I -4

$A B$ is a diameter of a circle and $M$ is a point on the circumference. $C$ is a point on $B M$ produced such that $B M=M C$.
(a) Draw a diagram to represent the above information.
(b) Show that $A M$ bisects $\angle B A C$.

## 12A. 7 HKCEE MA 1989 I-6

(To continue as 14A.4.)
In the figure, $A B C D$ is a cyclic quadrilateral with $A D=10 \mathrm{~cm}, \angle A C D=60^{\circ}$ and $\angle A C B=40^{\circ}$.
(a) Find $\angle A B D$ and $\angle B A D$.


12A. 8 HKCEE MA 1990 I-9
In the figure, $A B$ is a diameter of the circle $A D B$ and $A B C$ is an isosceles triangle with $A B=A C$.
(a) Prove that $\triangle A B D$ and $\triangle A C D$ are congruent.
(b) The tangent to the circle at $D$ cuts $A C$ at the point $E$. Prove that $\triangle A B D$ and $\triangle A D E$ are similar.
(c) In (b), let $A B=5$ and $B D=4$.
(i) Find $D E$.
(ii) $C A$ is produced to meet the circle at the point $F$. Find $A F$.


## 12A. 9 HKCEEMA 1992 I-11

In the figure, $A, B, C, D, E$ and $F$ are points on a circle such that $A D / / F E$ and $\widehat{B C D}=\widehat{A F E} . A D$ intersects $B E$ at $X . A F$ and $D E$ are produced to meet at $Y$.
(a) Prove that $\triangle E F Y$ is isosceles.
(b) Prove that $B A / / D E$.
(c) Prove that $A, X, E, Y$ are concyclic.
(d) If $b=47^{\circ}$, find $f_{1}, y$ and $x$.


## 12A. 10 HKCEE MA 1993-I-11

The figure shows a semicircle with diameter $A D$ and centre $O$. The chords $A C$ and $B D$ meet at $P . Q$ is the foot of the perpendicular from $P$ to $A D$.
(a) Show that $A, Q, P, B$ are concyclic.
(b) Let $\angle B Q^{P}=\theta$. Find, in terms of $\theta$,
(i) $\angle B Q C$,
(ii) $\angle B O C$.
(c) Let $\angle C A D=\phi$. Find $\angle C B Q$ in terms of $\phi$.


## 12A. 11 HKCEE MA 1994 I- 13

In the figure, $A, B, C, D$ are points on a circle and $A B E, G H K E, D J C E, A G D F, H J F$, $B K C F$ are straight lines. $F H$ bisects $\angle A F B$ and $G E$ bisects $\angle A E D$.
(a) Prove that $\angle F G H=\angle F K H$.
(b) Prove that $F H \perp G K$.
(c) (i) If $\angle A E D=\angle A F B$, prove that $D, J$, $H, G$ are concyclic.
(ii) If $\angle A E D=28^{\circ}$ and $\angle A F B=46^{\circ}$, find $\angle B C D$.

## 12A. 12 HKCEEMA 1996-I- 6

In the figure, $A, B, C, D$ are points on a circle. $C B$ and $D A$ are produced to meet at $P$. If $A B / / D C$, prove that $A P=B P$.


## 12A. 13 HKCEE MA 1997 - I-9

In the figure, $A C$ is a diameter of the circle. $A C=4 \mathrm{~cm}$ and $\angle B A C=30^{\circ}$. Find (a) $\angle B D C$ and $\angle A D B$,
(b) $\overparen{A B}: \widehat{B C}$
(c) $A B: B C$.


## 12A.14 HKCEEMA 1998-I-6

In the figure, $A, B, C, D$ are points on a circle. $A C$ and $B D$ meet at $E$.
(a) Which triangle is similar to $\triangle E C D$ ?
(b) Find $y$.


## 12A. 15 HKCEE MA 1998 - I - 14

In the figure, $O$ is the centre of the semicircle $A B C D$ and $A B=B C$. Show that $B O / / C D$.


## 12A. 16 HKCEEMA 1999-I-5

In the figure, $A, B, C, D$ are points on a circle and $A C$ is a diameter. Find $x$ and $y$.


12A. 17 HKCEE MA 1999-I-16
(To continue as $\mathbf{1 6 C . 2 0}$.)
(a) In the figure, $A B C$ is a triangle right angled at $B$. $D$ is a point on $A B$. A circle is drawn with $D B$ as a diameter. The line through $D$ and parallel to $A C$ cuts the circle at $E$. $C E$ is produced to cut the circle at $F$.
(i) Prove that $A, F, B$ and $C$ are concyclic.
(ii) If $M$ is the mid point of $A C$, explain why $M B=M F$.


## 12A. 18 HKCEEMA 2000-I-7

In the figure, $A D$ and $B C$ are two parallel chords of the circle. $A C$ and $B D$ intersect at $E$. Find $x$ and $y$.


## 12A. 19 HKCEE MA 2001 - I-5

In the figure, $A C$ is a diameter of the circle. Find $\angle D A C$.


## 12A. 20 HKCEE MA 2002-I -9

In the figure, $B D$ is a diameter of the circle $A B C D . A B=A C$ and $\angle B D C=40^{\circ}$. Find $\angle A B D$.


12A. 21 HKCEE MA 2002 I 16
(Tb continue as 16C.23.)
In the figure, $A B$ is a diameter of the circle $A B E G$ with centre $C$. The perpendicular from $G$ to $A B$ cuts $A B$ at $O$. $A E$ cuts $O G$ at $D$. $B E$ and $O G$ are produced to meet at $F$.
Mary and John try to prove $O D \cdot O F=O G^{2}$ by using two different approaches
(a) Mary tackles the problem by first proving that $\triangle A O D \sim \triangle F O B$ and $\triangle A O G \sim \triangle G O B$. Complete the following tasks for Mary.
(i) Prove that $\triangle A O D \sim \triangle F O B$.
(ii) Prove that $\triangle A O G \sim \triangle G O B$.
(iii) Using (a)(i) and (a)(ii), prove that $O D \cdot O F=O G^{2}$.

12A. 22 HKCEE MA 2005-I - 17

(To continue as 16 C .26 .)
(a) In the figure, $M N$ is a diameter of the circle $M O N R$. The chord $R O$ is perpendicular to the straight line $P O Q . R N Q$ and $R M P$ are straight lines.
(i) By considering triangles $O Q R$ and $O R P$, prove that $O R^{2}=O P \cdot O Q$.
(ii) Prove that $\triangle M O N \sim \triangle P O R$.


## 12A. 23 HKCEE MA 2006-I-16

In the figure, $G$ and $H$ are the circumcentre and the orthocentre of $\triangle A B C$ respectively. $A H$ produced meets $B C$ at $O$. The perpendicular from $G$ to $B C$ meets $B C$ at $R . B S$ is a diameter of the circle which passes through $A, B$ and $C$.
(a) Prove that
(i) $A H C S$ is a parallelogram,
(ii) $A H=2 G R$.


## 12A. 24 HKCEE MA 2007- 1 - 17

(a) In the figure, $A C$ is the diameter of the semi circle $A B C$ with centre $O$. $D$ is a point lying on $A C$ such that $A B=B D$. I is the in-centre of $\triangle A B D$. $A I$ is produced to meet $B C$ at $E . B I$ is produced to meet $A C$ at $G$.
(i) Prove that $\triangle A B G \cong \triangle D B G$.
(ii) By considering the triangles $A G I$ and $A B E$, prove that $\frac{G I}{A G}=\frac{B E}{A B}$.


## 12A. 25 HKCEE MA 2008 -I 17

The figure shows a circle passing through $A, B$ and $C$. $I$ is the in centre of $\triangle A B C$ and $A I$ produced meets the circle at $P$. (a) Prove that $B P=C P=I P$.


## 12A. 26 HKDSE MA SP I 7

In the figure, $O$ is the centre of the semicircle $A B C D$. If $A B / / O C$ and $\angle B A D=38^{\circ}$, find $\angle B D C$.


## 12A. 27 HKDSE MA PP $-1-7$

In the figure, $B D$ is a diameter of the circle $A B C D$. If $A B=A C$ and $\angle B D C=36^{\circ}$, find $\angle A B D$.


## 12A. 28 HKDSE MA PP-I- 14

In the figure, $O A B C$ is a circle. It is given that $A B$ produced and $O C$ produced meet at $D$.
(a) Write down a pair of similar triangles in the fi gure.


## 12A. 29 HKDSE MA 2012-1-8

In the fi gure, $A B, B C, C D$ and $A D$ are chords of the circle. $A C$ and $B D$ intersect at $E$. It is given that $B E=8 \mathrm{~cm}, C E=20 \mathrm{~cm}$ and $D E=15 \mathrm{~cm}$.
(a) Write down a pair of similar triangles in the figure. Also find $A E$.
(b) Suppose that $A B=10 \mathrm{~cm}$. Are $A C$ and $B D$ perpendicular to each other? Explain your answer.


## 12A. 30 HKDSE MA 2015-I-8

in the figure, $A B C D$ is a circle. $E$ is a point lying on $A C$ such that $B C=C E$. It is given that $A B=A D, \angle A D B=58^{\circ}$ and $\angle C B D=25^{\circ}$. Find $\angle B D C$ and $\angle A B E$.


12A. 31 HKDSEMA 2017-I - 10
(Continued from 118.11)
In the figure, $O P Q R$ is a quadrilateral such that $O P=O Q=O R . O Q$ and $P R$ intersect at the point $S . S$ is he mid-point of $P R$.
(a) Prove that $\triangle O P S \cong \triangle O R S$.
(b) It is given that $O$ is the centre of the circle which passes through $P, Q$ and $R$. If $O Q=6 \mathrm{~cm}$ and $\angle P R Q=10^{\circ}$, find the area of the sector $O P Q R$ in terms of $\pi$.


## 12A. 32 HKDSE MA 2018 -I- 8

In the figure, $A B C D E$ is a circle. It is given that $A B / / E D . A D$ and $B E$ intersect at the point $F$.
Express $x$ and $y$ in terms of $\theta$.


## 12A. 33 HKDSE MA 2019-1-13

In the figure, $O$ is the centre of circle $A B C D E, A C$ is a diameter of the circle. $B D$ and $O C$ intersect at the point $F$. It is given that $\angle A E D=115^{\circ}$.
(a) Find $\angle C B F$.
(b) Suppose that $B C / / O D$ and $O B=18 \mathrm{~cm}$. Is the perimeter of the sector $O B C$ less than 60 cm ? Explain your answer.


## 12B Tangents of circles

## 12B. 1 HKCEE MA 1980(1*)-I 8

In the figure, $T A$ and $T B$ touch the circle at $A$ and $B$ respectively. $\angle A C B=65^{\circ}$ Find the value of $x$.


## 12B. 2 HKCEE MA 1981(2) I-13

In the figure, circles $P M Q$ and $Q N R$ touch each other at $Q$ $Q T$ is a common tangent. $P Q R$ is a straight line. $T P$ and $T R$ cut the circles at $M$ and $N$ respectively.
(a) If $\angle P=x$ and $\angle R=y$, express $\angle M Q N$ in terms of $x$ and $y$.
(b) Prove that $Q, M, T$ and $N$ are concyclic.
(c) Prove that $P, M, N$ and $R$ are concyclic.
(d) There are several pairs of similar triangles in the fig ure. Name any two pairs (no proof is required).


## 12B. 3 HKCEE MA 1982(2) I-14

In the figure, two circles touch internally at $T . T R$ is their common tangent. $A B$ touches the smaller circle at $S . A T$ and $B T$ cut the smaller circle at $P$ and $Q$ respectively.
$P Q$ and $S T$ intersect at $K$.
(a) Prove that $P Q / / A B$.
(b) Prove that $S T$ bisects $\angle A T B$.
(c) $\triangle S T Q$ is similar to four other triangles in the figure. Write down any three of them.
(No proof is required.)


12B. 4 HKCEE MA 1983(A/B)-I 2
In the figure, $O$ is the centre of the circle. $A$ and $B$ are two points on the circle such that $O A B$ is an equilateral triangle. $O A$ is produced to $C$ such that $O A=A C$.
(a) Find $\angle A B C$
(b) Is $C B$ a tangent to the circle at $B$ ? Give a reason for your answer


12B.5 HKCEEMA 1984(A/B) I-5
In the figure, $A P$ and $A Q$ touch the circle $B C D$ at $B$ and $D$ respectively. $\angle P B C=30^{\circ}$ and $\angle C D Q=80^{\circ}$. Find the values of $x, y$ and $z$.


12B. 6 HKCEE MA 1985(A/B)-I - 2
In the figure, $P B$ touches the circle $A B C$ at $B$. $P A C$ is a straight line. $\angle A B C=60^{\circ} . A P=A B$. Find the value of $x$.


## 12B. 7 HKCEE MA 1986(A/B) I-2

In the figure, TAE and TBF are tangents to the circle $A B C$. If $\angle A T B=30^{\circ}$ and $A C / / T F$, find $x$ and $y$.


## 12B. 8 HKCEE MA 1986(A/B) - I-6

In the figure, $A, B$ and $C$ are three points on the circle. $C T$ is a tangent and $A B T$ is a straight line.
(a) Name a triangle which is similar to $\triangle B C T$.
(b) Let $B T=x, A B=17$ and $C T=10 \sqrt{2}$. Find $x$.


## 12B. 9 HKCEE MA 1987(A/B) I 6

The figure shows a circle, centre $O$, inscribed in a sector $A B C . D, E$ and $F$ are points of contact. $O D=1 \mathrm{~cm}, A B=r \mathrm{~cm}$ and $\angle B A C=60^{\circ}$. Find $r$.


## 12B.10 HKCEE MA 1987(A/B) I-7

In the figure, $O$ is the centre of the circle. $A O C P$ is a straight line, $P B$ touches the circle at $B, B A=B P$ and $\angle P A B=x^{\circ}$. Find $x$.


## 12B.11 HKCEEMA 1988 I-8(b)

In the figure, $C T$ is tangent to the circle $A B T$.
(i) Find a triangle similar to $\triangle A C T$ and give reasons.
(ii) If $C T=6$ and $B C=5$, find $A B$.


## 12B. 12 HKCEE MA 1991 I-13

In the figure, $A, B$ are the centres of the circles $D E C$ and $D F C$ respectively. $E C F$ is a straight line.
(a) Prove that triangles $A B C$ and $A B \bar{D}$ are congruent.
(b) Let $\angle F E D=55^{\circ}, \angle A C B=95^{\circ}$
(i) Find $\angle C A B$ and $\angle E F D$.
(ii) A circle $S$ is drawn through $D$ to touch the line $C F$ at $F$.
(1) Draw a labelled rough diagram to represent the above information.
(2) Show that the diameter of the circle $S$ is $2 D F$.


## 12B. 13 HKCEE MA 1995-I-14

In Figure (1), $A P$ and $A Q$ are tangents to the circle at $P$ and $Q$. A line through $A$ cuts the circle at $B$ and $C$ and a line through $Q$ parallel to $A C$ cuts the circle at $R . P R$ cuts $B C$ at $M$.
(a) Prove that
(i) $M, P, A$ and $Q$ are concyclic;
(ii) $M R=M Q$.
(b) If $\angle P A C=20^{\circ}$ and $\angle Q A C=50^{\circ}$, find $\angle Q P R$ and $\angle P Q R$. (You are not required to give reasons.)
(c) The perpendicular from $M$ to $R Q$ meets $R Q$ at $H$ (see Figure (2))
(i) Explain briefly why $M H$ bisects $R Q$.
(ii) Explain briefly why the centre of the circle lies on the line through $M$ and $H$.


Figure (1)


Figure (2)

## 12B. 14 HKCEE MA 1997-I - 16

(To continue as 16C.18.)
(a) In the figure, $D$ is a point on the circle with $A B$ as diameter and $C$ as the centre. The tangent to the circle at $A$ meets $B D$ produced at $E$. The perpendicular to this tangent through $E$ meets $C D$ produced at $F$.
(i) Prove that $A B / / E F$.
(ii) Prove that $F D=F E$
(iii) Explain why $F$ is the centre of the circle passing through $D$ and touching $A E$ at $E$.


## 12B. 15 HKCEE MA 2000-I-16

In the figure, $C$ is the centre of the circle $P Q S . O R$ and $O P$ are tangent to the circle at $S$ and $P$ respectively. $O C Q$ is a straight line and $\angle Q O P=30^{\circ}$.
(a) Show that $\angle P Q O=30^{\circ}$.
(b) Suppose $O P Q R$ is a cyclic quadrilateral.
(i) Show that $R Q$ is tangent to circle $P Q S$ at $Q$


## 12B. 16 HKCEE MA 2003 - -17

(To continue as 16C.24.)
(a) In the figure, $O P$ is a common tangent to the circles $C_{\mathrm{I}}$ and $C_{2}$ at the points $O$ and $P$ respectively. The common chord $K M$ when produced intersects $O P$ at $N . R$ and $S$ are points on $K O$ and $K P$ respectively such that the straight line $R M S$ is parallel to $O P$.
(i) By considering triangles $N P M$ and $N K P$, prove that $N P^{2}=N K \cdot N M$
(ii) Prove that $R M=M S$.


12B.17 HKCEE MA 2004 I 16(a),(b).(c)(i)
(To continue as 16C.25.)
In the figure, $B C$ is a tangent to the circle $O A B$ with $B C / / O A$. $O A$ is produced to $D$ such that $A D=O B$. $B D$ cuts the circle at $E$,
(a) Prove that $\triangle A D E \cong \triangle B O E$.
(b) Prove that $\angle B E O=2 \angle B O E$
(c) Suppose $O E$ is a diameter of the circle $O A E B$
(i) Find $\angle B O E$.


## 12B. 18 HKCEE AM 2002-15

(a) $D E F$ is a triangle with perimeter $p$ and area $A$. A circle $C_{1}$ of radjus $r$ is inscribed in the triangle (see the figure). Show that $A=\frac{1}{2} p r$.


## 12B.19 HKDSE MA SP-I-19

In the figure, the circle passes through four points $A, B, C$ and $D . P Q$ is the tangent to the circle at $D$ and is paraliel to $B D . A C$ and $B D$ intersect at $E$. It is given that $A B=A D$.
(a) (i) Prove that $\triangle A B E \cong \triangle A D E$
(ii) Are the in centre, the orthocentre, the centroid and the circum centre of $\triangle A B D$ collinear? Explain your answer.
(To continue as 16C.50.)

$\triangle O P Q$ is an obtuse-angled triangle. Denote the in-centre and the circumcentre of $\triangle O P Q$ by $I$ and $J$ respecively. It is given that $P, I$ and $J$ are collinear
(a) Prove that $O P=P Q$

12B. 21 HKDSE MA 2019 I 17 (To continue as 16D.14.)
(a) Let $a$ and $p$ be the area and perimeter of $\triangle C D E$ respectively. Denote the radius of the inscribed circle of $\triangle C D E$ by $r$. Prove that $p r=2 a$.

## 12 Geometry of Circles

12A Angles and chords in circles
12A.1 HKCEE MA $1980(1 / 1 * / 3)-1-10$
(a) $\angle P A \bar{X}=2 \theta$ ( $\angle$ at centre twice $\angle$ at $\sigma^{\text {ce }}$ )

Similarty, $\angle Q B X=\angle R C X=2 \theta$
(b) Areas of sector $O A P: O B Q: O C R=(O A: O B: O C)^{2}$ $=4: 9: 16$
(c) $\cos \angle R C X=\frac{C D}{C R}=\frac{2}{4}=\frac{1}{2} \Rightarrow 2 \theta=60^{\circ} \Rightarrow \theta=30^{\circ}$

12A. 2 HKCEE MA 1980(1*)-1-14
(a) $\begin{aligned} \angle C A D & =\angle C A D \\ x+\angle C A D & =\angle C A D+y\end{aligned} \quad$ (common)
$\Rightarrow \angle B A D=\angle C A E$,

$$
\begin{array}{cll}
A B=A C & \text { (given) } \\
\angle B A D=\angle C A E & \text { (proved) } \\
A D & =A E & \text { (given) }
\end{array}
$$

$$
\triangle A B D \cong \triangle A C E \quad \text { (SAS) }
$$

(b) $\because \angle A B K=\angle A C K \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$
$\therefore A B C K$ is cyclic. (converse of $\angle \mathrm{s}$ in the same segment) (c) $A E D K$

12A. 3 HKCEEMA 1981(2)-I-7
$\angle O B A=40^{\circ} \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ )
$\angle B O A=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ} \quad(\angle$ sum of $\triangle)$
$\angle B C A=100^{\circ} \div 2=50^{\circ} \quad\left(\angle\right.$ at centre twice $\angle$ at $\left.\odot^{\alpha}\right)$
12A.4 HKCEEMA 1982(2)-I-6
$x=50^{\circ}-20^{\circ}=30^{\circ} \quad$ (ext. $\angle$ of $\left.\Delta\right)$
Let $O C$ meet the circle at $E$. Then
$\angle B O D=180^{\circ} \quad x=150^{\circ}$ (adj. $\angle$ s on st line)
$\Rightarrow \angle B E D=150^{\circ} \div 2=75^{\circ} \quad$ ( $\angle$ at centre twice $\angle$ at $\odot^{c e}$ )

$\Rightarrow=180^{\circ}-20^{\circ}-z=55^{\circ} \quad(\angle$ sum of $\triangle)$


12A. 5 HKCEE MA 1982(2)-I-13
(a) $\angle D A B=\angle E A C=60^{\circ} \quad$ (property of equil. $\triangle$ ) $\angle D A B+\angle B A C=\angle E A C+\angle B A C$ $\angle D A C=\angle B A E$
(b) (i) $\because \angle A D C=\angle A B F \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$ $A, D, B$ and $F$ are concyclic.
$\angle B A D=60^{\circ} \quad / \angle \mathrm{sin}$ th

$$
\begin{aligned}
& \text { In } \triangle A D C \text { and } \triangle A B E \text {, } \\
& \begin{aligned}
D A & =B A \quad \quad \text { (property of equil. } \triangle \text { ) }
\end{aligned} \\
& \angle D A C=\angle B A E \quad \text { (proved) } \\
& A C=A E \quad \text { (property of equil. } \Delta \text { ) } \\
& \therefore \triangle A D C \cong \triangle A B E \\
& \text { (corr sides, } \cong \Delta \mathrm{s} \text { ) }
\end{aligned}
$$

(c)

$\therefore B X=X D$ and $B Y=Y C \quad$ (given)
$\therefore X Y=\frac{1}{2} D C$ and $X Y / / D C$ (mid-pt thm)
Similarly. $Y Z=\frac{1}{2} B E$ and $Y Z / / B E$ (mid-pt thm)
$\because D C=B E$ (proved). $X Y=Y Z$
$\angle B F D=60^{\circ}$ (proved)
$\angle B F C=180^{\circ}-60^{\circ}=120^{\circ} \quad$ (adj. $\angle s$ on st. line) and $\angle C F E=60^{\circ}$ (vert. opp. $\angle \mathrm{s}$ )
Suppose $X Y$ meets $B E$ at $H$ and $Y Z$ meets $D C$ at $K$. Then $\angle Y B F=\angle C F E=60^{\circ}$ (corr. $\angle \mathrm{s}, X Y / / D C$ ) $\angle Y K F=\angle B F D=60^{\circ}$ (corr. $\left.\angle \mathrm{s}, Y Z / / B E\right)$ Hence,
$\angle X Y Z=360^{\circ}-\angle Y H F-\angle Y K F-\angle B F C=120^{\circ}$
 $=\left(180^{\circ}-120^{\circ}\right) \div 2=30^{\circ} \quad(\angle$ sum of $\triangle)$

HKCEE MA 1989-I-4

(b) In $\triangle A B M$ and $\triangle A C M$
$A M=A M$
$M B=M C$
$\angle A M B=\angle A M C=90^{\circ}$
$\therefore \triangle A B M \cong \triangle A C M$
$\therefore \angle B A M=\angle C A M$
i.e. $A M$ bisects $\angle B A C$.

12A.7 HKCEE MA 1989-1-6
(a) $\angle A B D=\angle A C D=60^{\circ}$ ( $\angle \mathrm{s}$ in the same segment) $\angle A B D=\angle A C D=60^{\circ}(\angle \mathrm{s}$ in the same segmen)
$\angle B A D=180^{\circ}-\left(60^{\circ}+40^{\circ}\right) \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.) $=80^{\circ}$

2A. 3 HKCEE MA 1990~1-9
(a) In $\triangle A B D$ and $\triangle A C D$,

$\angle A D B$	$=\angle A D C=90^{\circ}$		( $\angle$ in semi-circle)
$A B$	$=A C$		(given)
$A D$	$=A D$		(common)

$\begin{aligned} A D & =A D \\ \triangle A B D & \text { (common) }\end{aligned}$
$\therefore \triangle A B D \cong \triangle A C D$
(b)
$\angle A B D=\angle A D E \quad(\angle$ in alt. segment $)$
$\angle B A D=\angle D A E \quad($ corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$
$\begin{array}{ll}\angle A D B & =\angle A E D \quad(\angle \text { sum of } \triangle)\end{array}$
c) (i) $A D=\sqrt{A B^{2}}-\overline{B D^{2}}=3$ (Pyth thm)

$$
\begin{aligned}
\frac{A B}{A D} & =\frac{A D}{D E} \quad(\text { cor. sides. } \cong \Delta \mathrm{s}) \\
\frac{5}{4} & =\frac{3}{D E} \\
D E & =2.4
\end{aligned}
$$

(ii) $\angle A E D=\angle A D B=90^{\circ}$ (corr $\angle \mathrm{s}, \sim \triangle \mathrm{s}$ ) $\angle C F B=90^{\circ} \quad$ ( $\angle$ in semi-circle)
In $\triangle C F B$ and $\triangle C D A$,

$$
\begin{array}{rlrl}
\angle C P B & =\angle C D A=90^{\circ} & & \text { (proved) } \\
\angle C & =\angle C & \text { (common) } \\
\angle C B F & =\angle C A D & (\angle \text { sum of } \triangle) \\
\therefore \triangle C F B & \sim \triangle C D A & \quad(A A A A) \\
\therefore \frac{C F}{C B} & \left.=\frac{C D}{C A} \quad \text { (corr. sides, } \cong \triangle \mathrm{s}\right) \\
\frac{A C+A F}{C D+D B} & =\frac{C D}{C A} \\
\frac{5+A F}{4+4} & =\frac{5}{5} \Rightarrow A F=1.4
\end{array}
$$

12A. 9 HKCEEMA 1992-1-11
(a) $\quad e_{3}=d \quad$ (cor. $\left.\angle \mathrm{s}, F E / / A D\right)$
$d=f_{1} \quad$ (ext $\angle$ cyclic quad)
$e_{3}=f$
i.e. $\triangle E F Y$ is isosceles. (sides opp. equal $\angle \mathrm{s}$ )
(b) : $\widehat{B C D}=\widehat{A F E}$ (given)
$c_{1}=b \quad$ (equal arcs, equal $\angle \mathrm{s}$ )
$B A / / D E$ (alt. $\angle \mathrm{s}$ equal)
(c) $f_{1}=b$ (ext $\angle$, cyclic quad.)
$\begin{array}{ll}=e_{1} & \text { (proved) } \\ e_{3}=d & \text { (proved) }\end{array}$
$\therefore f_{1}+e_{3}+y=180^{\circ}$ ( $\angle$ sum of $\Delta$ )
$\Rightarrow\left(e_{1}\right)+(d)+y=180^{\circ}$
$x+y=180^{\circ} \quad($ ext $\angle$ of $\triangle)$
$\therefore A, X, E$ and $Y$ are concyclic. (opp. $\angle \mathrm{s}$ supp.)
d) $f_{1}=b=47^{\circ} \quad$ (proved)
$\therefore y=180^{\circ} \quad$ (proved) ${ }^{\circ}$ ( $\angle$ sum of $\left.\triangle 1\right)$
$x=180^{\circ}-y=94^{\circ}$ (opp ( $\angle$ cyclic quad)

## 12A. 10 HKCEEMA 1993-1-11

(a) $\angle A B P=90^{\circ} \quad$ ( $\angle$ in semi-circle)
$\angle P Q D=90^{\circ}$
$-\quad \angle A B P=\angle P Q D$
$\because \angle A B P=\angle P Q D$
$\therefore A, Q, P$ and $B$ are concyclic. (ext. $\angle=$ int. opp. $\angle$ )
b) (i) $\angle B A C=\angle B Q P=\theta$ ( $\angle \mathrm{s}$ in the same segment) $\Rightarrow \angle B D C=\theta \quad(\angle s$ in the same segment $)$ Similar to (a), we get $D, Q, P$ and $C$ are concyclic.
$\Rightarrow \angle P Q C=\angle B D C=\theta \quad(\angle \mathrm{s}$ in the same segment) $\Rightarrow \angle B Q C=\angle B Q P+\angle P Q C=2 \theta$
$\therefore \angle B Q C=\angle B Q P+\angle P Q C=2 \theta$
$\therefore$ BOQC is cyclic. (converse of $\angle s$ in the same segmen)
$\angle C B Q=\angle C O Q$ ( $\angle \mathrm{s}$ in the same segment)
$2 \angle C A D=2 \phi \quad$ ( $\angle$ at centre twice $\angle$ at $\odot^{c c}$ )
12A. 11 HKCEEMA 1994-I-13
(a) $d=b$ (ext. $\angle$, cyclic quad.)
$. g=180^{\circ}-d-\angle D E G$ ( $\angle$ sum of $\triangle$ )
$=180^{\circ}-d-e$
$k_{2}=k_{1} \quad$ (vert. opp. $\angle \mathrm{s}$ )
$=180^{\circ}-b-\angle A E G \quad(\angle$ sum of $\triangle)$
$=180^{\circ}-d-e=g \quad$ (prove
$\therefore \angle B C H=\angle F K H$
(b) $h_{2}=g+\angle G F H=g+f \quad$ (ext. $\angle$ of $\triangle$ )
$h_{1}=k_{2}+\angle K F H=k_{2}+f \quad$ (ext. $\angle$ of $\left.\triangle\right)$
$\therefore h_{1}=h_{2}=180^{\circ} \div 2=90^{\circ}$ (adj. $\angle \mathrm{s}$ on s. line)
i. $F H \perp G K$
(c) (i) $d=180^{\circ}-a-2 e \quad(\angle$ sum of $\triangle)$
$=180^{\circ}-a \quad 2 f$ (given)
$=\angle A B F \quad(\angle$ sum of $\triangle)$. $\quad \angle A B F=180^{\circ}$ (opp. cyclic quad.)
$d=180^{\circ} \div 2=90^{\circ}$
Heace, $d=h_{2}=90^{\circ} \quad$ (proved)
$\Rightarrow D, J, H$ and $G$ are concyclic. (ext. $\angle=\mathrm{int} . \mathrm{opp} . \angle)$
(ii) $d=180^{\circ} \quad 28^{\circ}-a=152^{\circ}-a \quad(\angle$ sum of $\triangle)$
$b=a+46^{\circ}$ (ext. $\angle$ of $\triangle$ )
$152^{\circ} \quad \begin{aligned} a & =a+46^{\circ} \quad \text { (ext. } \angle \text {, cyclic quad.) } \\ a & =53^{\circ}\end{aligned}$
$\therefore \angle B C D=180^{\circ} \quad 53^{\circ}$ (opp. $\angle \mathrm{s}$, cyclic quad)
$=127^{\circ}$

## 2A. 12 HKCEEMA 1996-I- 6

## $\angle B A P=\angle D C P \quad$ (ext. $\angle$, cyclic quad. $)$ <br> $=\angle A B P \quad$ (corr $\angle \mathrm{s}, A B / / D C)$

$A P=B P \quad$ (sides opp. equal $\angle \mathrm{s}$ )

12A. 13 HKCEE MA 1997-1-9
(a) $\angle B D C=\angle B A C=30^{\circ} \quad$ ( $\angle \mathrm{s}$ in the same segment) $\angle A D B=90^{\circ}-\angle B D C=60^{\circ} \quad$ ( $\angle$ in semi-circle)
(b) $\widehat{A B}: \widehat{B C}=\angle A D B: \angle B D C=2: 1$ (arcs prop. to $\angle \mathrm{s}$ at ©
$\angle A B C=90^{\circ} \quad$ ( $\angle$ in semi-circle)
$\Rightarrow A B=4 \cos 30^{\circ}=2 \sqrt{3}, B C=4 \sin 30^{\circ}=2$
$\therefore A B: B C=\sqrt{3}: 1$

## 12A.14 HKCEE MA 1998-I-6

(a) $\triangle E B A$
(b) $\frac{y}{3}=\frac{6}{4} \Rightarrow y=\frac{9}{2} \quad$ (corr. sides, $\sim \Delta$ s)

## 12A. 15 HKCEE MA 1998-I- 14

$O B=O D$ (radii)
$\angle O D B=\angle O B D$ (base $\angle \mathrm{s}$, isos. $\triangle$ )
$C B=B A \quad$ (given)
$\angle C D B=\angle B D A \quad$ (equalchords, equal $\angle \mathrm{s}$ )
$=\angle O B D$
$B O / / C D$ (alt. $\angle \mathrm{s}$ equal)

12A.16 HKCEE MA 1999-I-5
$\angle A D C=90^{\circ} \quad(\angle$ in semi-circle)
$\angle A D B=50^{\circ} \quad$ ( $\angle \mathrm{s}$ in the same segment)
$y=90-50=40$
$y=90-30=40$
$x=180-20 \quad 90=70 \quad(\angle$ sum of $\Delta)$
12A. 17 HKCEEMA1999-I-16
(a) (i) $\angle B F E=\angle B D E$ ( $\angle \mathrm{s}$ in the same segment) $=\angle B A C \quad($ corr. $\angle \mathrm{s}, A C / / D E)$ $A, F, B$ and $C$ are concyclic.
(converse of $\angle \mathrm{s}$ in the same segment)
$\because \angle A B C=90^{\circ}$ (given)
$A C$ is a diameter of circle $A F B C$.
(converse of $\angle$ in sem-circle)
$\Rightarrow M$ is the centre of circle $A F B C \Rightarrow M B=M F$

## 12A. 18 HKCEE MA 2000-I-7

$x=25 \quad(\angle$ in alt. segment) $A D / B C$
$\angle D B C=\angle D A C=25^{\circ} \quad$ ( $\angle \mathrm{s}$ in the same segment)
$\angle D A B+\angle A B C=180^{\circ}$ (int. $\angle s, A D / / B C$ )
$\therefore y=180-25-56-25=74$

## 12A.1 HKCEEMA 2001-I-S <br> $\angle A D C=90^{\circ} \quad$ ( $\angle$ in semi-circle)

 $\angle A C D=30^{\circ}$ ( $\angle \mathrm{s}$ in the same segment) $\angle D A C=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}(\angle$ sum of $\triangle)$
## 12A. 20 HKCEEMA 2002-I-9


$\angle B A C=40^{\circ} \quad$ ( $\angle \mathrm{s}$ in the same segment) $\angle A B C=\angle A C B \quad$ (base $\angle \mathrm{s}$, isos. $\triangle)$
$=\left(180^{\circ}-40^{\circ}\right) \div 2=70^{\circ} \quad(\angle$ sum of $\triangle)$
12A. 21 HKCEE MA $2002-\mathrm{I}-16$
(a) (i) $\angle A E B=90^{\circ}$ ( $\angle$ in semi-circle)
$\angle D A O=180^{\circ}-\angle \angle A E B-\angle A B E$ ( $\angle$ sum of $\left.\triangle\right)$
$\begin{aligned} & =90^{\circ}-\angle A B E \\ \angle B F O & =180^{\circ}-\angle F O\end{aligned}$
$\begin{aligned} \angle B F O & =180^{\circ}-\angle F O B-\angle A B E \quad(\angle \text { sum of } \triangle) \\ & =90^{\circ} \quad \angle A B E\end{aligned}$ $D A O=\angle B F O$
In $\triangle A O D$ and $\triangle F O B$,
$\angle D A O=\angle B F O$
$\angle A O D=\angle B F O B=90^{\circ} \quad$ (proved)
$\begin{array}{ll}\angle A D D=\angle F O B=90^{\circ} & \text { (given) } \\ \angle A D O=\angle F B O & (\angle \text { sum of } \triangle)\end{array}$ (AAA)
(ii) $\angle A G B=90^{\circ}$ ( $\angle$ in semi-circle)
$\angle G A O=180^{\circ}-\angle A G O-\angle A O G(\angle$ sum of $\triangle)$
In $\triangle A O G$ and $\triangle G O B$, $=\angle B G O$
$\angle G A O=\angle B G O$
$\angle A O G=\angle G O B=90^{\circ} \quad$ (proved)
$\angle O G A=\angle O B G$
$\triangle A O G \sim \triangle G O B$
(given)
$(\angle$ sum of $\triangle)$
GOB (AAA)
(iii) From(i), $\quad \frac{A O}{O D}=\frac{F O}{O B}$ (corr. sides, $\sim \Delta \mathrm{s}$ ) $A O \cdot O B=O D \cdot O F$
From (ii), $\frac{A O}{O G}=\frac{G O}{O B}$ (corr. sides, $\sim \triangle \mathrm{s}$ )
$A O \cdot O B=$
$F=O G^{2}$

## HKCEE MA 2005-1-17

$\because M N$ is a diameler (given)
$\therefore \angle N O M=\angle O R P=90^{\circ}$
$\therefore \angle N O M=\angle Q R P=90^{\circ}$ ( $\angle$ in semi-circle)
In $\triangle O Q R$ and $\triangle O R P$,
$\angle R O Q=\angle P O R=90^{\circ} \quad$ (given)
$\angle Q R O=\angle Q R P-\angle P R O \quad$.
$\begin{aligned} & =90^{\circ}-\angle P R O\end{aligned}$
$\angle P O R=180^{\circ}-\angle R O P-\angle P R O$

$$
=90^{\circ}-\angle P R O
$$

$\Rightarrow \angle Q P O=\angle P R O$
$\begin{aligned} \angle \angle R Q O & =\angle P R O & & (\angle \text { sum of } \triangle) \\ \therefore \triangle O Q R & \sim \triangle O R P & & (A A A)\end{aligned}$
$\Rightarrow \frac{O R}{O Q}=\frac{O P}{O R}$
$O R^{2}=O P \cdot O Q$
(ii) In $\triangle M O N$ and $\triangle P O R$.
$\angle N M O=\angle Q R O \quad(\angle \sin$ the same segment)
$\begin{aligned} & =\angle R P O \\ \angle M O N & =\angle P O R\end{aligned} \quad$ (proved)
$\angle M N O=\angle R Q O \quad(\angle$ sum of $\triangle)$
$\therefore \triangle M O N \sim \triangle R Q O$ (AAA)
12A. 23 HKCEE MA $2006-\mathrm{I}-16$
$G$ is the circumcentre (given)
$S C \perp B C$ and $S A \perp A B$ ( $\angle$ in semi-circle)
$A H \perp B C$ and $C H \perp A B$
Thus, $S C / / A H$ and $S A / / C H \Rightarrow A H C S$ is a //gram
(ii)
$\frac{\text { Method }}{\because \angle G R B}=\angle S C B=90^{\circ} \quad$ (proved)
$\therefore G R / / S C$ (cort $\angle \mathrm{s}$ equal)
$\therefore B G=G S=$ radius
$\therefore B R=R C$ (intercept thm)
$\Rightarrow S C=2 G R$ (mid
$\Rightarrow S C=2 G R$ (mid-pt thm)
Hence, $A H=S C=2 G R$ (property of $/ / \mathrm{gram}$ )
$\stackrel{\text { Method } 2}{\because B G}=G$
$\because B G=G S=$ radius
and $B R=R C \quad(\perp$ from centre to chord bisects
chord)
Hence, $A H=S C=2 G R$ (property of $/ /$ gram)
12A. 24 HKCEE MA 2007-1-17
$\because I$ is the incentre of $\triangle A B D$ (given)
$\therefore \angle B G=\angle D B G$ and $\angle B A E=\angle C A E$
In $\triangle A B G$ and $\triangle D B G$ given)
In $\triangle A B G$ and $\triangle D B G$,
$\begin{array}{cc}\angle A B G & =\angle D B G \quad \text { (proved) } \\ A B=D B & \text { (given) }\end{array}$ $\begin{array}{ll}A B=D B & \text { (given) } \\ B G=B G & \text { (common) }\end{array}$
(ii) $\because \triangle A B D$ is isoseeles and $\angle A B G=\angle D B G$
$\therefore \angle B G A=90^{\circ}$ (property of isos. $\triangle$ )
In $\triangle A G I$ and $\triangle A B E$,

$\angle A G I$	$=90^{\circ}=\angle A B E$		( $\angle$ in semi-circle)
$\angle A I G$	$=\angle E A B$		(proved)
$\angle A I G$	$=\angle A E B$		( $\angle$ sum of $\triangle$ )
$\therefore \triangle A G I \sim \triangle A B E$		(AAA)	
$\Rightarrow$	$G I$		
$\Rightarrow A G$	$=\frac{B E}{A B}$		(corr. sides, $\sim \Delta \mathrm{s}$ )

12A. 25 HKCEE MA 2008-I- 17

## (a) Method 1 .

$\because I$ is the incentre or $\triangle A B C$ (given)
$\therefore \angle B A P=\angle C A P$
$B P=C P \quad$ (equal $\angle \mathrm{s}$, equal chords)
Method 2
$I$ is the incentre of $\triangle A B C$ (given)
$\angle B A P=\angle C A P$
$\angle B C P=\angle B A P$ (/s in the same segment)
$=\angle C A P$ (proved)
$=\angle C B P$ ( $\angle s$ in the same segment
$\Rightarrow B P=C P \quad$ (sides opp. equal $\angle s$ )
Both methods


Join CI. Let $\angle A C I=\angle B C I=\theta$ and $\angle B C P=\phi$. $\angle P A C=\phi \quad$ (equal chords, equal $\angle \mathrm{s}$ )
$\Rightarrow \angle P I C=\angle P A C+\angle A C I=\theta+\phi \quad($ ext $\angle$ of $\triangle)$
$\therefore I P=C P \quad$ (sides opp. equal $\angle \mathrm{s}$ )
i.e. $B P=C P=I P$

12A. 26 HKDSE MA $S P-I-7$

## Method 1


$\angle C O D=38^{\circ}$ (corr $\angle \mathrm{s}, A B / / O C$ )
$\because O C=O D$ (radii)
$\therefore \angle O D C=\angle O C D$ (base $\angle \mathrm{s}$, isos. $\triangle$ )
$=\left(180^{\circ}-38^{\circ}\right)+2=71^{\circ} \quad(\angle$ sum of $\triangle)$
Metiod 2

$\angle B O D=2\left(38^{\circ}\right)=76^{\circ} \quad\left(\angle\right.$ at centre twice $\angle$ at $\left.\bigodot^{c c}\right)$
$\angle C O D=38^{\circ}$ (corr. $\angle \mathrm{s}, A B / / O C$ )
$\Rightarrow \angle B O C=76^{\circ}-38^{\circ}=38^{\circ}$
. $\angle B D C=38^{\circ} \div 2=19^{\circ}$ ( $\angle$ at centre twice $\angle$ at $\left.\odot^{\infty}\right)$ Method 3
$\angle C O D=38^{\circ}$ (corr. $\angle \mathrm{s}, A B / / O C$ )
$O A=O C \quad$ (radii)
$\Rightarrow \angle O A C=\angle O C A \quad$ (base $\angle$ s, isos. $\triangle$ )
$=\angle C O D \div 2=19^{\circ} \quad$ (ext. $\angle$ of $\triangle$ )
$\therefore \angle B A C=38^{\circ}-19^{\circ}=19^{\circ}$
$\Rightarrow \angle B D C \quad \angle B A C \quad 19^{\circ}$ ( $\angle \mathrm{s}$ in the same segment)

## 12A. 27 HKDSEMAPP-I-7

$\angle D C B=90^{\circ}$ ( $\angle$ in semi-circle)
$\Rightarrow \angle D B C=180^{\circ} \quad 90^{\circ} \quad 36^{\circ}=54^{\circ} \quad(\angle$ sum of $\triangle$
$\angle C A B=36^{\circ} \quad$ ( $\angle \mathrm{s}$ in the same segment)
$\angle A B C=\angle A C B \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ ) $/$ (equal chords, equal $\angle \mathrm{s}$ ) $=\left(180^{\circ}-\angle C A B\right) \div 2=72^{\circ} \quad(\angle$ sum of $\triangle)$

$$
\angle A B D=72^{\circ}-54^{\circ}=18^{\circ}
$$



$$
\begin{aligned}
& \text { 12A. } 28 \text { HKDSE MA PP-I-14 } \\
& \text { (a) } \triangle A O D \sim \triangle C B D \\
& \text { 12A. } 29 \text { HKDSEMA 2012-I-8 } \\
& \text { (a) } \triangle A E D \sim \triangle B E C \\
& \left.\therefore \frac{A E}{D E}=\frac{B E}{C E} \quad \text { (cor. sides, } \sim \Delta \mathrm{s}\right) \\
& \Rightarrow A E=\frac{8}{20} \times 15=6(\mathrm{~cm})
\end{aligned}
$$

(b) $A B^{2}=10^{2}=100$
$A E^{2}+E B^{2}=6^{2}+8^{2}=100=A B^{2}$
$\therefore A C \perp B D$ (converse of Pyth thm)

## 12A. 30 HKDSE MA 2015-I-8

$\angle A C B=\angle A D B=58^{\circ} \quad(\angle \mathrm{s}$ in the same segmen $)$
$\angle A B D=\angle A D B \quad$ (base $\angle \mathrm{s}$, isos. $\Delta) /($ equal chords, equal $\angle \mathrm{s})$
$\angle B D C=\angle B A C \quad$ ( $\angle \mathrm{s}$ in the same segment)
$=180^{\circ} \quad \angle A B C-\angle A C B$ ( $\angle$ sum of $\left.\triangle \triangle\right)$
$=180^{\circ}-\left(58^{\circ}+25^{\circ}\right)-58^{\circ}=39^{\circ}$
$=180^{\circ}-\left(58^{\circ}+25^{\circ}\right)-58^{\circ}=39^{\circ}$

## Method 2

$\angle A B D=\angle A D B \quad$ (base $\angle \mathrm{s}$, isos. $\triangle) /($ equal chords, equal $\angle \mathrm{s}$ ) $\begin{aligned} & =58^{\circ} \\ & \end{aligned}$
$\begin{aligned} \angle A D C+\angle A B C & =180^{\circ} \quad \text { (opp. } \angle \mathrm{s} \text {, cyclic quad.) } \\ 58^{\circ}+\angle B D C+\left(58^{\circ}+255^{\circ}\right) & =180^{\circ}\end{aligned}$
$\begin{aligned} 58^{\circ}+\angle B D C+\left(58^{\circ}+25^{\circ}\right) & =180^{\circ} \\ \angle B D C & =39^{\circ}\end{aligned}$

## Cothmethods

$\angle B A C=\angle B D C=39^{\circ} \quad(\angle \mathrm{s}$ in the same segment)
In $\triangle B C E . \angle B E C=\angle E B C \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ )

$$
\begin{array}{rlrl}
c & =\angle E B C & & (\text { base } \angle \mathrm{s}, \text { isc } \\
& =\left(180^{\circ}-\angle B C A\right) \div 2 & (\angle \text { sum of } \angle \\
& =61^{\circ} &
\end{array}
$$

$\angle A B E=\angle B E C-\angle B A C=22^{\circ} \quad($ ext. $\angle$ of $\triangle)$
12A. 31 HKDSEMA 2017-I-10
(a) In $\triangle O P S$ and $\triangle O R S$,

$$
\begin{array}{ll}
P S \text { and } \triangle O R S, & \text { (given) } \\
O P=O R & \text { (givenmon) } \\
O S=O S & \text { (comen) } \\
P S=R S & \text { (given) }
\end{array}
$$

$\triangle O P S \cong \triangle O R S$ (SSS)
(b) $\angle R O Q=\angle P O Q$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ )
$=2 \angle P R Q=20^{\circ}$ ( $\left(\angle\right.$ at centre twice $\angle$ at $\left.\odot^{\alpha \alpha}\right)$
$\therefore$ Area of sector $=\frac{2\left(20^{\circ}\right)}{3600} \times \pi(6)^{2}=4 \pi\left(\mathrm{~cm}^{2}\right)$

## 12A. 32 HKDSE MA 2018-1-8

$x=180^{\circ}-\theta \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.)
$\angle B E D=\angle B A D=x \quad$ ( $\angle \mathrm{s}$ in the same segment)
$\therefore y=180^{\circ}-\angle B E D-\angle A D E \quad(\angle$ sum $)$ $\left.\begin{array}{rl} & =180^{\circ}-\angle B E D-\angle A D E \\ & =180^{\circ} \quad 2\left(180^{\circ}\right.\end{array} \quad \theta\right)=2 \theta-180^{\circ}$

## 12A. 33 HKDSEMA 2019-I- 13

## (a) Method I

$=2 \angle D E A \quad\left(\angle\right.$ at centre twice $\angle$ at $\odot^{c c}$ $=230^{\circ}$
$\Rightarrow \angle D O C=230^{\circ}-180^{\circ}=50^{\circ}$
$\therefore \angle C B F=\angle D O C \div 2=25^{\circ}\left(\angle\right.$ at centre twice $\angle$ at $\left.\odot^{\text {cet }}\right)$ Method 2
$\angle A B D=180^{\circ}-\angle A E D=65^{\circ} \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.) $\angle A B C=90^{\circ} \quad$ ( $\angle$ in semi-circle)
$\angle O C B=90^{\circ}-65^{\circ}=25^{\circ}$
(b) $\angle O C B=\angle D O C=50^{\circ} \quad$ (alt. $\left.\angle \mathrm{s}, B C / / O D\right)$
$\Rightarrow \angle B O C=180^{\circ}-2 \angle O C B=80^{\circ}$
$\therefore$ Perimeter of sector $O B C=2 \times 18+\overparen{B C}$

$$
=36+\frac{80^{\circ}}{360^{\circ}} \times 2 \pi(18)
$$

$$
=61.13>60(\mathrm{~cm})
$$

## 12B Tangents of circles

## 12B. 1 HKCEE MA 1980(1*)-I 8

$\angle T A B=\angle T B A=65^{\circ} \quad(\angle$ in alt. segment $)$
$\therefore=\angle T A B+\angle T B A=130^{\circ} \quad($ ext. $\angle$ of $\triangle)$

12B. 2 HKCEE MA 1981(2)-1-13
(a) $\angle M Q T=x \quad$ ( $\angle$ in alt. segment)
$\angle M O N$ ( $\angle$ in alit. segment
(b) $\angle P T R=180^{\circ}-\angle T P R-\angle P R T \quad(\angle$ sum of $A)$ $=180^{\circ}-x-y$
$\angle M Q N+\angle M T N=(x+y)+\left(180^{\circ}-x \quad y\right)=180^{\circ}$
$\therefore Q, M, T$ and $N$ are concyclic. (opp. $\angle \mathrm{s}$ supp.)
(c) $\because$ QMTN is cyclic, (proved)
$\angle N M T=\angle N Q T=y$ ( $\angle$ sin the same segment)
$\because \angle N M T=\angle P R N=y \quad$ (proved)
$\therefore P, M, N$ and $R$ are concyclic. (ext. $\angle=$ int. opp. $\angle$
(d) $\triangle M N T \sim \triangle R P T, \triangle M Q T \sim \triangle Q P T, \triangle N Q T \sim \triangle Q R T$

12B. 3 HKCEE MA 1982(2)-I-14
(a) $\angle A \overline{B T=\angle A T R \quad \text { ( } \angle \text { in alt. segment)(large circle) }) ~}$
$=\angle P Q T \quad$ ( $\angle$ in ait. segment)(small circle)
$A B / / P Q$ (corr. $\angle \mathrm{s}$ equal)
(b) Consider the small circle
$\begin{aligned} \angle Q T S & =\angle B S Q \quad \text { ( } \angle \text { in alt. segment }) \\ & \left.=\angle S Q^{P} \quad(\angle 1) \angle A B / / P Q\right)\end{aligned}$
$=\angle S T P \quad(\angle \mathrm{~s}$ in the same segm
i.e. $S T$ bisects $\angle A T B$.
(c) $\triangle P T K, \triangle A T S, \triangle A S P, \triangle S Q K$

12B. 4 HKCEE MA 1983(A/B)-I-2
(a) $\angle O A B=\angle O B A=60^{\circ} \quad$ (property of equil $\triangle$
$A C=O A=A B \quad$ (given)
$\therefore \angle A B C=\angle A C B \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ )

$$
=\angle O A B \div 2=30^{\circ} \text { (ext. } \angle \text { of } \triangle \text { ) }
$$

(b) $\because \angle O B C=60^{\circ}+30^{\circ}=90^{\circ}$
. $C B$ is tangent to the circle at $B$.
(converse of tangent $\mathcal{L}$ radius)

12B.5 HKCEE MA 1984(A/B)-1-5
$\angle C B D \quad 80^{\circ} \quad$ ( $\angle$ in alt. segment)
$x=180 \quad 30 \quad 80=70 \quad$ (adj. $\angle \mathrm{s}$ on st. line)
$y=x=70 \quad(\angle$ in alt. segment $)$
$A B=A D \quad$ (angent properties
$A B=A D \quad$ (tangent properties)
$\Rightarrow \angle B D A=x^{\circ} \quad$ (base $\angle$ s. isos. $\triangle$ )

12B. 6 HKCEE MA 1985(A/B) - $\mathrm{I}-2$
$\angle A P B=\angle A B P$ (base $\angle \mathrm{s}$, isos. $A$ )
$=x^{\circ} \quad(\angle$ in all. segment $)$
In $\triangle B C P \quad x^{\circ}-x^{\circ}+\left(x^{\circ}+60^{\circ}\right)$
In $\triangle B C P, x^{\circ} \div x^{\circ}+\left(x^{\circ}+60^{\circ}\right)=180^{\circ} \quad(\angle$ sum of $\triangle)$

12B. 7 HKCEE MA 1986(A/B) -I-2
$T A=T B$ (tangent properties)
$\angle A B T=x^{\circ} \quad$ (base $\angle$ s, isos. $\triangle$ )
$=\left(180^{-30^{\circ}}\right) \div 2(\angle$ sum of $\Delta) \Rightarrow x=75$
(alt. $\langle\mathrm{s}, A C / / T F$ )
$=\angle A B T=x^{\circ} \quad(\angle$ in alt. segment $) \Rightarrow y=75$

12B. 8 HKCEE MA 1986(A/B)-I 6
(a) $\triangle C A T$
(b) $\because \triangle B C T \sim \triangle C A T$

$$
\begin{aligned}
\therefore \frac{B T}{C T} & \left.=\frac{C T}{A T} \quad \text { (corr. sides, } \sim \Delta \mathrm{s}\right) \\
\frac{x}{10 \sqrt{2}} & =\frac{10 \sqrt{2}}{17+x} \\
17 x+x^{2} & =200 \Rightarrow x=8 \text { or }-25 \text { (rejected) }
\end{aligned}
$$

12B. 9 HKCEE MA 1987 (A/B) - I- 6
$\angle O D A=90^{\circ} \quad$ (tangent $L$ radius)
$\angle O A D=60^{\circ} \div 2=30^{\circ} \quad$ (tangent properties)
$\therefore A O=1$
$\therefore r=A E=2+1=3$

12B. 10 HKCEE MA 1987(A/B)-1-7
$\angle A B C=90^{\circ} \quad(\angle$ in semi-circle)
$\angle A P B=\angle P A B=x^{\circ} \quad$ (base $\angle \mathrm{s}$, isos. $\left.\triangle \mathrm{A}\right)$
$=\angle C B P \quad(\angle$ in alt. segment $)$
In $\triangle A B P, x^{\circ}+x^{\circ}+\left(90^{\circ}+x^{\circ}\right)=180^{\circ} \quad(\angle$ sum of $\Delta)$

12B. 11 HKCEE MA 1988-I-8(b)
(i) In $\triangle \overline{A C T}$ and $\triangle T C B$,
$\angle T C A=\angle B C T \quad$ (common
$\angle T A C=\angle B T C \quad$ ( $\angle$ in alt. segment)
$\begin{array}{cl}\angle C T A=\angle C B T & (\angle \text { sum of } \triangle) \\ \triangle A C T \sim \triangle T C B & (\mathrm{AAA})\end{array}$
) $\frac{A C}{C T}=\frac{T C}{C B}$ (corr. sides, $\sim \triangle$
$\frac{A B+5}{} \quad \frac{6}{5} \quad \begin{gathered}5 B=\frac{11}{5}\end{gathered}$
12B. 12 HKCEE MA 1991-I-13
(a) In $\triangle A B C$ and $\triangle A B D$,

$$
\begin{array}{ll}
A C=A D & \text { (radii) } \\
B C=B D & \text { (radii) } \\
A B=A B & \text { (common } \\
A R C \approx A R D & \text { roms }
\end{array}
$$

$\therefore \triangle A B C \cong \triangle A B D$ (SSS)
(b) (i) $\begin{aligned} \because \angle C A D & =2\left(55^{\circ}\right) \quad\left(\angle \text { at centre twice } \angle \text { at } \odot^{r c}\right) \\ & =110^{\circ}\end{aligned}$ $=110^{\circ}$
and $\angle C A B=\angle D A B$ (corr, $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ )
$\angle C A B=110 \div 2=55^{\circ}$
$\angle D B A=\angle C B A \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$
$=180^{\circ} \angle A C B-\angle C A B \quad(\angle$ sum of $\triangle)$
$=30^{\circ} \quad 20$
$\Rightarrow \angle C B D=30^{\circ}+30^{\circ}=60^{\circ}$
$\therefore \angle E F D=\frac{1}{2} \angle C B D \quad$ ( $\angle$ at cenire twice $\angle$ at $\odot^{c c}$ ) $=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
(ii) (1)

(The centre of $S$ lies on the intersection of the perpendicular bisector of $D F$ and the line at $F$ perpendicular to $C F$.)
(2) Let $P$ be a point on major $\overparen{D F}$ and $G$ be the centre of $S$.
$\angle C F D=\angle F P D=30^{\circ} \quad$ ( $\angle$ in alt. segment) $\angle F G D=2 \times 30^{\circ} \quad\left(\angle\right.$ at centre twice $\angle$ at $\left.\Theta^{c c}\right)$ $=60^{\circ}$
$=$
Hence, $\triangle F G D$ is equilateral.
$\Rightarrow$ Diameter $=2 G F=2 D F$
12B. 13 HKCEE MA 1995-I- 14
(a) (i) $\because \angle P Q A=\angle P R Q \quad(\angle$ in alt. segment)
$=\angle P M A \quad($ conc. $\angle s, A C / / Q R)$
$M, P, A$ and $Q$ are concyclic.
(ii) $\angle M Q R \quad \angle A M Q$ (alt. $\angle \mathrm{s}, A C / / Q R$ )
(ii) $\angle M Q R=\angle A P Q$ ( $\angle \mathrm{s}$ in the same segme
$=\angle M R Q \quad(\angle$ in alt. segment $)$
$M R=M Q$ (sides opp. equal $\angle \mathrm{s}$ )
(b) $\angle Q P R=\angle Q A C=50^{\circ} \quad$ ( $\angle \mathrm{S}$ in the same segment) $\angle R M Q=\angle P A Q=70^{\circ}$ (opp. $\angle \mathrm{s}$, cyclic quad.) $\angle M Q R=\left(180^{\circ}-70^{\circ}\right) \div 2=55^{\circ} \quad(\angle$ sum of $\triangle)$ $\angle M Q P=\angle P A C=20^{\circ} \quad$ ( $\angle \mathrm{s}$ in the same segment)
$\therefore \angle P Q R=\angle M Q R+\angle \angle M Q P=75^{\circ}$
(c) (i) Property of isos. $\triangle$
(ii) $\perp$ bisector of chord passes through centre

12B. 14 HKCEE MA 1997-I-16
(a) (i) $\angle E A B=90^{\circ}$ (tangent $I$ radius)
$\because \angle F E A+\angle E A B=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore A B / / E F$ (int. $\angle \mathrm{s} \mathrm{supp}$.)
(ii) $\angle F D E=\angle B D C$ (vert. opp. $\angle$ s)
$=\angle D B C \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ )

$$
\therefore F D=F E \quad(\text { sides opp. equal } \angle \mathrm{s})
$$

(iii) If the circle touches $A E$ at $E$, is centre lies on $E F$

If $E D$ is a chord, the centre lies on the $\perp$ bisector of ED.
of the circle described.
12B. 15 HKCEE MA 2000-I-16
(a) in $\triangle O C P, \angle C P O=90^{\circ}$
$\qquad$ (tangent $L$ radius) $\therefore \angle P Q O=60^{\circ} \div 2=30^{\circ} \quad\left(\angle\right.$ at centre twice $\angle$ at $\left.\odot^{\text {ce }}\right)$
(b) (i) $\angle S O C=\angle P O C=30^{\circ}$ (tangent properties)
$\angle P Q R=180^{\circ}-\angle P O S \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.)
$=120^{\circ}$
$\Rightarrow \angle R Q O=120^{\circ}-30^{\circ}=90^{\circ}$
$R Q$ is tangent to the circle at $Q$
(converse of tangent $\perp$ radius)

12B. 16 HKCEE MA 2003-1-17
(a) (i) in $\triangle N P M$ and $\triangle N K P$, $\angle P N M=\angle K N P$ $\angle N P M=\angle N K P \quad$ (common) $\angle P M N=\angle K P N \quad$ ( $\angle$ in alt. segmen $\therefore \triangle N P M \sim \triangle N K P$ ${ }_{(A A A)}^{(\angle \text { sum of } \Delta)}$
$\therefore \underset{N P}{\triangle N P M} \sim \Delta N K$ (cor. sides, $\sim \Delta s$ ) $N P^{2}=N K \cdot N M$
(ii) $\because R S / / O P$ (given)
$\therefore \triangle K R M \sim \triangle K O N$ and $\triangle K S M \sim \triangle K P N$
$\Rightarrow \frac{R M}{O N}-\frac{K M}{K N}$ and $\frac{S M}{P N}-\frac{K M}{K N}$
$\Rightarrow \frac{R M}{O N}=\frac{S M}{P N}$
Similar to (a), $N O^{2}=N K \quad N M \Rightarrow N P=N O$ Hence, $R M=M S$.
12B. 17 HKCEE MA 2004-I- 16
(a) In $\triangle A D E$ and $\triangle B O E$,
$\angle A D E=\angle E B C \quad$ (all. $\angle \mathrm{s}, O D / / B C)$
$\begin{aligned} & =\angle B O E \\ & \text { ( } \angle \mathrm{in} \text { alt. segment) } \\ \angle D A E & =\angle O B E\end{aligned}$ $A D=B O \quad$ (given)
$\therefore \triangle A D E \cong \triangle B O E \cong(A S A)$
(b) $D E=O E$ (corr sides, $\simeq \triangle$
$\begin{aligned} & =\angle A O E \text { (base } \angle \mathrm{s} \text {, isos, } \triangle \text { ) }\end{aligned}$
i.e. $\angle A O B=2 \angle B O E$
$\therefore \angle B E O=\angle A E D$ (corc. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ )
$=\angle A O B \quad$ (ext. $\angle$, cyclic quad.) $=2 \angle B O E$ (proved)
(c) Suppose $O E$ is a diameter of the circle $O A E B$. (i) $\angle O B E=90^{\circ} \quad(\angle$ in semi-circle) $\angle O B E=90^{\circ} \quad(\angle$ in semi-circle $)$
In $\triangle O B E, \angle B O E=180^{\circ}-90^{\circ}-(2 \angle B O E)$
$3 \angle B O E=90^{\circ} \Rightarrow \angle B O E=30^{\circ}$
12B. 18 HKCEE AM 2002-15
(a) Cut the triangle into $\triangle O D E, \triangle O E F$ and $\triangle O F D$. Then the radii are the heights of the triangles. (tangent $\perp$ radius)
$\therefore A=\frac{D E \cdot r}{2}+\frac{E F \cdot r}{2}+\frac{F D \cdot r}{2}$
$=\frac{1}{2}(D E+E F+F D) r$
$=\frac{1}{2} p r$


22B. 19 HKDSEMA SP-I-19
(a) (i) In $\triangle A B E$ and $\triangle A D E$,
$A B=A D$ $=\angle E B C$ ( $\angle$ in alt. segment) $\begin{array}{ll}=\angle E B C & \text { (alt. } \angle \mathrm{s}, B D / / P Q) \\ =\angle D A E & \text { ( } \mathrm{s} \text { sis the same segment) }\end{array}$ $\therefore \triangle A B E \cong \triangle A D E$ (SAS)
(ii) $\because A B=A D$ (given)
and $A E$ is an $\angle$ bisector of $\triangle A D E$ (proved) $A E$ is an altitude, a median and $\perp$ bisecior of $\triangle A D E$. (property of isos. $\triangle$ )
e. The in-centre, orthocentre, centroid and circumcentre of $\triangle A B D$ all lie on $A E$, and are thus collinear.

12R20 HKDSE MA 2016-1-20
(a) Method I


Let $\angle O P J=\angle Q P J=\theta$. (in-centre)
$O J=P J=O I$
In $\triangle P O J, \angle P O I=\angle O P J=\theta \quad$ (base $\angle s$, isos. $\triangle$ )
In $\triangle P Q J, \angle P Q J=\angle Q P J=\theta \quad$ (base $\angle s$, isos. $\triangle$ )
In $\triangle P O J$ and $\triangle P Q J$,
$\angle O P J=\angle Q P J=\theta \quad$ (in-ceatre)
$\angle P O J=\angle P Q J=\theta$
(proved)
$P J=P J$
(common)
$\therefore \triangle P O J \cong \triangle P Q$
$\therefore P O=P Q$
(AAS)
(corr. sides, $\cong \Delta s$ )

Method 2


Let $\angle O P J=\angle Q P J=\theta$. (in-cenire)
$O J=P J=Q^{J}$ (radii)
In $\triangle P O J, \angle P O I=\angle O P J=\theta$ (base $\angle \mathrm{s}$. isos. $\triangle$ )
$\Rightarrow \angle P J O=180^{\circ} \quad 2 \theta \quad(\angle$ sum of $\triangle)$
$\Rightarrow \angle P Q O=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta$
In $\triangle P Q J, \angle P Q J=\angle Q P J=\theta$ (base $\angle$ s isses $\angle a$ )

$$
\begin{aligned}
& \Rightarrow \angle P J Q=180^{\circ}-2 \theta \quad(\angle \text { sum of } \triangle) \\
& \Rightarrow \angle P O Q=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta
\end{aligned}
$$

$$
\Rightarrow \angle P O Q=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta
$$

$\therefore \angle P Q O=\angle P O Q=90^{\circ}-\theta \quad \begin{aligned} & \text { (proved) }\end{aligned}$
$\therefore P O=P Q$ (sides opp. equal $\angle \mathrm{s}$ )

Method 3


Let $P J$ extended meet the circle $O P Q$ at $R$. Then $P R$ is a diameter of the circle.
$\therefore \angle P O R=\angle P Q R=90^{\circ} \quad$ ( $\angle$ in semi-circle)
Let $\angle O P R=\angle Q P R=\theta$. (in-centre)
In $\triangle O P R, P O=P R \cos \theta$
In $\triangle Q P R, P Q=P R \cos \theta$
$\therefore P O=P Q$
128.21 HKDSEMA 2019-I - 17
(a) Let $I$ be the in-centre of $\triangle C D E$. Then the perpendiculars from $I$ io $C D, D E$ and $E C$ are all $r$
$a=\frac{r \cdot C D}{2}+\frac{r \cdot D E}{2}+\frac{r E C}{2}$
$\begin{aligned} a & =\frac{L^{2}}{2}+\overline{2}+\overline{2} \\ & =\frac{r(C D+D E+E C)}{2}=\frac{r(p)}{2} \Rightarrow p r=2 a\end{aligned}$


## 13 Basic Trigonometry

13A Trigonometric functions
13A. 1 HKCEE MA 1980(1/1*/3) - I-4
If $0^{\circ}<\theta<360^{\circ}$ and $\sin \theta=\cos 120^{\circ}$, find $\theta$

13A. 2 HKCEE MA 1981(1/2/3)-I-4
Solve $\cos \left(200^{\circ}+\theta\right)=\sin 120^{\circ}$ where $0^{\circ} \leq \theta \leq 180^{\circ}$.

13A. 3 HKCEE MA 1982(1/2/3) I 5
Solve $2 \sin ^{2} \theta+5 \sin \theta-3=0$ for $\theta$, where $0^{\circ} \leq \theta<360^{\circ}$.

13A. 4 HKCEE MA 1983(A/B)-I-7
Find all the values of $\theta$, where $0^{\circ} \leq \theta \leq 360^{\circ}$, such that $2 \cos ^{2} \theta+5 \sin \theta+1 \quad 0$.

13A. 5 HKCEE MA 1984(A/B) I 7
Given $\tan \theta=\frac{1+\cos \theta}{\sin \theta}\left(0^{\circ}<\theta<90^{\circ}\right)$,
(a) rewrite the above equation in the form $a \cos ^{2} \theta+b \cos \theta+c=0$ where $a, b$ and $c$ are integers;
(b) hence, solve the given equation.

13A. 6 HKCEE MA 1985(A/B) I 6
Solve $2 \tan ^{2} \theta=1-\tan \theta$, where $0^{\circ} \leq \theta<360^{\circ}$. (Give your answers correct to the nearest degree.)

13A. 7 HKCEE MA 1986(A/B) I-4
Solve $\sin ^{2} \theta+7 \sin \theta=5 \cos ^{2} \theta$ for $0^{\circ} \leq \theta<360^{\circ}$.

13A. 8 HKCEE MA 1987(A/B) - I - 4
Solve the equation $\sin ^{2} \theta=\frac{3}{2} \cos \theta$, where $0^{\circ} \leq \theta<360^{\circ}$.
13A. 9 (HKCEE MA 1988 - I - 2 )
Simplify
(a) $\frac{\sin \left(180^{\circ}-\theta\right)}{\sin \left(90^{\circ}+\theta\right)}$,
(b) $\sin ^{2}\left(180^{\circ}-\phi\right)+\sin ^{2}\left(270^{\circ}+\phi\right)$.

13A. 10 HKCEE MA 1989-1-7
Rewrite the equation $3 \tan \theta=2 \cos \theta$ in the form $a \sin ^{2} \theta+b \sin \theta+c=0$, where $a, b$ and $c$ are integers. Hence solve the equation for $0^{\circ} \leq \theta<360^{\circ}$

13A. 11 HKCEE MA 1990-1-3
Rewrite $\sin ^{2} \theta: \cos \theta=-3: 2$ in the form $a \cos ^{2} \theta+b \cos \theta+c=0$, where $a, b$ and $c$ are integers. Hence solve for $\theta$, where $0^{\circ} \leq \theta<360^{\circ}$

13A. 12 HKCEE MA 1991-I-5
Solve $\sin ^{2} \theta-3 \cos \theta-1=0$ for $0^{\circ} \leq \theta<360^{\circ}$.
13A. 13 HKCEE MA 1992 I 1(b)
Find $x$ if $\sin x=\frac{1}{2}$ and $90^{\circ}<x<180^{\circ}$.
13A. 14 HKCEE MA 1992 I 1(c)
Sumplify $\frac{1-\sin ^{2} A}{\cos A}$.
13A. 15 HKCEE MA 1993 - I-3
Solve $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$ for $0^{\circ} \leq \theta<360^{\circ}$.

13A. 16 HKCEE MA $1994-\mathrm{I}-2$ (b)
If $\sin x^{\circ}=\sin 36^{\circ}$ and $90<x<270$, find the value of $x$.

13A. 17 HKCEE MA 1994 I 2(c)
If $\cos y^{\circ}=-\cos 36^{\circ}$ and $180<y<360$, find the value of $y$.
13A. 18 HKCEE MA 1995-I-6
Solve the trigonometric equation $2 \sin ^{2} \theta+5 \sin \theta-3=0$ for $0^{\circ} \leq \theta<360^{\circ}$.

## 13A. 19 HKCEE MA 2010-I -

For each positive integer $n$, the $n$th term of a sequence is $\tan \frac{180^{\circ}}{n+2}$
(a) Find the 2 nd term of the sequence.
(b) Write down, in surd form, two different terms of the sequence such that the product of these two terms is equal to the 2 nd term of the sequence.

13B Trigonometric ratios in right-angled triangles
13B.1 HKCEE MA 1980(1/1*/3) I-5
In the figure, $A B$ is a vertical thin rod. It is rotated about $A$ to position $A B^{\prime}$ such that $\angle B A B^{\prime}=30^{\circ}$. If $B^{\prime}$ is 50 mm higher than $B$, find the length of the rod.


13B. 2 HKCEE MA 1993 I 1(b)
In the figure, find $h$.


13B. 3 HKCEE MA 1994-I - 5
In the figure, calculate
(a) the length of $B E$,
(b) the values of $x$ and $y$.


13B. 4 HKCEE MA 1995 I 1(e)
In the figure, $A B C$ is a right-angled triangle. If $\cos A=\frac{1}{3}$, find $A C$.


## 13B. 5 HKCEE MA 1997 I-6

In the figure, the bearings of two ships $A$ and $B$ from a lighthouse $L$ ligure, the $b$ a are $020^{\circ}$ and $110^{\circ}$ respectively. $B$ is 20 km and at a bearing of $140^{\circ}$ from $A$. Find
(a) the distance of $L$ from $B$,
(b) the bearing of $L$ from $B$.


13B. 6 HKCEE MA 1998-I-3
In the figure, find $x$ and $y$.

In the figure, find $a$ and $x$.

## 13B. 8 HKCEEMA 2008 I 4

In the figure, $P, Q$ and $R$ are three posting boxes on the horizontal ground. $P$ is 9 km duc east of $R$ and $Q$ is due south of $R$. The distance between $P$ and $Q$ is 14 km . Find the bearing of $Q$ from $P$


## 13 Basic Trigonometry

## 13A Trigonometric functions

13A. 1 HKCEE MA $1980(1 / 1 * / 3)-\mathrm{I}-4$
$\sin \theta=\cos 120^{\circ}=-\frac{1}{2} \Rightarrow \theta=210^{\circ}$ or $330^{\circ}$
13A. 2 HKCEE MA 1981(1/2/3)-1-4
$0^{\circ} \leq \theta \leq 180^{\circ} \Rightarrow 200^{\circ} \leq 200^{\circ}+\theta \leq 380^{\circ}$
$\therefore \cos \left(200^{\circ}+\theta\right)=\sin 120^{\circ}=\frac{\sqrt{3}}{2} \Rightarrow 200^{\circ}+\theta=330^{\circ}$
$\theta=130$
13A. 3 HKCEE MA 1982(1/2/3)-I-5
$2 \sin ^{2} \theta+5 \sin \theta-3=0$
$(2 \sin \theta-1)(\sin \theta+3)=0$

$$
\sin \theta=\frac{1}{2} \text { or }-3(\mathrm{rej} .) \Rightarrow \theta=30^{\circ} \text { or } 150^{\circ}
$$

13A. 4 HKCEE MA 1983(A/B)-I-7
$2 \cos ^{2} \theta+5 \sin \theta+1=0$
$2\left(1 \sin ^{2} \theta\right)+5 \sin \theta+1=0$
$2 \sin ^{2} \theta-5 \sin \theta-3=0$
$(2 \sin \theta+1)(\sin \theta \quad 3)=0$

$$
\sin \theta=\frac{1}{2} \text { or } 3(\mathrm{rej} .) \Rightarrow \theta=210^{\circ} \text { or } 330^{\circ}
$$

13A. 5 HKCEE MA 1984(ABB) $-\mathrm{I}-7$
(a)

$$
\begin{aligned}
\frac{\sin \theta}{\cos \theta} & =\frac{1+\cos \theta}{\sin \theta} \\
\sin ^{2} \theta & =\cos \theta+\cos ^{2} \theta \\
0 & =\cos \theta+\cos ^{2} \theta \quad\left(1-\cos ^{2} \theta\right)
\end{aligned}
$$

$2 \cos ^{2} \theta+\cos \theta-1=0$
(b) $(2 \cos \theta-1)(\cos \theta+1)=0$

$$
\cos \theta=\frac{1}{2} \text { or } 1 \text { (rej.) } \Rightarrow \theta=60^{\circ}
$$

13A.6 HKCEE MA 1985(ABB)-1-6

$$
2 \tan ^{2} \theta=1-\tan \theta
$$

$2 \tan ^{2} \theta+\tan \theta-1=0$
$(2 \tan \theta \quad 1)(\tan \theta+1)=0$

$$
\begin{aligned}
\tan \theta & =\frac{1}{2} \text { or }-1 \\
\theta & =27^{\circ}, 180^{\circ}+27^{\circ} \text { or } 135^{\circ}, 180^{\circ}+135^{\circ} \\
& =27^{\circ}, 207^{\circ} \text { (nearest deg), } 135^{\circ} \text { or } 315^{\circ}
\end{aligned}
$$

13A. 7 HKCEE MA 1986(A/B)- $1-4$
$\sin ^{2} \theta+7 \sin \theta=5 \cos ^{2} \theta=5\left(1-\sin ^{2} \theta\right)$
$6 \sin ^{2} \theta+7 \sin \theta-5=0$
$\begin{aligned} 6 \sin ^{2} \theta+7 \sin \theta-5 & =0 \\ (2 \sin \theta-1)(3 \sin \theta+5) & =0\end{aligned}$

$$
\begin{aligned}
\sin \theta & =\frac{1}{2} \text { or }-\frac{5}{3}(\text { rejected }) \\
\theta & =30^{\circ} \text { or } 180^{\circ}-30^{\circ}=150
\end{aligned}
$$

13 A .8 HKCEE MA 1987(A/B) $-\mathrm{I}-4$

$$
2 \sin ^{2} \theta=3 \cos \theta
$$

$2\left(1-\cos ^{2} \theta\right)=3 \cos \theta$
$2 \cos ^{2} \theta+3 \cos \theta-2=0$
$(2 \cos \theta \quad 1)(\cos \theta+2)=0$

$$
\begin{aligned}
\cos \theta & =\frac{1}{2} \text { or }-2(\text { rejected }) \\
\theta & =60^{\circ} \text { or } 360^{\circ}-60^{\circ}=300
\end{aligned}
$$

13A.9 (HKCEE MA 1988-I-2)
(a) $\left.\frac{\sin \left(180^{\circ}\right.}{\sin \left(90^{\circ}+\theta\right)} \sin \theta\right) \cos \theta=\tan \theta$
(b) $\sin ^{2}\left(180^{\circ}-\phi\right)+\sin ^{2}\left(270^{\circ}+\phi\right)=\sin ^{2} \phi+(-\cos \phi)^{2}=1$

13A. 10 HKCEE MA 1989-I - 7

$$
\frac{3 \sin \theta}{\cos \theta}=2 \cos \theta
$$

$$
\begin{aligned}
& \cos \theta \\
& 3 \sin \theta=2 \cos ^{2} \theta=2\left(1-\sin ^{2} \theta\right)
\end{aligned}
$$

$2 \sin ^{2} \theta+3 \sin \theta-2=0$
$(2 \sin \theta-1)(\sin \theta+2)=0$
$\sin \theta=\frac{1}{2}$ or $-2($ rejected $)$
$\theta=30^{\circ}$ or $180^{\circ}-30^{\circ}=150^{\circ}$
13A. 11 HKCEEMA 1990-I

$$
\begin{aligned}
\frac{1-\cos ^{2} \theta}{\cos \theta} & =\frac{3}{2} \\
2 \begin{array}{c}
2 \cos ^{2} \theta
\end{array} & =3 \cos \theta \\
3 \cos ^{\theta}-2 & =0
\end{aligned}
$$

$2 \cos ^{2} \theta \quad 3 \cos \theta-2=0$
$(2 \cos \theta+1)(\cos \theta-2)=0$

$$
\cos \theta=\frac{-1}{2} \text { or } 2 \text { (rejected) }
$$

$$
\theta=120^{\circ} \text { or } 360-120^{\circ}=240^{\circ}
$$

13A. 12 HKCEEMA 1991-1-5
$\sin ^{2} \theta \quad 3 \cos \theta-1=0$
$1-\cos ^{2} \theta-3 \cos \theta-1=0$
$\cos \theta(\cos \theta+3)=0$

$$
\cos \theta=0 \text { or }-3 \text { (rejected }
$$

$$
\begin{aligned}
0 \text { s } \theta & =0 \text { or }-3 \text { (reje } 6 \\
\theta & =90^{\circ} \text { or } 270^{\circ}
\end{aligned}
$$

13A. 13 HKCEE MA 1992-I-1(b)
$\sin x=\frac{1}{2} \Rightarrow x=180^{\circ}-30^{\circ}=150^{\circ}$
13A. 14 HKCEE MA 1992-I-1(c)
$\frac{1 \sin ^{2} A}{\cos A}=\frac{\cos ^{2} A}{\cos A}=\cos A$
13A.15 HKCEE MA 1993-I-3

## $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$

$\begin{aligned} \sin \theta+2 \cos \theta & =3 \sin \theta-3 \cos \theta\end{aligned}$
$\begin{aligned}-\sin \theta & =5 \cos \theta \\ \tan \theta & =-5\end{aligned}$
$\tan \theta=-5$
$\theta=78.7^{\circ}$ or $180^{\circ}+78.7^{\circ}=259^{\circ}(3$ s.f.)
13A. 16 HKCEE MA 1994-1-2(b)
$\sin x^{\circ}=\sin 36^{\circ} \Rightarrow x=180-36=144$
13A. 17 HKCEE MA 1994-1-2(c)
$\cos y^{\circ}=-\cos 36^{\circ}=\cos \left(180^{\circ}+36^{\circ}\right) \Rightarrow y=216$

## 13A. 18 HKCEE MA 1995-I-6

$2 \sin ^{2} \theta+5 \sin \theta-3=0$
$(2 \sin \theta \quad 1)(\sin \theta+3)=0$

$$
\begin{aligned}
\sin \theta & =\frac{1}{2} \text { or }-3 \text { (rejected) } \\
\theta & =30^{\circ} \text { or } 180^{\circ} \quad 30^{\circ}=150^{\circ}
\end{aligned}
$$

13A. 19 HKCEE MA 2010-I - 4
(a) 2nd term $=\tan \frac{180^{\circ}}{(2)+2}=\tan 45^{\circ}=1$
(b) (Nae that if the product of two different numbers is 1 , one of them is $>1$ and the other $<1$. Besides, the sequence is decreasing when $n$ increases. Hence, the larger term must come before the 2nd term.)
$\tan \frac{180^{\circ}}{(1)-2}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \frac{1}{\sqrt{3}}=\tan 30^{\circ}=\tan \frac{180^{\circ}}{6}=\frac{180^{\circ}}{(5)+1}$
$\therefore$ Required terms are the ist one, $\sqrt{3}$, and 5th one, $\frac{1}{\sqrt{3}}$.

13B Trigonometric ratios in right angled triangles

13B. 1 HKCEE MA $1980(1 / 1 * / 3)-1-5$
Let $\ell \mathrm{mm}$ be the length of rod. Then
$\frac{\sqrt{3}}{2}=\cos 30^{\circ}=\frac{\ell \quad 50}{\ell}$
$\sqrt{3} \ell=2(\ell-50)$
$100=(2-\sqrt{3}) \ell \Rightarrow \ell=373(3$ s.f $)$
Hence, the rod is 373 mm long.

13B. 2 HKCEE MA 1993-I-I(b)
$s=100 \cos 40^{\circ}=76.6$ ( 3 s.f.)

13B. 3 HKCEE MA 1994-1-5
(a) $B E=\sqrt{1^{2}+2^{2}}=\sqrt{5}(=2.24)$
(b) $\tan x^{\circ}=\frac{1}{2} \Rightarrow x=26.5651=26.6(3$ s.f. $)$
$\tan \angle E B C=2 \Rightarrow \angle E B C=63.434$
$y=63.4349 \quad x=36.9(3$ s.f.

13B. 4 HKCEE MA 1995-I-1(e)
$\frac{1}{3}=\cos A=\frac{2}{A C} \Rightarrow A C=6$
13B. 5 HKCEE MA 1997-I-6
(a) $\angle L A B=20^{\circ}+\left(180^{\circ}-140^{\circ}\right)=60^{\circ}$
$\angle B=110-20=14$
Distance $=1 B=20 \sin 60^{\circ}=10 \sqrt{3}=17.3 \mathrm{~km} 3 \mathrm{~s} . \mathrm{f}$
(b) $\angle A B L=180^{\circ} \quad 90^{\circ}-60^{\circ}=30^{\circ}$
$\therefore$ Bearing $=180^{\circ}+140^{\circ}-30^{\circ}=290^{\circ}$
13B. 6 HKCEE MA 1998-I-3
$\tan x^{\circ}=\frac{7}{5} \Rightarrow x=54.5$
$\Rightarrow y=180 \quad 90-54.5=35.5$
13B. 7 HKCEE MA 2000~I-4
$a=\sqrt{10^{2}-7^{2}}=\sqrt{51}=7.14$
$\cos x^{\circ}=\frac{7}{10} \Rightarrow x=45.6$
13B. 8 HKCEE MA 2008-I-4
$\sin \angle R Q P=\frac{9}{14} \Rightarrow \angle R Q P=40.01^{\circ}$
Bearing $=540.0^{\circ} \mathrm{W}$ or $\left(180^{\circ}+40.0^{\circ}\right)=220^{\circ}$

## 14 Applications of Trigonometry

## 14A Two-dimensional applications

14A. 1 HKCEE MA 1981(2/3) I 11
$A B$ and $C D$ are two straight roads intersecting at $X . A B$ runs North and makes an angle of $60^{\circ}$ with $C D$. At noon, two people $P$ and $Q$ are respectively 24 km and 9 km from $X$ as shown in the figure. $P$ walks at a speed of $4.5 \mathrm{~km} / \mathrm{h}$ towards $B$ and $Q$ walks at a speed of $6 \mathrm{~km} / \mathrm{h}$ towards $D$.
(a) Calculate the distance between $P$ and $Q$ at noon.
(b) What are the distances of $P$ and $Q$ from $X$ at 4 p.m.?
(c) Calculate the bearing of $Q$ from $P$ at 4 p.m. to the nearest degree.

In the figure, $A B=4, A C=5$ and $B C=7$.
Calculate $\angle A$ to the nearest degree.


14A. 3 HKCEE MA 1985(A/B) I 13
In the figure, $A B C$ is an equilateral triangle. $A B=2 . D, E, F$ are points on $A B, B C, C A$ respectively such that $A D=B E=C F=x$.
(a) By using the cosine formula or otherwise, express $D E^{2}$ in terms of $x$.
(b) Show that the area of $\triangle D E F=\frac{\sqrt{3}}{4}\left(3 x^{2}-6 x+4\right)$.

## 14A. 4 HKCEEMA 1989-I - 6

In the figure, $A B C D$ is a cyclic quadrilateral with $A D=10 \mathrm{~cm}, \angle A C D=60^{\circ}$ and $\angle A C B=40^{\circ}$.
(a) Find $\angle A B D$ and $\angle B A D$.
(b) Find the length of $B D$ in cm , correct to 2 decimal places.

(Continued from 12A.7)


## 4A. 5 HKCEEMA 1997 _ 5

In the figure, $A B C$ is a right angled triangle. $A B=3, B C=4, C D=6, \angle A B C=90^{\circ}$ and $\angle A C D=60^{\circ}$. Find
(a) $A C$,
(b) $A D$
(c) the area of $\triangle A C D$.

## 14A. 6 HKCEEMA 2000 _ 13

In the figure, $A B C D E$ is a regular pentagon and $C D F G$ is a square. $B G$ produced meets $A E$ at $P$.
(a) Find $\angle B C G, \angle A B P$ and $\angle A P B$.
(b) Using the fact that $\frac{A P}{\sin \angle A B P}=\frac{A B}{\sin \angle A P B}$, or otherwise, determine which line segment, $A P$ or $P E$, is longer.

## 14A. 7 HKCEEMA 2001 _ 9

In the figure, find $A B$ and the area of $\triangle A B C$.


## 14B Three-dimensional applications

148. 1 HKCEE MA 1980(1/1*/3)-1 -9


In the figure, $P C$ represents a vertical object of height $h$ metres. From a point $A$, south of $C$, the angle of elevation of $P$ is $\alpha$. From a point $B, 400$ metres east of $A$, the angle of elevation of $P$ is $\beta$. $A C$ and $B C$ are $x$ metres and $y$ metres respectively.
(a) (i) Express $x$ in terms of $h$ and $\alpha$.
(ii) Express $y$ in tenns of $h$ and $\beta$.
(b) If $\alpha=60^{\circ}$ and $\beta=30^{\circ}$, find the value of $h$ correct to 3 significant figures.

## 14B. 2 HKCEE MA 1982(1/2/3) I 8

The figure represents the framework of a cuboid made of iron wire. It has a square base of side $x \mathrm{~cm}$ and a height of $y \mathrm{~cm}$. The length of the diagonal $A B$ is 9 cm . The total length of wire used for the framework (including the diagonal $A B$ ) is 69 cm .
(a) Find all the values of $x$ and $y$.
(b) Hence calculate $\angle A B C$ to the nearest degree for the case in which $y>x$.


14B. 3 HKCEE MA 1983(A/B) I-13
In the figure, $A, B$ and $C$ are three points on the same horizontal ground. $H C$ is a vertical tower 50 m high. $A$ and $B$ are respec tively due east and due south of the tower. The angles of elevation of $H$ observed from $A$ and $B$ are respectively $45^{\circ}$ and $30^{\circ}$.
(a) Find the distance between $A$ and $B$.
(b) $P$ is a point on $A B$ such that $C P \perp A B$.
(i) Find the distance between $C$ and $P$ to the nearest metre
(ii) Find the angle of elevation of $H$ observed from $P$ to the nearest degree.

## 14B. 4 HKCEE MA 1984(A/B) - I 13

In the figure, $A, B$ and $C$ lie in a horizontal plane. $A C=20 \mathrm{~m}$. $H A$ is a vertical pole. The angles of elevation of $H$ from $B$ and $C$ are $30^{\circ}$ and $15^{\circ}$ respectively.
(In this question, give your answers correct to 2 decimal places.)
(a) (i) Find, in $m$, the leng th of the pole HA.
(ii) Find, in m , the length of $A B$.
(b) If $A, B$ and $C$ lie on a circle with $A C$ as diameter
(i) find, in $m$, the distance between $B$ and $C$;
(ii) find, in $\mathrm{m}^{2}$, the area of $\triangle A B C$.


## 14B. 5 HKCEE MA 1985(A/B) $-\mathrm{I}-8$

In the figure, $A, B$ and $C$ are three points in a horizontal plane. $A B=100 \mathrm{~m}, \angle C A B=30^{\circ}, \angle A B C=45^{\circ}$.
(a) Find $B C$ and $A C$, in metres, correct to 1 decimal place
(b) $D$ is a point vertically above $C$. From $B$, the angle of elevation of $D$ is $25^{\circ}$.
(i) Find $C D$, in metres, correct to 1 decimal place.
(ii) $X$ is a point on $A B$ such that $C X \perp A B$.
(1) Find $C X$, in metres, correct to 1 decimal place.
(2) Find the angle of elevation of $D$ from $X$, correct to the nearest degree.


## 14B. 6 HKCEEMA 1986(A/B) I 10

In the figure, $Q, R$ and $S$ are three points on the same horizontal plane. $Q R=500 \mathrm{~m}, \angle S Q R=50^{\circ}$ and $\angle Q R S=35^{\circ}$. $P$ is a point vertically above $S$. The angle of elevation of $P$ from $Q$ is $15^{\circ}$.
(a) Find the distance, in metres, from $P$ to the plane, correct to 3 significant figures.
(b) Find the angle of elevation of $P$ from $R$, correct to the nearest degree.


## 148. 7 HKCEE MA 1987(A/B) $\quad$ - 11

In this question, you should give your answers in cm or degrees, correct to 3 decimal places.
The figure shows a solid in which $A B C D, D C F E$ and $A B F E$ are rectangles. $D G$ is the perpendicular from $D$ to $A E$. $A B=3 \mathrm{~cm}, A D=3 \mathrm{~cm}$ and $D E=2 \mathrm{~cm} . \angle A D E=80^{\circ}$
(a) Find $A E$.
(b) Find $\angle D A E$.
(c) Find $D G$.
(d) Find $B D$.
(e) Find the angle between the line $B D$ and the face $A B F E$.


14B. 8 HKCEE MA 1988-I-13


In the figure, $A B C D$ is a wall in the shape of a trapezium with $A B$ and $D C$ vertical. Rays of sunlight coming from the back of the wall cast a shadow $H B C K$ on the horizontal ground such that the edges $H B$ and $K C$ of the shadow are perpendicular to $B C$. Suppose the angle of elevation of the sun is $\theta, A B=3 \mathrm{~m}, C D=2 \mathrm{~m}$ and $B C=6 \mathrm{~m}$.
(a) Express $H B$ and $K C$ in terms of $\theta$.
(b) (i) Find the area $S_{1}$ of the wall.
(ii) Find, in terms of $\theta$, the area $S_{2}$ of the shadow. Hence show that $\frac{S_{1}}{S_{2}}=\tan \theta$.
(c) If $\theta=30^{\circ}$, find the length of the edge $H K$, leaving your answer in surd form.

14B. 9 HKCEE MA 1989-I-10


Answers in this question should be given correct to at least 3 significant figures or in surd form. In the figure, a triangular board $A B C$, right angled at $A$ with $A B=A C=10 \mathrm{~m}$, is placed with the vertex $A$ on the horizontal ground. $A B$ and $A C$ make angles of $45^{\circ}$ and $30^{\circ}$ with the horizontal respectively. The sun casts a shadow $A B^{\prime} C$ of the board on the ground such that $B^{\prime}$ and $C$ are vertically below $B$ and $C$ respectively.
(a) Find the lengths of $A B^{\prime}$ and $A C^{\prime}$.
(b) Find the lengths of $B C, B B^{\prime}$ and $C C^{\prime}$.
(c) Using the results of (b), or otherwise, find the length of $B^{\prime} C^{\prime}$.
(d) Find $\angle B^{\prime} A C^{\prime}$. Hence find the area of the shadow.

14B. 10 HKCEE MA 1990-I - 10


In the figure, $O T$ represents a vertical tower of height $h$ metres. From the top $T$ of the tower, two landmarks $A$ and $B, 500$ metres apart on the same horizontal ground, are observed to have angles of depression $30^{\circ}$ and $60^{\circ}$ respectively. The bearings of $A$ and $B$ from the tower $O T$ are $\mathrm{S} 20^{\circ} \mathrm{W}$ and $\mathrm{S} 40^{\circ} \mathrm{E}$ respectively.
(a) Find the lengths of $O A$ and $O B$ in terms of $h$.
(b) Express the length of $A B$ in terms of $h$. Hence, or otherwise, find the value of $h$.
(c) Find $\angle O A B$, correct to the nearest degree. Hence write down
(i) the bearing of $B$ from $A$,
(ii) the bearing of $A$ from $B$.

## 14R. 11 HKCEE MA 1992-I - 15




Figure (2)

In Figure (1), $A B C D$ is a thin square metal sheet of side three metres. The metal sheet is folded along $B D$ and the edges $A D$ and $C D$ of the folded metal sheet are placed on a horizontal plane $\Pi$ with $B$ two metres vertically above the plane IL $E$ is the foot of the perpendicular from $B$ to the plane II. (SeeFigure (2).)
(a) Find the lengths of $B D, E D$ and $A E$, leaving your answers in surd form.
(b) Find $\angle A D E$.
(c) Find the angle between $B D$ and the plane II.
(d) Find the angle between the planes $A B D$ and $C B D$.

## 14B. 12 HKCEEMA 1993- $\mathrm{I}-12$



In the figure, $P Q$ is a vertical television tower $h$ metres high. $A$ and $B$ are two points 100 m apart on a straight road in front of the tower with $A, B$ and $Q$ on the same horizontal ground and $\angle A Q B=80^{\circ}$. The angles of elevation of $P$ from $A$ and $B$ are $45^{\circ}$ and $60^{\circ}$ respectively.
(a) (i) Express the lengths of $A Q$ and $B Q$ in terms of $h$.
(ii) Find $h$ and $\angle Q A B$.
(b) A person walks from $A$ along the road towards $B$. At a certain point $R$ between $A$ and $B$, the person finds that the angle of elevation of $P$ is $50^{\circ}$. How far away is $R$ from $A$ ?

## 14B. 13 HKCEE MA 1994-I- 14



In the figure, $O T$ is a vertical tower of height $h$ metres and $O, P$ and $Q$ are points on the same horizonta plane. When a man is at $P$, he finds that the tower is due north and that the angle of elevation of the top $T$ of the tower is $30^{\circ}$. When he walks a distance of 500 metres in the direction $\mathrm{N} 50^{\circ} \mathrm{E}$ to $Q$, he finds that the bearing of the tower is $\mathrm{N} 70^{\circ} \mathrm{W}$
(a) Find $O Q$ and $O P$.
(b) Find $h$.
(c) Find the angle of elevation of $T$ from $Q$, giving your answer correct to the nearest degree.
(d) (i) If he walks a further distance of 400 metres from $Q$ in a direction $\mathrm{N} \theta^{\circ} \mathrm{E}$ to a point $R$ (nd shown in the figure) on the same horizontal plane, he finds that the angle of elevation of $T$ is $20^{\circ}$. Find $\angle O Q R$ and hence write down the value of $\theta$ to the nearest integer.
(ii) If he starts from $Q$ again and walks the same distance of 400 metres in another direction to a point $S$ on the same horizontal plane, he finds that the angle of elevation of $T$ is again $20^{\circ}$. Find the bearing of $S$ from $Q$, giving your answer correct to the nearest degree.

## 14B. 14 HKCEE MA 1995-I - 15

The figure shows a triangular road sign $A B C$ attached to a vertical pole $O A B$ standing on the horizontal ground. The plane $A B C$ is vertical with $O A=2 \mathrm{~m}, A B=0.6 \mathrm{~m}, A C=0.7 \mathrm{~m}$ and $B C=0.8 \mathrm{~m} . D$ is a point on the horizontal ground vertically below $C$ and is due north of the foot $O$ of the pole.
The sun is due west. When its angle of elevation is $30^{\circ}$. the shadow of the road sign on the horizontal ground is, $A^{\prime} B^{\prime} C^{\prime}$.
(a) Find the lengths of $O A^{\prime}$ and $A^{\prime} B^{\prime}$.
(b) Calculate $\angle B A C$ and hence find the length of $O D$.
(c) Find the area of the shadow $A^{\prime} B^{\prime} C^{\prime}$.
(d) If the angle of elevation of the sun is less than $30^{\circ}$,
(i) state whether the shadow of $A B$ is longer than, shorter than, or equal to $A^{\prime} B^{\prime}$ in (a); and hence
(ii) state with reasons whether the area of the shadow of the road $\operatorname{sign} A B C$ is larger than, smaller than, or equal to that of $A^{\prime} B^{\prime} C^{\prime}$ in (c).


## 14B. 15 HKCEE MA 1996-I - 15

In the figure, the rectangular plane $A B C D$ is a hillside with inclination $30^{\circ} . C^{\prime}$ and $O^{\prime}$ are vertically below $C$ and $O$ respectively so that $A, B, C^{\prime}, O^{\prime}$ are on the same horizontal plane. $B O$ is a straight path on the hillside which makes an angle $60^{\circ}$ with $B C$, and $O T$ is a vertical tower. $A B=2000 \mathrm{~m}, B O=1000 \mathrm{~m}$ and $O T=50 \mathrm{~m}$.

(a) Find $B C$ and $C C^{\prime}$

2000 m
(b) Find the inclination of $B O$ with the horizontal.
(c) Find $A T$.
(d) There are cable cars going directly from $A$ to $T$. A man wants to go to $T$ from $B$ and he can do this by taking either one of the following two routes:

Route I: Walking uphill along $B O$ at an average speed of $0.3 \mathrm{~m} / \mathrm{s}$ and taking a lift in the tower for 1 minute from $O$ to $T$.
Route II: Walking along $B A$ at an average speed of $0.8 \mathrm{~m} / \mathrm{s}$ and taking a cable car from $A$ to $T$ at an average speed of $32 \mathrm{~m} / \mathrm{s}$.
Deternine which route takes a shorter time.

## 14B. 16 HKCEE MA 1998 I- 17

In the figure, triangular sign post $A B C$ stands vertically on the horizontal ground along the east west direction $A C=4 \mathrm{~m}, B C=6 \mathrm{~m}, \angle A C B=72^{\circ}$ and $F$ is the foot of the perpendicular from $A$ to $B C$. When the sun shines from $N 50^{\circ} \mathrm{W}$ with an angle of elevation $35^{\circ}$, the shadow of the sign post on the horizontal ground is DBC.
(a) Find $A F$ and $F D$.
(b) Find the area of the shadow $D B C$.
(b) Find the area of the shadow $D B C$.
(c) Suppose the sun shines from $\mathrm{N} x^{\circ} \mathrm{W}$, where $50<x<90$, butits angle of elevation is still $35^{\circ}$. State with reasons whether the area of the shadow of the sign post on the horizontal ground is greater than, smaller than or equal to the area obtained in (b).

## 14B. 17 HKCEE MA 1999-I - 18

In the figure, a paper card $A B C$ in the shape of an equilateral triangle of side 24 cm is folded to form a paper aeroplane. $D, E$ and $F$ are points on edge $B C$ so that $B D=D E=E F=F C$. The aeroplane is formed by folding the paper card along the lines $A D, A E$ and $A F$ so that $A D$ and $A F$ coincide. It is supported by two vertical sticks $B M$ and $C N$ of equal length so that $A, B, D, F, C$ lie on the same plane and $A, E, M, N$ lie on the same horizontal ground.


(Top view)
(a) Find the distance between the tips. $B$ and $C$, of the wings of the aeroplane.
(b) Find the inclination of the wings of the aeroplane to the horizontal ground.
(c) Find the length of the stick $C N$.

## 14B. 18 HKCEE MA 2000 I-17

The figure shows a circle with centre $O$ and radius 10 m on a vertical wall which stands on the horizontal ground. $A, B$ and $C$ are three points on the circumference of the circle such that $A$ is vertically below $O$, $\angle A O B=90^{\circ}$ and $\angle A O C=20^{\circ}$. A laser emitter $D$ on the ground shoots a laser beam at $B$. The laser beam then sweeps through an angle of $30^{\circ}$ to shoot at $A$. The angles of elevation of $B$ and $A$ from $D$ are $60^{\circ}$ and $30^{\circ}$ respectively.

(a) Let $A$ be $h \mathrm{~m}$ above the ground.
(i) Express $A D$ and $B D$ in terms of $h$.
(ii) Find $h$.
(b) Another laser emitter $E$ on the ground shoots a laser beam at $A$ with angle of elevation $25^{\circ}$. The laser beam then sweeps through an angle of $5^{\circ}$ to shoot at $C$. Find $\angle A C E$.

14B. 19 HKCEE MA 2001 -I-16
Figure (1) shows a piece of pentagonal cardboard $A B C D E$. It is formed by cutting off two equilateral triangular parts, each of side $x \mathrm{~cm}$, from an equilateral triangular cardboard $A F G$. $A B$ is 6 cm long and the area of $B C D E$ is $5 \sqrt{3} \mathrm{~cm}^{2}$.


Figure (1)


Figure (2)
(a) Show that $x^{2} \quad 12 x+20=0$. Hence find $x$.
(b) The triangular part $A B E$ is folded up along the line $B E$ until the vertex $A$ comes to the position $A^{\prime}$ (as shown in Figure (2)) such that $\angle A^{\prime} E D=40^{\circ}$.
(i) Find the length of $A^{\prime} D$.
(ii) Find the angle between the planes $B C D E$ and $A^{\prime} B E$.
(iii) If $A^{\prime}, B, C, D, E$ are the vertices of a pyramid with base $B C D E$, find the volume of the pyramid.

## 14B. 20 HKCEE MA 2002-I - 14

In the figure, $A B$ is a straight track 900 m long on the horizontal ground. $E$ is a small object moving along $A B . S T$ is a vertical tower of height $h \mathrm{~m}$ standing on the horizontal ground. The angles of elevation of $S$ from $A$ and $B$ are $20^{\circ}$ and $15^{\circ}$ respectively. $\angle T A B=30^{\circ}$.

(a) Express $A T$ and $B T$ in terms of $h$. Hence find $h$.
(b) (i) Find the shortest distance between $E$ and $S$.
(ii) Let $\theta$ be the angle of elevation of $S$ from $E$. Find the range of values of $\theta$ as $E$ moves along $A B$.


Figure (1) shows a triangular metal plate $O A B$ standing on the horizontal ground. The side $O A$ lies along the north south direction on the ground. $O B$ is inclined at an angle of $40^{\circ}$ to the horizontal. The overbead sun casts a shadow of the plate, $O A C$, on the ground. $O A=3 \mathrm{~m}, O C=4 \mathrm{~m}$ and $A C=6 \mathrm{~m}$.
(a) Find $\angle O A C$.
(b) In Figure (2), $O A D$ is the shadow of the plate cast on the horizontal ground when the sun shines from $\mathrm{S} \theta \mathrm{W}$ with an angle of elevation $30^{\circ} . A O$ is produced to cut $C D$ at $E . A D=8 \mathrm{~m}$.
(i) Find $C D$.
(ii) Find $\angle C A D$.
(iii) Using $C E+E D=C D$, or otherwise, find $\theta$.


In the figure, $A B C D$ is a rectangular inclined plane. $E$ and $F$ are points on the straight lines $A B$ and $C D$ respectively. $F^{\prime}$ is vertically below $F . A, E, B$ and $F^{\prime}$ are on the same horizontal ground. $\angle A F^{\prime} E=90^{\circ}$, $\angle F A F^{\prime}=60^{\circ}, \angle F E F^{\prime}=30^{\circ}, \angle E F B=20^{\circ}$ and $E F=20 \mathrm{~m}$
(a) Find
(i) $F F^{\prime}$ and $A E$,
(ii) $\angle A E F$.
(b) A small red toy car goes straight from $E$ to $B$ at an average speed of $2 \mathrm{~m} / \mathrm{s}$ while a small yellow toy car goes straight from $F$ to $B$ at an average speed of $3 \mathrm{~m} / \mathrm{s}$. The two toy cars start going at the same time. Will the yellow toy car reach $B$ before the red one? Explain your answer.

## 14B. 23 HKCEE MA 2005- - -14

In the figure, a thin triangular board $A B C$ is held with the vertex $C$ on the horizontal ground. $D$ and $E$ are points on the ground vertically below $A$ and $B$ respectively. $B C$ is inclined at an angle of $30^{\circ}$ with the horizontal. It is known that $A D=100 \mathrm{~cm}, B C=120 \mathrm{~cm}, \angle C A B=60^{\circ}$ and $\angle A B C=80^{\circ}$.
(a) Find $B E$ and $C E$.
(b) Find $A B$ and $A C$.
(c) Find $\angle C D E$ and the shortest distance from $C$ to $D E$.


## 14B. 24 HKCEE MA 2006-I- 17

In Figure (1), $A B C$ is a triangular paper card. $D$ is a point lying on $A C$ such that $B D$ is perpendicular to $A C$. It is known that $A B=40 \mathrm{~cm}$, $B C=60 \mathrm{~cm}$ and $A C=90 \mathrm{~cm}$.
(a) Find $A D$.

(b) The triangular paper card in Figure (1) is folded along $B D$ such that $A B$ and $B C$ lie on a horizontal plane as shown in Figure (2).

(i) Suppose $\angle D A C=62^{\circ}$.
(1) Find the distance between $A$ and $C$ on the horizontal plane.
(2) Using Heron's formula, or otherwise, find the area of $\triangle A B C$ on the horizontal plane.
(3) Find the height of the tetrahedron $A B C D$ from the vertex $D$ to the base $\triangle A B C$.
(ii) Describe how the volume of the tetrahedron $A B C D$ varies when $\angle A D C$ increases from $30^{\circ}$ to $150^{\circ}$. Explain your answer.

## 14. Applications of Trigonometry

## 14B. 25 HKCEE MA 2007-- I - 16

The figure shows a solid wooden souvenir $A B C D E F$ with the triangular base $A B C$ lying on the horizontal ground. $A, B$ and $C$ are vertically below $E, F$ and $D$ respectively. $D E F$ is an inclined triangular plane. It is given that $A B=9 \mathrm{~cm}, B C=5 \mathrm{~cm}, A C=6 \mathrm{~cm}, A E=B F=20 \mathrm{~cm}$ and $C D=23 \mathrm{~cm}$.
(a) Find the area of the triangular base $A B C$ and the vol ume of the souvenir $A B C D E F$.
(b) Find $\angle D F E$ and the shortest distance from $D$ to $E F$.
(c) Can a piece of thin rectangular metal plate of dimensions $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ be fixed onto the triangular surface $D E F$ so that the thin metal plate completely lies in the triangle $D E F$ ? Explain your answer.


## 14B. 26 HKCEE MA $2008 \mathrm{I}-15$

In the figure, $H$ is the top of a tower and $A$ is vertically below $H . A B, B C$ and $C A$ are straight paths on the horizontal ground and $D$ is a point on $A B$. Christine walks from $A$ to $D$ along $A D$ and finds that the angle of elevation of $H$ from $D$ is $50^{\circ}$. She then walks 50 m to $B$ along $D B$ and finds that the angle of elevation of $H$ from $B$ is $35^{\circ}$.

(a) Find the distance between $B$ and $H$.
(b) Christine walks 210 m from $B$ to $C$ along $B C$. It is given that the distance between $C$ and $H$ is 130 m .
(i) Find $\angle C B H$.
(ii) Find the angle between the plane $B C H$ and the horizontal ground.
(iii) When Christine walks from $B$ to $C$ along $B C$, is it possiblefor her to find a point $K$ on $B C$ such that the angle of elevation of $H$ from $K$ is $75^{\circ}$ ? Explain your answer.

## 14B. 27 HKCEE MA 2009 - I - 17

The figure shows a geometric model fixed on the horizontal ground. The model consists of two thin triangular metal plates $A B E$ and $C D E$, where $D$ lies on $A B$ and $C E$ is perpendicular to the thin metal plate $A B E$. It is given that $A, B, C$ and $D$ lie on the horizontal ground. It is found that $A C=28 \mathrm{~cm}, B C=25 \mathrm{~cm}, B D=6 \mathrm{~cm}$, $B E=24 \mathrm{~cm}$ and $\angle A B C=57^{\circ}$.

(a) Find
(i) the length of $C D$,
(ii) $\angle B A C$,
(iii) the area of $\triangle A B C$,
(iv) the shortest distance from $E$ to the horizontal ground.
(b) A student claims that the anglebetween $D E$ and the horizontal ground is $\angle C D E$. Do you agree? Explain your answer.

14B. 28 HKCEEMA 2010 _ 15


Figure (2)
(a) Figure (1) shows a piece of paper card $A B C D$ in the form of a quadrilateral with $A B=A D$ and $B C=C D$. It is given that $B C=24 \mathrm{~cm}, \angle B A D=146^{\circ}$ and $\angle A B C=59^{\circ}$. Find the length of $A B$.
(b) The paper card described in (a) is folded along $A C$ such that $A B$ and $A D$ lie on the horizontal ground as shown in Figure (2). It is given that $\angle B A D=92^{\circ}$
(i) Find the distance between $B$ and $D$ on the horizontal ground.
(ii) Find the angle between the plane $A B C$ and the plane $A C D$.
(iii) Let $P$ be a movable point on the slant edge $A C$. Describe how $\angle B P D$ varies as $P$ moves from $A$ to C. Explain your answer.

## 14B.29 HKCEE MA 2011-I - 17



Figure (1)


Figure (2)

In Figure (1), $A B C$ is a thin triangular metal sheet. $D$ and $E$ are points lying on $A B$ and $A C$ respectively such that $D E$ is parallel to $B C$ and the distance between $D E$ and $B C$ is 4 cm . It is found that $A B=20 \mathrm{~cm}$, $A C=30 \mathrm{~cm}$ and $\angle B A C=56^{\circ}$.
(a) Find
(i) the length of $B C$,
(ii) $\angle A C B$,
(iii) the perpendicular distance from $A$ to $D E$,
(iv) the length of $D E$.
(b) The thin triangular metal sheet in Figure (1) is cut along $D E$. The metal sheet $A D E$ is held with $D E$ lying on the horizontal ground as shown in Figure (2). It is given that $P$ is the projection of $A$ on the horizontal ground and the are of $\triangle P D E$ is $120 \mathrm{~cm}^{2}$. Find
(i) the angle between the metal sheet $A D E$ and the horizontal ground,
(ii) the shortest distance from $A$ to the horizontal ground.

## 14B. 30 HKCEE AM 1981-II 10

In the figure, $A B C D E$ is a right pyramid with a square base $A B C D$. Each of the eight edges of the pyramid is of length $k . F, G$ and $H$ are points on $A B, A C$ and $A D$, respectively, such that $F G H$ is a straight line and $B F=D H=r k$, where $0 \leq r \leq 1 . E G \perp H F, \angle E G C=\theta$ and $N$ is the foot of the perpendicular from $E$ to the base.
(a) Express $F E^{2}$ and $F G^{2}$ in terms of $k$ and $r$.
(b) Express $E G$ and $E N$ in terms of $k$ and $r$.

Hence, or otherwise, show that $\sin \theta=\frac{1}{\sqrt{1+r^{2}}}$
(c) Using the results of (b), find the range of the inclination of the plane $E F H$ to the base as $r$ varies from 0 to 1 .


## 14B. 31 HKCEE AM 1983 II- 8

The figure shows a tent consisting of two inclined square planes $A B C D$ and $E F C D$ standing on the horizontal ground $A B F E$. The length of each side of the inclined planes is $a . N$ is a point on $C F$ such that $A N \perp C F$ Let $N F=x(\neq 0), \angle C F B=\theta$ and $M$ be a point on $B F$ such that $N M \perp B F$.
(a) By considering $\triangle A B M$, express $A M$ in terms of $a, x$ and $\theta$.
(b) By considering $\triangle A N F$, express $A N$ in terms of $a, x$ and $\theta$.
(c) Using the results of (a) and (b), or otherwise, show that $x=2 a \cos ^{2} \theta$.
(d) Given that $x=\frac{a}{2}$, find (correct to the nearest degree) the inclination of AN to the horizontal.


## 14B. 32 HKCEE AM 1991-II-6

In the figure, $P A B C D$ is a right pyramid with a square base of sides of length $4 \mathrm{~cm} . \angle P A B=60^{\circ}$. Find, correct to the nearest 0.1 degree,
(a) the angle between the plane $P A B$ and the base $A B C D$,
(b) the angle between the planes $P A B$ and $P A D$.


## 14B. 33 HKCEE AM 1992-II-7

In the figure, $V A B C D$ is a right pyramid with a square base of side 6 cm .
$V B=9 \mathrm{~cm}$. Find, correct to the nearest 0.1 degree,
(a) the angle between edge $V B$ and the base $A B C D$,
(b) the angle between the planes $V A B$ and $V A D$.


## 14B. 34 HKCEE AM 1993 II

In the figure, $V A B C$ is a right pyramid whose base $A B C$ is an equilateral triangle. $A B=12 \mathrm{~cm}$ and $V A=24 \mathrm{~cm} . D$ is a point on $V B$ such that $A D$ is perpendicular to $V B$. Find, correct to 3 significant figures,
(a) $\angle V B A$ and $A D$,
(b) the anglebetween the faces $V A B$ and $V B C$.


## 14B. 35 HKCEE AM 1994-II - 12

$A, B$ and $C$ are three points on the horizontal ground and $A B=100 \mathrm{~km}$. $P$ is a point vertically above $C$ (see Figure (1)). Let $\angle C A B=\alpha$, $\angle C B A=\beta, \angle P A C=\theta$.
(a) Show that
(i) $A C=\frac{100 \sin \beta}{\sin (\alpha+\beta)} \mathrm{km}$.
(ii) $P=\frac{100 \sin \beta \tan \theta}{\sin (\alpha+\beta)} \mathrm{km}$.

(b) Suppose at $P, \alpha=45^{\circ}, \beta=30^{\circ}$ and $\theta=20^{\circ}$. An aeroplane climbs from $P$ to a point $P^{\prime}$ along a straight path. The projection climbs from $P$ to a point $P^{\prime}$ along a straight path. The
of $P^{\prime}$ on the ground is the point $C^{t}$ (see Figure (2)).
of $P^{\prime}$ on the ground is the point $C^{\prime}$ (see Figure (2)).
Given that $\angle C^{\prime} A B=37^{\circ}, \angle C^{\prime} B A=43^{\circ}$ and $\angle P$
Given that $\angle C^{\prime} A B=37^{\circ}, \angle C^{\prime} B A=43^{\circ}$ and $\angle P^{\prime} A C^{\prime} \quad 17^{\circ}$ find, correct to 2 decimal places,
(i) $A C$ and $A C^{\prime}$,
(ii) the distance between $C$ and $C^{\prime}$,
(iii) the increase in height of the aeroplane as it climbs from $P$ to $P^{\prime}$,
(iv) the angle of inclination $P P^{\prime}$.


## 14B. 36 HKCEE AM $1995-\mathrm{II}-7$

In the figure, $V P Q R S T$ is a right pyramid whose base $P Q R S T$ is a regular pentagon. $P Q=10 \mathrm{~cm}$ and $\angle P V Q=42^{\circ} . U$ is a point on $V Q$ such that $P U$ is perpendicular to $V Q$. Find, correct to 3 significant figures,
(a) $P U$ and $P R$,
(b) the angle between the faces $V P Q$ and $V Q R$.


## 14B. 37 HKCEE AM 1996 - II - 12

In Figure (1), $A B C$ is a triangular piece of paper such that $\angle B=45^{\circ}$, $\angle C=30^{\circ}$ and $A C=2 . D$ is the foot of perpendicular from $A$ to $B C$.
(a) Find $A B, B D$ and $D C$.

(b) The paper is folded along $A D$. It is then placed on a horizontal table such that the edges $A B$ and $A C$ lie The paper is folded along $A D$. It is then placed on a horizontal tablesuch that the edges $A B$ and $A C$ lie
on the table and the plane $D A B$ is vertical. (See Figure (2).) $E$ is the foot of perpendicular from $D$ to $A B$.
(i) If $\theta$ is the angle between $D C$ and the horizontal, show that $\sin \theta=\frac{\sqrt{6}}{6}$.
(ii) Find $C E$.

Hence show that $\angle E A C=45^{\circ}$.
(iii) Find the angle between the two planes $D A B$ and $D A C$ to the nearest degree.
[Hint: You may tear off Figure (3) to help you answer part (b).]


14B. 38 HKCEEAM 1997- II - 12


In Figure (1), $A B C D$ is a parallelogram on a horizontal plane with $A B=3 a, A D=2 a$ and $\angle B A D=60^{\circ}$. $H$ is a point vertically above $C$ and $H C=\alpha$.
(a) (i) Find $A C$ in terms of $a$.
(ii) If $M$ is the mid-point of $A C$, find the angle of elevation of $H$ from $M$ to the nearest degree.
(b) $E$ is a point on $B D$ such that $C E$ is perpendicular to $B D$.
(i) Find $B D$ and $C E$ in terms of $a$.
(ii) Using Pythagoras' theorem and its converse, show that $H E$ is perpendicular to $B D$. Hence find the angle between the planes $H B D$ and $A B C D$ to the nearest degree.
(c) Figure (2) shows the planes $H A D$ and $A B C D . X$ is a point lying on both planes such that the angle between the two planes is $\angle H X C$. Find $A X$ in terms of $a$.

14B. 39 HKCEE AM 1998 - II - 13

(a) Figure (1) shows a solid cube $A B C D E F G H$ of side $a$. Let $M$ be the mid point of $B D$.
(i) Find $C M$.
(ii) Find the angle between the lines $C M$ and $H M$ to the nearest degree.
(b) The tetrahedron $B C D H$ is cut off from the cube in (a) and is then placed on top of the solid $A B D E F G H$ as shown in Figure (2). The face $B C D$ of the tetrahedron coincides with the face $B A D$ of the solid $A B D E F G H$ such that vertex $H$ of the tetrahedron moves to position $V$ and vertex $C$ coincides with $A$. The two faces $B H D$ and $B V D$ of the new solid lie on the same plane
(i) Show that $\sin \angle F V H=\frac{\sqrt{3}}{3}$ and find the perpendicular distance from $F$ to the face $B V D H$.
(ii) Let $N$ be the point on $V B$ such that $D N$ and $A N$ are both perpendicular to $V B$.
(1) Find $D N$.
(2) Find the angle between the faces $B V D$ and $B V A$ to the nearest degree.
(iii) A student says that the angle between the faces $B H D$ and $A B G F$ is $\angle A N D$. Explain briefly whether the student is correct.

## 14B. 40 HKCEE AM 1999-11-11

The figure shows a right cylindrical tower with a radius of $r m$ standing on horizontal ground. A vertical pole $H G, h \mathrm{~m}$ in height, stands at the centre $G$ of the roof of the tower. Let $O$ be the centre of the base of the tower. $C$ is a point on the circumference of the base of the tower due west of $O$ and $D$ is a point on the roof verticcally above $C$. A man stands at a point $A$ due west of $O$. The angles of elevation of $D$ and $H$ from $A$ are $10^{\circ}$ and $\beta$ respectively. The man walks towards the east to a point $B$ where he can just see the top of the pole $H$ as shown in the figure. (Note: If he moves forward, he can no longer see the pole.) The angle of elevation of $H$ from $B$ is $\alpha$. Let $A B=\ell \mathrm{m}$.


$$
\longmapsto \ell \mathrm{m} \longrightarrow
$$

(a) Show that $A D=\frac{\ell \sin \alpha}{\sin \left(\alpha-10^{\circ}\right)} \mathrm{m}$. Hence
(i) express $C D$ in terms of $\ell$ and $\alpha$,
(ii) show that $h=\frac{\ell \sin ^{2} \alpha \sin \left(\beta-10^{\circ}\right)}{\sin \left(\alpha-10^{\circ}\right) \sin (\alpha-\beta)}$. (Hint: You may consider $\triangle A D H$.)
(b) In this part, numerical answers should be given correct to two significant figures.

Suppose $\alpha=15^{\circ}, \beta=10.2^{\circ}$ and $\ell=97$.
(i) Find
(1) the beight of the pole $H G$,
(2) the height and radius of the tower.
(ii) $P$ is apoint south-west of $O$. Another man standing at $P$ can just see the top of the pole $H$. Find
(1) the distance of $P$ from $O$,
(2) the bearing of $B$ from $P$.

## 14B.41 HKCEEAM 2001-15


(a) Figure (1) shows a pyramid $O P Q R$. The sides $O P, O Q$ and $O R$ are of lengths $x, y$ and $z$ respectively, and they are mutually perpendicular to each other.
(i) Express $\cos \angle P R Q$ in terms of $x, y$ and $z$.
(ii) Let $S_{1}, S_{2}, S_{3}$ and $S_{4}$ denote the areas of $\triangle O P R, \triangle O P Q, \triangle O Q R$ and $\triangle P Q R$ respectively. Show that $S_{4}{ }^{2}=S_{1}{ }^{2}+S_{2}{ }^{2}+S_{3}{ }^{2}$.
(b) Figure (2) shows a rectangular block $A B C D E F G H$. The lengths of sides $A B, B C$ and $A F$ are 4,3 and 2 respectively. A pyramid $A B C G$ is cut from the block along the plane $G A C$.
(i) Find the volume of the pyramid $A B C G$.
(ii) Find the angle between the side $A B$ and the plane $G A C$, giving your answer correct to the nearest degree.

## 14B.42 HKCEEAM $2002 \quad 17$

The figure shows a tetrahedron $A B C D$ such that $A B=28, C D=30$, $A C=A D=25$ and $B C=B D=40 . F$ is the foot of perpendicular from $C$ to $A D$.
(a) Find $\angle B F C$, giving your answer correct to the nearest degree.
(b) A student says that $\angle B F C$ represents the angle between the planes $A C D$ and $A B D$.
Explain whether the student is correct or not


## 14B. 43 HKCEE AM 200318


(a) Figure (1) shows a tetrahedron $O P Q R$ with $R O$ perpendicular to the plane $O P Q$. Let $\theta$ be the angle between the planes $R P Q$ and $O P Q$. Show that $\frac{\text { Area of } \triangle O P Q}{\text { Area of } \triangle R P O}=\cos \theta$.
(b) In Figure (2), a pole of length 2 m is erected vertically at a point $E$ on the horizontal ground. A triangular board $A B C$ of area $12 \mathrm{~m}^{2}$ is supported by the pole such that side $A B$ touches the ground and vertex $C$ is fastened to the top of the pole. $A B=6 \mathrm{~m}, B C=x \mathrm{~m}$ and $C A=y \mathrm{~m}$, where $6>x>y$. The sun rays are vertical and cast a shadow of the board on the groumd.
(i) Find the area of the shadow.
(ii) Two other ways of supporting the board with the pole are to fasten vertex $A$ or $B$ to the top of the pole with the opposite side touching the ground. Among these three ways determine which one will give the largest shadow.

## 14B. 44 HKCEE AM 2004 - 11

In the figure, $O A B C$ is a pyramid such that $O A=3, O B=5$. $B C=12, \angle A O C=120^{\circ}$ and $\angle O A B=\angle O B C=90^{\circ}$.
(a) Find $A C$.
(b) A student says that angle between the planes $O B C$ and $A B C$ can be represented by $\angle O B A$. Determine whether the student is correct or not.


## 14B. 45 HKCEE AM 2006-17



(a) $A B C$ is a triangle with $A B=6, B C=7$ and $C A=5$. A circle is inscribed in the triangle (see Figure (1)). Let $O$ be the centre of the circle and $r$ be its radius.
(i) Find the area of $\triangle A B C$.
(ii) By considering the areas of $\triangle A O B, \triangle B O C$ and $\triangle C O A$, show that $r=\frac{2 \sqrt{6}}{3}$.
(b) $V A B C$ is a tetrahedron with the $\triangle A B C$ described in (a) as the base (see Figure (2)). Furthermore, point $O$ is the foot of perpendicular from $V$ to the plane $A B C$. It is given that the angle between the planes $V A B$ and $A B C$ is $60^{\circ}$.
(i) Find the volume of the tetrahedron $V A B C$
(ii) Find the area of $\triangle V B C$.
(iii) Find the angle between the side $A B$ and the plane $V B C$, giving your answer correct to the nearest degree.

## 14B. 46 HKCEE AM 2008-16

The figure shows a triangular pyramid $V A B C$. The base of the pyramid is a right-angled triangle with $A B=2 \mathrm{~cm}$ and $\angle B A C=90^{\circ} . \triangle V A B$ and $\triangle V A C$ are equilateral triangles.
(a) Explain why the angle between the planes VAB and $A B C$ cannot be represented by $\angle V A C$.
(b) Let $D$ and $E$ be the mid-points of $A B$ and $B C$ respectively.
(i) Show that the angle between the planes $V A B$ and $A B C$ can be represented by $\angle V D E$.
(ii) Show that $\angle V E D=90^{\circ}$.
(c) Find the distance between the point $C$ and the plane $V A B$.


## 14B.47 HKCEE AM2009 12

In the figure, $A B C D$ is a regular tetrahedron with length of each side 2 . Find the angle between the planes $A B C$ and $B C D$ correct to the nearest degree


## 14B. 48 HKCEE AM 2009-18

The figure shows a park $A E D$ on a horizontal ground. The park is in the form of a right-angled triangle surrounded by a walking path with negligible width. Henry walks along the path at a constant speed. He starts from point $A$ at 7:00 am. He reaches points $B, C$ and $D$ at 7:10 am, 7:15 am and 7:30 am respectively and retums to $A$ via point $E$. The angles of elevation of $H$, the top of a tower outside the park, from $A$ and $D$ are $45^{\circ}$ and $30^{\circ}$ respectively. At point $B$, Henry is closest to the point $K$ which is the projection of $H$ on the ground. Let $H K \quad h \mathrm{~m}$.

(a) Express $D K$ in terms of $h$.
(b) Show that $A B=\sqrt{\frac{2}{3}} h \mathrm{~m}$.
(c) Find the angle of elevation of $H$ from $C$ correct to the nearest degree.
(d) Henry returns to $A$ at $8: 10 \mathrm{am}$. It is known that the area of the park is $9450 \mathrm{~m}^{2}$.
(i) Find $h$.
(ii) A vertical pole of length 3 m is located such that it is equidistant from $A, D$ and $E$. Find the angle of elevation of $H$ from the top of the pole correct to the nearest degree.

## 14B. 49 HKCEEAM 2010-17

[Note: In this question, numerical answers may be given correct to 3 significant figures. You may use a ruler to tear off Figure (5) to help you if you attempt this question.]

Three faces of a tetrahedron (see Figure (4)) are formed by folding a triangular piece of paper $A B C$, where $A B=A C=11 \mathrm{~cm}$, $\angle B A C=120^{\circ}$ and $A D$ is an altitude (see Figure (1)), with the following steps.


Step 1: Fold $A B$ over so that $A B$ coincides with $A D$, then crease line $A E$ (see Figure (2)).
(a) Calculate the length of $A E$ and the area of $\triangle A B E$.

## Step 2: Fold $A C$ over so that $A C$ coincides with $A E$, then crease line $A F$ (see Figure (3)).

(b) Calculate the length of $A F$.

Step 3: Unfold the paper. Then fold the paper along $A E$ and $A F$ such that $A B$ coincides with $A C$ completely (see Figure (4)).
(c) It is known that the volume of the tetrahedron is $22.582 \mathrm{~cm}^{3}$ (correct to 5 significant figures).
(i) Find the angle between the line $A F$ and the plane $\triangle A B E$ in the tetrahedron.
(ii) Find the angle between the planes $\triangle A B E$ and $\triangle A B F$ in the tetrahedron.


14B. 50 HKCEEAM $2011 \quad 13$


Figure (1)


Figure (2)

In Figure (1), $A B C D$ is a quadrilateral with diagonals $A C$ and $B D$ perpendicular to each other and intersecting at $E$. It is given that $A D=3, B C=4$ and $\angle A D E=\angle B C E=\theta$, where $0^{\circ}<\theta<90^{\circ}$.
(a) (i) Show that $A B=5 \sin \theta$.
(ii) Express $C D$ in terms of $\theta$.
(b) The quadrilateral is folded along $B D$ as shown in Figure (2). Let the planes $A B D$ and $B C D$ be $\Pi_{1}$ and $\Pi_{2}$ respectively. Let $\angle A B C=\alpha$. It is given that
the angle between the lines $A B$ and $B C$ the angle between the planes $I_{1}$ and $\Pi_{2}$.
(i) By considering the length of $A C$, show that $\cos \alpha=\frac{4 \sin \theta}{5-3 \cos \theta}$.
(ii) Prove that $\alpha$ is acute.
(iii) Furthermore, it is given that
the angle between the line $A B$ and $\mathrm{II}_{2}=$ the angle between the line $A D$ and $\mathrm{II}_{2}$. State with reason whether the angle between the line $A C$ and $\mathrm{II}_{2}$ is greater than, less than or equal to the angle between the line $A B$ and $\mathrm{II}_{2}$

## 14B. 51 HKDSE MA SP-I-18



Figure (1)


Figure (2)

In Figure (1), $A B C$ is a triangular paper card. $D$ is a point lying on $A B$ such that $C D$ is perpendicular to $A B$ It is given that $A C=20 \mathrm{~cm}, \angle C A D=45^{\circ}$ and $\angle C B D=30^{\circ}$.
(a) Find, in surd form, $B C$ and $B D$.
(b) The triangular paper card in Figure (1) is folded along $C D$ such that $\triangle A C D$ lies on the horizontal plane as shown in Figure (2).
(i) If the distance between $A$ and $B$ is 18 cm , find the angle between the plane $B C D$ and the horizontal plane.
(ii) Describe how the volume of the tetrahedron $A B C D$ varies when $\angle A D B$ increases from $40^{\circ}$ to $140^{\circ}$. Explain your answer.

## 14B. 52 HKDSE MAPP 18

The figure shows a geometric model $A B C D$ in the form of a tetrahedron. It is found that $\angle A C B=60^{\circ}, A C=A D=20 \mathrm{~cm}$, $B C=B D=12 \mathrm{~cm}$ and $C D=14 \mathrm{~cm}$.
(a) Find the length of $A B$.
(b) Find the angle between the plane $A B C$ and the plane $A B D$.
(c) Let $P$ be a movable point on the slant edge $A B$. Describe how $\angle C P D$ varies as $P$ moves from $A$ to $B$. Explain your answer.


## 14B. 53 HKDSE MA 2012 I- 18

Figure (1) shows a right pyramid $V A B C D$ with a square base, where $\angle V A B=72^{\circ}$. The length of a side of the base is 20 cm . Let $P$ and $Q$ be the points lying on $V A$ and $V D$ respectively such that $P Q$ is parallel to $B C$ and $\angle P B A=60^{\circ}$. A geometric model is made by cutting off the pyramid $V P B C Q$ from VABCD as shown in Figure (2).


Figure (1)

(a) Find the length of $A P$.
(b) Let $\alpha$ be the angle between the plane $P B C Q$ and the base $A B C D$.
(i) Find $\alpha$.
(ii) Let $\beta$ be the angle between $P B$ and the base $A B C D$. Which one of $\alpha$ and $\beta$ is greater? Explain your answer.

## 14B. 54 HKDSEMA 2013-I - 18



Figure (1)


Figure (2)
(a) Figure (1) shows a piece of triangular paper card $A B C$ with $A B=28 \mathrm{~cm}, B C=21 \mathrm{~cm}$ and $A C=35 \mathrm{~cm}$ Let $M$ be a point lying on $A C$ such that $\angle B M C=75^{\circ}$. Find
(i) $\angle B C M$,
(ii) $C M$.
(b) Peter folds the triangularpaper card described in (a) along $B M$ such that $A B$ and $B C$ lie on the horizontal ground as shown in Figure (2). It is given that $\angle A M C=107^{\circ}$.
(i) Find the distance between $A$ and $C$ on the horizontal ground.
(ii) Let $N$ be a point lying on $B C$ such that $M N$ is perpendicular to $B C$. Peter claims that the angle between the face $B C M$ and the horizontal ground is $\angle A N M$. Do you agree? Explain your answer.

## 14B. 55 HKDSE MA 2014 I- 17

Figure (1) shows a solid pyramid $V A B C D$ with a rectangular base, where $A B=18 \mathrm{~cm}, B C=10 \mathrm{~cm}$ $V B=V C=30 \mathrm{~cm}$ and $\angle V A B=\angle V D C=110^{\circ}$.


Figure (1)


Figure (2)
(a) Find $\angle V B A$.
(b) $P, Q, M$ and $N$ are the mid points of $A B, C D, V B$ and $V C$ respectively. A geometric model is made by cutting off $P B C Q N M$ from VABCD as shown in Figure (2). A craftsman claims that the area of the trapezium $P Q N M$ is less than $70 \mathrm{~cm}^{2}$. Do you agree? Explain your answer

## 14B. 56 HKDSE MA 2015-I 19

In Figure (1), $A B C D B^{\prime}$ is a pentagonal paper card. It is given that $A B=A B^{\prime}=40 \mathrm{~cm}, B C=B^{\prime} D=24 \mathrm{~cm}$ and $\angle A B C=\angle A B^{\prime} D=80^{\circ}$.


Figure (1)


Figure (2)
(a) Suppose that $105^{\circ} \leq \angle B C D \leq 145^{\circ}$.
(i) Find the distance between $A$ and $C$
(ii) Find $\angle A C B$.
(iii) Describe how the area of the paper card varies when $\angle B C D$ increases from $105^{\circ}$ to $145^{\circ}$. Explain your answer.
(b) Suppose that $\angle B C D=132^{\circ}$. The paper card in Figure (1) is folded along $A C$ and $A D$ such that $A B$ and $A B^{\prime}$ join together to form a pyramid $A B C D$ as shown in Figure (2). Find the volume of the pyramid $A B C D$.

## 14B. 57 HKDSE MA 2016-I- 19

The figure shows a geometric model $A B C D$ in the form of a tetrahedron. It is given that $\angle B A D=86^{\circ}$, $\angle C B D=43^{\circ}, A B=10 \mathrm{~cm}, A C=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $B D=15 \mathrm{~cm}$.
(a) Find $\angle A B D$ and $C D$.
(b) A craftsman claims that the angle between $A B$ and the face $B C D$ is $\angle A B C$. Do you agree? Explain your answer.


## 14B.58 HKDSE MA 2017-I 19

$A B C$ is a thin triangular metal sheet, where $B C=24 \mathrm{~cm}, \angle B A C=30^{\circ}$ and $\angle A C B=42^{\circ}$.
(a) Find the length of $A C$.
(b) In the figure, the thin metal sheet $A B C$ is held such that only the vertex $B$ lies on the horizontal ground $D$ and $E$ are points lying on the horizontal ground vertically below the vertices $A$ and $C$ respectively. $A C$ produced meets the horizontal ground at the point $F$. A craftsman finds that $A D=10 \mathrm{~cm}$ and $C E=2 \mathrm{~cm}$.
(i) Find the distance between $C$ and $F$.
(ii) Find the area of $\triangle A B F$.
(iii) Find the inclination of the thin metal sheet $A B C$ to the horizontal ground
(iv) The craftsman claims that the area of $\triangle B D F$ is greater than $460 \mathrm{~cm}^{2}$. Do you agree? Explain your answer.


## 14B. 59 HKDSE MA 2018 I-17

(a) In Figure (1), $A B C D$ is a paper card in the shape of a parallelogram. It is given that $A B=60 \mathrm{~cm}$, $\angle A B D=20^{\circ}$ and $\angle B A D=120^{\circ}$. Find the length of $A D$
(b) The paper card in Figure (1) is folded along $B D$ such that the distance between $A$ and $C$ is 40 cm (see Figure (2)).
(i) Find $\angle A B C$.
(ii) Find the angle between the plane $A B D$ and the plane $B C D$.


Figure (1)


14B. 60 HKDSE MA 2019 - 18
The figure shows a tetrahedron $A B C D$. Let $P$ be a point lying on $A D$ such that $B P$ is perpendicular to $A D$. A
craftsman finds that $A C=A D=C D=13 \mathrm{~cm}, B C=8 \mathrm{~cm}, B D=12 \mathrm{~cm}$ and $\angle A B D=72^{\circ}$.
(a) Find
(i) $\angle B A D$,
(ii) $C P$.
(b) The craftsman claims that $\angle B P C$ is the angle between the face $A B D$ and the face $A C D$. Is the claim correct? Explain your answer.

148.61 HKDSE MA 2020-I - 19
$P Q R S$ is a quadrilateral paper card, where $P Q=60 \mathrm{~cm}, P S=40 \mathrm{~cm}, \angle P Q R=30^{\circ}, \angle P R Q=55^{\circ}$
and $\angle Q P S=120^{\circ}$. The paper card is held with $Q R$ lying on the horizontal ground as shown


Figure 3
(a) Find the length of $R S$.
(3 marks)
(b) Find the area of the paper card
(2 marks)
(c) It is given that the angle between the paper card and the horizontal ground is $32^{\circ}$.
(1) Find the shomest distance from $P$ to the horizontal ground.
(ii) A student claims that the angle between $R S$ and the horizontal ground is at most $20^{\circ}$. is the claim correct? Explain your answer.
(7 marks)

## 14 Applications of Trigonometry

## 14A Two-dimensional application

14A.I HKCEE MA 1981(2/3)-I-11
(a) Distance at noon $=\sqrt{24^{2}+9^{2}-2 \cdot 24 \cdot 9 \cos 60^{\circ}}$
(b) At 4 p.m.,

Distance cravelled by $P=4.5 \times 4=18(\mathrm{~km})$ $\Rightarrow P X=24-18=6(\mathrm{~km})$
Distance travelled by $Q=6 \times 4=24(\mathrm{~km})$
$\Rightarrow Q X=24-9=15(\mathrm{~km}) \quad$ [Q has gone past $X$.] $\therefore$ Distance at 4 p.m. $\sqrt{6^{2}+15^{2}-2 \cdot 6 \cdot 15 \cos 60^{\circ}}$ $=\sqrt{171}=13.1(\mathrm{~km}, 3 \mathrm{~s}$.f. $)$
(c) $\theta=\cos ^{-1} \frac{(\sqrt{171})^{2}+6^{2}-15^{2}}{2(\sqrt{171})(6)}=96.59^{\circ}$ $\therefore$ Bearing $=360^{\circ}-96.59^{\circ}$ $=263^{\circ}$
or $\mathrm{N} 97^{\circ} \mathrm{W}$ (nearest deg)

14A. 2 HKCEE MA 1982(3) - I- 2
$\angle A=\cos ^{-1} \frac{4^{2}+5^{2}-7^{2}}{2.4 .5}=102^{\circ}$ (nearest deg)

14A. 3 HKCEE MA 1985(A/B)-I-13
(a) $D E^{2}=B D^{2}+B E^{2}-2 \cdot B D \cdot B E \cos \angle B$ $=(2-x)^{2}+x^{2}-2(2-x)(x) \cos 60^{\circ}$
$=3 x^{2}-6 x+4$ $=3 x^{2}-6 x+4$
(b) Area of $\triangle D E F=\frac{1}{2} D E \cdot D E \sin 60^{\circ}$

$$
\begin{aligned}
& =\frac{1}{2}\left(3 x^{2}-6 x+4\right) \cdot \frac{\sqrt{3}}{2} \\
& =\frac{\sqrt{3}}{4}\left(3 x^{2}-6 x+4\right) \\
& =\frac{3 \sqrt{3}}{4}\left(x^{2}-2 x+\frac{4}{3}\right) \\
& =\frac{3 \sqrt{3}}{4}\left(x^{2}-2 x+1+\frac{1}{3}\right) \\
& =\frac{3 \sqrt{3}}{4}(x-1)^{2}+\frac{\sqrt{3}}{4}
\end{aligned}
$$

(c) $\begin{aligned} \therefore & \begin{aligned} & \text { Minimum area is attained } \\ & 4 \\ & 4(x-1)^{2}+\frac{\sqrt{3}}{4}\end{aligned}<\frac{\sqrt{3}}{3} \\ (x-1)^{2} & \leq \frac{1}{9}\end{aligned}$

$$
\frac{-1}{3} \leq x-1 \leq \frac{1}{3} \Rightarrow \frac{2}{3} \leq x \leq \frac{4}{3}
$$

14A.4 HKCEE MA 1989-I-6
(a) $\angle A B D=\angle A C D=60^{\circ}$ ( $\angle \mathrm{s}$ in the same segment) $\angle B A D=180^{\circ}-\left(60^{\circ}+40^{\circ}\right) \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.)
(b) $\frac{B D}{\sin \angle B A D}=80^{\circ} \quad A D$
$B D=\frac{\frac{\sin 2 \sin 80^{\circ}}{\sin 60^{\circ}}}{}=11.37(\mathrm{~cm}, 2 \mathrm{~d} . \mathrm{p}$.)

## 14A.5 HKCEE MA 1997-1-5

(a) $A C=\sqrt{3^{2}+4^{2}}=5$
(b) $A D=\sqrt{5^{2}}+\sigma^{2}-2 \cdot 5 \cdot 6 \cos 60^{\circ}=\sqrt{31}(=5.57,3$.s.f $)$
(c) Area $=\frac{1}{2}(5)(6) \sin 60^{\circ}=\frac{15 \sqrt{3}}{2}(=13.0,3$ s.f. $)$

## 14A. 6 HKCEE MA 2000-I- 13

(a) $\angle A=\angle A B C=\angle B C D$ (given
$\begin{aligned} & =(5-2) 180^{\circ} \div 5 \quad \text { ( } \angle \text { sum of polygon) } \\ & =108^{\circ}\end{aligned}$
$G C D=90^{\circ} \quad$ (property of square)
$\Rightarrow \angle B C G=108^{\circ}-90^{\circ}=18$
$B C=C D=C G$ (given)
$\angle G B C=\angle B G C \quad$ (base $\angle \mathrm{s}$, isos. $\triangle$ )
In $\triangle B C G, \angle G B C=\left(180^{\circ}-\angle B C G\right) \div 2 \quad(\angle$ sum of $\triangle)$
$\angle A B P=108^{\circ}-81^{\circ}=27^{\circ}$
$\angle A P B=180^{\circ}-\angle A-\angle A B P=45^{\circ} \quad(\angle$ sum of $\triangle)$
(b) $A P-\frac{\sin \angle A B P}{\sin \angle A P B} A B-\frac{\sin 27^{\circ}}{\sin 45^{\circ}} A B-0.642 A B$
$P E=A B \quad A P=(1-0.642) A B=0.358 A B<A P$ i.e. $A P$ is longer.

14A. 7 HKCEE MA 2001-1-9
$\frac{A B}{\sin 50^{\circ}}=\frac{8}{\sin \left(180^{\circ}-50^{\circ}-70^{\circ}\right)}$ $\sin 50^{\circ}$
$\Rightarrow A B=7.0764=7.08(\mathrm{~cm}, 3$ s.f. $)$
$\sin \left(180^{\circ}-50^{\circ}-70{ }^{\circ}\right.$
$\therefore$ Area $=\frac{1}{2}(8)(7.0764) \sin 70^{\circ}=26.6\left(\mathrm{~cm}^{2}, 3 \mathrm{sf}.\right)$

14B Three-dimensional applications
14B. 1 HKCEE MA 1980(1/1*/3)-I-9
(a) (i) In $\triangle P A C, x=\frac{h}{\tan \alpha}$
(ii) In $\triangle P B C, y=\frac{h}{n o \beta}$
(b) In $\triangle A B C$,

$$
\begin{aligned}
& \text { In } \triangle A B C, \\
& x^{2}+400^{2}=y^{2} \\
&\left(\frac{h}{\tan 60^{\circ}}\right)^{2}+160000=\left(\frac{h}{\tan 30^{\circ}}\right)^{2} \\
& \frac{h^{2}}{3}+160000=3 h^{2} \\
& h^{2}=60000 \Rightarrow h=245 \text { (3 s.f.) }
\end{aligned}
$$

14B. 2 HKCEE MA $1982(1 / 2 / 3)-\mathrm{I}-8$
(a) $8 x+4 y+9=69 \Rightarrow y=15-2 x$


$$
\begin{aligned}
2 x^{2} & =81-(15-2 x)^{2} \\
x^{2}-10 x+24 & =0 \Rightarrow x=4 \text { or } 6
\end{aligned}
$$

When $x=4, y=15-2(4)=7$
When $x=6, y=15 \quad 2(6)=3$
(b) $\angle A B C=\cos ^{1} \frac{y}{9}=\cos ^{-1} \frac{7}{9}=39^{\circ}$ (nrst deg)

14B. 3 HKCEE MA 1983(A/B) $-1-13$
(a) In $\triangle A C H, A C=\frac{50}{\tan 45^{\circ}}=50(\mathrm{~m})$

In $\triangle B C H, B C=\frac{50}{\tan 30^{\circ}}=50 \sqrt{3}(\mathrm{~m})$
In $\triangle A B C, A B=\sqrt{(50)^{2}+(50 \sqrt{3})^{2}}=100(\mathrm{~m})$
(b) (i) $\frac{A C \cdot B C}{2}=\frac{C P \cdot A B}{2}$ ( $=$ Area or $\triangle A B C$ )

$$
\Rightarrow C P=\frac{(50)(50 \sqrt{3})}{100}=25 \sqrt{3}=43.3(\mathrm{~m}, 3 \mathrm{s.f.})
$$

(ii) Required $\angle=\angle H P C=\tan ^{-1} \frac{H C}{C P}=49^{\circ}$ (arst deg)

14B. 4 HKCEE MA 1984(A/B) $-1-13$
(a) (i) In $\triangle A C H$,
$H A=20 \tan 15^{\circ}=5.25898=5.36(\mathrm{~m}, 2 \mathrm{dp}$.)
(ii) In $\triangle A B H$,

$$
A B=\frac{H A}{\tan 30^{\circ}}=9.28203=9.28(\mathrm{~m}, 2 \mathrm{~d} . \mathrm{p} .)
$$

(b) Given: $\angle A B C=90^{\circ} \quad(\angle$ in semi-circle)
(i) $B C=\sqrt{A C^{2}}-A B^{2}=17.71564=17.72(\mathrm{~m}, 2 \mathrm{~d} . \mathrm{p}$.)
(ii) Area $=\frac{1}{2} A B \cdot B C=82.22 \mathrm{~m}^{2}$ ( 2 dp .)

14B. 5 HKCEEMA 1985(A/B)-I-8
(a) In $\triangle A B C, \frac{B C}{\sin 30^{\circ}}=\frac{100}{\sin \left(180^{\circ}-30^{\circ}-45^{\circ}\right)}=\frac{A C}{\sin 45^{\circ}}$
$\Rightarrow B C=51.76381=51.8(\mathrm{~m}, 1 \mathrm{~d} . \mathrm{p}$.
(i) $\operatorname{In} \triangle B C D, C D=B C \tan 25^{\circ}=24.13789$
(ii)

(1) In $\triangle C X B, C X=B C \sin 45^{\circ}=36.60254$
(2) Required $\angle=\angle D X C \quad=36.6(\mathrm{~m}, 1$

$$
=\tan ^{-1} \frac{C D}{C X}=33^{\circ} \text { (nrst deg) }
$$

14B. 6 HKCEE MA 1986(A/B) $-\mathrm{I}-10$
(a) In $\triangle Q R S, \frac{Q 5}{\sin 35^{\circ}}=\frac{500}{\sin \left(180^{\circ}-50^{\circ}-35^{\circ}\right)}$
$\Rightarrow Q S=287.88370(\mathrm{~m})$
$\therefore$ In $\triangle P Q S$,
Required distance $=P S=Q S \tan 15^{\circ}$
$=77.13821=77.1(\mathrm{~m}, 3$ s.f. $)$
(b) In $\triangle Q R S, \frac{R S}{\text { sinfe }}=\frac{500}{\text { sing }} \Rightarrow R S=384.48530$ (m)
$\therefore$ In $\triangle P R S$, Required $\angle=\angle P R S==\tan ^{-1} \frac{P S}{R S}$ $=11^{\circ}$ (nrst deg)

14B. 7 HKCEE MA $1987(\mathrm{~A} / \mathrm{B})-\mathrm{I}-11$ (a) In $\triangle A D E . A E=\sqrt{3^{2}+2^{2}-2 \cdot 3 \cdot 2 \cos 80^{\circ}}$ $=3.30397=3.304(\mathrm{~cm}, 3 \mathrm{~d} . \mathrm{p})$
(b) In $\triangle A D E, \angle D A E=\cos ^{-1} \frac{A E^{2}+3^{2}-2}{2}$ $\begin{aligned} E & =\cos \frac{2 \cdot A E \cdot 3}{2} \\ & =36.59365^{\circ}=36.594^{\circ}(3 \text { d.p. })\end{aligned}$
(c) In $\triangle A D G, D G=3 \sin \angle D A E$
$\begin{aligned} & =3 \sin \angle D A E \\ & =1.7884077=1.788(\mathrm{~cm}, 3 \mathrm{dp} .)\end{aligned}$
(d) In $\triangle A B D, B D=\sqrt{3^{2}+3^{2}}$
(e)
$=\sqrt{18}=4.243$ ( $\mathrm{cm}, 3$ d.p.)


Required $\angle=\angle D B G=\sin \frac{1}{B D}=24931^{\circ}$ (3 d.p.)

## 14B. 8 HKCEE MA 1988-I-13

(a) In $\triangle A B H, H B=\frac{3}{\tan \theta}$

In $\triangle D C K, K C=\frac{2}{\min B}$
(b) (i) $S_{1}=\frac{(2+3)(6)}{2}=15\left(\mathrm{~m}^{2}\right.$
(ii) $S_{2}=\frac{\left(\frac{3}{\min \theta}+\frac{2}{\tan \theta}\right)(6)}{2}=\frac{15}{\tan \theta}\left(\mathrm{~m}^{2}\right)$

$$
\therefore \frac{S_{1}}{S_{2}}=\frac{15^{2}}{\frac{15}{m a n}}=\tan \theta
$$

(c)


Let $P$ be the foot of perpendicular from $K$ to $B H$.
$P K=6 \mathrm{~m}, \quad P H=\frac{3}{100}-\frac{2}{}=\sqrt{3}(\mathrm{~m})$
$\therefore H K=\sqrt{P} \overline{K^{2}+P H^{2}}=\sqrt{39}(\mathrm{~m})$

## 4B. 9 HKCEE MA 1989-I- 10

(a) In $\triangle A B B^{\prime}, A B^{\prime}=10 \cos 45^{\circ}=5 \sqrt{2}(\mathrm{~m}) \quad(7.07 \mathrm{~m} .3 \mathrm{s.f}$. ) In $\triangle A C C^{\prime}, A C^{\prime}=10 \cos 30^{\circ}=5 \sqrt{3}(\mathrm{~m}) \quad(8.66 \mathrm{~m}, 3$ s.f. $)$ (b) In $\triangle A B C, B C=\sqrt{10^{2}+10^{2}}=\sqrt{200}(\mathrm{~m})(14.1 \mathrm{~m}, 3$.s.t.) in $\triangle A B B^{\prime}, B B^{\prime}=10 \sin 45^{\circ}=5 \sqrt{2}(\mathrm{~m}) \quad(7.07 \mathrm{~m}, 3$ s.f. $)$
(c)


Let $P$ be the foot of perpendicular from $C$ to $B B^{\prime}$ $B P \quad B B^{\prime}-C C^{\prime}=5(\sqrt{2}-1) \mathrm{m}$
$\therefore B^{\prime} C^{\prime}=P$
$\begin{aligned} & =P C \\ & =\sqrt{B C^{2}-B P^{2}}\end{aligned}$
$=\sqrt{200-25(\sqrt{2}} 1)^{2}$
$=\sqrt{125+50 \sqrt{2}(\mathrm{~m})}(14.0 \mathrm{~m}, 3$ s.f. $)$
(d) In $\triangle A B^{\prime} C^{\prime}$.

$$
\begin{aligned}
& \angle B^{\prime} A C^{\prime}-\cos ^{-1} A B^{2}+A C^{\prime 2} \quad B^{\prime} C^{\prime 2} \\
& \frac{2}{2} A B^{\prime} \cdot A C^{\prime} \\
&=\cos ^{-1} \frac{\left(\frac{\sqrt{2})^{2}+(5 \sqrt{3})^{2}-(125+50 \sqrt{2})}{2(5 \sqrt{2})(5 \sqrt{3})}\right.}{} \\
&=125.2644^{\circ}=125^{\circ}(3 \text { s.f. })
\end{aligned}
$$

Hence. Area $=\frac{1}{2}\left(A B^{\prime}\right)\left(A C^{\prime}\right) \sin \angle B^{\prime} A C^{\prime}=25\left(\mathrm{~m}^{2}\right)$

14B. 10 HKCEE MA 1990-1-10
(a) $\angle T A O=30^{\circ}, \angle T B O=60^{\circ}$

In $\triangle T O A . O A=\frac{h}{\tan 30^{\circ}}=\sqrt{3} h(\mathrm{~m})$
In $\triangle T O B . O B=\frac{h}{\tan 60 \rho}=\frac{h}{\sqrt{3}}(\mathrm{~m})$
(b) In $\triangle O A B$,
$A B=\sqrt{Q^{2}+O B^{2}-2 \cdot O A \cdot O B} \cos \overline{S\left(0^{\circ}+40^{\circ}\right)}$
$\begin{aligned} & =\sqrt{0 A^{2}+O B^{2}-2 \cdot O A} \\ & =\sqrt{\frac{10}{3} h^{2} \quad h^{2}}=\sqrt{\frac{7}{3}} h(\mathrm{~m})\end{aligned}$
$\therefore h=500 \div \sqrt{\frac{7}{3}}=327.3268=327$ (m. 3 s.f.)
(c) $\angle O A B=\cos ^{-1} \frac{O A^{2}+500^{2}-O B^{2}}{2}$ $=19.1066^{\circ} \stackrel{2}{=} \cdot 19^{\circ}($ (nearest deg)
(i) $\mathrm{N}\left(20^{\circ}+19^{\circ}\right) \mathrm{E}=\mathrm{N} 39^{\circ} \mathrm{E}$
(ii) $539^{\circ} \mathrm{W}$

14B.11 HKCEE MA 1992-I-15
(a) In $\triangle A B D, B D=\frac{\sqrt{3^{2}}+3^{2}}{\sqrt{3}}=\sqrt{18}(\mathrm{~m})$ In $\triangle B D E, E D=\frac{\sqrt{B D^{2}} B E^{2}}{}=\sqrt{14}(\mathrm{~m})$
In $\triangle A B E, A E=\sqrt{A B^{2}} \quad B E^{2}=\sqrt{5}(\mathrm{~m})$
(b) In $\triangle A D E, \angle A D E=\cos ^{-1} \frac{3^{2} \div 14-5}{23}$

$$
=36.69923^{2.3}=36 . \sqrt{14}
$$

(c) Required $\angle=\angle B D E=\sin ^{-1} \frac{B E}{B D}$

$$
=28.12551^{\circ}=28.1^{\circ}(3 \text { s.f. })
$$

(d) In $\triangle A D C$. $\angle A D C=2 \angle A D E-73.39845^{\circ}$ $A C=\sqrt{3^{2}+3^{2}-2 \cdot 3 \cdot 3 \cos 73} 39845^{\circ}$ $=3.58569(\mathrm{~m})$

Denote the intersection of the diagonals of the square $A B C D$ by $P$. Since $B D \perp A C$ at $P$, the required angle is $\angle A P C$ (in Figure (2)).

$A P=P C=\frac{1}{2} B D=\frac{\sqrt{18}}{2}$
In $\triangle A P C . \angle A P C=\cos ^{-1} \frac{\left(\frac{\sqrt{18}}{2}\right)^{2}+\left(\frac{\sqrt{18}}{2}\right)^{2}-3.58569^{2}}{2\left(\frac{\sqrt{18}}{2}\right)(\sqrt{18})}$

$$
=115^{\circ}(3 \text { s.f. })
$$

14B. 12 HKCEE MA 1993-I- 12
(a) (i) In $\triangle A P Q . A Q=\frac{h}{\tan 45^{\circ}}=h(\mathrm{~m})$

$$
\text { In } \triangle B P Q, B Q=\frac{\frac{1}{h}}{\tan 6 \theta^{\circ}}=\frac{h}{\sqrt{3}}(\mathrm{~m})
$$

(ii) In $\triangle A B Q$.
$100^{2}=h^{2}+\left(\frac{h}{\sqrt{3}}\right)^{2}-2(h)\left(\frac{h}{\sqrt{3}}\right) \cos 80^{\circ}$
$10000=\left(\frac{4}{3}-\frac{2 \cos 80^{\circ}}{\sqrt{3}}\right) h^{2}$

$$
h=93.954854=94.0(3 \text { s.f. })
$$

$\angle Q A B=\cos ^{-1} \frac{A Q^{2}+100^{2}-B Q^{2}}{2}$

$$
\begin{aligned}
& =32.29019^{2 \cdot A Q}=32.3^{\circ}(3 \text { s.f. })
\end{aligned}
$$

(b) In $\triangle P Q R . Q R=\frac{h}{\text { ran } 50^{\circ}}=78.83748(\mathrm{~m})$ (From $A$ to $B$, the angle of elevation increases from $45^{\circ}$ until it reaches the maximum. Supposing the max is reached ween $A$ and $R$ as the angle of clevation between $M$ and $B$ must be larger than $60^{\circ}$. Since $\angle A M Q=90^{\circ}, \angle A R Q$ must be obtusc.)


Merhod I $\quad . \quad A Q^{2}+A R^{2}-2 \cdot A Q \cdot A R \cos \angle Q A B=Q R^{2}$ $A R^{2}-158.8501 A R+2612.1658 \quad 0$ $A R=140.22$ (rcj.) or $18.6(\mathrm{~m}, 3 \mathrm{s.f}$.)

## Method

In $\triangle A Q R . \quad \frac{\sin \angle A R Q}{A Q}=\frac{\sin \angle Q A R}{Q R}$
$\sin \angle A R Q=h \sin 3229019$
$\angle A R Q=39.54201{ }^{\circ}(\mathrm{rej}$.$) or 140.45799^{\circ}$
$\Rightarrow \angle A Q R=180^{\circ}-32.29019^{\circ} \quad 140.45799^{\circ}$
$\therefore A R=\frac{Q R \sin \angle A Q R}{\sin \angle Q A R}=18.6(\mathrm{~m}, 3 \mathrm{~s} . \mathrm{f}$.

14B. 13 HKCEEMA 1994-I-14
(a) In $\triangle O P Q, \frac{O Q}{\sin 50^{\circ}}=\frac{500}{\sin 70^{\circ}}=\frac{O P}{\sin \left(180^{\circ}-50^{\circ}-70^{\circ}\right)}$ $\Rightarrow O Q=407.60373=408(\mathrm{~m}, 3$ s.f. $)$ $O P=460.80249=461(\mathrm{~m}, 3 \mathrm{s.f})$
(b) In $\triangle O P T, h=O P \tan 30^{\circ}=266.04444=266$ (m, 3 s.f.) (c) In $\triangle O Q T$. Required $\angle=\angle O Q T$

$$
=\tan ^{-1} \frac{h}{O Q}=33^{\circ} \text { (nrst deg) }
$$

(d) (i)


In $\triangle O R T, O R=\frac{h}{\tan 200}=730.9511(\mathrm{~m})$
In $\triangle O Q R$.
$\angle O Q R=\cos ^{-1} \frac{O Q^{2}+Q R^{2} \quad O R^{2}}{2 . O Q}$ $407.60373^{2}+400^{2}-730.9511^{2}$ $=\cos ^{-1} \frac{407.60373^{2}+400^{2}-730.951}{2 \cdot 407.60373 \cdot 400}$ $=129.6674^{\circ}=130^{\circ}$ (nearest degree)
(ii)

$$
\theta=129.6674^{\circ}-70^{\circ}=60^{\circ} \text { (ncarest degrec) }
$$ Ground


$\triangle O Q R \cong \triangle O Q S$ (SSS
$\Rightarrow$ Beaning $=360^{\circ}-70^{\circ} \quad 130^{\circ}=160^{\circ}\left(S 20^{\circ} \mathrm{E}\right)$

14B. 14 HKCEE MA 1995-I- 15
(a) In $\triangle O A A^{\prime} . O A^{\prime}=-\frac{2}{-m}=2 \sqrt{3}(\mathrm{~m}) \quad(3.46 \mathrm{~m}, 3 \mathrm{s.f})$ In $\triangle O B B^{\prime}, O B^{\prime}=\frac{2+0.6}{\tan 30^{0}}=2.6 \sqrt{3}$
$\Rightarrow A^{\prime} B^{\prime}=2.6 \sqrt{3}-2 \sqrt{3}=0.6 \sqrt{3}(\mathrm{~m}) \quad(1.04 \mathrm{~m} .3$ s.f. $)$
(b) In $\triangle A B C, \angle B A C=\cos ^{-1} \frac{0.6^{2}+0.7^{2}-0.8^{2}}{2.0 .07}$

$$
\begin{gather*}
=75.52249^{\circ}=75.5^{\circ}(3 \text { s.f. }) \\
O D=A C \sin \angle B A C=0.67777=0.678(\mathrm{~m}, 3 \text { s.f } \tag{c}
\end{gather*}
$$



As the hei ghtof $\triangle A^{\prime} B^{\prime} C^{\prime}$ with $A^{\prime} B^{\prime}$ as base is also $O D$.

Area of shadow $=\frac{A^{\prime} B^{\prime} \cdot O D}{2}=0.352 \mathrm{~m}^{2}$ (3 s.f.)
(d) (i) Let the angle of elevation be $\theta$.
$\because A^{\prime} B^{\prime}=\frac{0.6}{\tan \theta}$
$\therefore \theta<30^{\circ} \Rightarrow \tan \theta<\tan 30^{\circ} \Rightarrow \frac{0.6}{\tan \theta}>\frac{0.6}{}$
Thus, $A^{\prime} B^{\prime}$ will become longer
(ii) Sinee the area of the shadow is $A^{\prime} B^{\prime} \cdot O D$, when th angle of elevation is smaller. $A^{\prime} B^{\prime}$ is longer while $O D$
is unchanged, the area of the shadow is larger.

## 14B. 15 HKCEE MA 1996-T- 15

(a) In $\triangle O B C, B C=1000 \cos 60^{\circ}=500(\mathrm{~m})$

In $\triangle O B C, B C=1000 \cos 60^{\circ}=500(\mathrm{~m})$
In $\triangle B C C^{\prime}, C C^{\prime}=500 \sin 30^{\circ}=250(\mathrm{~m})$
(b) $0 O^{\prime}=C C^{\prime}=250 \mathrm{~m}$

In $\triangle O O^{\prime} B$, Required $\angle=\angle O B O^{\prime}$

$$
\begin{aligned}
& =\sin ^{-\mathrm{t}} \frac{250}{10.00} \\
& =14.4775^{\circ}=14.5^{\circ} \text { (3 s.f.) }
\end{aligned}
$$

(c) Method 1 to fiod $O^{\prime} A$

Denote the foot of perpendicular from $D$ to the horizontal ground by $D^{\prime}$.
In $\triangle O O^{\prime} B$.
$O^{\prime} B=\sqrt{1000^{2}-250^{2}}$
$=\sqrt{937500}(\mathrm{~m})$
In $\triangle B C C^{\prime}$.
$B C^{\prime}=500 \cos 30^{\circ}$

$\therefore \operatorname{In} \triangle O^{\prime} B C^{\prime}, O^{\prime} C^{\prime}=\sqrt{O^{\prime} B^{2} \quad B C^{2}}=\sqrt{750000}(\mathrm{~m})$
In $\triangle A O^{\prime} D^{\prime}, \quad A D^{\prime}=B C^{\prime}=250 \sqrt{3}(\mathrm{~m})$
$D^{\prime} O^{\prime}=A B-\sigma^{\prime} C^{\prime}=(2000-\sqrt{750000}) \mathrm{m}$ $D^{\prime} O^{\prime}=A B-O C=\sqrt{A D^{\prime 2}+D^{\prime} O^{\prime}}$
$4000-\sqrt{750000}$ $=\sqrt{4937500 \quad 4000 \sqrt{750000}} \mathrm{~m}$
Method 2 to find $O^{\prime} A$
In $\triangle O O^{\prime} B, O^{\prime} B=\sqrt{1000^{2} \quad 250^{2}}=\sqrt{937500}(\mathrm{~m})$ $O^{\prime} C^{\prime} O C=1000 \sin 60^{\circ}=500 \sqrt{3}(\mathrm{~m})$
$\therefore \cos \angle O^{\prime} B A=\sin \angle O^{\prime} B C=\frac{O^{\prime} C}{O^{\prime} B}=-\frac{500 \sqrt{3}}{\sqrt{937500}}\left(=\sqrt{\frac{4}{5}}\right)$
In $\triangle O^{\prime} A B$,
$O^{\prime} A=\sqrt{2000^{2}+937500}-\overline{2 \cdot 2000} \cdot \sqrt{937500} \cos \angle O^{\prime} B A$
$=\sqrt{4937500-4000 \sqrt{937500} \sqrt{\frac{4}{5}}}$
$=\sqrt{4937500-4000 \sqrt{750000}}$
Hence., $\operatorname{In} \triangle A O^{\prime} T$,
$=\sqrt{4937500} 4000 \sqrt{750000}+(250+50)^{2}$
$=1250.3593=1250(\mathrm{~m}, 3 \mathrm{~s} . \mathrm{f}$ )
(d) Time for RII $=\frac{1000}{0.3}+60=3393$ (s)

Time for Rt $I=\frac{2000}{0.8}+\frac{1250.3593}{3.2}=2891(\mathrm{~s})<3393$ ( s$)$
$\therefore$ Route II takes a shorter time

## 14B. 16 HKCEEMA 1998-I- 17

(The sun shining from $\mathrm{N} 50^{\circ} \mathrm{W}$ is indicated in the diagram by $\angle C F D=40^{\circ}$.)

(a) In $\triangle A C F, A F=4 \sin 72^{\circ}=3.80423=3.80(\mathrm{~m}, 3 \mathrm{~s}$. . $)$ In $\triangle A D F, F D=\frac{A F}{m 035^{\circ}}=5.43300=5.43(\mathrm{~m}, 3$ s.f. $)$
(b)


Height of $\triangle D B C$ with $B C$ as base $=F D \sin 40^{\circ}$
$\therefore$ Area of shadow $=\frac{B C \cdot\left(F D \sin 40^{\circ}\right)}{2}=10.5\left(\mathrm{~m}^{2}, 3 \mathrm{~s} . \mathrm{f}.\right)$
(c) Arca of shadow $-\frac{B C \cdot F D \sin \left(90^{\circ} \quad x^{\circ}\right)}{2}=\frac{B C \cdot F D}{2} \cos x^{\circ}$ Since $F D$ only depends on the $\angle$ of elevation (recall that $F D=\frac{A F}{\tan (\angle \text { of elvn })}$.
$50<x<90 \Rightarrow \cos 50^{\circ}>\cos x^{\circ}>\cos 90^{\circ}$
Hence the area becomes smaller

## 14B. 17 HKCEE MA 1999-1-18

## $D=D E=E F=F C=6 \mathrm{~cm}$

(a) Method $\frac{\text { to find } A D}{\text { In } \triangle A B D, A D=\sqrt{24^{2}+6^{2}-2 \cdot 24 \cdot 6 \cos 60^{\circ}}}$ $=\sqrt{468}=21.6(\mathrm{~cm} .3 \mathrm{~s} . \mathrm{f}$.
Method 2 to find $A D$
In $\triangle A B E$ (before folding), $A E=\sqrt{24^{2}}-12^{2}=\sqrt{432}(\mathrm{~cm})$ In $\triangle A D E, A D=\sqrt{432+6^{2}}=\sqrt{468}=21.6(\mathrm{~cm}, 3 \mathrm{sf}$. $)$ Method 1
$\angle B D A=\cos ^{-1} \frac{B D^{2}+A D^{2}-A B^{2}}{2}=106.10211^{\circ}$
$\therefore$ In $\triangle B C D$ (after folding)
$\therefore$ In $\triangle B C D$ (after folding).
$\quad \angle B D C=360^{\circ}-2\left(106.10211^{\circ}\right)=147.79577^{\circ}$

Method 2
Area of $\triangle A B D=\frac{1}{2}(6)(24) \sin 60^{\circ}=36 \sqrt{3}$
Height of $\triangle A B D$ with base $A D=\frac{36 \sqrt{3} \times 2}{A D}=\frac{72}{\sqrt{156}}(\mathrm{~cm})$ $\therefore B C=2 \times \frac{72}{\sqrt{156}}=11.52923=11.5(\mathrm{~cm}, 3 \mathrm{~s} . \mathrm{f}$ )

Method 3
In $\triangle A B D, \frac{\sin \angle B A D}{6} \quad \frac{\sin 60^{\circ}}{A D} \Rightarrow \angle B A D=13.89789^{\circ}$
$\Rightarrow \angle B A C$ (after folidiag) $=2 \angle B A D=27.79577^{\circ}$
$\therefore$ In $\triangle A B C$ (after folding).,
$=11.52923=11.5(\mathrm{~cm}, 3 \mathrm{sf}$. .
(b) Required $\angle=\angle D A E=\tan ^{-1} \frac{D E}{A E}$

$$
\begin{aligned}
& =\tan ^{-1} \frac{A E}{6} \frac{\sqrt{24^{2}} 12^{2}}{2} \\
& =16.10211^{\circ}=161^{\circ}
\end{aligned}
$$

$$
=16.10211^{\circ}=16.1^{\circ}(3 \text { s.f. }) \text { ) }
$$

Note: Normally we peed to look for the line of intersection of the 2 planes to locate the dihedral angle. In his problem,
however, the planes intersect at only a point, and we could however, the planes intersecl at only a point, and we could
only assume that the aeroplane is positioned symmetrically, and that $A E$ is perpendicular to the line of intersection.

(c) $B C N M$ is a rectangle. Suppose $A D$ produced meets $B C$ a $X$ and $A E$ produced meets $M N$ al $Y$ as shown. Then $B M=X Y=C N$.


In $\triangle A B X, A X=\sqrt{A B^{2}-\left(\frac{B C}{2}\right)^{2}}=23.2974 \mathrm{~cm}$
. $\operatorname{In} \triangle A X Y$.
$C N=X Y=A X \sin \angle D A E=6.46 \mathrm{~cm}$ (3 s.f.)
14B. 18 HKCRE MA 2000-1-17
(a) (i) $A D={ }_{\sin 30^{\circ}}=2 h(\mathrm{~m})$
$B D=\frac{h+O A}{\sin 00^{\circ}}=\frac{10+h}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}(10+h)(\mathrm{m})$
(ii) In $\triangle O A B, A B=\sqrt{10^{2}+10^{2}}=\sqrt{200}$ (m) In $\triangle A B D$.
$A B^{2}=A D^{2}+B D^{2} \quad 2 A D \cdot B D \cos 30^{\circ}$
$200=4 h^{2}+\frac{4}{3}(10+h)^{2}-2 \cdot 2 h \cdot \frac{2}{\sqrt{3}}(10+h) \cdot \frac{\sqrt{3}}{2}$
$200=4 h^{2}+\frac{4}{3}\left(100+20 h+h^{2}\right)-40 h \quad 4 / h^{2}$ $0=h^{2} \quad 10 h \quad 50$
$1-10 \pm \sqrt{100+200}$
$=5+5 \sqrt{3}$ or $5 \quad 5 \sqrt{3}$ (rejcetcod)
$=13.66025=13.7(3 \mathrm{sf}$.)
b) (Similar approach as (a))
$A E=\frac{h}{\sin 25^{\circ}}=32.32291(\mathrm{~m})$
$A C=\sqrt{10^{2}+\overline{10^{2}}-2 \cdot 10 \cdot 10 \cos 20^{\circ}}=3.47296(\mathrm{~m})$
$\therefore \frac{\sin \angle A C E}{A E}=\frac{\sin 5^{\circ}}{A C}$
$\angle A C E=54.2^{\circ}$ or $126^{\circ}(3 \mathrm{s.f}$. $)$

4B. 12 HKCEE MA 2001-I-16
(a) Area of $B C D E=\triangle A F G-2 \triangle B C F-\triangle A B$
$5 \sqrt{3}=\frac{(6 \div x)^{2} \sin 60^{\circ}}{2}-x^{2} \sin 60^{\circ}-\frac{(6)^{2} \sin 60^{\circ}}{2}$
$=\frac{\sqrt{3}}{4}\left[(6+x)^{2}-2 x^{2}-6^{2}\right]$
$20=12 x x^{2}$
$0=x^{2}-12 x+20$
$x=10$ (rejected) or 2
(b) (i) In $\triangle A^{\prime} D E, A^{\prime} D=\sqrt{6^{2}+2^{2}-2 \cdot 6 \cdot 2 \cos 40^{\circ}}$ $=4.64919=4.65$ (3 s.t.)
(ii) Let $P$ and $Q$ be the mid-points of $B E$ and $C D$ respectively as shown. By symunetry, $A^{\prime} P \perp B E$
$Q P \perp B E$. Hence, the required angle is $\angle A^{\prime} P Q$.


Let $R$ be the foot of perpendicular from $D E$ to $B E$. Then $P Q=R D=x \sin 60^{\circ}=\sqrt{3}(\mathrm{~cm})$.
In $\triangle A^{\prime} E P, A^{\prime} P=A^{\prime} E \sin 60^{\circ}=3 \sqrt{3}(\mathrm{~cm})$ In $\triangle A^{\prime} D Q, D Q=C D \div 2=2 \mathrm{~cm}$
$\Rightarrow A^{\prime} Q=\sqrt{A^{\prime} D^{2}} \quad D Q^{2}=4.19701 \mathrm{~cm}$
$\therefore$ In $\triangle A^{\prime} P Q . \quad \begin{aligned}\end{aligned}$
(iii)


Height of pyramid $=A^{\prime} P \cos \angle A^{\prime} P Q=3.77061 \mathrm{~cm}$

$$
\text { Area }=\frac{1}{3} \times 5 \sqrt{3} \times 3.7706 \mathrm{~L}=10.9\left(\mathrm{~cm}^{3}\right)
$$

## 14B. 20 HKCEE MA 2002-I - 14

(a) In $\triangle A S T, A T=\frac{h}{\tan 20^{\circ}} ;$ In $\triangle B S T, B T=\frac{h}{\tan 15^{\circ}}$ In $\triangle A B T, \quad \cos 30^{\circ}=\frac{A T^{2}+A B^{2}-B T^{2}}{2 A T \cdot B T}$

$$
\begin{aligned}
\frac{900 \sqrt{3} h}{\tan 20^{\circ}} & =\left(\frac{h}{\tan 20^{\circ}}\right)^{2}+900^{2}-\left(\frac{h}{\tan 15^{\circ}}\right)^{2} \\
0 & =6.37957 h^{2}+4282.8934 h-810000 \\
h & =153.86177 \text { or }-825 \text { (rej) } \\
& =154(3 \mathrm{~s} . \mathrm{f})
\end{aligned}
$$

(b) (i) The shortest distance occurs when $T E \perp A B$ and thus $S \in \perp B$.


Method 1
(n $\triangle A E T, E T=A T \sin 30^{\circ}=211.3659(\mathrm{~m})$ in $\triangle E S T, S E=\sqrt{S T^{2}+E T^{2}}=261.436$ $=261(\mathrm{~m}, 3 \mathrm{~s} . \mathrm{f})$
Method 2
In $\triangle A S T . S A=\begin{gathered}h \\ \sin 20^{\circ}\end{gathered}=449.86172 \mathrm{~m}$
In $\triangle B S T, S B=\frac{h}{\sin } 150=594.47623 \mathrm{~m}$
in $\triangle A B S, \angle S A B \quad \cos ^{-1} \frac{S A^{2}+A B^{2}-S B^{2}}{2 S A \cdot A B}$
$\begin{aligned} \text { In } \triangle S A E, S E & =35 A \sin \angle S A B=261 \mathrm{~m}(3 . \mathrm{s} . \mathrm{f})\end{aligned}$ Method 3
n $\triangle A S T$. $S A=\frac{h}{\sin 20^{\circ}}=449.86172 \mathrm{~m}$ In $\triangle B S T, S B=\frac{h}{\sin 15^{\circ}}=594.47623 \mathrm{~m}$
In $\triangle A B S$, let $s=\frac{S A+S B+900}{2}=972.1690 \mathrm{~m}$.
$\Rightarrow$ Area $=\sqrt{s(s} S K)(s, S B)(s-900)$
$\begin{aligned} \text { Area } & =117646.36\left(\mathrm{~m}^{2}\right) \\ & =12(2)\end{aligned}$
$S E=\frac{A r c a \times 2}{A B}=261 \mathrm{~m}(3 \mathrm{sef})$
(ii) At $E$ as in (b)(a). $\angle S E T=\tan ^{-1} \frac{S T}{E T}=36.1^{\circ}$.
$\therefore$ From $A$ to $B, \theta$ increases from $20^{\circ}$ at $A$ to $36.1^{\circ}$ at is the 'line of greatest slope').

14B. 21 HKCEEMA 2003-I-14
(a) In $\triangle O A C, \angle O A C=\cos ^{-1} \frac{3^{2}+6^{2}-4^{2}}{2 \cdot 3 \cdot 6}$
(b) (i) In $\triangle O B C$, $=3$ In $\triangle B C D . C D=\frac{B C}{\operatorname{man} 30^{\circ}}=5.81345=5.81(\mathrm{~m} .3 \mathrm{~s}$.f $)$
(ii) In $\triangle A C D, \angle C A D=\cos ^{-1} \frac{6^{2}+8^{2}-C D^{2}}{2.6 .8}$

$$
=46.39976^{2 \cdot 6 \cdot 8}=46.4^{\circ}(3 \text { s.f. })
$$

(iii) In $\triangle A C E$. $\frac{C E}{\sin \angle O A C}=46.39976^{\circ}=46.4^{\circ}$ (3 s.f.)
in $\triangle A D E, \frac{D E}{\sin (\angle C A D-\angle O A C)}-\frac{8}{\sin \left(180^{\circ}-\theta\right)}$
$\begin{aligned} \Rightarrow D E & =\frac{1.3994}{\sin \theta} \\ C E+E D & =C D\end{aligned}$
$\Rightarrow \frac{3.55512}{\sin \theta}+\frac{1.39794}{\sin \theta}=5.81345$
$\begin{aligned} \frac{\sin \theta}{\sin } & =5.81345 \\ \frac{4.95306}{\sin \theta} & =5.81345\end{aligned}$
$\begin{aligned} \theta & =5.81345 \\ \theta & =58.4 \text { or } 121.6^{\circ}(\text { rejected })\end{aligned}$

14B. 22 HKCEE MA 2004-I- 17
(a) (i) In $\triangle E F F^{\prime}, F F^{\prime}=20 \sin 30^{\circ}=10(\mathrm{~m})$

$$
E F^{\prime}=\frac{10}{\tan 30^{\circ}}=10 \sqrt{3}(\mathrm{~m})
$$

In $\triangle A F F^{\prime}, A F^{\prime} \frac{10}{\tan 60^{\circ}}=\frac{10}{\sqrt{3}}(\mathrm{~m})$
In $\triangle A E F^{\prime}, A E=\sqrt{A \overline{F^{2}}+E F^{\prime 2}}$

$$
=\sqrt{\frac{1000}{3}}=18.3(\mathrm{~m} .3 \mathrm{s.f.})
$$

(ii) In $\triangle A F F^{\prime}, A F=\frac{F F^{\prime}}{\sin 6 \theta^{\circ}}=\frac{20}{\sqrt{3}} \mathrm{~m}$

$$
\text { In } \begin{aligned}
& \triangle A E F, \angle A E F=\cos ^{-1} \frac{A E^{2}}{\frac{2}{2}+E F^{2} A F^{2}} \\
&=\cos ^{-1} \frac{1000}{3}+400 \cdot E F \\
& 2 \cdot \sqrt{\frac{1000}{3}} \cdot 20 \\
& 3
\end{aligned}
$$

(b) In $\triangle B E F, \angle B E F=180^{\circ}-34.75634^{\circ}=145.24366^{\circ}$ $\angle F B E=34.75634^{\circ}-20^{\circ}=14.75634^{\circ}$
$\frac{20}{\sin 14.75634^{\circ}}=\frac{B E}{\sin 20^{\circ}}=\frac{B F}{\sin 145.24366^{\circ}}$
$\overline{\sin 14.75634^{\circ}}=\frac{\sin 20^{\circ}}{\sin 145.24366^{\circ}}$
$\Rightarrow B E=26.85576 \mathrm{~m}, B F=44.76385 \mathrm{~m}$
$\Rightarrow B E=26.85576 \mathrm{~m}, B F=44.76385 \mathrm{~m}$
$\therefore$ Time red car takes $=B E \div 2=13.4 \mathrm{~s}$
Time yellow car takcs $=B F \div 3=14.9 \mathrm{~s}>13.4 \mathrm{~s}$ $\therefore$ NO.

## 14B. 23 HKCEE MA 2005-I - 14

(a) In $\triangle B C E, B E=120 \sin 30^{\circ}=60(\mathrm{~cm})$
$=104(\mathrm{~cm}, 3$ s.f. $)$ $\ln \triangle A B C, \angle C=180^{\circ}-80^{\circ}-60^{\circ}=40^{\circ}$
$\therefore \frac{10^{\circ}}{\sin 60^{\circ}}=\frac{A B}{\sin 40^{\circ}}=\frac{A C}{\sin 80^{\circ}}$
$\Rightarrow \begin{gathered}A B=89.0673=89.1(\mathrm{~cm}, 3 \text { s.f. }) \\ A C=136.450=136(\mathrm{~cm}\end{gathered}$ $A C=136.4590=136(\mathrm{~cm}, 3$ s.f. $)$
(c) In $\triangle A C D, C D=\sqrt{A C^{2}-A D^{2}}=92.8496 \mathrm{~cm}$ In $A B E D$, tet $P$ be on $A D$ such that $B P \perp A D$.

$D E=P B=\sqrt{A B^{2}-(A D-B E)^{2}}=79.5800 \mathrm{~cm}$ $\therefore$ in $\triangle C D E, \angle C D E=\cos ^{-1} \frac{C D^{2}+D E^{2}-C E^{2}}{2 C D D E}$ $=73.674^{\circ}$
C to $D E$
Shorest distance fr
$=C O$ in the figure
$=C D \sin \angle C D E=89.1 \mathrm{~cm}$ (3 s.f.)

14B. 24 HKCEE MA 2006 - $\mathrm{I}-17$
(a) In $\triangle A B C, \cos \angle B A C=\frac{40^{2}+90^{2}-60^{2}}{2 \cdot 40 \cdot 90}=\frac{61}{72}$ In $\triangle A B D, A D=40 \cos \angle B A D=\frac{305}{9}(\mathrm{~cm})$
(b) (i) (l) $D C=90-\frac{305}{9}=\frac{505}{9}$ (cm)

$$
\begin{aligned}
& \text { In } \triangle A C D, \\
& \left(\frac{505}{9}\right)^{2}=\left(\frac{305}{9}\right)^{2}+A C^{0}-2\left(\frac{305}{9}\right)(A C) \cos 62^{\circ} \\
& 0=A C^{2}-31.81974 A C-2000
\end{aligned}
$$

$$
A C=63.37695 \text { or }-31.6 \text { (rejected) }
$$

$$
\begin{array}{r}
63.4 \text { (cm. 3 s.f.). } \\
40+60+63.37695
\end{array}
$$

(2) Let $s=\frac{40+60+63.37695}{2}=81.6885(\mathrm{~cm})$ Area of $\triangle A B C=\sqrt{2} \sqrt{s(s}-40)(s-60)(s-63.37695)$ $=1162.961=1160\left(\mathrm{~cm}^{2}, 3 \mathrm{s.f}.\right)$
(3) For tetrahedron $A B C D$, no when $\triangle A C D$ is is basc. Area of $\triangle A C D=\frac{A D \cdot A C \sin 62^{\circ}}{2}=948.186 \mathrm{~cm}^{2}$
Required height $=\frac{3 \times \text { Volume } \propto A B C D}{\text { Area of } \triangle A B C}$ $=\frac{\begin{array}{c}\text { Area of of } \triangle A C D \times B C \\ \text { Area of } \triangle A B C\end{array}}{\text { A }}$ $=\frac{948.186 \times \sqrt{40^{2}}\left(\frac{305}{y}\right)^{2}}{1162.961}$ $=17.3(\mathrm{~cm}, 3 \mathrm{s.f}$. $)$
(ii) Volume of $\begin{aligned} A B C D & =\frac{1}{3}(\text { Arca of } \triangle A C D)(B D) \\ & =\frac{1}{3} A D \cdot D C \cdot B D \sin \angle A D C\end{aligned}$
$\therefore$ Volume of $A B C D \propto \sin \angle A D C$
Thus, when $\angle A D C$ increases from $30^{\circ}$ to $150^{\circ}$, the volume increases from $\frac{1}{3} A D \cdot D C \cdot B D \cdot \frac{1}{2}=6734 \mathrm{~cm}^{3}$ to $\frac{1}{3} A D \cdot D C \cdot B D \cdot 1=13469 \mathrm{~cm}^{3}$ when $\angle A D C=90^{\circ}$, and then decreases back to $6734 \mathrm{~cm}^{3}$.

14B. 25 HKCEEMA 2007-I- 16
(a) Lot $s=\frac{5+6+9}{2}=10(\mathrm{~cm})$

Area of $\triangle A \frac{2}{B} C=\sqrt{s(s-5)(s-6)(s-9)}$

$$
\begin{aligned}
= & \sqrt{s(s-5)(s-6)(s-9)} \\
& =\sqrt{200}=14.1\left(\mathrm{~cm}^{2}, 3\right. \text { s.f. }
\end{aligned}
$$

Volume of souvenir
$=$ Volume of prism + Volume of pyramid
$=\sqrt{200} \times 20+\frac{1}{3} \times \sqrt{200} \times(23-20)$
$=21 \sqrt{200}=297\left(\mathrm{~cm}^{3} .3\right.$ s.f. $)$
(b) Let $P$ be the point on $C D$ such that plane $P E F$ is parallel to plane $A B C$ as shown. $D P=3 \mathrm{~cm}, E F=A B=9 \mathrm{~cm}$.
$F P=B C=5 \mathrm{~cm}, E P=A C=6 \mathrm{~cm}$
In $\triangle D F P, D F=\sqrt{3^{2}+5^{2}}=\sqrt{34}(\mathrm{~cm}$
In $\triangle D E P, D E=\sqrt{3^{2}+6^{2}}=\sqrt{45}(\mathrm{~cm}$
In $\triangle D E P, D E=\sqrt{3^{2}+6^{2}}=\sqrt{45}(\mathrm{~cm})$
$\therefore$ In $\triangle D E F, \angle D F E=\cos ^{-1} \frac{D F^{2}+E F^{2}-D E^{2}}{2 D F} . E F$
$=48.16875^{2} \stackrel{D F \cdot E F}{=48} 2^{\circ}(3$ sf)
Required distance $=D F \sin \angle D F E=4.3447$
(c) Arca of metal planc $=4 \times 5=20\left(\mathrm{~cm}^{2}\right)$ Arca of $\triangle D E F=\frac{4.3447 \times 9}{2}=19.6<20\left(\mathrm{~cm}^{2}\right)$ $\therefore$ No.

## 14B. 26 HKCEE MA $2008-\mathrm{T}-15$

(a) In $\triangle B D H, \angle B H D=50^{\circ}-35^{\circ}=15^{\circ}$
$\frac{B H}{\sin 130^{\circ}}=\frac{50}{\sin 15^{\circ}} \Rightarrow B H=147.98842=148(\mathrm{~m} .3 \mathrm{~s}$ f. $)$
(b) (i) In $\triangle B C H, \angle C B H=\cos ^{-1} \frac{B C^{2}+B H^{2}-C H^{2}}{2 B C \cdot B H}$
$=37.81747^{\circ}=37.8^{\circ}(3 \mathrm{~s}$.
(ii) In $\triangle A B H, A H=B H \sin 35^{\circ}=84.88257 \mathrm{~m}$ Let $P$ be on $B C$ such that $A P \perp B C$. Then $A P \perp B C$.


In $\triangle B H P, H P=B H \sin \angle C B H=90.73880 \mathrm{~m}$ In $\triangle A H P$. Required $\angle=\angle H P A=\sin \cdot \frac{A H}{\overline{H P}}$ $=69.3^{\circ}(3 \mathrm{~s} . \mathrm{f})$
(iii) As the largest possible $\angle$ of elevation is $69.3^{\circ}<75^{\circ}$ it is impossible.

14B. 27 HKCEE MA 2009-I- 17
(a) (i) In $\triangle B C D, C D=\sqrt{6^{2}+25^{2}-2 \cdot 6 \cdot 25 \cos 57^{\circ}}$
(ii) In $\triangle A B C, \frac{\sin \angle B A C}{25}=\frac{\sin 57^{\circ}}{28} \quad \begin{aligned} \angle B A C & =48.48766^{\circ} \text { or } 131.5^{\circ} \text { (rej.) }\end{aligned}$
$\begin{aligned} \angle B A C & =48.48766^{\circ} \text { or } \\ & =48.5^{\circ}(3 \text { s.f. })\end{aligned}$
(iii) In $\triangle A B C, \angle A C B=180^{\circ}-48.48766^{\circ}-57^{\circ}$ $=74.51234^{\circ}$
Area of $\triangle A B C=\frac{1}{2} A C \cdot B C \sin 74.51234^{\circ}$
$=337.29079=337\left(\mathrm{~cm}^{2}, 3\right.$ s. f )
(iv) Since $\triangle C D E \perp \triangle A B E$, we have $C E \perp \triangle A B E$. In $\triangle B C E, C E=\sqrt{B C^{2}} \quad B E^{2}=7 \mathrm{~cm}$ In $\triangle A C E$. $\frac{C E=\sqrt{A E}=\sqrt{A C^{2}}-C E^{2}=\sqrt{735}}{} \mathrm{~cm}$ In $\triangle A B C, \frac{A B}{\sin 74.51234^{\circ}}=\frac{28}{57^{\circ}}$
$A B=32.17385(\mathrm{~cm})$
$=41.64237 \mathrm{~cm}$
Area of $\triangle A B E=\sqrt{s(s \quad A B)(s-A E)(s-B E)}$
$=317.9377\left(\mathrm{~cm}^{2}\right)$
$\therefore$ Required dist $=\frac{\text { Area of } \triangle A B C}{}$

$$
\begin{aligned}
& \text { Area of } \triangle A B C C \\
&= \text { Arca of } \triangle A B E \times C E
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Area of } \triangle A B C \\
= \\
= \\
337.29079 \times 7
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 317.9377 \\
& =6.59835=6.60(\mathrm{~cm}, 3 \text { s.f. })
\end{aligned}
$$

(b) Method $I$-Finding the angles explicitly

In $\triangle C D E, \angle C D E=\sin +\frac{C E}{C D}=18.29^{\circ}$
Denoting the distance from $E$ to the ground (i.e. that found in (a)(iv)) by $h \mathrm{~cm}$ and the angle between $C E$ and the ground be $\theta$.
$\theta=\sin ^{1} \frac{h}{D E}=18.15^{\circ} \neq 18.29^{\circ}$

## Method 2 -Considering the projection of $E$

(If the student is correct, the projection of $E$ on the ground
ould lie on CD.)
et $F$ be the projection of $E$ onto $C D$.
$E F=\frac{2 \times \text { Area of } \triangle C D E}{C D}$
$\underline{C E \times D E}$

$$
=\frac{7 \times \frac{\sqrt{2} 2.30714^{2}-7^{2}}{22.30714}}{}=6.65 \neq 6.60(\mathrm{~cm})
$$

Hence, the projectionrof $E$ onto the ground is not on $C D$, and thus the angle between $D E$ and the ground is not the angle between $D E$ and $D C$, i.e. $\angle C D E$. The student is disagreed.


Remark: This diagram is for illustration only. In the real suation the $" / l^{n}$ is behind $\triangle C D E$ and would be too real o visualise in the given diagram. But the key point is the same, that the dashed " $l$ " is different from $E F$ - in fact, $h$ $s$ shorter than $E F$ since it is the shortest distance from $E$ to the ground.)

## 14B28 HKCEE MA 2010-I-15

(a) In $\triangle A B C, \angle C A B=146^{\circ}=2=73^{\circ}$
$\angle A C B=180^{\circ}-73^{\circ}-59^{\circ}=48^{\circ}$
$\frac{A B}{\sin 48^{\circ}}=\frac{24}{\sin 73^{\circ}} \Rightarrow A B=18.65041=18.7$ (cm. 3 sf.)
(b) (i) In $\triangle A B D, B D=\sqrt{A B^{2}+A B^{2}-2 \cdot A B \cdot A B \cos 92^{\circ}}$ $=26.83196=26.8(\mathrm{~cm}, 3$ s.f. $)$
(ii) Let the diagonals of the lite intorsect at $E$. Then $D E,\llcorner A C$ and $B E \perp A C$.


In $\triangle B C E, B E=B C \sin \angle B C E=17.83548(\mathrm{~cm})$ $D E=B E=17.83548 \mathrm{~cm}$
In $\triangle B D E$, Required $\angle=\angle B E D$

$$
\begin{aligned}
& =\cos ^{-1} \frac{B E^{2}+D E^{2}-B D^{2}}{2 B E \cdot D E} \\
& =97.6^{\circ}(3 \text { s.f. })
\end{aligned}
$$

(iii) In $\triangle B C D, \angle B C D=\cos 1 \frac{B C^{2}+C D^{2}-B D^{2}}{2 B C \cdot C D}$ $=68.0^{\circ}$
As $P$ moves from $A$ to $E, \angle B P D$ increases from $92^{\circ}$ to $97.6^{\circ}$. As $P$ moves from $E$ to $C, \angle B P D$ decreases to $97.6^{\circ}$. As $P$ moves
from $97.6^{\circ}$ to $68.0^{\circ}$.

14B. 29 HKCEE MA 2011-I-17
(a) (i) In $\triangle A B C, B C=\sqrt{20^{2}+30^{2}}-2 \cdot 20 \cdot 30 \cos 56^{\circ}$
$25.07924=25.1(\mathrm{~cm}, 3$
(ii) $\angle A C B-\cos \frac{15.07924^{2}+30^{2}-20^{2}}{2 \cdot 25.07924 \cdot 30}$

(iii) $\begin{aligned} \text { Required distance } & =A C \sin \angle A C B-4 \\ & =15.83403=15.8(\mathrm{~cm}, 3 \text {.s.f. })\end{aligned}$
(iv) $\frac{D E}{B C}=\frac{\perp \text { dist from } A \text { to } D E}{\perp \text { dist from } A \text { to } B C}$
$D E=\frac{15.83403}{15.83403+4} \cdot 25.07924$
$\begin{aligned} D E & =\frac{1}{15.83403+4} \cdot 25.07924 \\ & =20.02142=20.0(\mathrm{~cm}, 3 \text { s.f. }\end{aligned}$
(b) (i) Let $H$ be the point on $D E$ such that $A B \perp D E$ and $P H \perp D E$.

$A H=15.83403 \mathrm{~cm}$
$P H=\frac{2 \times \text { Area of } \triangle P D E}{D E}=11.98716 \mathrm{~cm}$
$\therefore$ Required $\angle=\angle A H P$

$$
\left.=\cos ^{1} \frac{P H}{A H}=40.8^{\circ} \text { (3 s.f. }\right)
$$

(ii) $\begin{aligned} \text { Required distance } & =A P \\ & =\sqrt{A} H^{2-P H^{2}}=10.3 \mathrm{~cm}(3 \text { s.f. })\end{aligned}$

## 14B. 30 HKCEE AM 1981- $\pi-10$

(a) In $\triangle B E F, \angle E B F=60^{\circ}$
$\begin{aligned} F E^{2} & =k^{2}+(r k)^{2}-2 \cdot k \cdot r k \cos 60^{\circ} \\ & =k^{2}+r^{2} k^{2}-r k^{2}=\left(1-r+r^{2}\right) k^{2}\end{aligned}$
$F G^{2}=\left(\frac{1}{2} F H\right)^{2}=\frac{1}{4}\left(H A^{2}+F A^{2}\right)$

$$
=\frac{1}{4}\left[2 \times(k-r k)^{2}\right]=\frac{(1-r)^{2} k^{2}}{2}
$$

(b) In $\triangle E F G, E G=\sqrt{F E^{2}-F C^{2}}$

$$
\begin{aligned}
& =\sqrt{F E^{2}-F C^{2}} \\
& =\sqrt{\left(1-r+r^{2}\right) k^{2}-\frac{1-2 r}{2}+r^{2}-k^{2}} \\
& =\sqrt{\frac{1+r^{2}}{2} k}
\end{aligned}
$$

In $\triangle A C D, A C^{2}=A D^{2}+D C^{2}=2 k^{2}$
$A N^{2}=\frac{1}{2^{2}}\left(2 k^{2}\right)=\frac{1}{2} k^{2}$
In $\triangle A E N, E N=\sqrt{A E^{2}-A N^{2}}=\sqrt{k^{2}-\frac{1}{2} k^{2}}=\frac{1}{\sqrt{2}} k$
$\therefore \sin \theta=\frac{E N}{E G}=\frac{\frac{1}{\sqrt{2}} k}{\frac{\sqrt{1+r^{2}} k}{\sqrt{2}} k}=\frac{1}{\sqrt{1+r^{2}}}$
(c) The inclination is $\theta$.
$0<r<1 \Rightarrow 1<1+r^{2}<\frac{2}{1}$
$\Rightarrow 1>\sin \theta>\frac{1}{\sqrt{2}} \Rightarrow 90^{\circ}>\theta>45^{\circ}$
Hence, when $r$ varies from 0 to 1 , the inclination decreases from $90^{\circ}$ to $45^{\circ}$.

## 14B. 31 HKCEE AM 1983- $\pi-8$

## $\angle C B F=\angle C F B=\theta$

(a) $\ln \triangle B C F, B F=2 \times B C \cos \theta=2 a \cos \theta$

In $\triangle F M N, M F=x \cos \theta$
$\therefore$ In $\triangle A B M, A M=\sqrt{A B^{2}+B M^{2}}$
$\begin{aligned} & =\sqrt{ } a^{2}(2 a \cos \theta-x \cos \theta)^{2} \\ & =\sqrt{a^{2}+(2 a-x)^{2} \cos ^{2} \theta}\end{aligned}$
(b) In $\triangle A B F, A F=\sqrt{A B^{2}+B F^{2}}$
$\begin{aligned} &=\sqrt{a^{2}+(2 a \cos \theta)^{2}}=\sqrt{\left(1+4 \cos ^{2} \theta\right) a^{2}} \\ &=\sqrt{A F^{2}-N F^{2}}\end{aligned}$
$\begin{aligned} \therefore \text { In } \triangle A N F, A N & =\sqrt{A F^{2}-N F^{2}} \\ & =\sqrt{\left(1+4 \cos ^{2} \theta\right) a^{2}-x^{2}}\end{aligned}$
(c) In $\triangle F M N, N M=x \sin \theta$

In $\triangle A M N, \quad A N^{2}=A M^{2}+N M^{2}$
$\left(1+4 \cos ^{2} \theta\right) a^{2}-x^{2}=a^{2}+(2 a-x)^{2} \cos ^{2} \theta+x^{2} \sin ^{2} \theta$
$\left(1+4 \cos ^{2} \theta\right) a^{2}-x^{2}=a^{2}+(2 a-x)^{2} \cos ^{2} \theta+x^{2} \sin ^{2}$
$\left(1+\cos ^{2} \theta\right) a^{2}-x^{2}=a^{2}+4 a^{2} \cos ^{2} \theta-4 a x \cos ^{2} \theta$
$\begin{aligned} &+x^{2} \cos ^{2} \theta+x^{2} \sin ^{2} \theta \\ & 4 a x \cos ^{2} \theta=x^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+x^{2}\end{aligned}$
$\begin{aligned} & \\ & 4 a x \cos ^{2} \theta=2 x^{2} \Rightarrow x=2 a \cos ^{2} \theta\end{aligned}$
(d) $\frac{a}{2}=2 a \cos ^{2} \theta \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
$N M=x \sin \theta=\frac{\sqrt{3}}{4} a$
$N M=x \sin \theta=\frac{\sqrt{4} a}{a}=\sqrt{a^{2}+(2 a-x)^{2}} \cos ^{2} \theta=\sqrt{a^{2}+\frac{9 a^{2}}{4} \frac{1}{4}}=\frac{5}{4} a$
$\therefore$ Inclination $=\angle N A M=\tan { }^{\prime} \frac{N M}{A M}=19^{\circ}($ nrst deg $)$

14B. 32 HKCEE AM 1991-II-6
(a) Let $M$ and $N$ be the mid-points of $A B$ and $C D$ respectively. Then $P M \perp A B$ and $P N \perp C D$.
In $\triangle A P M, P M=A M \tan 60^{\circ}=2 \sqrt{3} \mathrm{~cm}$
In $\triangle M N$,
Required $\angle=\angle P M N$

$$
\begin{aligned}
& =\cos ^{-1} \frac{M N}{P M} \\
& =\cos ^{-1} \frac{2}{2 \sqrt{3}} \\
& =54.7^{\circ} \\
& \quad \text { (nearest } 0.1^{\circ} \text { ) }
\end{aligned}
$$


(b) Let $K$ be on $P A$ such that $D K . \perp P A$. Then $B K \perp \perp P A$.

In $\triangle A B D$,
$B D=\sqrt{4^{2}+4^{2}}$
$\begin{aligned} &=\sqrt{32}(\mathrm{~cm}) \\ & \\ & \triangle A D K,\end{aligned}$
in $\triangle A D K$,
$\begin{aligned} D K & =4 \sin 60^{\circ} \\ & =2 \sqrt{3}(\mathrm{~cm})\end{aligned}$
imiarly, $B K=2 \sqrt{3} \mathrm{~cm}$
In $\triangle B D K$,
Required $\angle=\angle B K D$

$=\cos ^{-1} \frac{(2 \sqrt{3})^{2}+(2 \sqrt{3})^{2} \quad 32}{2 \cdot 2 \sqrt{3} \cdot 2 \sqrt{3}}$
$=109.5^{\circ} \underset{\text { (nearest } 0.1^{\circ} \text { ) }}{2 \cdot 2 \sqrt{3}}$

## 14B. 33 HKCEE AM 1992-II-

(a) Let $H$ be the projection of $V$ onlo $A B C D$.
$B H=\frac{1}{2} B D$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{6^{2}+6^{2}} \\
& =3 \sqrt{2}(\mathrm{~cm})
\end{aligned}
$$

Required $\angle=\angle V B H$
$\qquad$
$=61$. nearest $^{\circ} 0.1^{\circ}$ )


14B.36 HKCEE AM 1995-II-7
(a) $\angle P Q U=\left(180^{\circ}-42^{\circ}\right) \div 2=69^{\circ} 0(\mathrm{~cm} .3 \mathrm{~s} . \mathrm{F})$.
$P Q=10 \sin 60^{\circ}=9.33580=9.34$
$\left.\angle P Q R=180^{\circ}(5) 3\right) \div 5=108^{\circ}$
$\angle P Q R=180^{\circ}(5 \quad 3) \div 5=108^{\circ}$
$P R=\sqrt{10^{2}}+10^{2}-2 \cdot 10 \cdot 10 \cos 108^{\circ}$
$=16.18034=16.2(\mathrm{~cm}, 3$ s.f. $)$
(b) Required $\angle=\angle P U R$

$$
=\cos \frac{P U^{2}+R U^{2}-P R^{2}}{2 P U \cdot R U}=120^{\circ}(3 \text { s.f. })
$$

(b) Let $K$ be on $V A$ such that $B K \perp V A$. Then $D K \perp V A$.
$\angle V A B=\cos ^{-1} \frac{1}{2} A B$
$=70.5288^{\circ}$
$D K=B K=A B \sin \angle V A B$
$=5.6569 \mathrm{~cm}$
Required $\angle$
$=\angle B K D$
cose $2 \cdot 5.6569 \cdot 5.6569$
$=97.2^{\circ}$ (nearest $0.1^{\circ}$ )

14B. 34 HKCEE AM 1993-II-7
(a) $\angle V B A=\cos ^{-1} \frac{\frac{1}{2} A B}{V B}=75.52249^{\circ}=75.5^{\circ}$ (3 s.f.) $A D=A B \sin \angle V B A=11.61895=11.6(\mathrm{~cm}, 3$ s.f. $)$
(b) $D C=A D=11.61895 \mathrm{~cm}$

Required $\angle=\angle A D C$

$$
\begin{aligned}
= & =\angle A D C \\
& =\cos ^{-1} \frac{A D^{2}+D C^{2}-A C^{2}}{2 A D \cdot D C}=62.2^{\circ}(3 \text { s.f. })
\end{aligned}
$$

14B35

$$
\begin{aligned}
& \text { HKCEE AM } 1994-\Pi 1-12 \\
& \text { In } \triangle A B C, \frac{A C}{\frac{\sin \beta}{\beta}}=\frac{100}{\sin \left(180^{\circ}-\alpha \quad \beta\right)} \\
& \qquad A C=\frac{100 \sin \beta}{\sin (\alpha+\beta)}(\mathrm{km})
\end{aligned}
$$

(a) (i)
(ii) In $\triangle A C P, P C=A C \tan \theta=\frac{100 \sin \beta \tan \theta}{\sin (\alpha+\beta)} \mathrm{km}$
(b) (i) $A C=\frac{100 \sin 30^{\circ}}{\sin \left(45^{\circ}+30^{\circ}\right)}$
$=51.76381=51.76(\mathrm{~km}, 2 \mathrm{~d} . \mathrm{p}$.
$A C^{\prime}=\frac{100 \sin 43^{\circ}}{\sin \left(37^{\circ}+43^{\circ}\right)}$
$=69.25193=69.25(\mathrm{~km} .2 \mathrm{~d} . \mathrm{p}$.
(ii) $\angle C A C^{\prime}=45^{\circ} \quad 37^{\circ}=8^{\circ}$ In $\triangle A C C^{\prime}, C C^{\prime}=\sqrt{A C^{2}+A C^{2}}=2 A C \cdot A \overline{A C^{\prime} \cos 8}$
(iii) $P C=\frac{100 \sin 30^{\circ} \tan 20^{\circ}}{\sin \left(45^{\circ}+30^{\circ}\right)}=18.84049(\mathrm{~km})$ $P^{\prime} C=\frac{\frac{\sin \left(45^{\circ}+30^{\circ}\right)}{10 \sin 43^{\circ} \tan 17^{\circ}}}{\sin \left(37^{\circ}+43^{\circ}\right)}=21.17244(\mathrm{~km})$ $\therefore$ Increase in height $=P^{\prime} C^{\prime}-P C$
(iv) Required $\angle=\tan ^{-1} \frac{2.33195}{038059}=6.86^{\circ}(2 \mathrm{~d} . \mathrm{p}$.
148.37 HKCEE AM 1996- 11 - 12

14B37 HKCEEAM $1996-\pi-12$
(a) $A D=A C \sin 30^{\circ}=1, \quad D C=2 \cos 30^{\circ}=\sqrt{3}$
$A B=\frac{A D}{\sin 45^{\circ}}=\sqrt{2}, \quad B D=\frac{A D}{25}=1$
(b) (i) $E$ is the mid-pt of $A B$ (since $\triangle A B D$ is right-angled isosceles).
$\Rightarrow A E=D E=B E=\frac{\sqrt{2}}{2}$
$\therefore \theta=\angle D C E$
$\Rightarrow \sin \theta=\frac{D E}{D C}=\frac{\frac{\sqrt{2}}{2}}{\sqrt{3}}=\frac{\sqrt{6}}{6}$
(ii) $C E=\sqrt{C D^{2}-D E^{2}}=\sqrt{\frac{5}{2}}$ Hence, in $\triangle A C E$, $\angle E A C=\cos ^{-1} \frac{A E^{2}+A C^{2}}{2 A E \cdot A C} \frac{C E^{2}}{}=45^{\circ}$
(ii) In $\triangle A B C, B C=\sqrt{\frac{2 A E \cdot A C}{2^{2}+2-2 \cdot 2 \cdot \sqrt{2} \cos 45^{\circ}}}=\sqrt{2}$ In $\triangle B C D$, since $\angle A D C=\begin{array}{r} \\ \angle A D B= \\ 3+1-0^{\circ}\end{array}$, Required $\angle=\angle C D B=\cos \quad \frac{3+1}{2(\sqrt{3})(1)}$ $=55^{\circ}$ (nearest degree)

14B. 38 HKCEEAM $1997-11-12$
(a) (i) In $\triangle A B C, A C=\sqrt{A B^{2}+B C^{2}-2 A B \cdot B C \cos \angle A B C}$ $=\sqrt{(3 a)^{2}+(2 a)^{2}-2(3 a)(2 a) \cos 120^{\circ}}$ $=\sqrt{9 a^{2}+4 a^{2}+6 a^{2}}=\sqrt{19 a}$
(ii) Required $\angle=\angle H M C$

$$
=\tan ^{-1} \frac{H C}{M C}=25^{\circ} \text { (nearest deg) }
$$

(b) (i) $\begin{aligned} \text { In } \triangle A B D, B D & =\sqrt{M C}(3 a)^{2}+(2 a)^{2}-2(3 a)(2 a) \cos 60^{\circ} \\ & =\sqrt{7 a}\end{aligned}$

Area of $\triangle B C D=\frac{1}{2}(3 a)(2 a) \sin 60^{\circ}=\frac{3 \sqrt{3}}{2} a^{2}$
$\therefore C E=\frac{2 \cdot \text { Area of } \triangle B C D}{B D}=\frac{3 \sqrt{3} a^{2}}{\sqrt{7} a} \quad \frac{3 \sqrt{21}}{7} a$
(ii) In $\triangle B C E, B E^{2}=B C^{2} \quad C E^{2}$ In $\triangle B C H, B H^{2}=B C^{2}+H C^{2}$ In $\triangle C E H, H E^{2}=H C^{2}+C E^{2}$ $\therefore H E^{2}+B E^{2}=\left(H C^{2}+C E^{2}\right)+\left(B C^{2}-C E^{2}\right)$
$=H C^{2}+B C^{2}=B H^{2}$
$\therefore H E \perp B D$
$=H C^{2}+B C^{2}=B H^{2}$

Hence, required $\angle=\angle H E C=\tan { }^{1} \frac{H C}{C E}$ $=27^{\circ}$ (nearest deg)
(c) $X$ is on $A D$ extended such that $C X \perp A X$


In $\triangle A C D$,
$\cos \angle D A C-\frac{(2 a)^{2}+(\sqrt{19} a)^{2}(3 a)^{2}}{2(2 a)(\sqrt{19 a})}=\frac{7}{2 \sqrt{19}}$
$\therefore A X=A C \cos \angle X A C=\sqrt{19} a \cdot \frac{7}{2 \sqrt{19}}=\frac{7}{2} a$
14B. 39 HKCEE AM 1998-प~13
(a) (i) $C M=\frac{1}{2} A C=\frac{\sqrt{2}}{2} a$
(ii) Required $\angle=\angle C M H=\tan ^{-1} \frac{H C}{C M}=55^{\circ}$ (rrst deg)
(b) (i) $F H=\sqrt{2} a, F V=2 a$

In $\triangle F V H, H V=\sqrt{(\sqrt{2} a)^{2}+(2 a)^{2}}=\sqrt{6} a$
$\therefore \sin \angle F V H=\frac{F H}{H W}=\frac{\sqrt{2} a}{\sqrt{6} a}=\frac{\sqrt{3}}{3}$
Let the projection of $F$ on $B V D H$ be $P$.
By symmetry, $F$ lies on $H V$ as shown.

(ii) (1) Since $V B=B D=D V=\sqrt{2} a, \angle D V B=60^{\circ}$.
$\Rightarrow D N=\sqrt{2} a \sin 60^{\circ}=\frac{\sqrt{6}}{2} a$
(2) Method I
$A N=A B \sin 45^{\circ}=\frac{\sqrt{2}}{2}$
$\therefore$ Required $\angle=\angle A N D$

$$
\begin{aligned}
Z & =\angle A N D \\
& =\cos ^{-1} \frac{A N^{2}+D N^{2}-A D^{2}}{2 A N \cdot D N} \\
& =\cos \frac{1 \frac{1}{2} a^{2}+\frac{3}{2} a^{2} a^{2}}{2 \cdot \frac{\sqrt{2}}{2} a \cdot \frac{\sqrt{6}}{2} a} \\
& =55^{\circ} \text { (nearesidegree) }
\end{aligned}
$$

Method 2
In fact, since $A D$ is perpendicular to plane $B V A$, it is perpendicular to any line on plane $B V A$.

$$
\therefore \text { Required } \angle=\angle A N D
$$

$$
=\sin ^{-1} \frac{A D}{D N}=55^{\circ} \text { (nearest deg) }
$$

(iii) $B H D$ and $B V D$ is the same plane, and $A B G F$ and $B V A$ is also the same plane. Hence the required angle is th same one as in (b)(ii)(2). $\therefore$ YES.

14B. 40 HKCEE AM 1999- 1 - 11

$$
\text { (a) } \begin{aligned}
\ln \triangle A B D, \frac{A D}{\sin \left(180^{\circ}-\alpha\right)} & =\frac{\ell}{\sin \left(\alpha-10^{\circ}\right)} \\
A D & =\frac{\ell \sin \alpha}{\sin \left(\alpha-10^{\circ}\right)} \text { (m) }
\end{aligned}
$$

(i) $\ln \triangle A C D, C D=A D \sin 10^{\circ}=\frac{\ell \sin \alpha \sin 10^{\circ}}{\sin \left(\alpha-10^{\circ}\right)} \mathrm{m}$
(ii) In $\triangle A D H, \frac{D H}{\sin \left(\beta-10^{\circ}\right)}=\frac{A D}{\sin (\alpha-\beta)}$
$D H=\frac{f \sin \alpha \sin \left(\beta-10^{\circ}\right)}{\sin \left(\alpha 10^{\circ}\right) \sin (\alpha-\beta)}(\mathrm{m})$
In $\triangle D G H, h=D H \sin \alpha$

$$
\begin{aligned}
& =\frac{D \sin \alpha}{-\frac{R \sin ^{2} \alpha \sin \left(\beta \quad 10^{\circ}\right)}{\sin \left(\alpha-10^{\circ}\right) \sin (\alpha-\beta)}}
\end{aligned}
$$

(b) (i) (1) $H G=\frac{97 \sin ^{2} 15^{\circ} \sin 0.2^{\circ}}{\sin 5^{\circ} \sin 4.8^{\circ}}$

$$
\begin{gathered}
\sin 5^{\circ} \sin 4.8^{\circ} \\
=3.11003=3.2 \text { s.f. })
\end{gathered}
$$

2) Height of tower $=\frac{97 \sin 15^{\circ}}{\sin 5^{\circ}}$
$=288.0527=290(\mathrm{~m}, 2 \mathrm{~s} . \mathrm{f})$
Radius of tower $=D H \cos \alpha$
$=97 \sin 15^{\circ} \sin 02^{\circ} \cos 15^{\circ}$
$=\frac{\sin 5^{\circ} \sin 4.8^{\circ}}{}=11.60678=12$ (m,2 s.f.)
(ii) (1) $P O=B O=\frac{h+C D}{\tan \alpha}$
$\begin{aligned} & \tan \alpha \\ &= 963.476\end{aligned}$
$=960(\mathrm{~m}, 2 \mathrm{~s} . \mathrm{f})$

(2) $\angle O B P=\left(180^{\circ}-45^{\circ}\right) \div 2$
$=67.5$
$\therefore$ Bearing of $B$ from $P$
$=\mathrm{N} 225^{\circ} \mathrm{W}$


14B.41 HKCEE AM 2001-15
(a) (i) $P R^{2}=x^{2}+z^{2}, P Q^{2}=x^{2}+y^{2}, Q R^{2}=y^{2}+z^{2}$
$\cos \angle P R Q=\frac{P R^{2}+Q R^{2}-P Q^{2}}{2 P R \cdot P O}$

$$
=\frac{\left(x^{2}+z^{2}\right)+\left(y^{2}+z^{2}\right)-\left(x^{2}+y^{2}\right)}{2 \sqrt{x^{2}+z^{3}} \sqrt{y^{2}+z^{2}}}
$$

$=\frac{}{\sqrt{\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right)}}$
(ii) $S_{1}=\frac{x z}{2}, S_{2}=\frac{x y}{2}, S_{3}=\frac{y z}{2}$ $\sin \angle P R Q=\sqrt{1-\cos ^{2} \angle P R Q}$
$=\sqrt{1-\frac{z^{4}}{\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right)}}$
$=\sqrt{\frac{x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}+z^{4}-z^{4}}{\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right)}}$
$=\sqrt{\frac{x^{2} y^{2}+x^{2} z^{2} \div y^{2} z^{2}}{\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right)}}$
$\therefore S_{4}=\frac{1}{2} P R \cdot Q R \sin \angle P R Q$
$=\frac{1}{2} \sqrt{x^{2}+z^{2}} \sqrt{y^{2}+z^{2}} \sqrt{\frac{x^{2} y^{2}+x^{2} z^{2}+y^{3} z^{2}}{\left(x^{2}+z^{2}\right)\left(y^{2}+z^{2}\right)}}$
$=\frac{1}{2} \sqrt{x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}}$
$\Rightarrow S_{4}{ }^{2}=\frac{x^{2} y^{2}}{4}+\frac{x^{2} z^{2}}{4}+\frac{y^{2} z^{2}}{4}=S_{2}{ }^{2}+S_{1}{ }^{2}+S_{3}{ }^{2}$
(b) (i) Volume $=\frac{1}{3} \times\left(\frac{4 \times 3}{2}\right) \times 2$
(ii) Height of pyramid with $\triangle G A C$ as base $=\frac{3 \times \text { volume }}{\text { Area of } \triangle G A C}$
$=\frac{3 \times 4}{\sqrt{\left(\frac{4 \times 2}{2}\right)^{2}+\left(\frac{6 \times 3}{2}\right)^{2}+\left(\frac{2 \times 3}{2}\right)^{2}}}=\frac{12}{\sqrt{61}}$
$\therefore$ Required $\angle=\sin \frac{1 \frac{12}{\sqrt{61}}}{A B}=23^{\circ}$ (nearest degree)

14B.42 HKCEE AM 2002-17
(a) Method I to find CF

In $\triangle A C D, \cos \angle A D C=\frac{\frac{1}{2} C D}{A D}=\frac{3}{5}$ (since $\triangle A C D$ is isos.)
$\Rightarrow \sin \angle A D C=\frac{4}{5}$
$\therefore C F=C D \sin A D C=24$
Metiod 2 to find CF
Area of $\triangle A C D=\frac{1}{2} \times 30 \sqrt{25^{2}-(30 \div 2)^{3}}=300$
$\therefore C F=\frac{2 \times \text { Area of } \triangle A C D}{A D}-\frac{2 \times 300}{25}=24$
$\frac{\text { Then... }}{\text { In } \triangle A C F, ~} A F=\sqrt{A C^{2}-C F^{2}}=7$
In $\triangle A B D, \cos \angle B A D=\frac{28^{2}+25^{2} \quad 40^{2}}{2.28 .25}=\frac{-191}{1400}$
In $\triangle A B D, \cos \angle B A D=\frac{2 \cdot 28 \cdot 25}{25}=\frac{}{1400}$
$\therefore$ In $\triangle A B F, B F=\sqrt{28^{2}+7^{2}-2 \cdot 28 \cdot 7 \cos \angle B A D}$
$=886.48=29.77381$
$\therefore$ in $\triangle B C F, \angle B F C=\cos ^{-1} \frac{886.48 \div 24^{2} \quad 40^{2}}{2}$
$=\cos ^{-1} \frac{26}{2 \cdot \sqrt{886.48} \cdot 2}$
$=96^{\circ}$ (nearest degree)
(b) $\frac{\text { Method } 1}{A B^{2}=784}$
$A F^{2}+B F^{2}=935.48 \neq A B^{2}$
$\therefore \angle A F B \neq 90^{\circ}$
Method 2
$\angle A E B=\cos -1 \frac{A F^{2}+B F^{2} \quad A B^{2}}{2 A F \cdot B F}=69^{\circ} \neq 90^{\circ}$
Method 3
$\cos \angle B A D \quad \frac{-191}{4000}<0$
$\Rightarrow \angle B A F>90^{\circ} \Rightarrow \angle A F B<90^{\circ}$
Hence
erpendicular to $A D$.
Thus, $\angle B F C$ is not the dihedral angle.

## 14B. 43 HKCEEAM 2003-18

(a) Let $S$ be on $P Q$ such that $R S \perp P Q$ and $O S \perp P Q$.

Then $\cos \theta=\frac{\alpha S}{R S}$.
$\therefore \frac{\text { Area of } \triangle O P Q}{\text { Area of } \triangle R P Q}$
$=\frac{\frac{1}{2} \cdot O S \cdot P Q}{\frac{1}{1} \cdot R S \cdot P Q}$
$=\frac{1}{\frac{1}{2}} \cdot R S \cdot P$
$=\frac{O S}{R S}$
$=\cos \theta$

(b) (2) Let $D$ be on $A B$ such that $C D \perp A B$ and $E D . L A B$. $C D=\frac{2 \times 12}{6}=4(\mathrm{~m})$
$\angle$ between board and shadow $=\sin ^{-1} \frac{2}{4}=30^{\circ}$ By (a)(i), Area of shadow $=($ Area of board $) \cos 30^{\circ}$ $\begin{aligned} & =12 \cos 30^{\circ}=6 \sqrt{3}\left(\mathrm{~m}^{2}\right)\end{aligned}$
(ia) $\because A C$ is the longest side
$\therefore$ Height of $\triangle A B C$ from $B$ to $A C$ is the shortest Area of shadow $=12 \cos \phi$, where $\phi$ is the angle of inclination of the board 2
Since $\sin \phi=\frac{\text { Height of } \triangle A B C}{}$, is the smallest
(i.e. $\cos \phi$ largest) when $B$ is fastened to the pole.
$B$ fastened will give the largest shadow

14B.44 HKCEE AM $2004-11$
(a) In $\triangle O B C, O C=\sqrt{5^{2}+12^{2}}-13$
$\triangle O A C, A C=\sqrt{3^{2}+13^{2}} \quad 2 \cdot 3 \cdot 13 \cos 12^{\circ}$
$=\sqrt{217}(=14.7,3$ s.f.)
(b) In $\triangle O A B, A B=\sqrt{5^{2}-3^{2}}=4$

In $\triangle A B C$,
Method 1 $A C^{2}=217$
$A B^{2}+B C^{2}=4^{2}+12^{2}=160 \neq A C^{2}$
$\therefore \angle A B C \neq 90^{\circ}$
Method 2 $\angle A B C=\cos ^{-1} \frac{4^{2}+12^{2}-217}{2 \cdot 4 \cdot 12}=126^{\circ} \neq 90^{\circ}$ Hence, the student is not correct.

## 14B.4S HKCEEAM 2006-17

(a) (i) Let $s=\frac{5+6+7}{2}=9$
$\begin{aligned} \text { Area } & =\sqrt{2} \sqrt{s(s)(s \quad 6)(s \quad 7)} \\ & =\sqrt{216}(=14.7,3 \text { s.f. })\end{aligned}$
(ii) Area of $\triangle A B C=\triangle A O B+\triangle B O C+\triangle C O A$

$$
\begin{aligned}
\triangle A B C & =\triangle A O B+\triangle B O C+ \\
\sqrt{216} & =\frac{6 r}{2}+\frac{7 r}{2}+\frac{5 r}{2} \\
r & =\frac{\sqrt{216}}{9}\left(=\frac{2 \sqrt{6}}{3}\right)
\end{aligned}
$$

(b) (i) $V O=r \tan 60^{\circ}=2 \sqrt{2}$
$\therefore$ Volume of $V A B C=\frac{1}{3} \times \sqrt{216} \times 2 \sqrt{2}$

$$
=8 \sqrt{3}(=13.9,3 \mathrm{~s} . \mathrm{f})
$$

(ii) Height of $\triangle V B C$ from $V$ to $B C=\sqrt{V O^{2}+r^{2}}=\sqrt{\frac{32}{3}}$

$$
\therefore \text { Area of } \triangle V B C=\frac{1}{2} \times \sqrt{\frac{32}{3}} \times 7=\frac{14 \sqrt{6}}{3}
$$

(iii) Height of pyramid from $A$ to $\triangle V B C$

$$
\begin{aligned}
& =\frac{3 \times \text { Vlume of pyramid }}{\text { Area of } \triangle V B C}=\frac{3 \times 8 \sqrt{3}}{\frac{14 \sqrt{6}}{3}} \quad \frac{18 \sqrt{2}}{7} \\
& \therefore \text { Required } \angle=\sin ^{-1} \frac{187 / 2}{6}=37^{\circ} \text { (nearest degree) }
\end{aligned}
$$

## 14B. 46 HKCEE AM 2008- 16

Since $V A$ is not perpendicular to $A B, \angle V A C$ is not the $\angle$ between the planes.
(b) (i) Crierion I: $V D \perp A B$
$\because \triangle V A B$ is equilateral and $B D=D A$
$V D \perp A B$ (property of isos. $\Delta$ )
$\frac{\text { Criterion 2: } E D \perp A B}{B D=D A \text { and } B E=E C}$
. $D E=D A$ and $B E=E C$
$\Rightarrow \angle E D B=\angle C A B=90^{\circ}$
(com. $\angle \mathrm{s}, D E / / A C$ )

(ii) Hence, the $\angle$ between $V A B$ and $A B C$ is $\angle V D$
(ii) $V A=V B=V C=A C=2 \mathrm{~cm}$
$E D=\frac{1}{2} A C=1 \mathrm{~cm}$
$B C=\sqrt{2^{2}+2^{2}}-\sqrt{8}(\mathrm{~cm})$
$\begin{array}{ll}C E=\sqrt{2}+2^{2}-\sqrt{8}(\mathrm{~cm}) \\ V E & =\sqrt{V B^{2}-(B C \div 2)^{2}}=\sqrt{2} \mathrm{~cm}\end{array}$
$V D=\frac{V A^{2}-(A B \div 2)^{2}}{\sqrt{3} \mathrm{~cm}}$
$\because V D^{2}=3$
$V E^{2}+E D^{2}=2+1=3=V D^{2}$
$\therefore \angle V E D=90^{\circ}$
(c) Area of $\triangle A B C=\frac{1}{2} \times 2 \times 2=2\left(\mathrm{~cm}^{2}\right)$

Volume of pyramid $=\frac{1}{3} \times$ Area of $\triangle A B C \times V E$

$$
=\frac{2 \sqrt{2}}{3} \mathrm{~cm}^{3}
$$

Area of $\triangle V A B=\frac{1}{2} \times 2 \times 2 \sin 60^{\circ}=\sqrt{3}\left(\mathrm{~cm}^{2}\right)$
$\therefore$ Required dist $=\frac{3 \times \text { Volume of pyramid }}{\text { Area of } \triangle V A B}$

$$
\begin{aligned}
& \text { Area of } \triangle V A B \\
& =\frac{3 \times \frac{2 \sqrt{2}}{3}}{\sqrt{3}}=\frac{2 \sqrt{6}}{3}(=1.63 \mathrm{~cm} .3 \mathrm{s.f.})
\end{aligned}
$$

## 14B. 47 HKCEE AM $2009-12$

Let $M$ be the mid-point of $B C$.
$A M=A C \sin \angle A C B=\sqrt{3}$
$D M=\sqrt{3}$
Required $\angle=\angle A M D$

$$
\begin{aligned}
& =\cos ^{-1} \frac{3+3-2^{2}}{2 \cdot \sqrt{3} \cdot \sqrt{3}} \\
& =71^{\circ} \text { (nearest deg) }
\end{aligned}
$$



## 14B.48 HKCEE AM 2009-18

(a) In $\triangle D H K, D K=\frac{h}{\tan 30^{\circ}}=\sqrt{3} h$ (m)
(b) In $\triangle A H K, A K=\frac{h}{\tan 45^{\circ}}=h(\mathrm{~m})$

From the time taken, $B D=2 A B$.
Since $B$ is the closest point on $A D$ to $K, K B \perp A D$
Since $B$ is the closest point on $A D$ to $K, K B$
$\operatorname{In} \triangle A B K, B K^{2}=A K^{2} \quad A B^{2}=h^{2}-A B^{2}$
In $\triangle B D K, B K^{2}=D K^{2}-B D^{2}=3 / h^{2} \quad 4 A B^{2}$
$\therefore \quad h^{2}-A B^{2}=3 h^{2}-4 A B^{2}$

$$
\begin{aligned}
A B^{2} & =3 h^{2} \\
3 A B^{2} &
\end{aligned}
$$

$$
A B=\sqrt{\frac{2}{3}} h(\mathrm{~m})
$$

(c) $B C=\frac{1}{2} A B=\frac{1}{\sqrt{6}} h \mathrm{~m}$
$B K=\sqrt{h^{2}-A B^{2}}=\frac{1}{\sqrt{3}} h \mathrm{~m}$
In $\triangle B C K, C K=\sqrt{B K^{2}+B C^{2}}=\frac{1}{\sqrt{2}} h \mathrm{~m}$
$\therefore$ Required $\angle=\angle H C K=\tan \frac{H K}{C K}=55^{\circ}$ (nearest deg)
(d) (i) $A D=3 A B=\sqrt{6} h \mathrm{~m}$ ( 30 mins$)$

$$
A E+E D=4 A B=\frac{4 \sqrt{6}}{3} h \mathrm{~m} \quad(40 \text { mins })
$$

$$
(A E+E D)^{7}=\frac{32}{3} h^{2}
$$

$$
A E^{2}+E D^{2}+2 A E \cdot E D=\frac{32}{3} n^{2}
$$

$$
A D^{2}+2(9450 \times 2)=\frac{32}{3} h^{2}
$$

$6 h^{2}+37800=\frac{32}{3} / h^{2}$

$$
h^{2}=8100 \Rightarrow h=90
$$

(ii) The pole is to be located at the circumcentre of $\triangle A D E$.
Since it is a right-angled triangle, the circumcentre is mid-point of its hypotenus.


14B.49 HKCEE AM 2010-17
(a) In $\triangle A B D, A D=11 \cos 60^{\circ}=5.5(\mathrm{~cm})$

In $\triangle A E D, A E=\frac{A D}{\cos 30^{\circ}}=\frac{11}{\sqrt{3}}=6.35(\mathrm{~cm} .3 \mathrm{s.f})$
$\therefore$ Area of $\triangle A B E$
$=\frac{1}{2} \cdot 11 \frac{11}{\sqrt{3}} \sin 30^{\circ}$
$=\frac{1}{2} \cdot 11 \frac{11}{\sqrt{3}} \sin 30^{\circ}$
$=\frac{121}{4 \sqrt{3}}$
$=17.5\left(\mathrm{~cm}^{2}, 3 \mathrm{sf}.\right)$

(b) $\left.\angle F A C=\left(\begin{array}{ll}120^{\circ} & 30^{\circ}\end{array}\right) \div 2\right)$ $\begin{aligned} \angle A C F & =\left(180^{\circ}-120^{\circ}\right) \div 2 \\ & =30^{\circ}\end{aligned}$


Figure (2)
In $\triangle A C F, \frac{A F}{\sin 30^{\circ}}=\frac{11}{\sin \left(180^{\circ}-45^{\circ} 30^{\circ}\right)}$
(c)

(i) Let $G$ be the projection of $F$ onto $\triangle A B E$. $F G=\frac{3 \times \text { Volume of tetrahedron }}{\text { Area of } \triangle A B E}=3.87899 \mathrm{~cm}$ $\therefore$ Required $\angle=\angle F A G$

$$
=\sin \frac{3.87899}{A F}
$$

$$
=42.94060^{\circ}=42.9^{\circ}(3 \text { s.f. })
$$

(ii) Let $H$ be the projection of $F$ onto $A B$. Then, since $G H$ is the projection of $F H$ onto $\triangle A B E$, the required ngle is $\angle F H G$.
in $\triangle A F H, F H=A F \sin \angle F A C=4.02628 \mathrm{~cm}$
$\therefore$ Required $\angle=\angle F H G=\sin , \frac{F G}{F H}=74.5^{\circ}(3$ s.f. $)$

14B. 50 HKCEE AM 2011-13
(a) (i) In $\triangle A D E, A E=3 \sin \theta$

In $\triangle B C E, B E=4 \sin \theta$
$\therefore$ In $\triangle A B E, A B=\sqrt{A E^{2} \div B E^{2}}=5 \sin \theta$
(ii) $\begin{aligned} & \because D=\sqrt{D E^{2}+C E^{2}}=\sqrt{(3 \cos \theta)^{2}+(4 \cos \theta)^{2}}\end{aligned}$
(b) (i) In $\triangle A B C, A C^{2}=A B^{2}+B C^{2}-2 A B \cdot B C \cos \alpha$ In $\begin{aligned} \triangle A E C, A C^{2} & =A E^{2}+E C^{2}-2 A E \quad E C \cos \alpha\end{aligned}$ In $\triangle A E C, A C^{2}=A E^{2}+E C^{2}-2 A E E C \cos \alpha$

$$
=9 \sin ^{2} \theta+16 \cos ^{2} \theta
$$

$\therefore 25 \sin ^{2} \theta+16-40 \sin \theta \cos \alpha$
$=9 \sin ^{2} \theta+16 \cos ^{2} \theta-24 \sin \theta \cos \theta \cos \alpha$ $16 \sin ^{2} \theta+16\left(1-\cos ^{2} \theta\right)=8 \sin \theta(5-3 \cos \theta) \cos \alpha$

$$
\begin{aligned}
2 \sin ^{-} \theta & =8 \sin \theta(3) \\
\cos \alpha & =\frac{4 \sin \theta}{5} 3 \cos \theta
\end{aligned}
$$

(ii) $\because \sin \theta>0$ and $5-3 \cos \theta \geq 2>0$ $\cos \alpha=\frac{4 \sin \theta}{5-3 \cos \theta}>0 \Rightarrow \alpha$ is acute.
(iii) From the given info, since the distance between $A$ and $\mathrm{H}_{2}$ is the same.
$\begin{aligned} A B=A D \Rightarrow 5 \sin \theta=3 & \Rightarrow \sin \theta-\frac{3}{5} \\ & \Rightarrow \cos \theta=\frac{4}{5}\end{aligned}$
$\Rightarrow \cos \alpha=\frac{4\left(\frac{3}{3}\right)}{5-3\left(\frac{4}{3}\right)}=\frac{12}{13}$
$A C=\sqrt{25 \sin ^{2} \theta+16 \quad 40 \sin \theta \cos \alpha}$
$=\sqrt{\frac{37}{13}}<3=A B$
Hence, the angle between $A C$ and $\Pi_{2}$ is greater tha the angle between $A B$ and $\Pi_{2}$

14B. 51 HKDSE MA SP-I-18
(a) In $\triangle A C D, C D=20 \sin 45^{\circ}=10 \sqrt{2}(\mathrm{~cm})$

$$
A D=20 \cos 45^{\circ}=10 \sqrt{2}(\mathrm{~cm}
$$

In $\triangle B C D, B C=\frac{C D}{\sin 30^{\circ}}=20 \sqrt{2} \mathrm{~cm}$

$$
B D=\frac{C D}{\tan 30^{\circ}}=10 \sqrt{6} \mathrm{~cm}
$$

(b) (i) In $\triangle A B D$, Required $\angle=\cos 1 A D^{2}+B D^{2}-A B^{2}$

$$
\begin{aligned}
& =\cos \frac{2 A D \cdot B D}{200+600-324} \\
& =\cos ^{-1} \frac{1}{2 \cdot 10 \sqrt{2} \cdot 10 \sqrt{6}} \\
& =46.60321^{\circ} \\
& =46.6^{\circ}
\end{aligned}
$$

(ii) $\because C D \backslash A D$ and $C D \perp B D$
$C D \perp$ Plane $A B D$
$C D \perp$ Plane $A B D$
$\Rightarrow$ Volume of $A B C D=\frac{1}{3} \times$ Area of $\triangle A B D \times C D$

$$
=\frac{1}{6} A D \cdot B D \cdot C D \sin \angle A D B
$$

$\Rightarrow$ Volume of $A B C D \propto \sin \angle A D B$
Hence, when $\angle A D B$ increases from $40^{\circ}$ to $90^{\circ}$ he volume increases (from $525 \mathrm{~cm}^{3}$ b $816 \mathrm{~cm}^{3}$ ) hen $\angle A D B$ incrases from $90^{\circ}$ to $140^{\circ}$, the volum decreases (from $816 \mathrm{~cm}^{3}$ to $525 \mathrm{~cm}^{3}$ ).


## 14B. 52 HKDSEMAPP-I-18

(a) In $\triangle A B C, A B=\sqrt{20^{2}+12^{2}-2 \cdot 20 \cdot 12 \cos 60^{\circ}}$
$=\sqrt{304}=17.4(\mathrm{~cm}, 3$ s.f.
(b) Let $E$ be on $A B$ such that $C E \perp A B$. Since $\triangle A B C$ and $\triangle A B D$ are congruent, $D E \perp A B$ as well.
In $\triangle A B C$.

$C E=\frac{2 \times \text { Area of } \triangle A B C}{A B}$ | $\quad \begin{array}{c}A B \\ 2 \times \frac{1}{2} \cdot 12 \cdot 20 \sin 60^{\circ} \\ 304\end{array}$ |
| :---: |

$=11.92079(\mathrm{~cm})$
$D E=C E=11.92079 \mathrm{~cm}$
$\therefore$ In $\triangle C D E$.


Required $\angle=\angle C E D$

$$
\begin{aligned}
= & \cos ^{1} \frac{C E^{2}+D E^{2}-C D^{2}}{2 C E \cdot D E} \\
& \cos ^{-1} \frac{11.92079^{2}+11.92079^{2}-14^{2}}{2 \cdot 11.92079 \cdot 11.92079} \\
= & 71.9^{\circ}(3 \mathrm{~s} . \mathrm{f} .)
\end{aligned}
$$

(c) $\angle C A D=\cos ^{-1} \frac{20^{2}+20^{2}-14^{2}}{2 \cdot 20.20}=41.0^{\circ}$ $\angle C B D=\cos ^{-1} \frac{12^{2}+12^{2}-14^{2}}{2 \cdot 12 \cdot 12}=71.4^{\circ}$
As $P$ moves from $A$ to $B, \angle C P D$ increases from $41.0^{\circ}$ io $\angle C E D=71.9^{\circ}$ at $E$ and then decreases to $71.4^{\circ}$


14B.53 HKDSEMA 2012-I-18
(a) In $\triangle A B P, \angle A P B=180^{\circ} \quad 72^{\circ} \quad 60^{\circ}=48^{\circ}$
$A P=\frac{20}{} \Rightarrow A P=23.30704=23.3(\mathrm{~cm}, 3$ s.f. $)$
(b) Since the pyramid is square-based and right, all lateral faces are congruent. Thus, all their base argles are $72^{\circ}$ et $X, Y, Z$ and $H$ be the projeclisns of $P$ on $A D, B C$, $A B C D$. (This is assumed by the symmetry without proof) $\therefore \alpha=\angle P Y X$.

(i) Method I-Use $\triangle P X Y$ to find $\alpha$

In $\triangle A B P, \frac{B P}{\sin 72^{\circ}}=\frac{20}{\sin 48^{\circ}}$
$\Rightarrow B P=25.595456(\mathrm{~cm})$
By the symmetry of the pyramid. $P Q C B$ and $P Q D A$ are isosceles trapeziums.

In $\triangle A P X, P X=A P \sin 72^{\circ}=22.166315 \mathrm{~cm}$ $P X=A P \sin 72^{\circ}=2.166312 \mathrm{~cm}$
$A X=A P \cos 72^{\circ}=7.202272 \mathrm{~cm}$
$\Rightarrow P Q=A D \quad 2 A X=5.595456 \mathrm{~cm}$
In $\triangle B P Y, B Y=A X=7.202272 \mathrm{~cm}$
$\begin{aligned} & P Y=\sqrt{P B^{2}-B Y^{2}}=24.561242 \mathrm{~cm} \\ & \text {. In } \triangle P X Y, X Y=A B=2\end{aligned}$
$\therefore$ In $\triangle P X Y, X Y=A B=20 \mathrm{~cm}$
$\Rightarrow \alpha=\cos \frac{-1 X Y^{2}+P Y^{2}-P X^{2}}{2 X Y \cdot P Y}=58.6^{\circ}(3 \mathrm{~s} . \mathrm{f}$.
Metiod $2-\mathrm{Uso} \triangle P H Y$ io find
$\frac{\text { Metiod } 2-U s c \triangle P H Y \text { to find } \alpha}{\text { In } \triangle A P Z . ~} A Z=A P \cos 72^{\circ}=7.202272 \mathrm{~cm}$
In $\begin{aligned} \triangle A P Z . A Z & =A P \cos 72^{\circ}=7.202272 \mathrm{~cm} \\ P Z & =A P \sin 72^{\circ}=22.166315 \mathrm{~cm}\end{aligned}$
In $\triangle A P X, A X=A P \cos 72^{\circ}=7.202272 \mathrm{~cm}$
$\Rightarrow \operatorname{In} \triangle P H Z, H Z=A X=7.202272 \mathrm{~cm}$
$\therefore$ In $\triangle P H Y, H Y=Z B=A B-A Z=12.797728 \mathrm{~cm}$
$\alpha=\tan ^{-1} \frac{P H}{\pi}=58.6^{\circ}(3$ s.f. $)$
Method 3
In $\triangle A B P, \frac{A P}{\sin 60^{\circ}}=\frac{B P}{\sin 72^{\circ}} \Rightarrow A P=\frac{B P \sin 60^{\circ}}{\sin 72^{\circ}}$
In $\triangle A B X, \frac{\sin }{A X}=A P \cos 72^{\circ}$

$$
\begin{aligned}
X & =A P \cos 72^{\circ} \\
& =\frac{B \operatorname{Bin} 60^{\circ}}{\sin 72^{\circ}} \cos 72^{\circ}
\end{aligned}
$$

$$
=\frac{\frac{\sin 72^{\circ}}{} \frac{B P \sin 60^{\circ}}{\tan 72^{\circ}}}{}
$$

In $\triangle B P Z, B Z=B P \cos 60^{\circ}$
In $\triangle P H Y, H Y=B Z=B P_{B C} \cos 60^{\circ}$
$P Y=\frac{H Y}{\cos \alpha}=\frac{B P \cos 60^{\circ}}{\cos \alpha}$
$\therefore$ In $\triangle B P Y, B Y=A X=\frac{B P \sin 60^{\circ}}{\tan 72^{\circ}}$
$\begin{aligned} & B P^{2}= B Y^{2}+P Y^{2} \\ & B P^{2} \sin ^{2} 60^{\circ}\end{aligned}$
$=\frac{B P^{2} \sin ^{2} 60^{\circ}}{\tan ^{2} 72^{\circ}}+\frac{B P^{2} \cos ^{2} 60^{\circ}}{\cos ^{2} \alpha}$
$\underline{\cos ^{2} 60^{\circ}}=1 \frac{\sin ^{2} 60}{}$
$\frac{\cos ^{2} \alpha}{\cos ^{2} \alpha}=\frac{\frac{\tan ^{2} 72^{\circ}}{}}{\cos ^{2} \cos ^{2} 72^{\circ}}$
$\cos ^{2} 60^{\circ}=\frac{\tan ^{2} 72^{\circ}-\sin ^{2} 60^{\circ}}{\tan ^{\circ}}$
$\cos \alpha=\sqrt{\frac{\tan ^{2} 72^{\circ} \cos ^{2} 60^{\circ}}{\tan ^{2} 72^{\circ}-\sin ^{2} 60^{\circ}}} \Rightarrow \alpha=58.6^{\circ}$

## Method 4

In $\triangle A B P$. $\frac{\tan 72^{\circ}}{\tan 60^{\circ}}=\frac{\frac{P L}{X}}{\frac{C L}{\partial L}}=\frac{B L}{A L}$
Similarly, in $\triangle P X Y$

$$
\begin{aligned}
\frac{\tan \theta}{\tan \alpha} & =\frac{Y H}{X H} \\
& =\frac{B L}{A L}=\frac{\tan 72^{\circ}}{\tan 60^{\circ}} \\
\Rightarrow \tan \alpha & =\frac{\tan 60^{\circ}}{\tan 72^{\circ}} \tan \theta
\end{aligned}
$$

In $\triangle A P Z, A Z=A P \cos 72^{\circ}$
In $\triangle A P X, P X=A P \sin 72^{\circ}$
In $\triangle P H X, H X=A Z=A P \cos 72^{\circ}$
$\therefore \cos \theta=\frac{H X}{P X}=\frac{A P \cos 72^{\circ}}{A P \sin 72^{\circ}}=\frac{1}{\operatorname{con} 72^{\circ}}$
$\Rightarrow \tan \theta=\frac{\tan ^{2} 72^{\circ}-1}{}$
Hence, $\tan \alpha=\frac{\tan 60^{\circ}}{\tan } \tan$

$$
=\frac{\frac{\tan 720^{\circ}}{\tan 60^{\circ}}}{\tan 72^{\circ}} \sqrt{\tan ^{2} 72^{\circ} 1} \Rightarrow \alpha=58.6^{\circ}
$$

(ii) $\sin \alpha=\frac{P H}{P Y}, \quad \sin \beta=\frac{P H}{P B}$
$\because P Y<P B$
$\therefore \quad \frac{P H}{P Y}>\frac{P H}{P B}$
$\Rightarrow \sin \alpha>\sin \beta \Rightarrow \alpha>\beta$

14B.54 HKDSEMA 2013-I-18
(a) (i) In $\triangle A B C, \angle B C M=\cos ^{-1} \frac{21^{2}+35^{2}-28}{2.21 .35}$
(ii) In $\triangle B C M, \angle C B M=51.86990^{\circ}$
$\frac{C M}{\sin 51.86990^{\circ}}=\frac{21}{\sin 75^{\circ}}$
(b) (i) $A M=35 \quad C M=17.10155=17.1(\mathrm{~cm}, 3 \mathrm{~s}$

In $\triangle A C M$,
$A C=\sqrt{A M^{2}+C M^{2}-2 A M \cdot C M \cos \angle A M C}$
(ii) $\operatorname{In} \triangle C M N, C N=C M \cos \angle M C N$
$=17.10155 \cos 53.13030^{\circ}$
$=10.26093(\mathrm{~cm})$
$\Rightarrow B N=21 \quad 10.26093=10.73907(\mathrm{~cm})$
In $\triangle A B C, \angle A B C=\cos -\frac{18^{2}+21^{2}-28.13898^{2}}{2 \cdot 28.21}$


Method 1 -Check whether $A N \perp B C$
In $\triangle A B N, A N=\sqrt{A B^{2}+B N^{2}-2 A B \cdot B N} \cos \angle A B C$

$$
\begin{aligned}
& \because A B^{2}=784 \\
& \quad A N^{2}+B N^{2}=681 \neq A B^{2}
\end{aligned}
$$

$\angle A N B \neq 90^{\circ}$
i.e. $\angle A N M$ is not the described angle. Disagreed.

Method 2 -Check if $N$ is the projection of $A$ onto $B C$ Suppose the projection of $A$ onto $B C$ is $P$.
In $\triangle A B P, B P=A B \cos \angle A B C=10.31423 \mathrm{~cm} \neq B N$. ie. $N$ is not the projection of $A$ onto $B C$. Hence, $\angle A N M$ is not the described angle. Disagree.
14B. 55 HKDSEMA 2014-I-17
(a) In $\triangle V A B, \frac{\sin \angle A V B}{18}=\frac{\sin 110^{\circ}}{30}$

- $\angle V B A=\begin{aligned} & \left.\angle A V B=34.32008^{\circ} \text { or } 145.7^{\circ} \text { (rej.) }\right) ~\end{aligned}$
$\therefore \begin{aligned} \angle V B A & =180^{\circ}-110^{\circ}-34.32008^{\circ} \\ & =35.6992^{\circ}=35.7^{\circ}(3 \mathrm{sf})\end{aligned}$
(b) In $\triangle V A B, V \overline{A=\sqrt{18}+30^{2} \sim 2 \cdot 18 \cdot 30} \cos 35.67992^{\circ}$ $\begin{aligned} & \\ &=18.22161 \mathrm{~cm}\end{aligned}$
In $\triangle V B C, \because V M=M B$ and $V N=N C$

$$
\therefore M N=\frac{1}{2} B C=5 \mathrm{~cm} \text { (mid-pt theorem) }
$$

Sinilarly, $M P=\frac{1}{2} V A=9.11081 \mathrm{~cm}$
Let the projection of $M$ onto $P Q$ be $H$.
 The crafisman is agreed.

14B.56 HKDSEMA 2015-I-19
(a) (i) In $\triangle A B C, A C=\sqrt{40^{2}+24^{2}-2 \cdot 4024 \cos 80^{\circ}}$
$=42.92546=42.9(\mathrm{~cm} .3 \mathrm{sf}$.
(ii) $\frac{\sin \angle A C B}{40}=\frac{\sin 80^{\circ}}{42.92546}$
$\angle A C B=66.59082^{\circ}$ or $113^{\circ}(\mathrm{rcj})=.66.6^{\circ}(3$ s.f. $)$
(iii) Note how the given information had fixed the areas of $\triangle A B C$ and $\triangle A B^{\prime} D$. Hence, the only varying part of the paper card is $\triangle A C D$.

$=\frac{1}{2}(40)(24) \sin 80^{\circ}=472.71\left(\mathrm{~cm}^{2}\right)$.
which is a constant.
Area of $\triangle A C D=\frac{1}{2} A C^{2} \sin \angle A C D$

$$
\begin{aligned}
& 2 \\
& =921.30 \sin \left(\angle B C D \quad 66.6^{\circ}\right) \\
& 3 C D<145^{\circ}
\end{aligned}
$$

$105^{\circ} \leq \angle B C D \leq 145^{\circ}$
Hence, as $\angle B C D$ increases from $105^{\circ}$ to $145^{\circ}$, the area of the paper card increases.
(from $472.71 \times 2+921.30 \sin 38.4^{\circ}=1518\left(\mathrm{~cm}^{2}\right)$ to $\left.472.71 \times 2+921.30 \sin 78.4^{\circ}=1848\left(\mathrm{~cm}^{2}\right)\right)$
(b) Let the projection of $B$ onto $A C D$ be $H$ and the mid-point of $C D$ be $M$. By symmetry, we have $B M \perp C D, A M \perp C D$ and $H$ tying on $A M$.

$\angle A C D=132^{\circ} \quad 66.59082^{\circ}=65.40918^{\circ}$
in $\triangle A C M, A M=A C \sin \left(132^{\circ} \quad 65.40918^{\circ}\right)$ $=39.39231(\mathrm{~cm})$

$$
C M=A C \cos \left(132^{\circ}-65.40918^{\circ}\right)
$$

$$
=17.86279(\mathrm{~cm})
$$

In $\triangle B C M, B M=\sqrt{B C^{2}} \quad C M^{2}=16.02875 \mathrm{~cm}$ In $\triangle A B M$. $\angle B A M-\cos \frac{-1}{} A B^{2}+A M^{2}-B M^{2}$
$\Rightarrow B H=A B \sin \angle R A H=15.2791^{\circ}$
$\therefore B H=A B \sin \angle B A H=15.8084 \mathrm{~cm}$
$\therefore$ Vol of pyramid $=\frac{1}{3}\left(921.30 \sin 65.40918^{\circ}\right)(15.8084)$ $=4410\left(\mathrm{~cm}^{3}, 3 \mathrm{sf}\right)$

14R. 57 HKDSE MA 2016-I-19
(a) In $\triangle A B D, \frac{\sin \angle A D B}{10}=\frac{\sin 86^{\circ}}{15}$
$\angle A D B=41.68560^{\circ}$ or $138.3^{\circ}$ (rej.)
$\Rightarrow \angle A B D=180^{\circ}-86^{\circ}-41.68560^{\circ}$ $=52.31440^{\circ}=52.3^{\circ}(3$ s.f. $)$
In $\triangle B C D, C D=\sqrt{8^{2}+155^{1}} \quad 2 \cdot 8 \cdot 15 \cos 43^{\circ}$ $=10.65247=10.7(\mathrm{~cm}, 3 \mathrm{~s} . \mathrm{f}$. $)$
(b) We need to verify $A C \perp B C$ and $A C \perp C D$.

In $\triangle A B C, A C^{2}+B C^{2}=6^{2}+8^{2}$

$$
\therefore A C \perp B C
$$

In $\triangle A B D, A D^{2}=A B^{2}+B D^{2} \quad 2 A B \cdot B D \cos \angle A B D$ $-141.60$
$\because A C^{2}+C D^{2}=149.48 \neq A D^{2}$
$A C$ is not perpendicular to $C D$.
since $C$ is not the projection of $A$ onto $B C D, \angle A B C$ is not he described angle. The craftisman is disagreed.

14B. 58 HKDSEMA 2017-I-19
(a) In $\triangle A B C, \angle B=180^{\circ}-30^{\circ}-42^{\circ}=108^{\circ}$
$\frac{-10}{\sin 108^{\circ}}=\frac{24}{\sin 30^{\circ}} \Rightarrow A C=45.65071=45.7(\mathrm{~cm}, 3 \mathrm{~s} . \mathrm{f}$. (b) (i). $\because \triangle A D F \sim \triangle C E F$

(ii) Method I

In $\triangle A B C, \frac{A B}{\sin 42^{\circ}}=\frac{24}{\sin 30^{\circ}} \Rightarrow A B=32.11827(\mathrm{~cm})$
Area of $\triangle A B F=\frac{1}{2} A B \cdot A F \sin \angle F A B$
Method 2
$=$ Area of $\triangle A B C+$ Area of $\triangle F B C$
$=A$ of of $\triangle A B C+$ Area of $\triangle F B C$
$=\frac{1}{2} A C \cdot B C \sin \angle A C B+\frac{1}{2} C F \cdot B C \sin \left(180^{\circ}-\angle A C B\right)$ $=\frac{1}{2}(A C+C F) B C \sin \angle A C B=458 \mathrm{~cm}^{2}$ (3 s.f. $)$
(iii) In $\triangle F B C, B F=\sqrt{B C}+C F^{2}-2 B C \cdot C F \cos \angle B C F$ $=33.36690$ (cma)
(Or use $\triangle A B F$ to find $B F$.)


Let the projection of $A$ onto $B F$ be $P$.
$A P=\frac{2 \times \text { Area of } \triangle A B F}{B F}=27.46400 \mathrm{~cm}$
$\therefore$ Inclination $=\sin \frac{A D}{A P}=21.4^{\circ}(3$ s.f. $)$
(iv) Since $P$ is also the projection of $D$ onto $B F$

Area of $\triangle B D F=\frac{1}{2} B F \cdot D P$
$<\frac{1}{2} B F \cdot A P=458<460$
The craftsman is disagreed.

## 14B.59 HKDSEMA 2018-T-17

(a) In $\triangle A B D, \frac{A D}{\sin 20^{\circ}}=\frac{60}{\sin \left(180^{\circ}-\frac{1}{\left.120^{\circ}-20^{\circ}\right)}\right.}$ $A D=31.92533=31.9(\mathrm{~cm} .3 \mathrm{~s} . \mathrm{E}$.
(b) (i) In $\triangle A B C, \angle A B C=\cos ^{-1 A B^{2}+B C^{2}-A C^{2}} \frac{2 A B \cdot B C}{}$

$$
\begin{aligned}
& \begin{array}{l}
=\cos ^{-1} \frac{60^{2}+31.92533^{2}-40^{2}}{2 \cdot 60 \cdot 31.92533} \\
=37.99200^{0^{2}}=38.0^{\circ}
\end{array}
\end{aligned}
$$

(ii) Let $P$ be on $B D$ such that $C P \perp B D$, and $C P$ extended meet $A B$ at $Q$ (in Figure (1)). Then the angle between $A B D$ and $B C D$ in Figure (2) is $\angle C P Q$.


In $\triangle B C P, B P=B C \cos 40^{\circ}=24.45622 \mathrm{~cm}$
In $\triangle B P Q, B Q=\frac{B P}{\cos 20^{\circ}}=26.02577 \mathrm{~cm}$
In $\triangle B C Q$. $C Q=\frac{\cos }{} B Q^{2}+B C^{2}-2 B Q \cdot B C \cos \angle Q B C$
$\therefore$ In $\triangle C P Q$,
$\therefore$ In $\triangle C P Q$,
Required $\angle=\angle C P Q=\cos ^{-1} \frac{P Q^{2}+C P^{2}-C Q^{2}}{2 P Q \cdot C P}$

14B.60 HKDSEMA 2019-I- 18
(a) (i) In $\triangle A B D \cdot \frac{\sin \angle B A D}{12}=\frac{\sin 77^{\circ}}{13}$
$\begin{aligned} \angle B A D & =61.38987^{\circ} \text { or } 18.6^{\circ} \text { (rjj. } \\ & =61.4^{\circ}(3 \text {. }\end{aligned}$
$=61.4^{\circ}$ ( 3 s.f. )
(ii) $\angle A D B=180^{\circ}-72^{\circ}-61.38987^{\circ}=46.61013^{\circ}$ $\Rightarrow D P=B D \cos \angle A D B=8.24351 \mathrm{~cm}$
${ }_{C P}=\sqrt{12^{2}+8} \overline{2} 4355^{2}-2 \cdot 12 \cdot \overline{8} .24 \overline{35 \Gamma \cos 6} 6 \overline{0^{\circ}}$ $=11.39253=11.4(\mathrm{~cm}, 3 \mathrm{~s} . \mathrm{f}$.
(b) Since $B P$. $L A D$, we need 10 check whether $C P \perp A D$.

In $\triangle C D P, C D^{2}=169$
Hence, $\angle C P D \neq 90^{\circ}$, and thus $\angle B P C$ is not the angle between $A B D$ and $A C D$. The claim is disagrecd.

14B. 61 HKDSE MA 2020-I- 19


## 15 Mensuration

## 15A Lengths and areas of plane figures

15A. 1 HKCEE MA 1980(1/1*/3) I 10
$A, B$ and $C$ are three points on the line $O X$ such that $O A=2, O B=3$ and $O C=4$. With $A, B, C$ as centre and $O A, O B, O C$ as radii, three semi circles are drawn as shown in the figure. A line $O Y$ cuts the three semi-circles at $P, Q, R$ respectively.
(a) If $\angle Y O X=\theta$, express $\angle P A X, \angle Q B X$ and $\angle R C X$ in terms of $\theta$
(b) Find the following ratios: area of sector $O A P$ : area of sector $O B Q$ : area of sector $O C R$


## 15A. 2 (HKCEE MA 1981(1/2/3)-I-12)

The figure shows a cylinder 10 metres high and 10 metres in radius used for storing coal gas. $A B$ and $C D$ are two vertical lines on the curved surface of the cylinder. The arc $A C$ subtends an angle of $138^{\circ}$ at the point $O$ which is the centre of the top of the cylinder.
(a) Inside the cylinder, a straight pipe runs from $B$ to $C$. Calculate the length of the pipe $B C$ correct to 3 significant figures.
(b) Calculate the area of the curved surface $A B D C$ bounded by the minor arcs $A C, B D$ and the lines $A B, C D$.
(c) A staircase from $B$ to $C$ is built along the shortest curve on the curved surface $A B D C$. Find the length of the curve.


15A. 3 HKCEE MA 1982(1/2/3)-I-4
In the figure, the circle, centre $O$ and radius 6 , touches the straight line $B C$ at $C, B C=2 \sqrt{3}, O A B$ is a straight line. Find the area of the shaded sector in terms of $\pi$.

## 15A. 4 HKCEE MA 1982(1/2/3)-I -9

(In this question, answers should be given in surd form.)
In Figures (1) and (2), $A B C D E F$ is a regular hexagon with $A B=1$.


Figure (1)


Figure (2)
(a) Calculate the area of the hexagon in Figure (1) and the length of its diagonal $A C$.
(b) In Figure (2), $P Q R S T U$ is another regular hexagon formed by the diagonals of $A B C D E F$.
(i) Calculate the length of $P Q$.
(ii) Calculate the area of the hexagon $P Q R S T U$.

15A. 5 HKCEE MA 1983(A/B) I 5
In the figure, $O$ is the centre of the sector $O A B . O A=30, C B=15$ and $A C \perp O B$. Find
(a) $\angle A O C$,
(b) the length of the $\operatorname{arc} A B$ in terms of $\pi$.


## 15A.6 HKCEEMA 1988-I-5

In the figure, $A B C$ is a circle with centre $O$ and radius $10 . \angle A O C=100^{\circ}$ Calculate, correct to 2 decimal places,
(a) the area of sector $O A B C$
(b) the area of $\triangle O A C$,
(c) the area of segment $A B C$.


## 15A. 7 HKCEE MA 1992-I -7

In the figure, $A B C D E$ is a regular pentagon inscribed in a circle with centre $O$ and radius 10 .
(a) Find $\angle A O B$ and the area of triangle $O A B$.
(b) Find the area of the shaded part in the figure.


15A. 8 HKCEE MA 1994-1 2(d)
In the figure, find the area of the sector.

## 15A. 9 HKCEE MA 1999-I 9

The figure shows a sector.
(a) Find $r$.
(b) Find the area of the shaded region.

## 15A. 10 HKCEE MA 2000 I 3

Find the area of the sector in the figure.


## 15A. 11 HKCEEMA 2001-I-3

Find the perimeter of the sector in the figure.


15A.12 HKCEE MA 2004-I-9
In the figure, the area of the sector is $162 \pi \mathrm{~cm}^{2}$.
(a) Find the radius of the sector.
(b) Find the perimeter of the sector in terms of $\pi$.

## 15A. 13 HKCEE MA 2005-1 -9

In the figure, $O A B C$ is a sector with $\widehat{A B C}=10 \pi \mathrm{~cm}$.
(a) Find $O A$.
(b) Find the area of segment $A B C$.


## 15A. 14 HKCEE MA 2006-I - 4

In the figure, the radius of the sector $O A B$ is 12 cm . Find the length of $\overparen{A B}$ in terms of $\pi$.


## 15A. 15 HKCEE MA 2007-I -9

In the figure, the radius of the sector $A O B$ is 40 cm . It is given that $\widehat{A B}=16 \pi \mathrm{~cm}$.
(a) Find $\angle A O B$.
(b) Find the area of the sector $A O B$ in terms of $\pi$.


## 15A. 16 HKDSE MA 2015-I-9

The radius and the area of a sector are 12 cm and $30 \pi \mathrm{~cm}^{2}$ respectively.
(a) Find the angle of the sector.
(b) Express the perimeter of the sector in terms of $\pi$.

## 15B Volumes and surface areas of solids

## 15B. 1 HKCEE MA 1983(A/B)-I-8

The solid in Figure (1) is made up of two parts. The lower part is aright circular cylinder of height $h \mathrm{~cm}$ and radius $r \mathrm{~cm}$; the upperpart is a hemisphere of the same radius $r \mathrm{~cm}$. The two parts are of the same volume.
(a) Find the ratio $r: h$.
(b) Figure (2) shows a section of the solid through the axis of the cylinder. The perimeter of this section is 136 cm .
(i) Calculate $r$ to 2 significant figures.
(ii) Calculate the total external surface area (including the base) of the solid in $\mathrm{cm}^{2}$ to 1 significant figure.


15B. 2 HKCEE MA 1984(A/B) I 12
In the figure, all vertical cross-sections of the solid that are parallel to $A P B C Q D$ are identical. $A B C D, B R T C$ and $A B R S$ are squares, each of side $20 \mathrm{~cm} . P$ is the mid point of $A B . C Q D$ is a circular arc with centre $P$ and radius $P C$.
(In this question, give your answers correct to 1 decimal place.)
(a) Find $\angle C P D$.
(b) Find, in cm , the length of the arc $C Q D$.
(c) Find, in $\mathrm{cm}^{2}$, the area of the cross section $A P B C Q D$.
(d) Find, in $\mathrm{cm}^{2}$, the total surface area of the solid.


15B. 3 HKCEE MA 1985(A/B) I 11
Figure (1) shows a solid right circular cone. $O$ is the vertex and $P$ is a point on the circumference of the base. The area of the curved surface is $135 \pi \mathrm{~cm}^{2}$ and the radius of the base is 9 cm .
(a) (i) Find the length of $O P$.
(ii) Find the height of the cone.
(b) The cone in Figure (1) is cut into two portions by a plane parallel to its base. The upper portion is a cone of base radius 3 cm . The lower portion is a frustum of height $x \mathrm{~cm}$.
(i) Find the value of $x$.
(ii) A right cylindrical hole of radius 3 cm is drilled through the frustum (see Figure (2)). Find th volume of the solid which remains in the frustum. (Give your answer in terms of $\pi$.)


Figure (1)


Figure (2)

## 15B. 4 HKCEE MA 1986(A/B) I-12

Figure (1) shows a solid consisting of a right circular cone and a hemisphere with a common base which is a circle of radius 6 . The volume of the cone is equal to $\frac{4}{3}$ of the volume of the hemisphere.
(a) (i) Find the height of the cone.
(ii) Find the volume of the solid. (Leave your answer in terms of $\pi$.)
(b) (i) The solid is cut into two parts. The upper part is a right circular cone of height $y$ and base radius $x$ as shown in Figure (2). Find $\frac{x}{y}$.
(ii) If the two parts in (b)(i) are equal in volume, find $y$, correct to 1 decimal place.


Figure (1)


Figure (2)

## 15B. 5 HKCEE MA 1989-I 11

Figure (1) shows a rectangular swimming pool 50 m long and 20 m wide. The floor of the pool is an inclined plane. The depth of water is 10 m at one end and 2 m at the other.
(a) Find the volume of water in the pool in $\mathrm{m}^{3}$.
(b) Water in the pool is now pumped out through a pipe of internal radius 0.125 m . Water flows in the pipe at a constant speed of $3 \mathrm{~m} / \mathrm{s}$.
(i) Find the volume of water, in $\mathrm{m}^{3}$, REMAINING in the pool when the depth of water is 8 m at the deeper end.
(ii) Find the volume of water pumped out in 8 hours, correct to the nearest $\mathrm{m}^{3}$
(iii) Let $h$ metres be the depth of water at the deeper end after 8 hours (see Figure (2)). Find the value of $h$, correct to 1 decimal place.


## 15R. 6 HKCEE MA 1990 $-\mathrm{I}-11$

(To continue as 4B.8.)
A solid right circular cylinder has radius $r$ and height $h$. The volume of the cylinder is $V$ and the total surface area is $S$.
(a) (i) Express $S$ in terms of $r$ and $h$.
(ii) Show that $S=2 \pi r^{2}+\frac{2 V}{r}$.

## 15B. 7 HKCEE MA $1991 \quad 1-11$

Figure (1) shows a metal bucket. Its slant height $A B$ is 60 cm . The diameter $A D$ of the base is 40 cm and the diameter $B C$ of the open top is 80 cm . The curved surface of the bucket is formed by the thin metal sheet $A B B^{\prime} A^{\prime}$ shown in Figure (2), where $\widehat{A D A^{\prime}}$ and $\widehat{B C B^{\prime}}$ are arcs of concentric circles with centre $O$.
(a) Find $O A$ and $\angle A O A^{\prime}$.
(b) Find the area of the metal sheet $A B B^{\prime} A^{\prime}$, leaving your answer in terms of $\pi$
(c) There is an ant at the point $A$ on the outer curved surface of the bucket. Find the shortest distance for it to crawl along the outer curved surface of the bucket to reach the point $C$.


Figure (1)


Figure (2)

15B. 8 (HKCEE MA 1993 I 9)
The figure shows a right circular cylinder. $O$ is the centre and $r$ is the radius of its top face. A chord $A B$ divides the area of the top face in the ratio $4: 1$ and subtends an angle $\alpha$ at $O$. $C$ is a point on the minor arc $A B$.
(a) (i) Find the area of the sector $O A C B$ in terms of $r$ and $\alpha$.
(ii) Find the area of the segment $A C B$ in terms of $r$ and $\alpha$.
(iii) Show that $\sin \alpha=\left(\frac{\alpha}{180^{\circ}}-\frac{2}{5}\right) \pi$.
(iv) [Out of syllabus]
(v) [Out of syllabus: The result $\alpha \approx 121^{\circ}$ is obtained.]
(b) The cylinder is cut along $A B$ into 2 parts by a plane perpen dicular to its top face. Find the ratio of the curved surface areas of the two parts in the form $k: 1$, where $k>1$.


15B. 9 HKCEE MA 1994-I 10
Figure (1) shows the longitudinal section of a right cylindrical water tank of base radius 2 m and height 3 m . The tank is filled with water to a depth of 1.5 m .
(a) Express the volume of water in the tank in terms of $\pi$.
(b) If a solid sphere of radius 0.6 m is put into the tank and is completely submerged in water, the water level rises by $h$ metres. Find $h$ (see Figure (2)).
(c) A solid sphere of radius $r m$ is put into the tank and is just submerged in water (see Figure (3)).
(i) Show that $2 r^{3}-12 r+9=0$.
(ii) [Out of syllabus]


Figure (1)


Figure (2)


Figure (3)

## 15B.10 HKCEE MA 1995-I - 13

A right cylindrical vessel of base radius 4 cm and height 11 cm is placed on a horizontal table. A right conical vessel of base radius 6 cm and height 12 cm is placed, with its axis vertical, in the cylindrical vessel. The conical vessel is full of water and the cylindrical vessel is empty. Figure (1) shows the longitudinal sections of the two vessels where $A$ is the vertex of the conical vessel.
(a) Find, in terms of $\pi$, the volume of water in the conical vessel.
(b) The vertex $A$ is $d \mathrm{~cm}$ from the base of the cylindrical vessel. Use similar triangles to find $d$.
(c) Supposer water leaks out from the conical vessel through a small hole at the vertex $A$ into the cylindrical vessel.
(i) Find, in terms of $\pi$, the volume of water that has leaked out when the water level in the cylindrical vessel reaches the vertex $A$.
(ii) If $104 \pi \mathrm{~cm}^{3}$ of water has leaked out and the water level in the cylindrical vessel is $h \mathrm{~cm}$ above the vertex $A$ (see Figure (2)), show that $h^{3}-192 h+672=0$.
(iii) [Out of syllabus]


Figure (2)

15B. 11 HKCEEMA 1996 I 8
Figure (1) shows a paper cup in the form of a right circular cone of base radius 5 cm and height 12 cm .
(a) Find the capacity of the paper cup.
(b) If the paper cup is cut along the slant side $A B$ and unfolded to become a sector as shown in Figure (2), find
(i) the area of the sector;
(ii) the angle of the sector.


Figure (1)


Figure (2)

15B. 12 HKCEE MA 1997 I 12
Figure (1) shows a greenhouse $V A B C D$ in the shape of a right pyramid with a square base of side $6 \mathrm{~m} . M$ is the mid-point of $B C$ and $V N$ is the height of the pyramid. Each of the triangular faces makes an angle $\theta$ with the square base.
(a) (i) Express $V N$ and $V M$ in terms of $\theta$.
(ii) Find the capacity and total surface area of the greenhouse (excluding the base) in terms of $\theta$.
(b) Figure (2) shows another greenhouse in the shape of a right cylinder with base radius $r \mathrm{~m}$ and height $h \mathrm{~m}$. It is known that both the base areas and the capacities of the two greenhouses are equal.
(i) Express $r$ in terms of $\pi$.
(ii) Express $h$ in terms of $\theta$.
(iii) If the total surface areas of the two greenhouses (excluding the bases) are equal, show that $3+\sqrt{\pi} \tan \theta=\frac{3}{\cos \theta}$
(iv) [Out of syllabus]



Figure (2)

## 15B. 13 HKCEE MA 1998-I - 1

The figure shows a right prism, the cross section of which is a trapezium. Find the volume of the prism.


## 15B. 14 HKCEE MA 1999-I - 13

In Figure (1), a piece of wood in the form of an inverted right circular cone is cut into two portions by a plane parallel to its base. The upper portion is a frustum with height 10 cm , and the radii of the two parallel faces are 9 cm and 4 cm respectively. The pen stand shown in Figure (2) is made from the frustum by drilling a hole in the middle. The hole consists of a cylindrical upper part of radius 5 cm and a hemispherical lower part of the same radius. The depth of the hole is 9 cm .
(a) Find, in terms of $\pi$, the capacity of the hole.
(b) Find, in terms of $\pi$, the volume of wood in the pen-stand.


Figure (2)

## 15B. 15 HKCEE MA 2002-I-15

(a) Figure (1) shows two vessels of the same height 24 cm , one in the form of a right circular cylinder of radius 6 cm and the other a right circular cone of radius 9 cm . The vessels are held vertically on two horizontal platforms, one of which is 5 cm higher than the other. To begin with, the cylinder is empty and the cone is full of water. Water is then transferred into the cylinder from the cone until the water in both vessels reaches the same horizontal level. Let $h \mathrm{~cm}$ be the depth of water in the cylinder.
(i) Show that $h^{3}+15 h^{2}+843 h \quad 13699=0$.
(ii) [Out of syllabus; the result $h=11.8$ (cor. to 1 d.p.) is obtained.]
(b) Figure (2) shows a set up which is modified from the one in Figure (1). The lower part of the cone is cut off and sealed to form a frustum of height 19 cm . The two vessels are then held vertically on the same horizontal platform. To begin with, the cylinder is empty and the frustum is full of water. Water is then transferred into the cylinder from the frustum until the water in both vessels reaches the same horizontal level. Find the depth of water in the cylinder.


Figure (1)


Figure (2)

## 15B. 16 HKCEE MA 2004--I-14

In the figure, a solid right circular cylinder of height $h \mathrm{~cm}$ and volume $V \mathrm{~cm}^{3}$ is inscribed in a thin hollow sphere of radius 12 cm .
(a) Prove that $V=144 \pi h-\frac{\pi}{4} h^{3}$.
(b) [Out of syllabus]
(c) If the volume of the cylinder is $286 \pi \mathrm{~cm}^{3}$, find the exact height(s) of the cylinder.


## 15B. 17 HKCEE MA 2005-I- 12

The figure shows a solid consisting of a right circular cone and a hemi sphere with a common base. The height and the base radius of the cone are $h \mathrm{~cm}$ and $(h-4) \mathrm{cm}$ respectively. It is known that the volume of the cone is equal to the volume of the hemisphere.
(a) Find $h$.
(b) Find the total surface area of the solid correct to the nearest $\mathrm{cm}^{2}$.
(c) If the solid is cut into two identical parts, find the increase in the total surface area correct to the nearest $\mathrm{cm}^{2}$.


## 15B. 18 HKCEE MA 2009-I-13

(a) The height and the base radius of an inverted right circular conical container are 18 cm and 12 cm respectively.
(i) Find the capacity of the circular conical container in terms of $\pi$.
(ii) Figure (1) shows a frustum which is made by cutting off the lower part of the container. The height of the frustum is 6 cm . Find the volume of the frustum in terms of $\pi$.
(b) Figure (2) shows a vessel which is held vertically. The vessel consists of two parts with a common base: the upper part is the frustum shown in Figure (1) and the lower part is a right circular cylinder of height 10 cm . Some water is poured into the vessel. The vessel now contains $884 \pi \mathrm{~cm}^{3}$ of water.
(i) Find the depth of water in the vessel.
(ii) If a piece of metal of volume $1000 \mathrm{~cm}^{3}$ is then put into the vessel and the metal is totally immersed in the water, will the water overflow? Explain your answer.

Figure (2)


Figure (1)


176

## 15B. 19 HKCEE MA 2011-I-13

Figure (1) shows the thin paper sector $O X Y Z$ of area $2880 \pi \mathrm{~mm}^{2}$. By joining $O X$ and $O Z$ together, $O X Y Z$ is folded to form an inverted right circular conical container as shown in Figure (2).
(a) Find the length of $O X$.
(b) Find the height of the container
(c) Suppose that the container is held vertically. If water of volume $150 \mathrm{~cm}^{3}$ is poured into the container, will the water overflow? Explain your answer.


Figure (1)


Figure (2)

## 15B. 20 HKDSEMA SP-I- 6

The figure shows a solid consisting of a hemisphere of radius $r \mathrm{~cm}$ joined to the bottom of a right circular cone of height 12 cm and base radius $r \mathrm{~cm}$. It is given that the volume of the circular cone is twice the volume of the hemisphere.
(a) Find $r$.
(b) Express the volume of the solid in terms of $\pi$.


## 15B. 21 HKDSEMA 2012- I-9

In the figure, the volume of the solid right prism $A B C D E F G H$ is $1020 \mathrm{~cm}^{3}$. The base $A B C D$ of the prism is a trapezium, where $A D$ is parallel to $B C$. It is given that $\angle B A D=90^{\circ}, A B=12 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $D E=10 \mathrm{~cm}$. Find
(a) the length of $A D$,
(b) the total surface area of the prism $A B C D E F G H$.


## 15B. 22 HKDSEMA $2012 \quad I-12$

Figure (1) shows a solid metal right circular cone of base radius 48 cm and height 96 cm .
(a) Find the volume of the circular cone in terms of $\pi$.
(b) A hemispherical vessel of radius 60 cm is held vertically on a horizontal surface. The vessel is fully filled with milk
(i) Find the volume of the milk in the vessel in terms of $\pi$.
(ii) The circular cone is now held vertically in the vessel as shown in Figure (2). A craftsman claims that the volume of the milk remaining in the vessel is greater than $0.3 \mathrm{~m}^{3}$. Do you agree? Explain your answer.


15B. 23 HKDSEMA 2020-I - 12
The height and the base radius of a solid right circular cone are 36 cm and 15 cm respectively. The circular cone is divided into three parts by two planes which are parallel to its base. The heights of the tbree parts are equal. Express, in terms of $\pi$,
(a) the volume of the middle part of the circular cone;
(b) the curved surface area of the middle part of the circular cone.

## 15C Similar plane figures and solids

15C. 1 HKCEE MA 1981(1/2/3) I-1
The capacities of two spherical tanks are in the ratio $27: 64$. If 72 kg of paint is required to paint the outer surface of the smaller tank, then how many kilograms of paint would be required to paint the outer surface of the bigger tank?

15C. 2 HKCEE MA 1987(A/B) 19
Figure (1) shows a test-tube consisting of a hollow cylindrical tube joined to a hemisphere bowl of the same radius. The height of the cylindrical tube is $h \mathrm{~cm}$ and its radius is $r \mathrm{~cm}$. The capacity of the test-tube is $108 \pi \mathrm{~cm}^{3}$. The capacity of the hemispherical part is $\frac{1}{6}$ of the whole test tube.
(a) (i) Find $r$ and $h$.
(ii) The test tube is placed upright and water is poured into it until the water level is 4 cm beneath the rim as shown in Figure (2). Find the volume of the water. (Leave your answer in terms of $\pi$.)
(b) The water in the test-tube is poured into a right circular conical vessel placed upright as shown in Figure (3). If the depth of water is half the height of the vessel, find the capacity of the vessel. (Leave your answer interms of $\pi$.)


Figure (1)


Figure (2)


Figure (3)

## 15C. 3 HKCEE MA 1992-I - 12

Figure (1) shows a vertical cross-section of a separating funnel with a small tap at its vertex. The funnel is in the forn of a right circular cone of base radius 9 cm and height 20 cm . It contains oil and water (which do not mix) of depths 5 cm and 10 cm respectively, with the water at the bottom.
(a) (i) Find the capacity of the separating funnel in terms of $\pi$.
(ii) Find the ratios volume of water: total volume of oil and water: capacity of the funnel. Hence, or otherwise, find the ratios volume of water: volume of oil : capacity of the funnel.
(b) All the water in the funnel is drained through the tap into a glass tube of height 15 cm . The glass tube consists of a hollow cylindrical upper part of radius 3 cm and a hollow hemispherical lower part of the same radius, as shown in Figure (2). Find the depth of the water in the glass tube
(c) After all the water has been drained into the glass tube, find the depth of the oil remaining in the funnel.


15C. 4 HKCEE MA 1994-I-2(e)
The ratio of the radii of two spheres is $2: 3$. Find the ratio of their volumes.

## 5C. 5 HKCEE MA 1997-I-7

(To continue as 8C.8.)
The ratio of the volumes of two similar solid circular cones is $8: 27$.
(a) Find the ratio of the height of the smaller cone to the height of the larger cone.

## 15C. 6 HKCEE MA 2000-I 8

On a map of scale $1: 5000$, the area of the passenger terminal of the Hong Kong International Airport is $220 \mathrm{~cm}^{2}$. What is the actual area, in $\mathrm{m}^{2}$, occupied by the terminal on the ground?

## 15C. 7 HKCEE MA 2002-I-6

The radius of a circle is 8 cm . A new circle is formed by increasing the radius by $10 \%$.
(a) Find the area of the new circle in terms of $\pi$
(b) Find the percentage increase in the area of the circle.

## 15C. 8 HKCEEMA. 2002 I- 11

The area of a paper bookmark is $A \mathrm{~cm}^{2}$ and its perimeter is $P \mathrm{~cm} . A$ is a function of $P$. It is known that $A$ is the sumof two parts, one part varies as $P$ and the other partvaries as the square of $P$. When $P=24, A=36$ and when $P=18, A=9$.
(a) Express $A$ in terins of $P$.
(b) (i) The best-selling paper bookmark has an area of $54 \mathrm{~cm}^{2}$. Find the perimeter of this bookmark.
(ii) The manufacturer of the bookmarks wants to produce a gold miniature similar in shape to the best selling paper bookmark. If the gold miniature has an area of $8 \mathrm{~cm}^{2}$, find its perimeter.

## 15C9 HKCEEMA 2003 I-13

Sector $O C D$ is a thin metal sheet. The sheet $A B C D$ is formed by cutting away sector $O B A$ from sector $O C D$ as shown in Figure (1).
it is known that $\angle C O D=x^{\circ}, A D=B C=24 \mathrm{~cm}, O A=O B=56 \mathrm{~cm}$ and $\widehat{C D}=30 \pi \mathrm{~cm}$.
(a) (i) Find $x$
(ii) Find, in terms of $\pi$, the area of $A B C D$.
(b) Figure (2) shows another thin metal sheet $E F G H$ which is similar to $A B C D$. It is known that $F G=18 \mathrm{~cm}$.

(i) Find, in terms of $\pi$, the area of $E F G H$

Figure (1)
(ii) By joining $E H$ and $F G$ together, $E F G H$ is then folded to form a hollow frustum of base radius $r \mathrm{~cm}$ as shown in Figure (3). Find $r$.


## 15C. 10 HKCEE MA 2006-I 13

In Figure (1), the frustum of height 8 cm is made by cutting off a right circular cone of base radius 3 cm from a solid right circular cone of base radius 6 cm . Figure (2) shows the solid $X$ formed by fixing the frustum onto a solid hemisphere of radius 6 cm . The solid $Y$ in Figure (3) is similar to $X$. The ratio of the surface area of $X$ to the surface area of $Y$ is $4: 9$.


Figure (1)


Solid $X$
Figure (2)


Figure (3)
(a) Find the volume of $X$ and the volume of $Y$. Give your answers in terms of $\pi$.
(b) In Figure (4), the solid $X^{\prime}$ is formed by fixing a solid sphere of radius 1 cm onto the centre of the top circular surface of $X$ while another solid $Y^{\prime}$ is formed by fixing a solid sphere of radius 2 cm onto the centre of the top circular surface of $Y$. Are $X^{\prime}$ and $Y^{\prime}$ similar? Explain your answer.


Solid $X^{\prime}$


Solid $Y^{\prime}$

Figure (4)

## 15C. 11 HKCEE MA 2007-I 11

The figure shows an inverted right circular conical vessel which is held vertically. The height and the base radius of the vessel are 24 cm and 18 cm respectively. The vessel contains some water and the depth of the water is 8 cm .
(a) Find the volume of water contained in the vessel in terms of $\pi$.
(b) (i) Find the area of the wet curved surface of the vessel in terms of $\pi$.
(ii) Another inverted right circular conical vessel with height 36 cm and base radius 27 cm is held vertically. This bigger vessel and the vessel shown in the figure contain the same volume of water. Find the area of the wet curved surface of the bigger vessel in terms of $\pi$.


## 15C. 12 HKCEE MA 2008 -I - 13

In Figure (1), sector $O A B C$ is a thin metal sheet. By joining $O A$ and $O C$ together, $O A B C$ is folded to form a right ciruclar cone $X$ as shown in Figure (2). It is given that $O A=20 \mathrm{~cm}$.


Figure (1)


Figure (2)
(a) Find the base radius and the height of $X$.
(b) Find the volume of $X$ in terms of $\pi$.
(c) In Figure (3), sector $P D E F$ is another thin metal sheet. By joining $P D$ and $P F$ together, $P D E F$ is folded to form another right circular cone $Y$ as shown in Figure (4). It is given that $P D=10 \mathrm{~cm}$. Are $X$ and $Y$ similar? Explain your answer.


Figure (3)


Figure (4)

## 15C. 13 HKCEEMA $2010-1.13$

In Figure (1), $A B C D E F$ is a wooden block in the form of a right prism. It is given that $A B=A C=17 \mathrm{~cm}$, $B C=16 \mathrm{~cm}$ and $C D=20 \mathrm{~cm}$.
(a) Find the area of $\triangle A B C$.
(b) Find the volume of the wooden block $A B C D E F$
(c) The plane $P Q R S$ which is parallel to the face $B C D F$ cuts the wooden block $A B C D E F$ into two blocks $A P Q R E S$ and $B C Q P S F D R$ as shown in Figure (2). It is given that $P Q=4 \mathrm{~cm}$.
(i) Find the volume of the wooden block $A P Q R E S$.
(ii) Are the wooden blocks $A P Q R E S$ and $A B C D E F$ similar? Explain your answer


## 15C. 14 HKDSE MA 2012-I-11

(Continued from 8C.23.)
Let $\$ C$ be the cost of painting a can of surface area $A \mathrm{~m}^{2}$. It is given that $C$ is the sum of two parts, one part is a constant and the other part varies as $A$. When $A=2, C=62$; when $A=6, C=74$.
(a) Find the cost of painting a can of surface area $13 \mathrm{~m}^{2}$.
(b) There is a larger can which is similar to the can described in (a). If the volume of the larger can is 8 times that of the can described in (a), find the cost of painting the larger can.

## 15C. 15 HKDSE MA 2013 - I-13

In a workshop, 2 identical solid metal right circular cylinders of base radius $R \mathrm{~cm}$ are melted and recast into 27 smaller identical solid right circular cylinders of base radius $r \mathrm{~cm}$ and height 10 cm . It is given that the base area of a larger circular cylinder is 9 times that of a smaller one.
(a) Find
(i) $r: R$,
(ii) the height of a larger circular cylinder.
(b) A craftsman claims that a smaller circular cylinder and a larger circular cylinder are similar. Do you agree? Explain your answer.

## 15C. 16 HKDSE MA. 2014-I -14

The figure shows a vessel in the form of a frustum which is made by cutting off the lower part of an inverted right circular cone of base radius 72 cm and height 96 cm . The height of the vessel is 60 cm . The vessel is placed on a horizontal table. Some water is now poured into the vessel. John finds that the depth of water in the vessel is 28 cm .
(a) Find the area of the wet curved surface of the vessel in terms of $\pi$.
(b) John claims that the volume of water in the vessel is greater than $0.1 \mathrm{~m}^{3}$. Do you agree? Explain your answer.


## 15C. 17 HKDSE MA 2016-I - 11

An inverted right circularconical vessel contains some milk. The vessel is held vertically. The depth of milk in the vessel is 12 cm . Peter then pours $444 \pi \mathrm{~cm}^{3}$ of milk into the vessel without overflowing. He now finds that the depth of milk in the vessel is 16 cm .
(a) Express the final volume of milk in the vessel in terms of $\pi$.
(b) Peter claims that the final area of the wet curved surface of the vessel is at least $800 \mathrm{~cm}^{2}$. Do you agree? Explain your answer.

## 15C. 18 HKDSEMA 2017-I-12

A solid metal right prism of base area $84 \mathrm{~cm}^{2}$ and height 20 cm is melted and recast into two similar solid right pyramids. The bases of the two pyramids are squares. The ratio of the base area of the smaller pyramid to the base area of the largerpyramid is $4: 9$.
(a) Find the volume of the larger pyramid.
(b) If the height of the larger pyramid is 12 cm , find the total surface area of the smaller pyramid.

## 15C. 19 HKDSE MA 2018-I-14

A right circular cylindrical container of base radius 8 cm and height 64 cm and an inverted right circular conical vessel of base radius 20 cm and height 60 cm are held vertically. The container is fully filled with water. The water in the container is now poured into the vessel.
(a) Find the volume of water in the vessel in terms of $\pi$.
(b) Find the depth of water in the vessel.
(c) If a solid metal sphere of radius 14 cm is then put into the vessel and the sphere is totally immersed in the water, will the water overflow? Explain your answer.

## 15C. 20 HKDSE MA 2019-I-9

The sum of the volumes of two spheres is $324 \pi \mathrm{~cm}^{3}$. The radius of the larger sphere is equal to the diameter of the smaller sphere. Express, in terms of $\pi$,
(a) the volume of the larger sphere;
(b) the sum of the surface areas of the two spheres.

## 15 Mensuration

## 15A Lengths and areas of plane figures

15A.I HKCEE MA 1980(1/1*/3) 1-10
(a) $\angle P A X=2 \theta$ ( $\angle$ at centre twise $\angle$ at $\odot^{c t}$ )

Similarly, $\angle Q B X=\angle R C X=2 \theta$
(b) Areas of sector $O A P: O B Q: O C R=(O A: O B: O C)^{2}$ $=4: 9: 16$
(c) $\cos \angle R C X=\frac{C D}{C R}=\frac{2}{4}=\frac{1}{2} \Rightarrow 2 \theta=60^{\circ} \Rightarrow \theta=30^{\circ}$

15A. 2 (HKCEE MA 1981(1/2/3)-1-12)
(a) $A C=10 \sin \left(138^{\circ} \div 2\right) \times 2=18.6716(\mathrm{~m})$
$\therefore B C=\sqrt{A B^{2}+A C^{2}}=21.2(\mathrm{~m}, 3$ s.f. $)$
(b) Area of $A B D C=\frac{138^{\circ}}{369^{\circ}} \times$ C.S.A. of cylinder

$$
=\frac{138^{\circ}}{300^{\circ}} \times 2 \pi(10)(10)=241\left(\mathrm{~cm}^{2}, 3 \text { s.f. }\right)
$$

(c) (Imagine the curved $A B D C$ is straightened.) Lengh of curve $=\sqrt{A B^{2}+(\overparen{A C})^{2}}=26.1 \mathrm{~m}(3$ s.f. $)$

15A. 3 HKCEE MA 1982(1/2/3)-I-4
$\angle B O C \quad \tan ^{-1} \frac{2 \sqrt{3}}{6}=30^{\circ}$
$\therefore$ Areavv $=\frac{30^{\circ}}{360^{\circ}} \times \pi(6)^{2}=3 \pi$

15A. 4 HKCEE MA 1982(1/2/3)-1 -9
(a) Divide the hexagon into 6 equal parts.

Area of hexagon $=$	$6 \times \frac{1}{2} \times 1 \times 1 \times \sin 60^{\circ}$
	$\frac{3 \sqrt{3}}{2}$


$A C=2 \times A B \sin 60^{\circ}=\sqrt{3}$

(b) (i) In $\triangle A B C, \angle B A C=30^{\circ}$

Similarly, $\angle A B F=30^{\circ}$
$\Rightarrow A P=B P$ and, similarly, $B Q=Q C$
Besides, $\angle P B Q=120^{\circ}-30^{\circ}-30^{\circ}=60^{\circ}$
Hence, $\triangle B P Q$ is equilateral. $\Rightarrow A P=P Q=Q C$
$\Rightarrow P Q=\frac{1}{3} A C=\frac{\sqrt{3}}{3}$
(ii) Area $=6 \times \frac{1}{2} \times\left(\frac{\sqrt{3}}{3}\right)^{2} \sin 60^{\circ}=\frac{\sqrt{3}}{2}$

15A. 5 HKCEE MA $1983(\mathrm{~A} / \mathrm{B})-1-5$
(a) $O C=O B-C B=15$
$\angle A O C=\cos ^{-1} \frac{O C}{O A}=60^{\circ}$
(b) $\widehat{A B}=\frac{60^{\circ}}{369^{\circ}} \times 2 \pi(30)=20 \pi$

15A.6 HKCEE MA 1988 - I-5
(a) Area of $O A B C=\frac{100^{\circ}}{360^{\circ}} \times \pi(10)^{2}=87.27$ (2 d.p.)
(b) Area of $\triangle O A C=\frac{1}{2}(10)^{2} \sin 100^{\circ}=49.24$ (2 d.p.)
(c) Area of $A B C=87.27-49.24=38.03$ (2 d.p.)

15A. 7 HKCEE MA 1992-1-7
(a) $\angle A O B=360^{\circ} \div 5=72^{\circ}$

Area of $\triangle O A B=\frac{1}{2}(10)^{2} \sin 72^{\circ}=47.533=47.6$ (3 s.f.)
(b) Shaded area $=\frac{72^{\frac{2}{0}}}{960^{2}} \times \pi(10)^{2}-47.553=15.3$ (3 s.f.)

15A. 8 HKCEE MA 1994-I 2(d)

## Method 1

$\angle$ subtended $=\frac{2 \pi}{2 \pi(5)} \times 360^{\circ}=72^{\circ}$
$\therefore$ Area of sector $\frac{72^{\circ}}{360^{\circ}} \times \pi(5)^{2}=5 \pi=15.7(3 \mathrm{~s}$. .)
Method 2
Area of sector $=$ Area of circle $\times \frac{\text { Arc length }}{\text { Crcumference }}$

$$
=\pi(5)^{2} \times \frac{2 \pi}{\frac{2 \pi(5)}{2}}=5 \pi=15.7(3 \mathrm{sf})
$$

15A.9 HKCEEMA 1999-1-9
(a) $r \sin 60^{\circ}=5 \Rightarrow r=\frac{10}{\sqrt{3}}=5.77(3 \mathrm{s.f}$.
(b) Area $=\frac{120^{\circ}}{300^{\circ}} \times \pi r^{2}-\frac{1}{2} r^{2} \sin 120^{\circ}=20.5\left(\mathrm{~cm}^{2} .3\right.$ s.f.)

15A. 10 HKCEE MA 2000-I-3
Area $=\frac{75^{\circ}}{350^{\circ}} \times \pi(6)^{2}=2.20\left(\mathrm{~cm}^{2} .3\right.$ s.f. $)$
15A. 11 HKCEE MA 2001 - I-3
Perimeter $=\frac{50^{\circ}}{360^{0}} \times 2 \pi(3)+3+3=8.62(\mathrm{~cm}, 3$ s.f. $)$
15A. 12 HKCEEMA 2004-I-9
(a) Let $r$ cm be the radius.
$\frac{80^{\circ}}{360^{\circ}} \times \pi r^{2}=162 \pi \Rightarrow r=27$
.. The radius is 27 cm .
(b) Perimeter $=\frac{80^{\circ}}{960^{\circ}} \times 2 \pi(27)+27 \times 2=91.7(\mathrm{~cm}, 3$ s.f. $)$

15A. 13 HKCEE MA $2005-1-9$
(a) $\frac{100^{\circ}}{360^{\circ}} \times 2 \pi(O A)=10 \pi \Rightarrow O A=18(\mathrm{~cm})$
(b) Area $=$ Area of sector $O A C$ Area of $\triangle O A C$
$\begin{aligned} \text { Area } & =\text { Area of sector } O A C \quad \text { Area of } \triangle O \\ & =\frac{100^{\circ}}{300^{\circ}} \times \pi(18)^{2} \quad \frac{1}{2}(18)^{2} \sin 100^{\circ} \\ & =123\left(\mathrm{~cm}^{2}, 3 \mathrm{~s} \text {.f. }\right)\end{aligned}$

15A. 14 HKCEEMA 2006-1-4 $\widehat{A B}=\frac{150^{\circ}}{300^{\circ}} \times 2 \pi(12)=10 \pi(\mathrm{~cm})$

15A. 15 HKCEEMA 2007 -I-9
(a) $\frac{\angle A O B}{300^{\circ}} \times 2 \pi(40)=16 \pi \Rightarrow \angle A O B=72^{\circ}$
(b) Area $=\frac{72^{\circ}}{360^{\circ}} \times \pi(40)^{2}=320 \pi\left(\mathrm{~cm}^{2}\right)$

15A. 16 HKDSEMA 2015-I-9
(a) $\frac{\text { Angle }}{360^{\circ}} \times \pi(12)^{2}=30 \pi \Rightarrow$ Angle $=75^{\circ}$
(b) Perimeter $=\frac{75^{\circ}}{300^{\circ}} \times 2 \pi(12)+12 \times 2=5 \pi+24(\mathrm{~cm})$

15B Volumes and surface areas of solids
15B. 1 HKCEE MA 1983(A/B)-1-8 (a) Volume of cylinder $=$ Volume of hemisphere

$$
\begin{aligned}
\pi r^{2} h & =\frac{4}{3} \pi r^{3} \div 2 \\
h & =\frac{2}{3} r \Rightarrow r: h=3: 2
\end{aligned}
$$

(b) (i) $\because h=\frac{2}{3} r$
$\therefore 136=\frac{1}{2}(2 \pi r)+h+(2 r)+h$

$$
136=\pi r+2 r+2\left(\frac{2}{3} r\right)
$$

$$
r=136 \div\left(\pi+\frac{10}{3}\right)=21(2 \text { s.f) }
$$

(ii) Total extermal s.a.
$=4 \pi r^{2} \div 2+2 \pi r h+\pi r^{2}$
$=4 \pi r^{2} \div 2+2 \pi r h+\pi r^{2}$
$=2 \pi(21)^{2}+2 \pi(21)\left(\frac{2}{3} \cdot 21\right)+\pi(2 \mathrm{I})^{2}$
$=6000\left(\mathrm{~cm}^{2}, 1 \mathrm{sf}.\right)$
15B. 2 HKCEE MA 1984(A/B)-I- 12 (a) Suppose $E$ is the mid-point of $C D$.
$\angle C P D=2 \angle C P E$
$=2 \tan ^{-1} \frac{C E}{\frac{P E}{20}}$
$=2 \tan ^{-1} \frac{\frac{D E}{20 \div 2}}{20}=53.1301^{\circ}=53.1^{\circ}(\mathrm{I} \mathrm{dp}$.
(b) $P C=\sqrt{P E^{2}+C E^{2}}=\sqrt{500}$
$\therefore \widehat{C Q D}=\frac{53.1301^{\circ}}{360^{\circ}} \times 2 \pi(\sqrt{500})$
$=20.73495=20.7(\mathrm{~cm}, 1 \mathrm{~d} . \mathrm{p}$.
(c) Area of $A P B C Q D$
$=$ Ares of sector $P C D+2 \times$ Area of $\triangle P B C$
$=\frac{53.1301^{\circ}}{360^{\circ}} \times \pi(\sqrt{500})^{2}+2 \times \frac{20 \times 10}{2}$
$=431.8\left(\mathrm{~cm}^{2}, 1 \mathrm{~d} . \mathrm{p}.\right)$
(d) T.S.A. $=B R \times$ Perimeter of $A P B C Q D$
$=20 \times(20 \times 3+\overline{C Q D})=1614.7\left(\mathrm{~cm}^{2}, 1 \mathrm{dp}.\right)$
15B. 3 HKCEE MA 1985(A/B) -I 11
(a) (a) $135 \pi=\pi 9 . O P \Rightarrow O P=15$ (cm)
(ii) Height $=\sqrt{15^{2}-9^{2}}=12(\mathrm{~cm})$
(b) (i) $\mathrm{By} \sim \Delta$ s, $\frac{12-x}{x}=\frac{3}{9}=\frac{1}{3}$
$\begin{aligned} 3(12-x) & =x \\ x & =8\end{aligned}$

(ii) Method I

Volume remained

- Big cone-Small cone-Cylinder
$=\frac{1}{3} \pi(9)^{2}(12)-\frac{1}{3} \pi(3)^{2}(12-8)-\pi(3)^{2}(8)$
$=240 \pi\left(\mathrm{~cm}^{3}\right)$
Method 2
Vol of frustum $=$ Vol of big cone $\times\left[\begin{array}{ll}1 & \left(\frac{3}{9}\right)^{3}\end{array}\right]$

$$
=\frac{1}{3} \pi(9)^{2}(12) \times\left(\begin{array}{ll}
1 & \frac{1}{27}
\end{array}\right)
$$

$$
=324 \pi \times \frac{26}{27}=312 \pi\left(\mathrm{~cm}^{3}\right)
$$

$\therefore$ Vol remained $=312 \pi-\pi(3)^{2}(8)=240 \pi\left(\mathrm{~cm}^{3}\right)$

15B. 4 HKCEE MA $1986(A / B)-I-12$
(a) (i) Let $h$ be the height of the cone.
$\frac{1}{3} \pi(6)^{2}(h)=\frac{4}{3} \cdot\left[\frac{4}{3} \pi(6)^{3} \div 2\right]$

$$
12 \pi h=\frac{4}{3}(144 \pi) \Rightarrow h=16
$$

- The height of the cone is 16 .
(i) $\mathrm{Vol}=144 \pi+144 \pi \times \frac{4}{3}=336 \pi$
(b) (i) $\mathrm{By} \sim \Delta \mathrm{s}, \frac{x}{y}=\frac{6}{16}=\frac{3}{8}$

$$
\text { (ii) } \frac{1}{3} \pi x^{2} y=336 \pi \div 2
$$

$$
\begin{aligned}
\frac{1}{3} \pi\left(\frac{3}{8} y\right)^{2} y & =168 \pi \\
\frac{3}{4} \pi y^{3} & =168 \pi
\end{aligned}
$$

$$
\frac{3}{64} \pi y^{3}=168 \pi \Rightarrow y=15.3 \text { (1 d.p.) }
$$

15B. 5 HKCEE MA $1989-I-11$
(a) Vol of water $=\frac{(10+2) \times 50}{2} \times 20=6000\left(\mathrm{~m}^{3}\right)$
(b) (i) (The cross-section would change from a trapezium to a triangle.)
Vol of water remaining $=\frac{8 \times 50}{2} \times 20=4000\left(\mathrm{~m}^{3}\right)$
(ii) Vol of water through pipe in ${ }^{2}$ second
$=\pi(0.125)^{2}(3)=0.048875 \pi$ m $\left.^{3}\right)$
$=\pi(0.125)^{2}(3)=0.046875 \pi\left(\mathrm{~m}^{3}\right)$
Vol of water pumped in 8 ho
$=0.046875 \pi \times 8 \times 60 \times 60$
$=0.046875 \pi \times 8 \times 60 \times 60$
$=1350 \pi=4241\left(\mathrm{~m}^{3}\right.$, nearest $\left.\mathrm{m}^{3}\right)$
(iii) Vol of water remaining after 8 hours Vol of water remaining after 8 hours
$=6000-1350 \pi=1758.8499\left(\mathrm{~m}^{3}\right)$ Since the cross-section right-angled $\Delta \mathrm{s}$ are similar, $\frac{1758.8499}{4000}=\left(\frac{h \mathrm{~m}}{8 \mathrm{~m}}\right)^{2} \Rightarrow h=\sqrt{\frac{1758.8499}{4000}} \times 8$


15B. 6 HKCEEMA 1990-I-11
(a) (i) $S=2 \pi r^{2}+2 \pi r h$
(ii) $V=\pi r^{2} h \Rightarrow h=\frac{V}{\pi r^{2}}$

$$
\therefore S=2 \pi r^{2}+2 \pi r\left(\frac{V}{\pi r^{2}}\right)=2 \pi r^{2}+\frac{2 V}{r}
$$



In Figure (2), $\widehat{A D A^{\prime}}=$ Base $\odot^{c e}$ of bucket
$\begin{aligned} \therefore \frac{\angle A O A^{\prime}}{360^{\circ}} \times 2 \pi(O A) & =40 \pi \\ \angle A O A^{\prime} & =\frac{40 \pi}{120 \pi} \cdot 360^{\circ}=120^{\circ}\end{aligned}$
(b) Area of $A B E^{\prime} A^{\prime}=\frac{120^{\circ}}{360^{\circ}}\left[\pi(60+60)^{2}-\pi(60)^{2}\right]$
$=3600 \pi\left(\mathrm{~cm}^{2}\right)$
(c) The shortest path is $A C$ in Figure (2).

Method I
Since $O A=O B$ and $\angle A O C=120^{\circ} \div 2=60^{\circ}, \triangle O B C$ is equilateral.
$\therefore$ Required path $=O C \sin 60^{\circ}=120 \cdot \frac{\sqrt{3}}{2}=60 \sqrt{3}(\mathrm{~cm})$ Method 2
Required path $=\sqrt{O A^{2}}+O C^{2}-2 O A \cdot O C \cos \angle A O C$
$=\sqrt{60^{2}+120^{2}-2 \cdot 60 \cdot 120 \cos 60^{\circ}}$
$=\sqrt{10800}(\mathrm{~cm})$
15 B .8 (HKCEE MA 1993 1 9)
(a) (i) Area of sector $O A C B=\frac{\alpha}{360^{\circ}} \times \pi r^{2}$
(ii) Area of segment $A C B=\frac{\alpha}{300^{\circ}} \times \pi r^{2}-\frac{1}{2} r^{2} \sin \alpha$
(iii) $\because \mathrm{A}$ of segment $A C B=\frac{1}{5}$ ( A of circle)

$$
\therefore\left(\frac{\alpha \pi}{360^{\circ}}-\frac{\sin \alpha}{2}\right) r^{2}=\frac{1}{5}\left(\pi r^{2}\right)
$$

$\frac{\alpha \pi}{360^{\circ}}-\frac{\sin \alpha}{2}=\frac{1}{5}$
$\sin \alpha=\left(\frac{\alpha}{180^{\circ}}-\frac{2}{5}\right) \pi$
(b) Required ratio $=\frac{\text { major } \widehat{A B}}{\operatorname{minor} \widehat{A B}}=\frac{360^{\circ} \alpha}{\alpha}=1.98: 1$ (3 s.f.)

15B. 9 HKCEEMA 1994-I-10
(a) Vol of water $=\pi(2)^{2}(1.5)=6 \pi\left(\mathrm{~m}^{3}\right)$
(b) $\pi(2)^{2} h=\frac{4}{3} \pi(0.6)^{3}$

$$
h=\frac{\frac{4}{3} \pi(06)^{3}}{4 \pi}=0.072
$$

(c) (1) $\pi(2)^{1}(2 r \quad 1.5)=\frac{4}{3} \pi r^{3}$
$2 r-15=\frac{1}{3} r^{3} \Rightarrow 2 r^{3}-12 r+9=0$
15B. 10 HKCEEMA 1995-I-13
(a) Vol of water $=\frac{1}{3} \pi(6)^{2}(12)=144 \pi\left(\mathrm{~cm}^{3}\right)$
(b) Consider (the cross-section of the entire conical vessel and (the cross-section of) the part of the conical vessel inside the cylindrical vessel.
$\frac{6}{12}=\frac{4}{11-d} \Rightarrow 11-d=8 \Rightarrow d=3$
(c) (i) Vol leaked $=$ Vol of water in cylindrical vessel
(ii)

$104 \pi+\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2}(h)=\pi(4)^{2}(3+h)$
$1248+h^{3}=192(3+h)$
$h^{3}-192 h+672=0$

## 15B. 11 HKCEEMA 1996-I-8

(a) Cap of $\operatorname{cup}=\frac{1}{3} \pi(5)^{2}(12)=100 \pi=314\left(\mathrm{~cm}^{3}, 3\right.$ s.f.)
(b) (i) Area of sector $=$ C.S.A. of cone
$=\pi(5) \sqrt{2}^{2}+12^{2}$
$=\pi(5)(13)=65 \pi=204\left(\mathrm{~cm}^{2}, 3\right.$ s.f. $)$
(ii) $\begin{aligned} & \angle \text { of sector } \\ & 360^{\circ} \\ & \angle \pi(13)^{2}=65 \pi\end{aligned}$

$$
\angle \text { of sector }=138^{\circ} \text { (3 s.f.) }
$$

15B. 12 HKCEEMA 1997-I-12
(a) (i) In $\triangle V M N, N M=6 \div 2=3$ (m)

$$
\begin{aligned}
& N M=6 \div 2=3=3(\mathrm{~m}) \\
& V N=N M \tan \theta=3 \tan \theta(\mathrm{~m}) \\
& V M=\frac{N M}{\cos \theta}=\frac{3}{\cos \theta}-(\mathrm{m})
\end{aligned}
$$

(ii) $\mathrm{C}_{\text {ap }}=\frac{1}{3} \times 6 \times 6 \times 3 \tan \theta=36 \tan \theta\left(\mathrm{~m}^{3}\right)$

$$
\text { T.S.A. }=4 \times \frac{6 \times \frac{3}{\sin \theta}}{2}=\frac{36}{\cos \theta}\left(\mathrm{~m}^{\prime}\right)
$$

(b) (i) $6 \times 6=\pi r^{2} \Rightarrow r=\frac{6}{\sqrt{\pi}}$
(ii) $\pi r^{2} h=36 \tan \theta \Rightarrow(36) / h=36 \tan \theta \Rightarrow h \tan \theta$
(iii) $\begin{aligned} 2 \pi r h+\pi r^{2} & =\frac{36}{\cos \theta} \\ 2 \pi\left(\frac{6}{\sqrt{\pi}}\right)(\tan \theta)+(36) & =\frac{36}{\cos \theta} \\ 12 \sqrt{\pi} \tan \theta+36 & =\frac{36}{\cos \theta} \\ \sqrt{\pi} \tan \theta+3 & =\begin{array}{c}3 \\ \cos \theta\end{array}\end{aligned}$

15B. 13 HKCEE MA $1998-1-1$
Volume $=\frac{(2+6) \times 3}{2} \times 8=96\left(\mathrm{~cm}^{3}\right)$
15B. 14 HKCEE MA 1999-1-13
(a) Capacity of hole $=\frac{4}{3} \pi(5)^{3} \times \frac{1}{2}+\pi(5)^{2}(9-5)$

Capacity of hole $=\frac{550}{3} \pi\left(\mathrm{~cm}^{3}\right)$
(b) $\mathrm{By} \sim \Delta \mathrm{s}, \frac{h}{h+10}=\frac{4}{9}$
$\begin{aligned} 9 h & =4 h+40 \\ h & =8\end{aligned}$
$h=8$

$\therefore$ Vol of frostum $=\frac{1}{3} \pi(9)^{2}(10+8)-\frac{1}{3} \pi(4)^{2}(8)$

$$
=\frac{1330}{3} \pi\left(\mathrm{~cm}^{3}\right)
$$

$\therefore$ Vol of wood $=\frac{1330}{3} \pi-\frac{550}{3} \pi=260 \pi\left(\mathrm{~cm}^{3}\right)$

## 15B. 15 HKCEE MA 2002-1-15

(a) (i) Total vol of water $=\frac{1}{3} \pi(9)^{2}(24)=648 \pi\left(\mathrm{~cm}^{3}\right)$

Vol of water remained in cone $=648 \pi \times\left(\frac{h+5}{24}\right)^{3}$

$$
=\frac{3}{64} \pi(h+5)^{3}
$$

$\begin{aligned} \frac{3}{64} \pi(h+5)^{3} & =648 \pi-\pi(6)^{2} h \\ (h+5)^{3} & =13824-768 h\end{aligned}$ $\begin{aligned}(h+5)^{3} & =13824-768 h \\ h^{3}+15 h^{2}+75 h+125 & =13824-768 h\end{aligned}$ $h^{3}+15 h^{2}+843 h-13699=0$
(b) The final situation in Figure (2) is the same as Figure (1) with the lowest 5 cm removed

16 HKCEEMA 2004
(a) Base radius of cylinder $=\sqrt{12^{2}-\left(\frac{h}{2}\right)^{2}}=\sqrt{144-\frac{h^{2}}{4}}$
$\therefore V=\pi\left(144-\frac{h^{2}}{4}\right)(h)=144 \pi h-\frac{\pi}{4} h^{3}$
(c) $144 \pi h-\frac{\pi}{4} h^{3}=286 \pi \Rightarrow h^{3}-576 h+1144=0$ Since $(2)^{\frac{4}{3}}-576(2)+1144=0, h-2$ is a factor $(h-2)\left(h^{2}+2 h-572\right)=0$

$$
\begin{aligned}
h & =2 \text { or } \frac{-2 \pm \sqrt{4+2288}}{2} \\
& =2 \text { or } \sqrt{573}-1 \text { or }-\sqrt{573}-1 \text { (rj. })
\end{aligned}
$$

Hence, the height is $2 \mathrm{~cm} \alpha(\sqrt{573}-1) \mathrm{cm}$.

## 15B. 17 HKCEEMA 2005-T-12

(a) $\frac{1}{3} \pi(h-4)^{2} h=\frac{4}{3} \pi(h-4)^{3} \div 2$

$$
h=3(h-4) \Rightarrow h=8
$$

(b) T.S.A. $=\pi(h-4) \sqrt{h^{2}}+(h-4)^{2}+4 \pi(h-4)^{2} \div 2$
$=\pi(8) \sqrt{8^{2}}+4^{2}+2 \pi(4)^{2}$
$=325\left(\mathrm{~m}^{2}\right.$
$=325\left(\mathrm{~cm}^{2}\right.$, nearest $\left.\mathrm{cm}^{2}\right)$
(c) Increase $=2 \times(\Delta+$ semi-circle $)$

$$
=2 \times\left[\frac{8 \times 8}{2}+\frac{\pi(4)^{2}}{2}\right]=114\left(\mathrm{~cm}^{2}, \text { nrst } \mathrm{cm}^{2}\right)
$$

15B. 18 HKCEE MA 2009 I-13
(a) (i) Capacity $=\frac{1}{3} \pi(12)^{2}(18)=864 \pi\left(\mathrm{~cm}^{3}\right)$
(ii) $\begin{aligned} \mathrm{By} \sim \Delta \mathrm{s}, \frac{x}{12} & =\frac{18-6}{18} \\ x & =8\end{aligned}$

12
$\therefore$ Vol of frustum $=864 \pi-\frac{1}{3} \pi(8)^{?}(12)$ $=608 \pi\left(\mathrm{~cm}^{3}\right)$
(b) (i) Cap of cylinder $=\pi(8)^{2}(10)=640 \pi\left(\mathrm{~cm}^{3}\right)$ Cap of cylinder $=\pi(8){ }^{2}(10)=640$
$\therefore$ Vol of wazer in the frustum part $\therefore 884 \pi-640 \pi=244 \pi\left(\mathrm{~cm}^{3}\right)$ Suppose the depth of water in the frustum is $z \mathrm{~cm}$. Suppose the depth of water in the frustum is $z \mathrm{~cm}$.
By $\sim \Delta \mathrm{s}, \begin{aligned} \frac{z+12}{18} & =\frac{y}{12} \\ y & =\frac{2}{3}(z+12)\end{aligned}$
$\therefore 244 \pi=\frac{1}{3} y^{2}(z+12)-256 \pi$

$$
500 \pi=\frac{1}{3} \pi\left(\frac{2}{3}(z+12)\right)^{2}(z+12)
$$

$$
500=\frac{4}{27}(z+12)^{3}
$$

$(z+12)^{3}=3375 \Rightarrow z+12=15 \Rightarrow z=3$
(ii) Capof vessel $=640 \pi+608 \pi=1248 \pi=3920(\mathrm{~cm})$. Cap of vessel $=640 \pi+608 \pi=1248 \pi=3920\left(\mathrm{~cm}^{3}\right)$
Vol of water + metal $=884 \pi+1000=3777\left(\mathrm{~cm}^{3}\right)$ $\therefore$ No.

15B. 19 HKCEE MA $2011-\mathrm{I}-13$
(a) $\frac{288^{\circ}}{3600} \times \pi(O X)^{2}=2880 \pi \Rightarrow O X=60(\mathrm{~mm})$
(b) $\widehat{X Y Z}=\frac{288^{\circ}}{360^{\circ}} \times 2 \pi(60)=96 \pi(\mathrm{~mm})$
$\therefore$ Base radius of container $=\frac{96 \pi}{2 \pi}=48(\mathrm{~mm})$
$\Rightarrow$ Height of container $=\sqrt{60^{2}-48^{2}}=36(\mathrm{~mm})$
(c) Cap of container $=\frac{1}{3} \pi(48)^{2}(36)=86859 \mathrm{~mm}^{3}$

YES.
1.5B. 20 HKDSEMASP-I-6
(a) $\frac{1}{3} \pi r^{2}(12)=2 \times\left(\frac{4}{3} \pi r^{3} \times \frac{1}{2}\right)$

$$
4 \pi r^{2}=\frac{4}{3} \pi r^{3} \Rightarrow r=3
$$

(b) Volume $=\frac{2}{3} \pi(3)^{3} \times 3=54 \pi\left(\mathrm{~cm}^{3}\right)$

15B. 21 HKDSE MA 2012-I-9
(a) Base area $=\frac{\text { Volume }}{\text { Height }}=\frac{1020}{10}=102\left(\mathrm{~cm}^{2}\right)$

$$
\frac{(6+A D) \times 12}{2}=102 \Rightarrow A D=11(\mathrm{~cm})
$$

(b) Perimeter of base $=11 \div 12 \div 6 \div \sqrt{(11 ~ 6)^{2}+12^{\frac{2}{2}}}$ $=42(\mathrm{~cm})$
$\therefore$ TS.A. $=2 \times 102+42 \times 10=624\left(\mathrm{~cm}^{2}\right)$

15B. 22 HKDSE MA $2012-\mathrm{I}-12$
(a) Vol of cone $=\frac{1}{3} \pi(48)^{2}(96)=73728 \pi\left(\mathrm{~cm}^{3}\right)$
(b) (i) Vol of milk $=\frac{4}{3} \pi(60)^{3} \div 2=144000 \pi\left(\mathrm{~cm}^{3}\right)$
(ii) In the figure, $d=\sqrt{60^{\frac{1}{2}}-48^{\frac{1}{2}}}=36$

$$
\begin{aligned}
\frac{e}{48} & =\frac{96-d}{96} \\
e & =\frac{60}{96} \times 48=30
\end{aligned}
$$

Method 1
$\because$ Vol or part of cone in milk

$=73728 \pi-18000 \pi=55728 \pi\left(\mathrm{~cm}^{3}\right)$
$\therefore$ Vol of milk remaining $=144000 \pi \quad 55728 \pi$
$\frac{\text { Method } 2}{\text { Height of }}$
$\therefore \frac{\text { Heigh of cone ourside milk }}{\text { Height of the whole cone }}=\frac{96-36}{96}=\frac{5}{8}$ $\therefore$ Vol of part of cone in milk
$=73728 \pi \times\left[1-\left(\frac{5}{8}\right)^{3}\right]=55728 \pi\left(\mathrm{~cm}^{3}\right)$

Hence
$\therefore$ Vol of milk remaining $=144000 \pi-55728 \pi$

$=88272 \pi \mathrm{~cm}^{3}$
$=277000 \mathrm{~cm}^{3}$
$=0.277 \mathrm{~m}^{3}<0.3 \mathrm{~m}^{3}$
The crafsman is disagreed.
158.23 in the end of 15 C

15C Similar plane figures and solids
15C. 1 HKCEE MA 1981(1/2/3) - I-1
$\frac{\text { S.A. of bigger tank }}{\text { S.A. of smaller tank }}=\left(\sqrt{\frac{64}{27}}\right)$
$\frac{\text { Paint for bigger tank }}{72 \mathrm{~kg}}=\left(\frac{4}{3}\right)^{2}$
Paint for bigger tank $=\frac{16}{9} \times 72=128(\mathrm{~kg})$

15C. 2 HKCEE MA $1987(\mathrm{~A} / \mathrm{B})-\mathrm{I}-9$
(a) (i) $108 \pi=$ Vol of hemisphere $\times 6$ $108 \pi=\left[\frac{4}{3} \pi(r)^{3} \div 2\right] \times 6$
$108 \pi=4 \pi r^{3} \Rightarrow r=3$
Vol of cylindrical part $=\frac{5}{6}(108 \pi)$
$\pi(3)^{2}(h)=90 \pi \Rightarrow h=10$
(ii) Vol of water $=108 \pi-$ Vol of empty space $=108 \pi \sim \pi(3)^{2}(4)=69 \pi\left(\mathrm{~cm}^{3}\right)$
(b) $\because \frac{\text { Height of vessel }}{\text { Deph }}=$

Depth of water
$\therefore \frac{\text { Cap of vessel }}{\text { Vol of water }}=2^{3}=8$
Cap of vessel $=8 \times 69 \pi=552 \pi\left(\mathrm{~cm}^{3}\right)$
15C. 3 HKCEE MA 1992-1-12
(a) (i) Cap of funnel $=\frac{1}{3} \pi(9)^{2}(10+5+5)=540 \pi\left(\mathrm{~cm}^{3}\right)$
(ii) V of water : Total v of water \& oil : Cap of funnel $=(10)^{3}:(10+5)^{3}:(10+5+5)^{3}$
$=8: 27: 81$
$\therefore \mathrm{V}$ of water : V or oil : Cap of funnel $=8:(27-8): 81=8: 19: 81$
(b) $V$ or water $=340 \pi \times \frac{8}{81}=\frac{160}{3} \pi\left(\mathrm{~cm}^{3}\right)$

In the tube
$V$ of water in lower part $=\frac{4}{3} \pi(3)^{3} \div 2=18 \pi\left(\mathrm{~cm}^{3}\right)$
$\Rightarrow V$ of waler in upper part $=\frac{160}{3} \pi \quad 18 \pi=\frac{106}{3} \pi\left(\mathrm{~cm}^{3}\right)$
$\therefore$ Depth of water $=\frac{\frac{106}{3} \pi}{\pi(3)^{2}}+3=\frac{187}{27}(\mathrm{~cm})$
(c) $\because \frac{\text { Vol of oil }}{\text { Cap of funnel }}=\frac{19}{81}$
$\frac{\text { Depth of oil }}{\text { Height of funnel }}=\sqrt{\frac{19}{81}}$
$\Rightarrow$ Depth of oil $=\sqrt{\frac{19}{81}} \times 20=9.69(\mathrm{~cm}, 3$ s.f. $)$
15C. 4 HKCEE MA 1994-I-2(e)
Ratio of volumes $=\left(\frac{2}{3}\right)^{3}=8: 27$

15C. 5 HKCEE MA 1997 -I- 7
(a) Required ratio $=\sqrt[3]{\frac{8}{27}}=\frac{2}{3}$

15C. 6 HKCEE MA $2000-1-8$
Actual area $=220 \mathrm{~cm}^{2} \times(5000)^{2}$
$=5500000000 \mathrm{~cm}^{2}=550000 \mathrm{~m}^{2}$
15C. 7 HKCEE MA 2002-I-6
Merhod 1
(a) New radius $=8 \times(1+10 \%)=8.8(\mathrm{~cm})$
$\therefore$ New area $=\pi(8.8)^{2}=77.44 \pi\left(\mathrm{~cm}^{2}\right)$
(b) Original area $=\pi(84)^{2}=64 \pi\left(\mathrm{~cm}^{2}\right)$
$\%$ increase $=\frac{77.44 \pi-64 \pi}{64 \pi} \times 100 \%=21 \%$

## Methed 2

(a) Original area $=\pi(8)^{2}=64 \pi\left(\mathrm{~cm}^{2}\right)$
$\therefore$ New area $=64 \pi \times(1+10 \%)^{2}=77.44 \pi\left(\mathrm{~cm}^{2}\right)$
(b) $\%$ increase $=\frac{(1+10 \%)^{2}-1}{1} \times 100 \%=21 \%$

15C. 8 HKCEE MA 2002-1-11
(a) Let $A=h P+k P^{2}$.
$\left\{\begin{array}{l}\begin{array}{l}\text { Let } A=h P+k P 76 \\ 9=18 h+324 k\end{array}\end{array} \Rightarrow\left\{\begin{array}{l}h=-\frac{5}{2} \\ k=\frac{1}{6}\end{array} \Rightarrow A=\frac{-5}{2} p+\frac{1}{6} p^{2}\right.\right.$
(b) (i)

$$
54=\frac{5}{2} P+\frac{1}{6} P^{2}
$$

$P^{2}-15 P-324=0^{2} \Rightarrow \stackrel{6}{P}=27$ or -12 (rejected) .The perimeter is 27 cm .
(ii) $\frac{\text { Area of miniature }}{\text { Area of original }}=\frac{8}{54}=\frac{4}{27}$
$\Rightarrow \frac{\text { Perimeter of miniature }}{\text { Perimeter of original }}=\frac{2}{\sqrt{27}}$

$$
\therefore \text { Perimeter of miniature }=\frac{2}{\sqrt{27}} \times 27
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\sqrt{27} \\
=2 \sqrt{27}(\mathrm{~cm})
\end{array}(=6 \sqrt{3} \mathrm{~cm})
\end{aligned}
$$

15C. 9 HKCEEMA 2003-I-13
(a) (i) $\frac{x^{\circ}}{360^{\circ}} \times 2 \pi(56+24)=30 \pi \Rightarrow x=67.5$
(ii) Area of $A B C D=\frac{67.5^{\circ}}{360^{2}} \times\left[\pi(80)^{2}-\pi(56)^{2}\right]$

$$
=612 \pi\left(\mathrm{~cm}^{2}\right)
$$

(b) (i) Area of $E F G H=612 \pi \times\left(\frac{18}{24}\right)^{2}=344.25 \pi\left(\mathrm{~cm}^{2}\right)$
(ii) Base $\odot^{\text {re }}=30 \pi \times \frac{18}{24}=22.5 \pi(\mathrm{~cm})$

$$
\Rightarrow r=\frac{22.5 \pi}{2 \pi}=11.25
$$

15C. 10 HKCEEMA 2006-1-13
(a) $\mathrm{By} \sim \Delta \mathrm{s}, \frac{h}{h+8}=\frac{3}{6}=\frac{1}{2}$

$$
\begin{aligned}
& +8 \\
& 2 h \\
& =h+8^{2}
\end{aligned} \Rightarrow h=8
$$

## $\therefore$ Vol of frustum

$=\frac{1}{3} \pi(6)^{2}(8+8)-\frac{1}{3}(3)^{2}(8)$
$=192 \pi-24 \pi=168 \pi\left(\mathrm{~cm}^{3}\right)$

$\Rightarrow$ Vol of $X=168 \pi \div \frac{4}{3} \pi(6)^{3} \div 2=312 \pi\left(\mathrm{~cm}^{3}\right)$ $\frac{\text { Vol of } Y}{\text { Vol of } X}=\left(\sqrt{\left.\frac{\text { S.A. of } Y}{\text { S.A. of } X}\right)^{3}}=\left(\sqrt{\frac{9}{4}}\right)^{3}=\frac{27}{8}\right.$
$\Rightarrow$ Vol of $Y=\frac{27}{8}(312 \pi)=1053 \pi\left(\mathrm{~cm}^{3}\right)$
(b) $\because$ Ratio of S.A. of spheres $=(1: 2)^{2}=1: 4$ $\therefore$ NO

15C. 11 HKCEEMA $2007-\mathrm{I}-11$

$\begin{aligned} \therefore \text { Vol of water } & =\frac{1}{3} \pi(6)^{2}(8) \\ & =96 \pi\left(\mathrm{~cm}^{3}\right)\end{aligned}$
Method 2
Vol of water $=\left(\frac{8}{24}\right)^{3}$ Vol of vessel

$$
=\frac{1}{27} \times \frac{1}{3} \pi(18)^{2}(24)=96 \pi\left(\mathrm{~cm}^{3}\right.
$$


Area of we
$\frac{\text { Method } 2}{\text { Area of wet surface }=\left(\frac{8}{24}\right)^{2} \text { C.S.A. of vessel }}$

$$
\begin{aligned}
& =\frac{1}{9} \times \pi(18) \sqrt{18^{2}+24^{2}} \\
& =60 \pi\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$

(ii) Ratio of heigt $=60 \pi\left(\mathrm{~cm}^{2}\right)$

Ratio of heights $=24: 36=2: 3$
Ratio of base radii $=18: 27=2: 3$
Racio of base radiil $=18: 27=2: 3$
The two vessels are similar.
Area of wet surface is also $60 \pi \mathrm{~cm}^{2}$

15C. 12 HKCEE MA $2008-\mathrm{I}-13$
(a) $\widehat{A B C}=\frac{216^{\circ}}{360^{\circ}} \times 2 \pi(20)=24 \pi(\mathrm{~cm})$

$$
\begin{aligned}
& \text { Base radius of } X=\frac{24 \pi}{2 \pi}=12(\mathrm{~cm}) \\
& \text { Height }=\sqrt{20^{2}-12^{2}}=16(\mathrm{~cm})
\end{aligned}
$$

Vol of $X=\frac{1}{3} \pi(12)^{2}(16)=768 \pi\left(\mathrm{~cm}^{3}\right)$
(c) Method I
$\frac{\text { Mathod } 1}{\text { Base radius of } Y=\frac{\frac{105^{\circ}}{360^{\circ}}}{} \times 2 \pi(10)} 2 \pi(\mathrm{~cm})$
$\int \frac{\text { Slant height of } X}{\text { Slant height of } Y}=\frac{20}{10}=2$
$\left\{\begin{array}{l}\text { Slant height of } Y \\ \frac{\text { Base radius of } X}{\text { Base radius of } Y}=\frac{12}{3}=4 \neq \frac{10}{\text { Slant height of } X}\end{array}\right.$ . No.
$\cdots$ No.
$\frac{\text { Merhod } 2}{\text { Base } \odot^{\text {ce }}}$ of $X=\frac{216^{\circ}}{360^{\circ}} \times 2 \pi(20)=24 \pi\left(\mathrm{~cm}^{2}\right)$
Base $\odot^{\text {ce }}$ of $Y=\frac{108^{\circ}}{360^{\circ}} \times 2 \pi(10)=6 \pi\left(\mathrm{~cm}^{2}\right)$
$\left\{\begin{array}{l}\text { Slant height of } X \\ \text { Slant height of } Y \\ \text { 竍 }\end{array} \frac{20}{10}=2\right.$

. No.
$\frac{\text { Merhod } 3}{\text { C.S.A. of }} X=\frac{216^{\circ}}{360^{\circ}} \times \pi(20)^{2}=240 \pi\left(\mathrm{~cm}^{2}\right)$
C S.A. of $Y=\frac{108^{\circ}}{360^{\circ}} \times \pi(10)^{2}=30 \pi\left(\mathrm{~cm}^{2}\right)$
$\int \frac{\text { Slant height of } X}{\text { Slant height of } Y}=\frac{20}{10}=2$
$\left\{\begin{array}{l}\text { Slant height of } Y=10 \\ \left.\text { C.S.A.of } X \quad 240 \pi=8 \neq(\text { Slant height of } X)^{2}\right) \\ \text { Sla }\end{array}\right.$
$\overline{\text { C.S.A. of } Y} \quad 30 \pi=8 \neq\left(\frac{\text { Slant height of } Y}{(\text { S. }}\right.$

- No.

The sectors are not simila
$\Rightarrow \frac{\text { Area of sector } O A B C}{\text { Area of sector } P D E F} \frac{1}{y}\left(\frac{O A}{P D}\right)^{2}$
$\Rightarrow \frac{\text { C.S.A. of } X}{\text { C.S.A of } Y} \neq\left(\frac{\text { Slant height of } X}{\text { Slant height of } Y}\right)^{2}$
No.

15C. 13 HKCEE MA 2010-1-13
(a) Area of $\triangle A B C=\frac{16 \times \sqrt{17^{-\frac{2}{2}}-(16 \div 2)^{2}}}{2}=120\left(\mathrm{~cm}^{2}\right)$
(b) Vol of $A B C D E F=120 \times 20=2400\left(\mathrm{~cm}^{3}\right)$
(c) (i) $\frac{\text { Area of } \triangle A P Q}{\text { Area of } \triangle A B C}=\left(\frac{P Q}{E C}\right)^{2}=\frac{1}{16}$
$\therefore$ Vol of APQRES $=2400 \times \frac{1}{16}=150\left(\mathrm{~cm}^{3}\right)$

$$
\text { (ii) Method } \begin{aligned}
& \frac{P Q}{B C}-1 \\
& B C
\end{aligned} \text {, but } \frac{A E}{A E}=1 \neq \frac{P Q}{B C}
$$

## 15C. 14 HKDSEMA 2012-I-11

(a) Let $C=h+k$
$\left\{\begin{array}{l}62=h+2 k \\ 74=h+6 k\end{array} \Rightarrow\left\{\begin{array}{l}h=56 \\ k=3\end{array} \Rightarrow C=56+3 A\right.\right.$
$74=h+6 k \Rightarrow\left\{\begin{array}{l}k=3\end{array} \Rightarrow C=56+\right.$
$\therefore$ When $A=13$. cost $=56+3(13)=(\$) 95$
(b) Volume is 8 times. $\Rightarrow$ Area is $(\sqrt[3]{8})^{2}=4$ times. Cost $=56+3(13 \times 4)=(\$) 212$

5C. 15 HKDSEMA 2013-I-13
(a) (i)
() $\frac{r}{R}=\sqrt{\frac{1}{9}}=$
(ii) Let $H \mathrm{~cm}$ be the height of a larger cylinder $2 \times \pi R^{2} H=27 \times \pi r^{2}(10)$
$18 \mathrm{H}=270 \Rightarrow H=$
Hence, the height is 15 cm .
(b) : $\frac{\text { Height of smaller cylinder }}{\text { Height of larger cylinder }}=\frac{10}{15}=\frac{2}{3} \neq \frac{r}{R}$ - Heigh

## 15C. 16 HKDSEMA 2014 -I-14


(a) Method C.S.A. of entire cone $=\pi(72) \sqrt{73^{2}+96^{2}}=8640 \pi\left(\mathrm{~cm}^{2}\right)$ With the label in the figurc.

$=((96-60):(96 \quad 60+28): 96)$
$=(9: 16: 24)^{2}=81: 256: 576$
$\therefore$ Area of wet curved sufface $=8640 \pi \times \frac{256-81}{576}$

$$
=2625 \pi\left(\mathrm{~cm}^{2}\right)^{57}
$$

Method 2
With the label in the figure,
$\frac{\text { Basc radius of } \mathrm{T} \text { ' Base radius of ' } \mathrm{I}+\mathrm{II} \text { ' }}{96-60}=\frac{72}{96}$
$\Rightarrow$ Baser of $\mathrm{T}^{\prime}=27(\mathrm{~cm})$, Base r of ${ }^{\prime} \mathrm{T}+\mathrm{II}=48(\mathrm{~cm})$

- Area of wet curved surface $=\pi(48) \sqrt{48^{2}}+64^{2}$

$$
=2625 \pi\left(\mathrm{~cm}^{2}\right)
$$

(b) Method 1

Vol of entire conc $=\frac{1}{3} \pi(72)^{2}(96)=165888 \pi\left(\mathrm{~cm}^{3}\right)$
$\therefore$ Vol of water $=165888 \pi \times \frac{16^{3}-9^{3}}{24^{3}}$
$=40404 \pi\left(\mathrm{~cm}^{3}\right)$
$=126933 \mathrm{~cm}^{3}=0.127 \mathrm{~m}^{3}>0.1 \mathrm{~m}^{3}$
. Yes.
Mehod 2
Vol of water $=\frac{1}{3} \pi(48)^{2}(64) \quad \frac{1}{3} \pi(27)^{2}(36)$ $\begin{aligned}= & =40404 \pi\left(\mathrm{~cm}^{3}\right) \\ & =126933 \mathrm{~cm}^{3}=0.127 \mathrm{~m}^{3}>0.1 \mathrm{~m}^{3}\end{aligned}$
YES.

## 15C. 17 HKDSE MA 2016-1-11

(a) Let $V \mathrm{~cm}^{3}$ be the final volume of milk

Initial volume of milk $=(\text { Initial depth of milk })^{3}$
$\overline{\text { Final vol ume of milk }}=\left(\begin{array}{l}\text { Final depth of milk }\end{array}\right)$
$\Rightarrow \quad V_{V}^{444 \pi}=\left(\frac{12}{16}\right)^{3}=\frac{27}{64} \Rightarrow V=768$
The final volume of milk is $768 \pi \mathrm{~cm}^{3}$
(b) Let $r \mathrm{~cm}$ be the final radius of the milk sarface. $\frac{1}{3} \pi r^{2}(16)=768 \pi \Rightarrow r=12$
$\therefore$ Final area of wet surface $=\pi(12) \sqrt{(12)^{2}+16^{2}}$ $=240 \pi$
$=754.0\left(\mathrm{~cm}^{2}\right)<800 \mathrm{~cm}^{2}$
No.

## 15C. 18 HKDSEMA2017-I-12

(a) Volume of metal $=84 \times 20=1680\left(\mathrm{~cm}^{3}\right)$
$\frac{\text { Vol of smaller pyramid }}{\text { Vol of larger pyramid }}=\left(\sqrt{\frac{4}{9}}\right)^{3}=\frac{8}{27}$
$\therefore$ Vol of larger pyramid $=1680 \times \frac{27}{8+27}=1296\left(\mathrm{~cm}^{3}\right)$
(b) For the larger pyramid,

Base area $=\frac{3 \times \text { Volume }}{\text { Height }}=\frac{3 \times 1296}{12}=324\left(\mathrm{~cm}^{2}\right)$
$\Rightarrow$ Length of onc side of basc $=\sqrt{324}=18(\mathrm{~cm})$
**15B. 23 HKDSE MA 2020-I-12
The required volume $=\frac{\pi}{3}(15)^{=}(36)\left[\left(\frac{2}{3}\right)^{3}-\left(\frac{1}{3}\right)^{3}\right]$
$700 \pi \mathrm{~cm}^{3}$
b
The required curved surfice area $\pi(15) \sqrt{15^{2}+36^{2}}\left[\left(\frac{2}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}\right]$
$195 \pi \mathrm{~cm}^{2}$

C. 19 HKDSEMA 2018 -I - 14
(a) Vol of water $=\pi(8)^{2}(64)=4096 \pi\left(\mathrm{~cm}^{3}\right)$
(b) Method I
$\begin{aligned} & \text { By } \sim \Delta \text { s. } \frac{h}{60} \\ &=\frac{r}{20} \\ & h=3 r\end{aligned}$
$\therefore \quad \frac{1}{3} \pi r^{2} h=4096 \pi$

$$
\frac{1}{3} \pi r^{2}(3 r)=4096 \pi
$$

$$
r^{3}=4096 \Rightarrow r=16
$$

Hence, the depth of water is $3(16)=48(\mathrm{~cm})$.
Method 2
Cap of vessel $=\frac{1}{3} \pi(20)^{2}(60)=8000 \pi\left(\mathrm{~cm}^{3}\right)$

$$
\begin{aligned}
\therefore \text { Depth of water } & =\frac{\sqrt[3]{\frac{4096 \pi}{800 \pi \pi}}}{4} \times \text { Height of vessel } \\
& =\frac{4}{5} \times 60=48(\mathrm{~cm})
\end{aligned}
$$

(c) Vol of sphere $=\frac{4}{3} \pi(14)^{3}=3658 \frac{2}{3} \pi\left(\mathrm{~cm}^{3}\right)$

Vol of exply space in vessel
$=\frac{1}{3} \pi(20)^{2}(60)-4096 \pi=3904 \pi>$ Vol of sphere

15C. 20 HKDSE MA 2019-I-9
(a) $\frac{M \text { ethod } I}{\text { Let the resp }}$

Let the radii of the smaller and hrger spheres ber $r$ cm and $2 r \mathrm{~cm}$ respectively.
$\frac{4}{3} \pi(r)^{3}+\frac{4}{3} \pi(2 r)^{3}=324 \pi$
$r^{3}+8 r^{3}=243 \Rightarrow r^{3} \quad 27 \Rightarrow r=3$
$\therefore$ Vol of larger sphere $=\frac{4}{3} \pi(2 \times 3)^{3}=288 \pi\left(\mathrm{~cm}^{3}\right)$
$\frac{\text { Method } 2}{V}$
$\frac{\frac{\text { Me thod } 2}{V \text { of larger sphere }}}{\text { V of smaller sphere }}=\left(\frac{\mathrm{R} \text { of larger sphere }}{\text { R of smaller sphere }}\right)=8$
$\therefore$ V of larger sphere $=324 \pi \times \frac{8}{1+8}=288 \pi\left(\mathrm{~cm}^{3}\right)$
(b) R of larger spherc $=\sqrt[3]{288 \pi \div \frac{4 \pi}{3}}=6(\mathrm{~cm})$
$\therefore$ Sum of S.A. $=4 \pi(6)^{2}+4 \pi(6 \div 2)^{2}=180 \pi\left(\mathrm{~cm}^{2}\right)$

## 16 Coordinate Geometry

## 16A Transformation in the rectangular coordinate plane

## 16A. 1 HKCEE MA 2006-I -7

In the figure, the coordinates of the points $A$ and $B$ are $(-2,7)$ and $(-5,5)$ respectively. $A$ is rotated clockwise about the origin $O$ through $90^{\circ}$ to $A^{\prime} . B^{\prime}$ is the reflection image of $B$ with respect to the $y$-axis.
(a) Write down the coordinates of $A^{\prime}$ and $B^{\prime}$.
(b) Are the lengths of $A B$ and $A^{\prime} B^{\prime}$ equal? Explain your answer.


16A. 2 HKCEE MA 2009 - I -9
In the figure, the coordinates of the points $A$ and $B$ are $(-1,-2)$ and $(5,2)$ respectively. $A$ is translated vertically upward by 6 units to $A^{\prime} . B^{\prime}$ is the reflection image of $B$ with respect to the $y$ axis.
(a) Write down the coordinates of $A^{\prime}$ and $B^{\prime}$
(b) Is $A B$ parallel to $A^{\prime} B^{\prime}$ ? Explain your answer


16A. 3 HKCEE MA 2011 I 8
The coordinates of the point $A$ are $(-4,6) . A$ is rotated anticlockwise about the origin $O$ through $90^{\circ}$ to $B$.
$M$ is the mid-point of $A B$.
(a) Find the coordinates of $M$.
(b) Is $O M$ perpendicular to $A B$ ? Explain your answer.

16A. 4 HKDSE MA SP-I-8
In the figure, the coordinates of the point $A$ are $(-2,5)$. $A$ is rotated clockwise about the origin $O$ through $90^{\circ}$ to $A^{\prime}$. $A^{\prime \prime}$ is the reflection image of $A$ with respect to the $y$-axis.
(a) Write down the coordinates of $A^{\prime}$ and $A^{\prime \prime}$.
(b) Is $O A^{\prime \prime}$ perpendicular to $A A^{\prime}$ ? Explain your answer.


16A. 5 HKDSE MA $2014 \mathrm{I}-8$
The coordinates of the points $P$ and $Q$ are $(-3,5)$ and $(2,-7)$ respectively. $P$ is rotated anticlockwise about the origin $O$ through $270^{\circ}$ to $P^{\prime}$. $Q$ is translated leftwards by 21 units to $Q^{\prime}$.
(a) Write down the coordinates of $P^{\prime}$ and $Q^{\prime}$.
(b) Prove that $P Q$ is perpendicular to $P^{\prime} Q^{\prime}$.

## 16A. 6 HKDSE MA 2017-I-6

The coordinates of the points $A$ and $B$ are ( 3,4 ) and ( 9,9 ) respectively. $A$ is rotated anticlockwise about the origin through $90^{\circ}$ to $A^{\prime} . B^{\prime}$ is the reflection image of $B$ with respect to the $x$-axis,
(a) Write down the coordinates of $A^{\prime}$ and $B^{\prime}$
(b) Prove that $A B$ is perpendicular to $A^{\prime} B^{\prime}$.

## 16B Straight lines in the rectangular coordinate plane

## 16B. 1 HKCEE MA 1992-I

$L_{1}$ is the line passing through the point $A(10,5)$ and perpendicular to the line $L_{2}: x-2 y+5=0$
(a) Find the equation of $L_{1}$
(b) Find the intersection point of $L_{1}$ and $L_{2}$.

16B. 2 HKCEE MA 1998 I- 8
$A(0,4)$ and $B(-2,1)$ are two points.
(a) Find the slope of $A B$.
(b) Find the equation of the line passing through $(1,3)$ and perpendicular to $A B$.

16B.3 HKCEE MA 1999 I-10
In the figure, $A(-8,8)$ and $B(16,4)$ are two points. The perpendicular bisector $\ell$ of the line segment $A B$ cuts $A B$ at $M$ and the $x$ axis at $P$.
(a) Find the equation of $\ell$
(b) Find the length of $B P$.
(c) If $N$ is the mid point of $A P$, find the length of $M N$.


16B. 4 HKCEE MA 2000-1-9
Let $L$ be the straight line passing through $(4,4)$ and $(6,0)$.
(a) Find the slope of $L$
(b) Find the equation of $L$
(c) If $L$ intersects the $y$ axis at $C$, find the coordinates of $C$.

## 16B. 5 HKCEEMA 2001 - I

Two points $A$ and $B$ are marked in the figure.
(a) Write down the coordinates of $A$ and $B$.
(b) Find the equation of the straight line joining $A$ and $B$.


16B. 6 HKCEE MA 2002-I - 8
In the figure, the straight line $L: x \quad 2 y+8=0$ cuts the coordinate axes at $A$ and $B$.
(a) Find the coordinates of $A$ and $B$.
(b) Find the coordinates of the mid-point of $A B$.


## 16B. 7 HKCEE MA 2003-I 12

In the figure, $A P$ is an altitude of the triangle $A B C$. It cuts the $y$-axis at $H$.
(a) Find the slope of $B C$.
(b) Find the equation of $A P$.
(c) (i) Find the coordinates of $H$
(ii) Prove that the three altitudes of the triangle $A B C$ pass through the same point.


### 168.8 HKCEE MA 2004-I - 13

In the figure, $A B C D$ is a rhombus. The diagonals $A C$ and $B D$ cut at $E$.
(a) Find
(i) the coordinates of $E$
(ii) the equation of $B D$.
(b) It is given that the equation of $A D$ is $x+7 y-65=0$. Find
(i) the equation of $B C$,
(ii) the length of $A B$.

## 16B. 9 HKCEEMA $2005 \mathrm{I}-13$

In the figure, the straight line $L_{1}: 2 x-y+4=0$ cuts the $x$-axis and the $y$ axis at $A$ and $B$ respectively. The straight line $L_{2}$, passing through $B$ and perpendicular to $L_{1}$, cuts the $x$-axis at $C$. From the origin $O$, a straight ine perpendicular to $L_{2}$ is drawn to meet $L_{2}$ at $D$.
(a) Write down the coordinates of $A$ and $B$.
(b) Find the equation of $L_{2}$.
(c) Find the ratio of the area of $\triangle O D C$ to the area of quadrilateral $O A B D$


16B. 10 HKCEEMA 2006 I- 12
In the figure, $C M$ is the perpendicular bisector of $A B$, where $C$ and $M$ are points lying on the $x$ axis and $A B$ respectively. $B D$ and $C M$ intersect at $K$.
(a) Write down the coordinates of $M$.
(b) Find the equation of $C M$. Hence, or otherwise, find the coordinates of $C$.
(c) (i) Find the equation of $B D$.
(ii) Using the result of (c)(i), find the coordinates of $K$. Hence find the ratio of the area of $\triangle A M C$ to the area of $\triangle A K C$.


16B. 11 HKCEEMA 2007-I-13
In the figure, the perpendicular from $B$ to $A C$ meets $A C$ at $D$.
It is given that $A B=A C$ and the slope of $A B$ is $\frac{-4}{3}$.
(a) Find the equation of $A B$.
(b) Find the value of $h$
(c) (i) Write down the value of $k$
(ii) Find the area of $\triangle A B C$. Hence, or otherwise, find the length of $B D$.


## 16B. 12 HKCEEMA 2008-I- 12

In the figure, the coordinates of the point $A$ are $(4,3) . A$ is rotated anticlockwise about the origin $O$ through $90^{\circ}$ to $B . C$ is the reflection image of $A$ with respect to the $x$ axis.
(a) Write down the coordinates of $B$ and $C$.
(b) Are $O, B$ and $C$ collinear? Explain your answer.
(c) $A$ is translated horizontally to $D$ such that $\angle B C D=90^{\circ}$. Find the equation of the straight line passing through $C$ and $D$. Hence, or otherwise, find the coordinates of $D$.


## 16B. 13 HKCEEMA 2010 I- 12

In the figure, the straight line passing through $A$ and $B$ is perpendicular to the straight line passing through $A$ and $C$, where $C$ is a point lying on the $x$-axis.
(a) Find the equation of the straight line passing through $A$ and $B$.
(b) Find the coordinates of $C$.
(c) Find the area of $\triangle A B C$.
(d) A straight line passing through $A$ cuts the line segment $B C$ at $D$ such that the area of $\triangle A B D$ is 90 square units. Let $B D: D C=r: 1$. Find the value of $r$.

## 16B. 14 HKCEE AM 1982 II 2

Find the ratio in which the line segment joining $A(3,-1)$ and $B(-1,1)$ is divided by the straight line $x-y-1=0$.

## 16B. 15 HKCEE AM 1982-II - 10

(a) The lines $3 x \quad 2 y-8=0$ and $x \quad y-2=0$ meet at a point $P . L_{1}$ and $L_{2}$ are lines passing through $P$ and having slopes $\frac{1}{2}$ and 2 respectively. Find their equations.
(b) [Out of syllabus]

## 16B. 16 (HKCEE AM 1985 II -10 )

$A(0,2), B(-3,0)$ and $C(1,0)$ are the vertices of a triangle. $P Q R S$ is a variable rectangle inscribed in the triangle with $P Q$ on the $x$-axis, $R$ on $A C$ and $S$ on $A B$, as shown in the figure. Let the length of $P S$ be $h$.
(a) Find the coordinates of $S$ and $R$ in terms of $h$.
(b) Let $A_{1}$ be the area of $P Q R S$ when it is a square, $A_{2}$ be the maximum possible area of rectangle $P Q R S$, and $A_{3}$ be the area of $\triangle A B C$. Find the ratios $A_{1}: A_{2}: A_{3}$.
(c) The centre of $P Q R S$ is the point $M(x, y)$.

Express $x$ and $y$ in terms of $h$.
Hence show that $M$ lies on the line $x-y+1=0$.


## 16B. 17 (HKCEE AM 1984 II -4)

The area of the triangle bounded by the two lines $L_{1}: x+y=4$ and $L_{2}: x-y=2 p$ and the $y$-axis is 9 .
(a) Find the coordinates of the point of intersection of $L_{1}$ and $L_{2}$ in terms of $p$.
(b) Hence, find the possible value(s) of $p$.

## 16B. 18 HKCEE AM 1988 - II -2

$A$ and $B$ are the points $(1,2)$ and $(7,4)$ respectively. $P$ is a point on the line segment $A B$ such that $\frac{A P}{P B}=k$.
(a) Write down the coordinates of $P$ in terns of $k$
(b) Hence find the ratio in which the line $7 x-3 y \quad 28=0$ divides the line segment $A B$.

## 16B. 19 HKCEE AM 1990-II -7

In the figure, $A(3,0), B(0,5)$ and $C(0,1)$ are three points and $O$ is the origin. $D$ is a point on $A B$ such that the area of $\triangle B C D$ equals half of the area of $\triangle O A B$. Find the equation of the line $C D$.


## 16B. 20 (HKCEE AM 1996 II 8)

Given two straight lines $L_{1}: 2 x-y-4=0$ and $L_{2}: x-2 y+4=0$. Find the equation of the straight line passing through the origin and the point of intersection of $L_{1}$ and $L_{2}$.

## 16B. 21 (HKCEE AM 1998-II-5)

Two lines $L_{1}: 2 x+y-3=0$ and $L_{2}: x-3 y+1=0$ intersect at a point $P$.
(a) Find the coordinates of $P$.
(b) $L$ is a line passing through $P$ and the origin. Find the equation of $L$.

## 16B. 22 HKCEE AM 20056

The figure shows the line $L_{1}: 2 x+y-6=0$ intersecting the $x$ axis at point $P$.
(a) Let $\theta$ be the acute angle between $L_{1}$ and the $x$ axis. Find $\tan \theta$.
(b) $L_{2}$ is a line with positive slope passing through the origin $O$. If $L_{1}$ intersects $L_{2}$ at a point $Q$ such that $O P=O Q$, find the equation of $L_{2}$.
(Candidates can use the formula $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$.)


## 16B. 23 (HKCEE AM 2009 3)

Given two straight lines $L_{1}: x-3 y+7=0$ and $L_{2}: 3 x-y-11=0$. Find the equation of the straight line passing through the point $(2,1)$ and the point of intersection of $L_{1}$ and $L_{2}$.

## 16B. 24 HKCEE AM 20106

Two straight lines $L_{1}: x \quad 2 y+3=0$ and $L_{2}: 2 x-y \quad 1=0$ intersect at a point $P$. If $L$ is a straight line passing through $P$ and with equal positive intercepts, find the equation of $L$

## 16C Circles in the rectangular coordinate plane

## 16C. 1 HKCEEMA 1980(1/3 ) - B - 15

The circle $x^{2}+y^{2}-10 x+8 y+16=0$ cuts the $x$ axis at $A$ and $B$ and touches the $y$-axis at $T$ as shown in the figure.
(a) Find the coordinates of $A, B$ and $T$.
(b) $C$ is a point on the circle such that $A C / / T B$.
(i) Find the equation of $A C$.
(ii) Find the coordinates of $C$ by solving simultaneously the equation of $A C$ and the equation of the given circle.


## 16C. 2 HKCEE MA 1981(1/3) I-13

Figure (1) shows a circle of radius 15 with centre at the origin $O$. The line $T P$, of slope $\frac{3}{4}(=\tan \theta)$, touches the circle at $T$ and cuts the $x$ axis at $P$.
(a) Find the equation of the circle.
(b) Calculate the length of $O P$.
(c) Find the equation of the line $T P$.

Another circle, with centre $C$ and radius 15 , is drawn to touch $T P$ at $P$ (see Figure (2)).
(d) Find the equation of the line $O C$.
(e) Find the equation of the circle with centre $C$.



## 16C. 3 HKCEE MA 1982(1)-I- 13

In the figure, $C$ is the circle $x^{2}+y^{2}-14 y+40=0$ and $L$ is the line $4 x-3 y-4=0$.
(a) Find the radius and the coordinates of the centre of the circle $C$.
(b) The line $L^{\prime}$ passes through the centre of the circle $C$ and is perpendicular to the given line $L$. Find the equation of the line $L^{\prime}$.
(c) Find the coordinates of the point of intersection of the line $L$ and the line $L^{\prime}$.
(d) Hence, or otherwise, find the shortest distance between the circle $C$ and the line $L$.


## 16C. 4 HKCEE MA 1983(A/B)-I 9

In the figure, $O$ is the origin and $A$ is the point $(8,2)$.
(a) $B$ is a point on the $x$-axis such that the slope of $A B$ is 1 . Find the coordinates of $B$.
(b) $C$ is another point on the $x$-axis such that $A B=A C$. Find the coordinates of $C$.
(c) Find the equation of the straight line $A C$. If the line $A C$ cuts the $y$-axis at $D$, find the coordinates of $D$.
(d) Find the equation of the circle passing through the points $O, B$ and $D$. Show that this circle passes through $A$.


## 16C. 5 HKCEE MA 1984(A/B) - I-9

Let $L$ be the line $y=k \quad x$ ( $k$ being a constant) and $C$ be the circle $x^{2}+y^{2}=4$.
(a) If $L$ meets $C$ at exactly one point, find the two values of $k$
(b) If $L$ intersects $C$ at the points $A(2,0)$ and $B$,
(i) find the value of $k$ and the coordinates of $B$;
(ii) find the equation of the circle with $A B$ as diameter.

## 16C. 6 HKCEE MA 1985(A/B) - I - 9

In the figure, $A(2,0)$ and $B(7,5)$ are the end-points of a diameter of the circle. $P$ is a point on $A B$ such that $\frac{A P}{P B}=\frac{1}{4}$
(a) Find the equation of the circle.
(b) Find the coordinates of $P$.
(c) The chord $H P K$ is perpendicular to $A B$.
(i) Find the equation of $H P K$.
(ii) Find the coordinates of $H$ and $K$.


16C. 7 HKCEE MA 1986(A/B) - I-8
The line $y \quad x-6=0$ cuts the circle $x^{2}+y^{2}-6 x-8 y=0$ at the points $B$ and $C$ as shown in the figure. The circle cuts the $x$-axis at the origin $O$ and the point $A$; it also cuts the $y$ axis at $D$.
(a) Find the coordinates of $B$ and $C$.
(b) Find the coordinates of $A$ and $D$
(c) Find $\angle A D O, \angle A B O$ and $\angle A C O$, correct to the nearest degree.
(d) Find the area of $\triangle A C O$.


## 16C. 8 HKCEE MA 1987(A/B)-I - 8

In the figure, $O$ is the origin. $A$ and $B$ are the points $(-2,0)$ and $(4,0)$ respectively. $\ell$ is a straight line through $A$ with slope 1. $C$ is a point on $\ell$ such that $C O=C B$.
(a) Find the equation of $\ell$.
(b) Find the coordinates of $C$.
(c) Find the equation of the circle passing through $O, B$ and $C$.
(d) If the circle $O B C$ cuts $\ell$ again at $D$, find the coordinates of $D$.


## 16C. 9 HKCEE MA 1988-1-7

In the figure, the circle $C$ has equation $x^{2}+y^{2}-4 x+10 y+k=0$, where $k$ is a constant.
(a) Find the coordinates of the centre of $C$.
(b) If $C$ touches the $y$ axis, find the radius of $C$ and the value of $k$.


## 16C. 10 HKCEE MA 1989-I - 8

Let $E$ be the centre of the circle $\mathscr{C}_{1}: x^{2}+y^{2} \quad 2 x-4 y-20=0$. The line $\ell: x+7 y-40=0$ cuts $\mathscr{C}_{1}$ at the points $P$ and $Q$ as shown in the figure.
(a) Find the coordinates of $E$.
(b) Find the coordinates of $P$ and $Q$
(c) Find the equation of the circle $\mathscr{C}_{2}$ with $P Q$ as diameter.
(d) Show that $\mathscr{C}_{2}$ passes through $E$. Hence, or otherwise, find $\angle E P Q$.


## 16C. 11 HKCEE MA 1990 I-8

Let $\left(C_{1}\right)$ be the circle $x^{2}+y^{2}-2 x+6 y+1=0$ and $A$ be the point $(5,0)$.
(a) Find the coordinates of the centre and the radius of $\left(C_{1}\right)$.
(b) Find the distance between the centre of $\left(C_{1}\right)$ and $A$.

Hence determine whether $A$ lies inside, outside or on $\left(C_{1}\right)$.
(c) Let $s$ be the shortest distance from $A$ to $\left(C_{1}\right)$.
(i) Find $s$.
(ii) Another circle $\left(C_{2}\right)$ has centre $A$ and radius $s$. Find its equation.
(d) A line touches the above two circles $\left(C_{1}\right)$ and $\left(C_{2}\right)$ at two distinct points $E$ and $F$ respectively. Draw a rough diagram to show this information Find the length of $E F$.

## 16C. 12 HKCEE MA 1991 -I -9

In the figure, the circle $S: x^{2}+y^{2}-4 x-2 y+4=0$ with centre $C$ touches the $x$ axis at $A$. The line $L: y=m x$, where $m$ is a non-zero constant, passes through the origin $O$ and touches $S$ at $B$.
(a) Find the coordinates of $C$ and $A$.
(b) Show that $m=\frac{4}{3}$
(c) (i) Explain why the four points $O, A, C, B$ are concyclic.
(ii) Find the equation of the circle passing through these four points.


## 16C. 13 HKCEE MA 1992-I - 13

In the figure, the line $\ell: y=m x$ passes through the origin and intersects the circle $x^{2}+y^{2}-18 x-14 y+105=0$ at two distinct points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.

(a) Find the coordinates of the centre $C$ and the radius of the circle.
(b) By substituting $y=m x$ into $x^{2}+y^{2} \quad 18 x-14 y+105=0$, show that $x_{1} x_{2}=\frac{105}{1+m^{2}}$.
(c) Express the length of $O A$ in terms of $m$ and $x_{1}$ and the length of $O B$ in terms of $m$ and $x_{2}$ Hence find the value of the product of $O A$ and $O B$.
(d) If the perpendicular distance between the line $\ell$ and the centre $C$ is 3 , find the lengths of $A B$ and $O A$.

## 16C. 14 HKCEEMA 1993 I- 8

In the figure, $L_{1}$ is the line passing through $A(0,7)$ and $B(10,2) ; L_{2}$ is the line passing through $C(4,0)$ and perpendicular to $L_{1} ; L_{1}$ and $L_{2}$ meet at $D$.
(a) Find the equation of $L_{1}$.
(b) Find the equation of $L_{2}$ and the coordinates of $D$.
(c) $P$ is a point on the line segment $A B$ such that $A P: P B=k: 1$. Find the coordinates of $P$ in terms of $k$. If $P$ lies on the circle $(x-4)^{2}+y^{2}=30$, show that $2 k^{2}-16 k+7=0 \ldots \ldots \ldots$ (*)
Find the roots of equation (*).
Furthermore, if $P$ lies between $A$ and $D$, find the value of $\frac{A P}{P B}$.

## 16C. 15 HKCEE MA 1994 I- 12

The figure shows two circles $\quad C_{1}: x^{2}+y^{2}=1, \quad C_{2}:(x-10)^{2}+y^{2}=49$.
$O$ is the origin and $A$ is the centre of $C_{2}$. $Q P$ is an external common tangent to $C_{1}$ and $C_{2}$ with points of contact $Q$ and $P$ respectively. The slope of $Q P$ is positive.

(a) Write down the coordinates of $A$ and the radius of $C_{2}$.
(b) $P Q$ is produced to cut the $x$ axis at $R$. Find the $x$-coordinate of $R$ by considering similar triangles.
(c) Using the result in (b), find the slope of $Q P$.
(d) Using the results of (b) and (c), find the equation of the external common tangent $Q P$
(e) Find the equation of the other external common tangent to $C_{1}$ and $C_{2}$.

## 16C. 16 HKCEE MA 1995-I - 10

In the figure, $A(1,9)$ and $B(9,7)$ are points on a circle $\mathscr{C}$. The centre $G$ of the circle lies on the line $\ell: 4 x-3 y+12=0$.
(a) Find the equation of the line $A B$.
(b) Find the equation of the perpendicular bisector of $A B$, and hence the coordinates of $G$.
(c) Find the equation of the circle $\mathscr{E}$.
(d) If $D E$ (not shows in the figure) is another chord of the circle $\mathscr{C}$ such that $A B$ and $D E$ are equal and parallel, find
(i) the coordinates of the mid-point of $D E$, and
(ii) the equation of the line $D E$.

## 16C. 17 HKCEEMA 1996 I 11

$\mathscr{C}_{1}$ is the circle with centre $A(0,2)$ and radius 2 . It cuts the $y$-axis at the origin $O$ and the point $B$. $C_{2}$ is another circle with equation $x^{2}+(y-2)^{2}=25$. The line $L$ passing through $B$ with siope 2 cuts $\mathscr{C}_{2}$ at the points $Q$ and $R$ as shown in the figure.
(a) Find
(i) the equation of $\mathscr{E}_{1}$;
(ii) the equation of $L$.
(b) Find the coordinates of $Q$ and $R$
(c) Find the coordinates of
(i) the point on $L$ which is nearest to $A$;
(ii) the point on $\mathscr{E}_{1}$ which is nearest to $Q$.


## 16C. 18 HKCEE MA $1997-\mathrm{I}-16$



Figure (1)

(a) In Figure (1), $D$ is a point on the circle with $A B$ as diameter and $C$ as the centre. The tangent to the circle at $A$ meets $B D$ produced at $E$. The perpendicular to this tangent through $E$ meets $C D$ produced at $F$. (i) Prove that $A B / / E F$.
(ii) Prove that $F D=F E$.
(iii) Explain why $F$ is the centre of the circle passing through $D$ and touching $A E$ at $E$.
(b) A rectangular coordinate system is introduced in Figure (1) so that the coordinates of $A$ and $B$ are $(2,1)$ and $(6,3)$ respectively. It is found that the coordinates of $D$ and $E$ are $(-2,3)$ and $(-4,3)$ respectively as shown in Figure (2). Find the coordinates of $F$.

## 16C. 19 HKCEE MA 1998 I 15

The figure shows two circles $C_{1}$ and $C_{2}$ touching each other externally. The centre of $C_{1}$ is $(5,0)$ and the equation of $C_{2}$ is $(x-11)^{2}+(y+8)^{2}=49$.
(a) Find the equation of $C_{1}$.
(b) Find the equations of the two tangents to $C_{1}$ from the origin.
(c) One of the tangents in (b) cuts $C_{2}$ at two distinct points $A$ and $B$. Find the coordinates of the mid-point of $A B$.


## 16C. 20 HKCEE MA 1999-I - 16

(Continued from 12A.17.)
(a) In Figure (1), $A B C$ is a triangle right-angled at $B . D$ is a point on $A B$. A circle is drawn with $D B$ as a diameter. The line through $D$ and parallel to $A \bar{C}$ cuts the circle at $E$. $C E$ is produced to cut the circle at $F$.
(i) Prove that $A, F, B$ and $C$ are concyclic.
(ii) If $M$ is the mid=point of $A C$, explain why $M B=M F$.
(b) In Figure (2), the equation of circle $\bar{R} \bar{S} T$ is $x^{2}+y^{2}+10 x-6 y+9=0$. QST is a straight line The coürdinates of $P, Q, R, S$ are $(-17,0),(0,17),(-9,0)$ and $(-2,7)$ respectively.
(i) Prove that $P Q / / R S$.
(ii) Find the coordinates of $T$,
(iii) Are the points $P, Q, O$ and $T$ concyclic? Explain your answer.


Figure (1)


Figure (2)

16C. 21 HKCEE MA 2000- -16
In the figure, $C$ is the centre of the circle $P Q S . O R$ and $O P$ are tangent to the circle at $S$ and $P$ respectively. $O C Q$ is a straight line and $\angle Q O P=30^{\circ}$.
(a) Show that $\angle P Q O=30^{\circ}$.
(b) Suppose $O P Q R$ is a cyclic quadrilateral.
(i) Show thăt $R Q$ is tangent to circle $P Q S$ at $Q$.
(ii) A rectangular coordinate system is introduced in the figure so that the coordinates of $O$ and $C$ are $(0,0)$ and $(6,8)$ respectively. Find the equation of $Q R$.


16C. 22 HKCEEMA 2001-I-17


Figure (1)


Figure (2)
(a) In Figure (1), $O P$ is a diameter of the circle. The altitude $Q R$ of the acute angled triangle $O P Q$ cuts the circle at $S$. Let the coordinates of $P$ and $S$ be $(p, 0)$ and $(a, b)$ respectively.
(i) Find the equation of the circle OPS
(ii) Using (i) or otherwise, show that $O S^{2}=O P \cdot O Q \cos \angle P O Q$.
(b) In Figure (2), $A B C$ is an acute angled triangle. $A C$ and $\overline{B C}$ are diameters of the circles $A G D C$ and $B C E \bar{F}$ respectively.
(i) Show that $B E$ is an altitude of $\triangle A B C$.
(ii) Using (a) or otherwise, compare the leñgth of $C F$ with thāt of $C \bar{G}$. Justify your answer.

16C. 23 HKCEE MA 2002-I-16
In the figure, $A B$ is a diameter of the circle $A \bar{B} E G$ with centre $\bar{C}$. The perpendicular from $G$ to $A B$ cuts $A B$ at $O . A E$ cuts $O G$ at $D . B E$ and $O G$ are produced to meet att $F$.
Mary and John try to prove $O D \cdot O F=O G^{2}$ by using two different approaches.
(a) Mary tackles the problem by first proving that $\triangle A O D \sim \triangle F O B$ and $\triangle A O G \sim \triangle G O \bar{B}$. Complete the following tasks for Mary.
(i) Prove that $\triangle A O D \sim \triangle \bar{F} O B$.
(ii) Prove that $\triangle A O G \sim \triangle G O B$.
(iii) Using (a)(i) and (a)(ii), prove that $\overline{O D} \cdot O F=O G^{2}$.
(b) John tackles the same problem by introducing a rectangular coordinate system in the figure so that the coordinates of $C, D$ and $F$ are $(c, 0),(0, p)$ and $(0, q)$ respectively; where $c, p$ and $q$ are positive numbers. He denotes the radius of the circle by $r$.
Comiplete the following tasks for John.
(i) Express the slopes of $A D$ and $B F$ in terms of $c, p, q$ and $r$.
(ii) Using (b)(i), prove that $O D \cdot O F=O G^{2}$.


## 16C. 24 HKCEE MA 2003-I - 17

(Continued from 12B.16.)



Figure (2)
(a) In Figure (1), $O P$ is a common tangent to the circles $C_{1}$ and $C_{2}$ at the points $O$ and $P$ respectively. The common chord $K M$ when produced intersects $O P$ at $N . R$ and $S$ are points on $K O$ and $K P$ respectively such that the straight line $R M S$ is parallel to $O P$.
(i) By considering triangles $N P M$ and $N K P$, prove that $N P^{2}=N K \cdot N M$.
(ii) Prove that $R M=M S$.
(b) A rectangular coordinate system, with $O$ as the origin, is introduced to Figure (1) so that the coordinates of $P$ and $M$ are ( $p, 0$ ) and ( $a, b$ ) respectively (see Figure (2)). The straight line $R S$ meets $C_{1}$ and $C_{2}$ again at $F$ and $G$ respectively while the straight lines $F O$ and $G P$ meet at $Q$.
(i) Express $F G$ in terms of $p$.
(ii) Express the coordinates of $F$ and $Q$ in terms of $a$ and $b$
(iii) Prove that triangle $Q R S$ is isosceles.

16C. 25 HKCEEMA 2004-I- 16
(Continued from 12B.17.)
In the figure, $B C$ is a tangent to the circle $O A B$ with $B C / / O A$. $O A$ is produced to $D$ such that $A D=O B . B D$ cuts the circle at $E$.
(a) Prove that $\triangle A D E \cong \triangle B O E$.
(b) Prove that $\angle B E O=2 \angle B O E$
(c) Suppose $O E$ is a diameter of the circle $O A E B$.
(i) Find $\angle B O E$.
(ii) A rectangular coordinate system is introduced in the figure so that the coordinates of $O$ and $B$ are $(0,0)$ and $(6,0)$ respectively. Find the equation of the circle $O A E B$.

## 16C. 26 HKCEE MA 2005-I - 17



Figure (1)


Figure (2)
(a) In Figure (1), $M N$ is a diameter of the circle $M O N R$. The chord $R O$ is perpendicular to the straight line $P O Q . R N Q$ and $R M P$ are straight lines.
(i) By considering triangles $O Q R$ and $O R P$, prove that $O R^{2}=O P \cdot O Q$.
(ii) Prove that $\triangle M O N \sim \triangle P O R$.
(b) A rectangular coordinate system, with $O$ as the origin, is introduced to Figure (1) so that $R$ lies on the positive $y$-axis and the coordinates of $P$ and $Q$ are $(4,0)$ and ( $-9,0$ ) respectively (see Figure (2)).
(i) Find the coordinates of $R$.
(ii) If the centre of the circle MONR lies in the second quadrant and $O N=\frac{3 \sqrt{13}}{2}$, find the radius and the coordinates of the centre of the circle MONR.

## 16C. 27 HKCEE MA 2006 I 16

In the figure, $G$ and $H$ are the circumcentre and the orthocentre of $\triangle A B C$ respectively. $A H$ produced meets $B C$ at $O$. The perpendicular from $G$ to $B C$ meets $B C$ at $R . B S$ is a diameter of the circle which passes through $A, B$ and $C$.
(a) Prove that
(i) $A H C S$ is a parallelogram,
(ii) $A H=2 G R$.
(b) A rectangular coordinate system, with $O$ as the origin, is introduced in the figure so that the coordinates of $A, B$ and $C$ are $(0,12),(-6,0)$ and $(4,0)$ respectively.
(i) Find the equation of the circle which passes through $A, B$ and $C$.
(ii) Find the coordinates of $H$.
(iii) Are $B, O, H$ and $G$ concyclic? Explain your answer


(a) In Figure (1), $A C$ is the diameter of the semi-circle $A B C$ with centre $O$. $D$ is a point lying on $A C$ such that $A B=B D . I$ is the in centre of $\triangle A B D . A I$ is produced to meet $B C$ at $E . B I$ is produced to meet $A C$ at $G$.
(i) Prove that $\triangle A B G \cong \triangle D B G$.
(ii) By considering the triangles $A G I$ and $A B E$, prove that $\frac{G I}{A G}=\frac{B E}{A B}$.
(b) A rectangular coordinate system, with $O$ as the origin, is introduced to Figure (1) so that the coordinates of $C$ and $D$ are $(25,0)$ and $(11,0)$ respectively and $B$ lies in the second quadrant (see Figure (2)). It is found that $B E: A B=1: 2$
(i) Find the coordinates of $G$
(ii) Find the equation of the inscribed circle of $\triangle A B D$

16C29 HKCEE MA 2008-I-17
(Continued from 12A.25.)
Figure (1) shows a circle passing through $A, B$ and $C . I$ is the in centre of $\triangle A B C$ and $A I$ produced meets the circle at $P$.


Figure (1)


Figure (2)
(a) Prove that $B P=C P=I P$
(b) Figure (2) is constructed by adding three points $G, Q$ and $R$ to Figure (1), where $G$ is the circumcentre of $\triangle A B C, P Q$ is a diameter of the circle and $R$ is the foot of the perpendicular from $I$ to $B C$. A rectangular coordinate system is then introduced in Figure (2) so that the coordinates of $B, C$ and $I$ are $(-80,0)$, $(64,0)$ and $(0,32)$ respectively.
(i) Find the equation of the circle with centre $P$ and radius $B P$.
(ii) Find the coordinates of $Q$.
(iii) Are $B, Q, I$ and $R$ concyclic? Explain your answer.

## 16C. 30 HKCEE MA 2011-I-16

In the figure, $\triangle P Q R$ is an isosceles triangle with $P Q=P R$. It is given that $S$ is a point lying on $Q R$ and the orthocentre of $\triangle P Q R$ lies on $P S$. A rectangular coordinate system is introduced in the figure so that the coordinates of $P$ and $Q$ are $(16,80)$ and $(-32,-48)$ respectively. It is given that $Q R$ is parallel to the $x$ axis.
(a) Find the equation of the perpendicular bisector of $P R$.
(b) Find the coordinates of the circumcentre of $\triangle P Q R$.
(c) Let $C$ be the circle which passes through $P, Q$ and $R$.
(i) Find the equation of $C$
(ii) Are the centre $C$ and the in-centre of $\triangle P Q R$ the same point? Explain your answer.


16C.31 HKCEE AM 1981 II 6
The circles $C_{1}: x^{2}+y^{2}+7 y+11=0$ and $C_{2}: x^{2}+y^{2}+6 x+4 y+8=0$ touch each other externally at $P$.
(a) Find the coordinates of $P$.
(b) Find the equation of the common tangent at $P$.

## 16C. 32 (HKCEE AM 1981 - II - 12)

The line $L: y=m x+2$ meets the circle $C: x^{2}+y^{2}=1$ at the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.
(a) (i) Show that $x_{1}$ and $x_{2}$ are the roots of the quadratic equation $\left(m^{2}+1\right) x^{2}+4 m x+3=0$.
(ii) Hence, or otherwise, show that the length of the chord $A B$ is $2 \sqrt{\frac{m^{2}-3}{m^{2}+1}}$.
(b) Find the values of $m$ such that
(i) $L$ meets $C$ at two distinct points,
(ii) $L$ is a tangent to $C$,
(iii) $L$ does not meet $C$.
(c) For the two tangents in (b)(ii), let the corresponding points of contact be $P$ and $Q$. Find the equation of $P Q$.

## 16C. 33 (HKCEE AM 1982 II 8)

$M$ is the point $(5,6), L$ is the line $5 x+12 y=32$ and $C$ is the circle with $M$ as centre and touching $L$.
(a) (i) Find the equation of the straight line passing through $M$ and perpendicular to $L$.
(ii) Hence, or otherwise, find the equation of $C$.
(b) Show that $C$ also touches the $y$ axis.
(c) Find the equation of the tangent (other than the $y$-axis) to $C$ from the origin.
(d) $P(2,2)$ is a point on $C$. $Q$ is another point on $C$ such that $P Q$ is a diameter. Find the equation of the circle which passes through $P, Q$ and the origin.

## 16C 34 HKCEE AM 1984-II-6

Given the equation $x^{2}+y^{2}-2 k x+4 k y+6 k^{2} \quad 2=0$.
(a) Find the range of values of $k$ so that the equation represents a circle with radius greater than 1.
(b) [Out of syllabus]

## 16C. 35 (HKCEE AM 1985 II-5)

If the equation $x^{2}+y^{2}+k x-(2+k) y=0$ represents a circle with radius $\sqrt{5}$,
(a) find the value(s) of $k$,
(b) find the equation(s) of the circle(s).

## 16C. 36 HKCEE AM 1986-II-10

The circles $C_{1}: x^{2}+y^{2}-4 x+2 y+1=0$ and $C_{2}: x^{2}+y^{2}-10 x-4 y+19=0$ have a common chord $A B$.
(a) (i) Find the equation of the line $A B$.
(ii) Find the equation of the circle with $A B$ as a chord such that the area of the circle is a minimum.
(b) The circle $C_{1}$ and another circle $C_{3}$ are concentric. If $A B$ is a tangent to $C_{3}$, find the equation of $C_{3}$.
(c) [Out of syllabus]

## 16C. 37 HKCEE AM 1987-II-11

In the figure, $A$ and $B$ are the points $(8,0)$ and $(16,0)$ respectively. The equation of the circle $C_{1}$ is $x^{2}+y^{2}-16 x-4 y+64=0$. OH and $B H$ are tangents to $C_{1}$.
(a) (i) Show that $C_{1}$ touches the $x$ axis at $A$.
(ii) Find the equation of $O H$.
(iii) Find the equation of $B H$.
(b) In the figure, the equation of $O K$ is $4 x+3 y=0$. The circle $C_{2}: x^{2}+y^{2}-16 x+2 f y+c=0$ is the inscribed circle of $\triangle O B K$ and touches the $x$-axis at $A$.
$x$-axis at $A$.
(i) Find the values of the constants $c$ and $f$.
(ii) Find area of $\triangle O B H$ : area of $\triangle O B K$.


## 16C. 38 (HKCEE AM 1988 II -11)

In the figure, $S$ is the centre of the circle $C$ which passes through $H(-3,6)$ and touches the line $x \quad 5 y+59=0$ at $K(1,12)$.
(a) Find the coordinates of $S$. Hence, or other wise, find the equation of the circle $C$.
(b) The line $L: 3 x-2 y \quad 5=0$ cuts the circle $C$ at $A$ and $B$. Find the equation of the circle with $A B$ as diameter.


## 16C. 39 HKCEE AM 1993 - II- 11

$A(0,2)$ is the centre of circle $C_{1}$ with radius 4. $B\left(3, \frac{3}{4}\right)$ is the centre of circle $C_{2}$ which touches the $x$ axis.
$P(s, t)$ is any point in the shaded region as shown in the figure.
(a) Find $A B$ and the radius of $C_{2}$.

Hence show that $C_{1}$ and $C_{2}$ touch each other.
(b) If $P$ is the centre of a circle which touches the $x$ axis and $C_{1}$, showthat $4 t=12-s^{2}$
(c) If $P$ is the centre of a circle which touches the $x$-axis and $C_{2}$, show that $3 t=\left(\begin{array}{ll}s & 3\end{array}\right)^{2}$.
(d) Given that there are two circles in the shaded region, each of which touches the $x$-axis, $C_{1}$ and $C_{2}$. Using (b) and (c), find the equations of the two circles, giving your answers in the of the two circles, giving your
form $(x-h)^{2}+(y-k)^{2}=r^{2}$.


## 16C. 40 HKCEE AM 1994-II-9

Given two points $A(5,5)$ and $B(7,1)$. Let $(h, k)$ be the centre of a circle $C$ which passes through $A$ and $B$.
(a) Express $h$ in terms of $k$.

Hence show that the equation of $C$ is $x^{2}+y^{2} \quad 4 k x-2 k y+30 k-50=0$.
(b) If the tangent to $C$ at $B$ is parallel to the line $y=\frac{1}{2} x$, find the equation of $C$.
(c) [Out of syllabus]

## 16C. 41 HKCEE AM 1995-II - 10

$C_{1}$ is the circle $x^{2}+y^{2}-16 x-36=0$ and $C_{2}$ is a circle centred at the point $A(-7,0) . C_{1}$ and $C_{2}$ touch externally as shown in the figure. $P(h, k)$ is a point in the second quadrant.
(a) Find the centre and radius of $C_{1}$.

Hence find the radius of $C_{2}$.
(b) If $P$ is the centre of a circle which touches both $C_{1}$ and $C_{2}$ externally, show that $8 h^{2}-k^{2} \quad 8 h-48=0$.
(c) $C_{3}$ is a circle centred at the point $B(-7,40)$ and of the same radius as $C_{2}$.
(i) If $P$ is the centre of a circle which touches both $C_{2}$ and $C_{3}$ externally, write down the equation of the locus of $P$.
(ii) Find the equation of the circle, with centre $P$, which touches all the three circles $C_{1}, C_{2}$ and $C_{3}$ externally.


## 16C. 42 (HKCEE AM 1996-II-10)

## 16C. 45 HKCEE AM $2002 \quad 15$



Figure (1)

(a) $D E F$ is a triangle with perimeter $p$ and area $A$. A circle $C_{1}$ of radius $r$ is inscribed in the triangle (see Figure (1)). Show that $A=\frac{1}{2} p r$.
(b) In Figure (2), a circle $C_{2}$ is inscribed in a right angled triangle $Q \bar{R} S$. The coordinates of $Q, R$ and $S$ are $(-2,1),(2,5)$ and $(5,2)$ respectively.
(i) Using (a), or otherwise, find the radius of $C_{2}$
(ii) Find the equation of $C_{2}$.

## 16C. 46 HKCEEAM 2005-15

The figure shows a circle $C_{1}: x^{2}+y^{2}-4 x-2 y+4=0$ centred at point $A$. $L$ is the straight line $y=k x$.
(a) Find the range of $k$ such that $C_{\mathrm{I}}$ and $L$ intersect.
(b) There are two tangents from the origin $O$ to $C_{1}$. Find the equation of the tangent $L_{1}$ other than the $x$-axis.
(c) Suppose that $L$ and $C_{1}$ intersect at two distinct points $P$ and $Q$. Let $M$ be the mid-point of $P Q$
(i) Show that the $x$ coordinate of $M$ is $\frac{k+2}{k^{2}+1}$
(ii) [Out of syllabus]


## 16C. 47 HKCEE AM 2006-14

Let $J$ be the circle $x^{2}+y^{2}=r^{2}$, where $r>0$.
(a) Suppose that the straight line $L: y=m x+c$ is a tangent to $J$.
(i) Show that $c^{2}=r^{2}\left(m^{2}+1\right)$.
(ii) If $L$ passes thrüugh a point $(h, k)$, shouw thăt $(k-m h)^{2}=r^{2}\left(m^{2}+1\right)$.
(b) $J$ is inscribed in a triangle $P Q R$ (see the figure). The coordinates of $P$ and $R$ are $(7,4)$ and $(-5,-5)$ respectively.
(i) Find the radins of $J$
(ii) Using (a)(ii), or otherwise, find the slope of $P Q$.
(iii) Find the coordinates of $Q$.


16C. 48 HKCEE AM 2010-7
In the figure, a tangent $P Q$ is drawn to the circle $x^{2}+y^{2} \quad 6 x+4 y-12=0$ at the point $A(7,1) \cdot B(0,-6)$ is an other point lying on the circle. Let $\theta$ be the acute angle between $A B$ and $P Q$. Find the value of $\tan \theta$.


## 16C. 49 HKCEE AM 2010-15

In the figure, $C_{1}$ is a circle with centre $(6,5)$ touching the $x$ axis. $C_{2}$ is a variable circle which touches the $y$ axis and $C_{1}$ internally.
(a) Show that the equation of locus of the centre of $C_{2}$ is $x=\frac{1}{2} y^{2} \quad 5 y+18$.
(b) It is known that the length of the tangent from an external point $P(0,-3)$ to $C_{2}$ is 5 and the centre of $C_{2}$ is in the first quadrant.
(i) Find the centre of $C_{2}$.
(ii) Find the equations of the two tangents from $P$ to $C_{2}$.


## 16C. 50 HKDSEMASP-I-19

In the figure, the circle passes tbrough four points $A, B, C$ and $D . P Q$ is the tangent to the circle at $C$ and is parallel to $B D . A C$ and $B D$ intersect at $E$. It is given that $A B=A D$.
(a) (i) Prove that $\triangle A B E \cong \triangle A D E$.
(ii) Are the in-centre, the orthocentre, the centroid and the circumcentre of $\triangle A B D$ collinear? Explain your answer.
(b) A rectangular coordinate system is introduced in the figure so that the coordinates of $A, B$ and $D$ are $(14,4),(8,12)$ and $(4,4)$ respectively. Find the equation of the tangent $P Q$.


16C. 51 HKDSE MA PP - I 14
(Continued from 12A.28.)
In the figure, $O A B C$ is a circle. It is given that $A B$ produced and $O C$ produced meet at $D$.
(a) Write down a pair of similar triangles in the figure.
(b) Suppose that $\angle A O D=90^{\circ}$. A rectangular coordinate system, with $O$ as the origin, is introduced in the figure so that the coordinates of $A$ and $D$ are $(6,0)$ and $(0,12)$ respectively. If the ratio of the area of $\triangle B C D$ to the area of $\triangle O A D$ is $16: 45$, find
(i) the coordinates of $C$,
(ii) the equation of the circle $O A B C$.


## 16C. 52 HKDSE MA 2012-1-17

The coordinates of the centre of the circle $C$ are $(6,10)$. It is given that the $x$ axis is a tangent to $C$.
(a) Find the equation of $C$.
(b) The slope and the $y$ intercept of the straight line $L$ is -1 and $k$ respectively. If $L$ cuts $C$ at $A$ and $B$, express the coordinates of the mid-point of $A B$ in terms of $k$.

## 16C. 53 HKDSEMA 2015-1-14

The coordinates of the points $P$ and $Q$ are $(4,-1)$ and $(-14,23)$ respectively.
(a) Let $L$ be the perpendicular bisector of $P Q$.
(i) Find the equation of $L$.
(ii) Suppose that $G$ is a point lying on $L$. Denote the $x$-coordinate of $G$ by $h$. Let $C$ be the circle which is centred at $G$ and passes through $P$ and $Q$
Prove that the equation of $C$ is $2 x^{2}+2 y^{2}-4 h x-(3 h+59) y+13 h \quad 93=0$.
(b) The coordinates of the point $R$ are $(26,43)$. Using (a)(ii), or otherwise, find the diameter of the circle which passes through $P, Q$ and $R$.

16C. 54 HKDSEMA 2016-I-20
(Continued from 12B.20.)
$\triangle O P Q$ is an obtuse-angled triangle. Denote the in-centre and the circumcentre of $\triangle O P Q$ by $I$ and $J$ respectively. It is given that $P, I$ and $J$ are collinear.
(a) Prove that $O P=P Q$.
(b) A rectangular coordinate system is introduced so that the coordinates of $O$ and $Q$ are $(0,0)$ and $(40,30)$ respectively while the $y$ coordinate of $P$ is 19. Let $C$ be the circle which passes through $O, P$ and $Q$.
(i) Find the equation of $C$.
(ii) Let $L_{1}$ and $L_{2}$ be two tangents to $C$ such that the slope of each tangent is $\frac{3}{4}$ and the $y$-intercept of $L_{1}$ is greater than that of $L_{2}$. $L_{1}$ cuts the $x$ axis and the $y$-axis at $S$ and $T$ respectively while $L_{2}$ cuts the $x$-axis and $y$ axis at $U$ and $V$ respectively. Someone claims that the area of the trapezium STUV exceeds 17000 . Is the claim correct? Explain your answer.

## 16C. 55 HKDSEMA 2018- $\mathrm{I}-19$

The coordinates of the centre of the circle $C$ are ( 8,2 ). Denote the radius of $C$ by $r$. Let $L$ be the straight line $k x-5 y-21=0$, where $k$ is a constant. It is given that $L$ is a tangent to $C$.
(a) Find the equation of $C$ in terms of $r$. Hence, express $r^{2}$ in terms of $k$.
(b) $L$ passes through the point $D(18,39)$.
(i) Find $r$.
(ii) It is given that $L$ cuts the $y$-axis at the point $E$. Let $F$ be a point such that $C$ is the inscribed circle of $\triangle D E F$. Is $\triangle D E F$ an obtuse-angled triangle? Explain your answer.

## 16C. 56 HKDSE MA 2019 I 19

(Continued from 7E.5.)
Let $f(x)=\frac{1}{1+k}\left(x^{2}+(6 k-2) x+(9 k+25)\right)$, where $k$ is a positive constant. Denote the point $(4,33)$ by $F$.
(a) Prove that the graph of $y=f(x)$ passes through $F$.
(b) The graph of $y=g(x)$ is obtained by reflecting the graph of $y=f(x)$ with respect to the $y$-axis and then translating the resulting graph upwards by 4 units. Let $U$ be the vertex of the graph of $y=g(x)$. Denote the origin by $O$.
(i) Using the method of completing the square, express the coordinates of $U$ in terms of $k$.
(ii) Find $k$ such that the area of the circle passing through $F, O$ and $U$ is the least.
(iii) For any positive constant $k$, the graph of $y=g(x)$ passes through the same point $G$. Let $V$ be the vertex of the graph of $y=g(x)$ such that the area of the circle passing through $F, O$ and $V$ is the least. Are $F, G, O$ and $V$ concyclic? Explain your answer.

## 16C. 57 HKDSEMA 2020 I 14

The coordinates of the points $A$ and $B$ are $(10,0)$ and $(30,0)$ respectively. The circle $C$ passes through $A$ and $B$. Denote the centre of $C$ by $G$. It is given that the $y$-coordinate of $G$ is -15 .
(a) Find the equation of $C$.
(3 marks)
(b) The straight line $L$ passes through $B$ and $G$. Another straight line $\ell$ is parallel to $L$. Let $P$ be a moving point in the rectangular coordinate plane such that the perpendicular distance from $P$ to $L$ is equal to the perpendicular distance from $P$ to $\ell$. Denote the locus of $P$ by $F$. It is given that $r$ passes through $A$.
(i) Describe the geomerric relationship between $r$ and $L$.
(ii) Find the equation of $\Gamma$.
(iii) Suppose that $\Gamma$ cuts $C$ at another point $H$. Someone claims that $\angle G A H<70^{\circ}$. Do you agree? Explain your answer.

## 16D Loci in the rectangular coordinate plane

## 16D. 1 (HKCEE MA 1981(3) I-7)

The parabola $y^{2}=4 a x$ passes through the points $A(1,4)$ and $B(16,16)$. A point $P$ divides $A B$ internally such that $A P: P B \quad 1: 4$.
(a) Find the coordinates of $P$.
(b) Show that the parabola is the locus of a moving point which is equidistant from $P$ and the line $x=-a$.

## 16D. 2 HKCEE AM 1987 II 10

$P(x, y)$ is a variable point equidistant from the point $S(1,0)$ and the line $x+1=0$.
(a) Show that the equation of the locus of $P$ is $y^{2}=4 x$.
(b) [Out of syllabus]

## 16D. 3 (HKCEE AM 1994 II-4)

In the figure, $P(0,4)$ and $Q(2,6)$ are two points and $R(x, y)$ is a variable point.
(a) Suppose $R_{0}=(4,4)$ (not shown in the figure). Find the area of $\triangle P Q R_{0}$.


16D. 4 HKCEE AM 1999 - II 10
$A(-3,0)$ and $B(-1,0)$ are two points and $P(x, y)$ is a variable point such that $P A=\sqrt{3} P B$. Let $C$ be the locus of $P$.
(a) Show that the equation of $C$ is $x^{2}+y^{2}=3$.
(b) $T(a, b)$ is a point on $C$. Find the equation of the tangent to $C$ at $T$.
(c) The tangent from $A$ to $C$ touches $C$ at a point $S$ in the second quadrant. Find the coordinates of $S$.
(d) [Out of syllabus]

16D. 5 (HKCEE AM 2004 10)
In the figure, $O$ is the origin and $A$ is the point $(3,4)$. $P$ is a variable point (not shown) such that the area of $\triangle O P A$ is always equal to 2 .
Describe the locus of $P$ and sketch it in the figure.


## 16D. 6 (HKCEE AM 2011 - 16) [Difficult!]

Figure (1) shows a circle $C_{1}: x^{2}+y^{2}-10 y+16=0 . Z(x, y)$ is the centre of a circle which touch the $x$ axis and $C_{1}$ externally. Let $S$ be the locus of $Z$.
(a) Show that the equation of $S$ is $y=\frac{1}{16} x^{2}+1$.
(b) Let $C_{2}$ and $C_{3}$ be circles touching the $x$-axis and $C_{1}$ externally. It is given that $C_{2}$ passes through the point $(20,16)$ and it touches $C_{3}$ externally. Suppose that both the centres of $C_{2}$ and $C_{3}$ lie in the first quadrant (see Figure (2)).
(i) Find the equation of $C_{2}$.
(ii) Without any algebraic manipulation, determine whether the following sentence is correct:
"The point of contact of $C_{2}$ and $C_{3}$ lies on $S$."
(c) Can we draw a circle satisfying all the following conditions?

- Its centre lies on $S$.
- It touches the $x$ axis.
- It touches $C_{1}$ internally.

Explain your answer.



## 16D. 7 HKDSE MA SP I 13

In the figure, the straight line $L_{1}: 4 x-3 y+12=0$ and the straight line $L_{2}$ are perpendicular to each other and intersect at $A$. It is give that $L_{1}$ cuts the $y$-axis at $B$ and $L_{2}$ passes through the point $(4,9)$.
(a) Find the equation of $L_{2}$.
(b) $Q$ is a moving point in the coordinate plane such that $A Q=B Q$. Denote the locus of $Q$ by $\Gamma$.
(i) Describe the geometric relationship between $\Gamma$ and $L_{2}$. Explain your answer.
(ii) Find the equation of $\Gamma$.


## 16D. 8 HKDSEMAPP-I-8

The coordinates of the points $A$ and $B$ are $(-3,4)$ and $(-2,-5)$ respectively. $A^{\prime}$ is the reflection image of $A$ with respect to the $y$ axis. $B$ is rotated anticlockwise about the origin $O$ through $90^{\circ}$ to $B^{\prime}$
(a) Write down the coordinates of $A^{\prime}$ and $B^{\prime}$.
(b) Let $P$ be a moving point in the rectangular coordinate plane such that $P$ is equidistant from $A^{\prime}$ and $B^{\prime}$. Find the equation of the locus of $P$.

## 16D. 9 HKDSE MA 2012-I - 14

The $y$-intercepts of two parallel lines $L$ and $\ell$ are -1 and 3 respectively and the $x$ intercept of $L$ is $3 . P$ is a moving point in the rectangular coordinate plane such that the perpendicular distance from $P$ to $L$ is equal to the perpendicular distance from $P$ to $\ell$. Denote the locus of $P$ by $\Gamma$
(a) (i) Describe the geometric relationship between $\Gamma$ and $L$.
(ii) Find the equation of $\Gamma$.
(b) The equation of the circle $C$ is $(x-6)^{2}+y^{2}=4$. Denote the centre of $C$ by $Q$
(i) Does $\Gamma$ pass through $Q$ ? Explain your answer.
(ii) If $L$ cuts $C$ at $A$ and $B$ while $\Gamma$ cuts $C$ at $H$ and $K$, find the ratio of the area of $\triangle A Q H$ to the area of $\triangle B Q K$.

## 16D. 10 HKDSE MA 2013-I - 14

The equation of the circle $C$ is $x^{2}+y^{2}-12 x-34 y+225=0$. Denote the centre of $C$ by $R$.
(a) Write down the coordinates of $R$.
(b) The equation of the straight line $L$ is $4 x+3 y+50=0$. It is found that $C$ and $L$ do not intersect. Let $P$ be a point lying on $L$ such that $P$ is nearest to $R$.
(i) Find the distance between $P$ and $R$.
(ii) Let $Q$ be a moving point on $C$. When $Q$ is nearest to $P$,
(1) describe the geometric relationship between $P, Q$ and $R$;
(2) find the ratio of the area of $\triangle O P Q$ to the area of $\triangle O Q R$, where $O$ is the origin.

## 16D. 11 HKDSE MA 2014-I - 12

The circle $C$ passes through the point $A(6,11)$ and the centre of $C$ is the point $G(0,3)$.
(a) Find the equation of $C$.
(b) $P$ is a moving point in the rectangular coordinate plane such that $A P=G P$. Denote the locus of $P$ by $\Gamma$.
(i) Find the equation of $\Gamma$.
(ii) Describe the geometric relationship between $\Gamma$ and the line segment $A G$.
(iii) If $r$ cuts $C$ at $Q$ and $R$, find the perimeter of the quadriateral $A Q G R$

## 16D. 12 HKDSE MA 2016 - I- 10

The coordinates of the points $A$ and $B$ are $(5,7)$ and $(13,1)$ respectively. Let $P$ be a moving point in the rectangular coordinate plane such that $P$ is equidistant from $A$ and $B$. Denote the locus of $P$ by $\Gamma$.
(a) Find the equation of $\Gamma$.
(b) $\Gamma$ intersects the $x$-axis and the $y$ axis at $H$ and $K$ respectively. Denote the origin by $O$. Let $C$ be the circle which passes through $O, H$ and $K$. Someone claims that the circumference of $C$ exceeds 30 . Is the claim correct? Explain your answer.

## 16D. 13 HKDSE MA 2017-I - 13

The coordinates of the points $E, F$ and $G$ are $(-6,5),(3,11)$ and $(2,-1)$ respectively. The circle $C$ passes through $E$ and the centre of $C$ is $G$.
(a) Find the equation of $C$.
(b) Prove that $F$ lies outside $C$.
(c) Let $H$ be a moving point on $C$. When $H$ is farthest from $F$,
(i) describe the geometric relationship between $F, G$ and $H$;
(ii) find the equation of the straight line which passes through $F$ and $H$.

## 16D. 14 HKDSE MA 2019-I 17

## (Continued from 12B.21.)

(a) Let $a$ and $p$ be the area and perimeter of $\triangle C D E$ respectively. Denote the radius of the inscribed circle of $\triangle C D E$ by $r$. Prove that $p r=2 a$.
(b) The coordinates of the points $H$ and $K$ are $(9,12)$ and $(14,0)$ respectively. Let $P$ be a moving point in the rectangular coordinate plane such that the perpendicular distance from $P$ to $O H$ is equal to the perpendicular distance from $P$ to $H K$, where $O$ is the origin. Denote the locus of $P$ by $\Gamma$.
(i) Describe the geometric relationship between $\Gamma$ and $\angle O H K$.
(ii) Using (a), find the equation of $\Gamma$.

## 16E Polar coordinates

## 16E. 1 HKCEE MA 2009-I-8

In a polar coordinate system, $O$ is the pole. The polar coordinates of the points $P$ and $Q$ are $\left(k, 123^{\circ}\right)$ and $\left(24,213^{\circ}\right)$ respectively, where $k$ is a positive constant. It is given that $P Q=25$.
(a) Is $\triangle O P Q$ a right-angled triangle? Explain your answer.
(b) Find the perimeter of $\triangle O P Q$.

## 16E. 2 HKDSE MA PP-I-6

In a polar coordinate system, the polar coordinates of the points $A, B$ and $C$ are $\left(13,157^{\circ}\right),\left(14,247^{\circ}\right)$ and $\left(15,337^{\circ}\right)$ respectively.
(a) Let $O$ be the pole. Are $A, O$ and $C$ collinear? Explain your answer
(b) Find the area of $\triangle A B C$.

## 16E. 3 HKDSE MA 2013-I-6

In a polar coordinate system, $O$ is the pole. The polar coordinates of the points $A$ and $B$ are $\left(26,10^{\circ}\right)$ and
$\left(26,130^{\circ}\right.$ ) respectively. Let $L$ be the axis of reflectional symmetry of $\triangle O A B$.
(a) Describe the geometric relationship between $L$ and $\angle A O B$.
(b) Find the polar coordinates of the point of intersection of $L$ and $A B$.

## 16e. 4 HKDSE MA 2016-1-7

In a polar coordinate system, $O$ is the pole. The polar coordinates of the points $A$ and $B$ are $\left(12,75^{\circ}\right)$ and
$\left(12,135^{\circ}\right)$ respectively
(a) Find $\angle A O B$.
(b) Find the perimeter of $\triangle A O B$.
(c) Write down the number of folds of rotational symmerry of $\triangle A O B$.

## 16 Coordinate Geometry

16A Transformation in the rectangula coordinate plane

16A.1 HKCEE MA 2006-1-7
(a) $A^{\prime}=(7,2), B^{\prime}=(5,5)$
(b) $A B=\sqrt{\sqrt{(-2+5)^{2}}+(7-5)^{2}}=\sqrt{14}$ $\overline{\left.A^{\prime} B^{\prime}=\sqrt{(7-5)^{2}+(2} \quad 5\right)^{2}=\sqrt{14}}=A B$ . YES

16A.2 HKCEE MA 2009-1-9
(a) $A^{\prime}=(-1,4), B^{\prime}=(-5,2)$
(b) $m_{A B}=\frac{2+2}{5+1}=\frac{2}{3}, m_{A^{\prime} B^{\prime}}=\frac{4-2}{-15}=\frac{1}{2} \neq m_{A B}$ $\therefore$ NO

16A 3 HKCEEMA 2011-1-8
(a) $B=(-6,-4), M=\left(\frac{-4-6}{2}, \frac{64}{2}\right)=(-5,1)$
(b) $T_{O M}=\frac{1}{-5}, m_{\Omega B}=5$
$\because m_{O M} \cdot m_{A B}=-$
16A.4 HKDSEMA SP-I-8
(a) $A^{\prime}=(5,2), A^{\prime \prime}=(2,5)$
(b) $m_{O A^{\prime \prime}}=\frac{5}{2}, m_{A^{\prime}}=\frac{-3}{7}$
$\because m_{O A^{\prime}} / m_{A^{\prime}}=\frac{15}{14} \neq-1$
$\therefore O A^{\prime \prime}$ is not perpendicular to $A A^{\prime}$.
16A. 5 HKDSE MA 2014-I-8
(a) $P^{\prime}=(5,3), Q^{\prime}=(-19,7)$
(b) $m_{P Q}=\frac{-12}{5}, m_{P Q^{\prime}}=\frac{10}{24}=\frac{5}{12}$
$\because m_{P Q m_{P^{\prime} Q^{\prime}}}=-1$
16A.6 HKDSEMA 2017-I-6
(a) $A^{\prime}=(-4,-3), B^{\prime}=(9,9)$
(b) $m_{A B}=\frac{13}{-12}, m_{A^{\prime} B^{\prime}}=\frac{12}{13}$
$\because m_{A B} m_{A^{\prime} B^{\prime} B^{\prime}}=-1$

16B Straight lines in the rectangular coordinate plane

16B. 1 HKCEE MA 1992-1-5
(a) $m_{L_{2}}=\frac{1}{2} \Rightarrow m_{L_{1}}=-2$
. Eqn of $L_{1}: y-5=-2(x-10) \Rightarrow 2 x+y-25=0$
(b) $\left\{\begin{array}{l}L_{1}: 2 x+y-25=0 \\ L_{2}: x-2 y+5=0\end{array} \Rightarrow(x, y)=(9,7)\right.$

16B. 2 HKCEE MA 1998-I - 8
(a) $m s s=\frac{4-1}{0 \div 2}=\frac{3}{2}$
(b) Required eqn: $y-3=\frac{1}{\frac{3}{-2}}(x-1) \Rightarrow 2 x \div 3 y-11=0$

16B. 3 HKCEE MA 1999-1-10
(a) $\left.M=\frac{(-8+16,}{2}, \frac{-4}{2}\right)=(4,2)$

$$
\begin{aligned}
& m_{A B}=\frac{12}{24}=-\frac{1}{2} \Rightarrow m_{\varepsilon}=2 \\
& \therefore \text { Eqn of } \ell: y-2=2(x-4) \Rightarrow
\end{aligned}
$$

$$
2 x-y-6=
$$

(b) $\frac{\text { Put } y=0 \text { into eqn of } \ell \Rightarrow x=3 \Rightarrow}{B P=\sqrt{(16-3)^{2}+(-4-0)^{2}}=\sqrt{185}} P=(3,0)$
(c) $N=\left(\frac{-8+3}{2}, \frac{8+0}{2}\right)=\left(-\frac{5}{2}, 4\right)$

$$
\therefore M N=\sqrt{\left(3+\frac{5}{2}\right)^{2}+(0-4)^{2}}=\sqrt{\frac{185}{4}}=\frac{\sqrt{185}}{2}
$$

16B.4 HKCEE MA 2000-1-9
(a) $m_{L}=\frac{4-0}{-4}=\frac{2}{5}$
(b) Eqn of $L: y-0=-\frac{2}{5}(x-6) \Rightarrow 2 x+5 y-12=0$
(c) Put $x=0 \Rightarrow y=\frac{12}{5} \Rightarrow C=\left(0, \frac{12}{5}\right)$

16B. 5 HKCEE MA 2001-1-7
(a) $A=(-1,5), B=(4,3)$
(b) Eqn of $A B: \frac{y-5}{x+1}=\frac{5-3}{1-4}=\frac{2}{-5}$

$$
-5(y \quad 5)=-2(x+1) \Rightarrow 2 x+5 y-23=0
$$

16B. 6 HKCEE MA 2002-I-8
(a) $x-2 y=-8 \Rightarrow \frac{x}{m 8}+\frac{y}{4}=$
$\therefore A=(8,0), \stackrel{\sim 8}{=8}(0,4)$
(b) Mid-pl of $A B=\left(\frac{-8+0}{2}, \frac{0+4}{2}\right)=(4,2)$

16B. 7 HKCEE MA 2003-I-12
(a) $m_{B C}=\frac{3 \quad 0}{0-2}=\frac{3}{2}$
(b) $m_{1 P}=-1 \div \frac{3}{2}=\frac{2}{3}$
$\therefore$ Eqn of $A P: y-0=\frac{2}{3}(x+1) \Rightarrow 2 x-3 y+2=0$
(c) (i) Put $x=0 \Rightarrow y=\frac{2}{3} \Rightarrow H=\left(0, \frac{2}{3}\right)$
(ii) $m_{H B}=\frac{\frac{2}{3}-0}{0-2}=\frac{-1}{3}, m_{A C}=\frac{3-0}{0+1}=3=\frac{-1}{m_{H B}}$

Hence the 3 altitudes of $\triangle A B C$ are $C O, A P$ and $H B$, all passing through $H$.

16B. 8 HKCEE MA 2004-I-13
(a) (i) $E=$ mid-pt of $A C=\left(\frac{2+8}{2}, \frac{9+1}{2}\right)=(5,5)$
(ii) $m_{A C}=\frac{9-1}{28}=\frac{4}{3} \Rightarrow m_{B D}=\frac{3}{4}$
$\therefore$ Eqn of $B D: y-5=\frac{3}{4}(x-5) \Rightarrow 3 x-4 y+5=0$
(b) (i) Method 1
$m_{A D}=\frac{1}{7}$
$\Rightarrow B C: y-1=\frac{-1}{7}(x-8) \Rightarrow x+7 y-15=0$
$\frac{\text { Method 2 }}{\text { Let } B C \text { be } x+7 y+K \quad 0 .}$
Put $C:(8)+7(1)+K=0 \Rightarrow K=-15$
$\therefore$ Eqn of $B C$ is $x+7 y-15=0$.
(ii) $\left\{\begin{array}{l}B D: 3 x-4 y+5=0 \\ B C: x+7 y \quad 15=0\end{array} \Rightarrow B=(1,2)\right.$
$\therefore A B=\sqrt{(2-1)^{2}+(9-2)^{2}}=\sqrt{50}$

16B. 9 HKCEE MA $2005-1-13$
(a) $A=(-2,0), B=(0,4)$

(c) $C=(8,0)$
$O C: A C=8:(8+2)=4: 5$
$\therefore$ Area of $\triangle O D C$ : Area of $\triangle A B C=16: 25$
$\Rightarrow$ Area of $\triangle O D C$ : Area of $O A B D=16:(25-16)$

$$
=16: 9
$$

16B. 10 HKCEE MA 2006-I - 12
(a) $M=(4,4)$
(b) $m_{A B}=\frac{1}{2} \Rightarrow m_{C M}=2$
$\therefore$ Eqn of CM: $y-4=-2(x-4) \Rightarrow 2 x+y-12=0$
Hence, put $y=0 \Rightarrow C=(6,0)$
(c) (i) Eqn of $B D: \frac{y-0}{x-2}=\frac{8-0}{12-2}=\frac{4}{5} \Rightarrow 4 x$ 5y $8=0$
(ii) $\left\{\begin{array}{l}C M: 2 x+y-12=0 \\ B D: 4 x \\ 5 y-8=0\end{array} \Rightarrow K=\left(\frac{34}{7}, \frac{16}{7}\right)\right.$
$\frac{\text { Method } 1}{\text { Area of }} \triangle A M$
$\frac{\frac{\text { elthod }}{\text { Area of } \triangle A M C ~}}{\text { Ar caof } \triangle A K C} \quad y$-coor of of $K$. $K=\frac{4}{\frac{16}{7}}=\frac{7}{4}$
Method 2
Area of $\triangle A M C=\frac{M C}{K C}=\frac{\sqrt{(4-6)^{2}+(4-0)^{2}}}{\sqrt{(6-6)^{2}+(0-1)}}$
Area of $\triangle A K C=\frac{K C}{K C}=\frac{\sqrt{\left(6-\frac{34}{7}\right)^{2}+\left(0-\frac{16}{7}\right)^{2}}}{\sqrt{(20}}$

$$
=\frac{\sqrt{20}}{\sqrt{\frac{30}{40}}}=\frac{7}{4}
$$

Method 3
Let $M K: K C=r: s \Rightarrow \frac{16}{7}=\frac{s(4)+r(0)}{r+s}$
$16 r+16 s=28 s$
$\quad r: s=12: 16=3: 4$
$\frac{\text { Area of } \triangle A M C}{\text { Area of } \triangle A K C}=\frac{M C}{K C}=\frac{7}{4}$

16B. 11 HKCEE MA 2007-I-13
(a) Eqn of $A B$ : y $3=\frac{-4}{3}(x-10) \Rightarrow 4 x+3 y-49=0$
(b) Put $x=4 \Rightarrow y=11 \Rightarrow h=11$
(c) (i) (Since $\triangle A B C$ is isosceles, $A$ should lie 'above' the mid-point fo $B C$.)

$$
\frac{k+10}{2}=4 \Rightarrow k=-2
$$

(ii) Area of $\triangle A B C=\frac{(10+2)(11-3)}{2}=48$
$A C=\sqrt{(4+2)^{\frac{2}{2}}+(11-3)^{2}}=10$
$\therefore B D=\frac{2 \times \text { Area of } \triangle A B C}{A C}=\frac{48}{5}$

## 16B. 12 HKCEE MA 2008-I-12

(a) $B=(-3,4), C=(4,-3)$
(b) $m_{O B}=\frac{4}{3}, m_{O C}=\frac{-3}{4} \neq m_{O B}$
. . NO
(c) $m_{C D}={ }_{m_{B C}}^{-1}=1$
$\therefore$ Eqn of $C D: y+3=1(x-4) \Rightarrow x-y \quad 7=0$
$D$ is translated horizontally from $A$,
$\therefore y$-coordinate of $D=y$-coordinat eof $A=3$
Put into eqn of $C D \Rightarrow x=10 \Rightarrow D=(10,3)$

## 16B.13 HKCEE MA 2010-I- 12

(a) Eqn of $A B: \frac{y-24}{x-6}=\frac{18-24}{2-6}=\frac{3}{4} \Rightarrow 3 x-4 y+78=0$
(b) Let $C=(x, 0)$.
$m_{A C}=\frac{-1}{m_{4 s}}=\frac{-4}{3}$
$\frac{240}{6-x}=\frac{-4}{3} \Rightarrow x=24 \Rightarrow C=(24,0)$
(c) $A B=\sqrt{(24-18)^{2}}+(6+2)^{\frac{3}{2}}=10$
$\overline{A C}=\sqrt{ }(24-6)^{2}+(0-24)^{2}=30$
$\therefore$ Area of $\triangle A B C=\frac{10 \times 30}{2}=150$
(d) $\frac{B D}{D C}=\frac{\text { Area of } \triangle A B D}{\text { Area of } \triangle A D C} \Rightarrow \frac{r}{1}=\frac{90}{150-90} \Rightarrow r=1.5$

16B. 14 HKCEE AM $1982-\mathrm{II}-2$
Merhod I
Eqn of $A B: \frac{y-1}{x+1}=\frac{-1-1}{3+1}=\frac{-1}{2} \Rightarrow x+2 y-1=0$
Let $P$ be the pt of division. $\left\{\begin{array}{l}x+2 y-1=0 \\ x-y-1=0\end{array} \Rightarrow P=(1,0)\right.$
Let $A P: P B=r: 1 \Rightarrow 0=\frac{-1+(1) r}{r+1}=\frac{r-1}{r+1} \Rightarrow r=1$
$\therefore$ The required ratio is $1: 1$.

## Method?

Let the point of division be $P$, and $A P: P B=r: 1$.
$P=\left(\frac{3+(-1) r-1+(1) r}{r+1}\right)=\left(\frac{3-r}{r+1}, \frac{r-1}{r+1}\right)$
If $P$ lies on $x \quad y-1=0$,
$\left(\frac{3-r}{r+1}\right)-\left(\frac{r-1}{r+1}\right)-1=0 \Rightarrow r=1$
The required ratio is $1: 1$

16B. 15 HKCEE AM 1982-II-10
(a) $\left\{\begin{array}{lll}3 x & 2 y & 8=0 \\ x-y-2=0\end{array} \Rightarrow P=(4,2)\right.$

Eqn of $L_{1}: y \quad 2=\frac{1}{2}\left(\begin{array}{ll}x & 4\end{array}\right) \Rightarrow x+2 y-8=0$
Eqn of $L_{2}$ : y $2=2(x-4) \Rightarrow 2 x-y-6=0$

16B. 16 (HKCEE AM 1985- II-10)
(a) Method 1 - Use collinearity of points

Let $R-(r, h)$ and $S-(s, h)$
$m_{A C}=m_{A C} \Rightarrow \frac{h}{r-1}=\frac{2-0}{0-1} \Rightarrow r=1-\frac{h}{2}$
$m_{S B}=m_{A B} \Rightarrow \frac{h}{s+3}=\frac{2-0}{0-3} \Rightarrow s=\frac{3}{2} h-3$
$m_{S B}=m_{A B} \Rightarrow \frac{h}{s+3}=\overline{0+3} \Rightarrow$
$\therefore S=\left(\frac{3}{2} h-3, h\right), R=\left(\begin{array}{ll}1 & \frac{h}{2}, h\end{array}\right)$
Method $2-$ Use eqns of straight lines
Eqn of $A B: \frac{y-0}{x+3}=\frac{20}{0+3} \Rightarrow 2 x-3 y+6=0$
Put $y=h \Rightarrow x=\frac{3}{2} h-3 \Rightarrow S=\left(\frac{3}{2} h-3, h\right)$
Eqn of $A C: \frac{y-0}{x-1}=\frac{20}{0-1} \Rightarrow 2 x+y-2=0$
Puty $=h \Rightarrow x=1-\frac{h}{2} \Rightarrow R=\left(1-\frac{h}{2}, h\right)$
Method 3-Use similar triangle
$\triangle B S P \sim \triangle B A O \Rightarrow \frac{h}{2}=\frac{B P}{3} \Rightarrow B P=\frac{3}{2} h$
$\therefore x$-coordinate of $S=-3+\frac{3}{2} h \Rightarrow S=\left(\frac{3}{2} h-3, h\right)$
$\triangle A O C \sim \triangle R Q C \Rightarrow \frac{2}{h}=\frac{1}{Q C} \Rightarrow Q C=$
$\therefore x$-coordinate of $R=1-\frac{h}{2} \Rightarrow R=\left(1-\frac{h}{2}, h\right)$
(b) $R S=\left(1-\frac{h}{2}\right)-\left(\frac{3}{2} h-3\right)=4-2 h$

When $P O R S$ is a square,
$P S=R S \Rightarrow h=4-2 h \Rightarrow h=\frac{4}{3} \Rightarrow A_{1}=h^{2}=\frac{16}{9}$ Area of $P Q R S=h(4-2 h)=2\left(h^{2}-2 h\right)$
$A_{3}=\frac{2 \times 4}{2}=4$
$\therefore A_{1}: A_{2}: A_{3}=\frac{16}{9}: 2: 4=8: 9: 18$
(c) $M=$ mid-pt of $P R=\left(\frac{h}{2}-1, \frac{h}{2}\right)$
i.e. $x=\frac{h}{2}-1, y=\frac{h}{2}$

LHS $=\left(\frac{h}{2}-1\right) \quad\left(\frac{h}{2}\right)+1=0=$ RHS
$\therefore M$ lies on $x-y+1=0$

## 16B. 17 (HKCEE AM 1984-II-4)

(a) $\left\{\begin{array}{l}L_{1}: x+y=4 \\ L_{2}: x-y=2 p\end{array} \Rightarrow(x, y)=(2+p, 2 \quad p)\right.$
(b) $y$-intercept of $L_{1}=4, y$-intercept of $L_{2}=-2$
$\therefore$ Area of $\Delta=\frac{[4-(-2 p)](2+p)}{2}$
$9=(2+p)^{2} \Rightarrow p=-5$ or 1


## 16 B. 18 HKCEE AM 1988-T1-2

(a) $P\left(\frac{7 k+14 k+2}{k+1}\right)$
(b) When Plies on $7 x-3 y-28=0$,
$7\left(\frac{7 k+1}{k+1}\right)-3\left(\frac{4 k+2}{k+1}\right) \quad 28=0$
$7(7 k+1)-3(4 k+2) \quad 28(k+1)=0$
$\therefore$ The ratio is $3: 1$.

## 16B. 19 HKCEE AM 1990-II-7

Merhod $I$ - Use algebra to find $D$
Eqn of $A B: \frac{x}{3}+\frac{y}{5}=1 \Rightarrow 5 x+3 y-15=0$
Area of $\triangle O A B=\frac{5 \times 3}{2}=\frac{15}{2} \Rightarrow$ Area of $\triangle B C D=\frac{15}{4}$
Let $D=(h, k)$. Then
$\left\{\begin{array}{l}5 h+3 k \quad 15=0 \\ \frac{15}{4}=\frac{(5-1) h}{2}=2 h\end{array} \Rightarrow D=\left(\frac{15}{8}, \frac{15}{8}\right)\right.$
Method 2-Use ratios of areas to find $D$
Area of $\triangle O A B=\frac{15}{2}, \triangle O A C=\frac{3}{2}, \triangle B C D=\frac{15}{4}$
$\Rightarrow$ Area of $\triangle A C D=\frac{15}{2}-\frac{15}{4}-\frac{3}{2}=\frac{9}{4}$
$\Rightarrow \frac{B D}{D A}=\frac{\text { Area of } \triangle B C D}{\text { Area of } \triangle A C D}=\frac{\frac{15}{4}}{\frac{9}{2}}=\frac{5}{3}$
$\therefore D=\left(\frac{3(0)+5(3) 3(5)+5^{2}(0)}{5+3}\right)=\left(\frac{15}{8+3}, \frac{15}{8}\right)$
Hence.
Eqn of $C D: \frac{y 1}{x-0}=\frac{\frac{15}{8}-1}{\frac{15}{8}-0}-\frac{7}{15} \Rightarrow 7 x-15 y+15=0$

## 16B. 20 (HKCEEAM 1996-II-8 <br> $\left\{\begin{array}{l}L_{1}: 2 x-y-4=0 \\ L_{2}: x-2 y+4=0\end{array} \quad \Rightarrow(x, y)=(4,4)\right.$ <br> $\therefore$ Eqn of required line: $\frac{y 0}{x-0}=\frac{40}{4-0} \Rightarrow y=$

16B.21 (HKCEE AM 1998- II-5)
(a) $\left\{\begin{array}{l}L_{1}: 2 x+y-3=0 \\ L_{2}: x-3 y+1=0\end{array} \Rightarrow P=\left(\frac{8}{7}, \frac{5}{7}\right)\right.$
(b) Eqn of $L: \frac{y 0}{x 0}=\frac{\frac{5}{8}-0}{\frac{8}{7}-0} \Rightarrow y=\frac{5}{8} x$

16B. 22 HKCEE AM 2005-6
(a) $\tan \theta=m_{L_{1}}=2$
(b) $\angle O Q P=\theta \Rightarrow \angle Q O P=180^{\circ} \quad 2 \theta$

Eqn of $L_{2}: y=x \tan \angle Q O P=x \tan \left(18 \theta^{\circ} 2 \theta\right)$

$$
\begin{aligned}
& =x \operatorname{lan} 2 \theta \\
& =-x \cdot \frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& =-x \cdot \frac{2(2)}{1-(-2)^{2}} \\
\Rightarrow y & =\frac{4}{5} x
\end{aligned}
$$

6B. 23 (HKCEE AM 2009-3)
$\left\{\begin{array}{l}L_{1}: x-2 y+3=0 \\ L_{2}: 2 x-y-1=0\end{array} \Rightarrow P=\left(\frac{5}{3}, \frac{7}{3}\right)\right.$
Mehod 1
Let the eqp of $L$ be $\frac{x}{a}+\frac{y}{a}=1$, where $a>0$.

- Plies on $L$
$\therefore\left(\frac{5}{3}\right)+\left(\frac{7}{3}\right) \quad a \Rightarrow a=4$
$\therefore$ Required line: $\frac{x}{4}+\frac{y}{4}=1 \Rightarrow x+y-4=0$
Method 2
Let $L$ be $y-\frac{7}{3}=m\left(x-\frac{5}{3}\right) \Rightarrow 3 m x \quad 3 y+7 \quad 5 m=0$
$\Rightarrow x$-intercept $=\frac{5 m-7}{3 m}, y$-intercept $=\frac{75 m}{3}$
$\begin{aligned} \Rightarrow \frac{5 m}{3 m}=\frac{7 \quad 5 m}{3} \Rightarrow 5 m-7 & =-m(5 m-7) \\ m & =\frac{7}{5} \text { or }-1\end{aligned}$
However, when $m=\frac{7}{5}, L$ becomes $7 x-5 y=0$, which has zero
$x$ and $y$-intercepts. Rejected.
. Eqn of $L$ is: $3(1) x \quad 3 y+7 \quad 5(-1)=0 \Rightarrow x+y-4=0$


## 16B. 24 HKCEEAM 2010-6

$\left\{\begin{array}{l}L_{1}: x-3 y+7=0 \\ L_{2}: 3 x-y-11=0\end{array} \quad \Rightarrow(x, y)=(5,4)\right.$
Eqn of required line: $\frac{y-1}{x-2}=\frac{4-1}{5-2}=1 \Rightarrow x-y-1=0$
16C. 3 HKCEE MA 1982(1)-I-13
(a) $C: x^{2}+y^{2}-14 y+40=0 \Rightarrow x^{2}+(y-7)^{2}=3^{2}$
b) 4
(b) $m_{L}=\frac{4}{3} \Rightarrow m_{L^{\prime}}=\frac{3}{-3}$
.Eqn of $L^{\prime}: y=\frac{-3}{4} x+7$
(c) $\left\{\begin{array}{l}L: 4 x-3 y-4=0 \\ L^{\prime}: y=\frac{-3}{4} x+7\end{array}\right.$
(d) Distance between centre of $C$ and (4.4)
$=\sqrt{(0 \cdots 4)^{2}+(7-4)^{2}}=5$
$\Rightarrow$ Shortest dist $=5-$ radius $=2$


16C. 4 HKCEE MA 1983(A/B) - I-9
(a) Let $B=(b, 0)$.
$1=m_{A B}=\frac{2}{8-6} \Rightarrow b=6 \Rightarrow B=(6,0)$
(b) Let $C=(c, 0)$. Since $\triangle A B C$ is isosceles, $A$ lies 'above' the mid-point of $B C$.
$\therefore \frac{c+6}{2}=8 \Rightarrow c=10 \Rightarrow C=(10,0)$
(c) Eqn of $A C: \frac{y-0}{x-10}=\frac{20}{8-10} \Rightarrow y=-x+10$
$\therefore D=(0,10)$
(d) $B D=\sqrt{6+10^{2}}=\sqrt{136}$
$\quad$ Mid-pt of $B D=\left(\frac{6+0}{2}, \frac{0+10}{2}\right)=(3,5)$

Eqn of curcle $O B D_{\text {is }}(x-3)^{2}+(y-5)^{2}=\left(\frac{\sqrt{136}}{2}\right)$
$\Rightarrow x^{2}+y^{2} \quad 6 x \quad 10 y=0$
LHS $=(8)^{2}+(2)^{2} \quad 6(8) \quad 10(2)=0=$ RHS
$\therefore A$ lies on the circle.
16C. 5 HKCEE MA 1984(A/B)-I-9
(a) $\left\{\begin{array}{l}x^{2}+y^{2}=4 \\ y=k\end{array} \quad \Rightarrow \quad x^{2}+\left(\begin{array}{ll}k & x\end{array}\right)^{2}=4\right.$
$2 x^{2}-2 k x+k^{2} \quad 4=0 \ldots(*)$
$\Delta=4 k^{2} \quad 8\left(k^{2}-4\right)=0 \Rightarrow k= \pm \sqrt{8}$
(b) (i) If $A(2,0)$ is one fo the intersections of $C$ and $L, 2$ is a root of the equation (*)
$2(2)^{2} \quad 2 k(2)+(2)^{2} \quad 4=0 \Rightarrow k=2$
Then (*) becomes $2 x^{2} \quad 4 x=0 \Rightarrow x=2$ or 0
$\therefore B=(0,2 \quad 0)=(0,2)$
(ii) $A B \equiv \sqrt{(20} 0)^{2}+(0-2)^{2}=\sqrt{8}$

Mid-pt of $A B=\left(\frac{2+0}{2}, \frac{0+2}{2}\right)=(1,1)$
. Eqn of circle is $(x-1)^{2}+(y-1)^{2}=\left(\frac{\sqrt{8}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2} \quad 2 x \quad 2 y=0
$$

16C. 6 HKCEE MA 1985(A/B) $1-9$
(a) $A B=\sqrt{(2-7)^{2}+(0 \quad 5)^{2}}=\sqrt{50}$

Mid-pt of $A B=\left(\frac{2+7}{2}, \frac{0+5}{2}\right)=\left(\frac{9}{2}, \frac{5}{2}\right)$
Eqn of circle is $\quad\left(x \quad \frac{9}{2}\right)^{2}+\left(\begin{array}{ll}y & \frac{5}{2}\end{array}\right)^{2}=\left(\frac{\sqrt{50}}{2}\right)^{2}$
(b) $p=\left(\frac{4(2)+1(7)}{1+4}, \frac{4(0)+1(5)}{1+4}\right)-(3,1)$
(c) (i) $m_{A B}=\frac{0-5}{27}=1 \Rightarrow m_{H P K}=1$

Eqn of $H P K: y \quad 1=-1\left(\begin{array}{ll}x & 3\end{array}\right) \Rightarrow x+y-4=0$
(ii) $x^{2}+y^{2}-9 x \quad 5 y+14=0$
$x+y-4=0$
$\Rightarrow x^{2}+\left(\begin{array}{llll}4 & x\end{array}\right)^{2} \quad 9 x \quad 5(4 x)+14=0$
$\begin{aligned} x & =1 \text { or } 5 \\ \Rightarrow y & =3 \text { or } 1\end{aligned}$
$\therefore H=(1,3), K=(5,1)$

16C. 7 HKCEE MA 1986(A/B) - I- 8
(a) $\left\{\begin{array}{l}x^{2}+y^{2}-6 x-8 y=0 \\ y-x \quad 6=0\end{array}\right.$
$\begin{cases}x-x & 6=0 \\ y-x^{2}\end{cases}$

$$
\begin{aligned}
-6 x-8(x+6) & =0 \\
2 x^{2} \quad 2 x-12 & =0 \\
x & =3 \text { or } 2 \\
y & =9 \text { or } 4
\end{aligned}
$$

$\therefore B=(3,9), C=(2,4)$
(b) Put $y=0 \Rightarrow x=0$ or $6 \Rightarrow A=(6,0)$

Pury $=0 \Rightarrow x=0$ or $\Rightarrow A=(6,0)$
Put $x=0 \Rightarrow y=0$ or $8 \Rightarrow D=(0,8)$
(c) $\angle A D O=\tan ^{-1} \frac{A O}{D O}=\tan \frac{6}{8}=37^{\circ}$ (nearest degree)

- $\angle A B O=\angle A C O=\angle A D O=37^{\circ}$
(d) Ar ea of $\triangle A C O=\frac{6 \times 4}{2}=12$

16C. 8 HKCEE MA 1987(A/B) $-\mathrm{T}-8$
(a) Eqn of $\ell: y \quad 0=1(x+2) \Rightarrow x \quad y+2=0$
(b) $x$-coordinate of $C=x$-coordinate of mid-pt of $O B=2$

Put $x=2$ into $\ell \Rightarrow y=4 \Rightarrow C=(2,4)$
(c) Let the centre of the circle be $(2, k)$.
$k^{2}+4=\left(\begin{array}{ll}4 & )^{2}\end{array}\right.$
$=\frac{3}{2}$
$\therefore$ Eqn of circle: $\left(\begin{array}{ll}x & 2\end{array}\right)^{2} \div\left(\begin{array}{ll}y-\frac{3}{2}\end{array}\right)^{2}=\left(\begin{array}{ll}4 & \frac{3}{2}\end{array}\right)^{2}$
(d) $\left\{\begin{array}{l}x^{2}+y^{2}-4 x-3 y=0 \\ x-y+2=0\end{array}\right.$
$\Rightarrow x^{2}+(x+2)^{2}-4 x-3(x+2)=0$

$$
2 x^{2} \quad 3 x-2=0 \Rightarrow x=2 \text { or } \frac{1}{2}
$$

$\therefore D=\left(\frac{1}{2}, \frac{1}{2}+2\right)=\left(\frac{1}{2}, \frac{5}{2}\right)$
16C. 9 HKCEE MA 1988 - I-7
(a) $(2,5)$
(b) Radius of $C=x$-coordinate of centre $=2$

Radius of $C=x$-coordinate of cen
$\therefore \sqrt{2^{2}+5^{2}-k}=2 \Rightarrow k=5$

## 16C. 10 HKCEE MA 1989-I-8

## (a) $E=(1,2)$

(b) $\left\{\begin{array}{lll}x^{2}+y^{2}-2 x & \text { 4y } & 20=0 \\ x+7 y-40 & 0\end{array}\right.$
$(x+7 y-40=0$
$\Rightarrow\left(\begin{array}{lll}40 & 7 y\end{array}\right)^{2}+y^{2}-2(40 \quad 7 y) \quad 4 y \quad 20=0$
$50 y^{2} 55 y+1500=0$
$y=5$ or 6
$x=5$ or -2
$\therefore P=(2,6) . Q=(5,5)$
$P Q=\sqrt{(2 \quad 5)^{2}+(6 \quad 5)^{2}}=\sqrt{50}$
Mid-pt of $P Q=\left(\frac{-2+5}{2}, \frac{6+5}{2}\right)=\left(\frac{3}{2}, \frac{11}{2}\right)$
$\therefore$ Eqn of $r_{22}:\left(\begin{array}{ll}x & \frac{3}{2}\end{array}\right)^{2}+\left(\begin{array}{ll}y & \frac{11}{2}\end{array}\right)^{2}=\binom{\sqrt{50}}{2}^{2}$

$$
\Rightarrow x^{2}+y^{2}-3 x-11 y+20=0
$$

(d) PURE(1-2) into $8_{2}$

LHS $=(1)^{2} \div(2)^{2}-3(1)-11(2)+20=0=$ RHS
$\therefore E$ lies on $\mathscr{C}_{2} \Rightarrow \angle E P Q=90^{\circ}$

16C. 11 HKCEE MA 1990-1-8
(a) $\left(C_{1}\right):(x \quad 1)^{2}+(y+3)^{2}=3^{2}$
(b) Required distance $=\sqrt{(1-5)^{2}+(3-0)^{2}}-5>3$ $\therefore$ Outside
(c) (i) $s=5-3=2$
(ii) Eqn of $C_{2}: \quad \begin{gathered}(x \quad 5)^{2}+(y-0)^{2}=2^{2} \\ \Rightarrow x^{2}+y^{2}-10 x+21=0\end{gathered}$
(d)


16C. 12 HKCEE MA 1991-1-9
(a) $S:\binom{x}{2}^{2}+(y-1)^{2}=1^{2}$
(b) $\left\{\begin{array}{l}y=m x\end{array}\right.$
$\left\{\begin{array}{l}x^{2}+y^{2}\end{array} \quad 4 x-2 y+4=0\right.$
$x^{2}+(m x)^{2} \quad 4 x \quad 2(m x)+4=0$
$\left(1+m^{2}\right) x^{2}-2(2+m) x+4=0$
$\Delta=4(2+m)^{2}-16\left(1+m^{2}\right)=0$
$(2+m)^{2} \quad 4\left(1+m^{2}\right)=0$

$$
3 m^{2}-4 m=0 \Rightarrow m=0 \text { (rej.) or } \frac{4}{3}
$$

(c) (i) $\because \angle O B C=\angle O A C=90^{\circ}$ (tangent properties) $\because \angle O B C=\angle O A C=90^{\circ}$
$\because \angle O B C+\angle O A C=180^{\circ}$

> econcyclic. (opp <s supp.)

$$
\begin{aligned}
& O C=\sqrt{2^{2}+\overline{1}^{2}}=\sqrt{5} \\
& \text { Mid-pe of } O C=\left(\frac{2+0}{2}, \frac{1+0}{2}\right)=\left(1, \frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Eqn of circle: } & (x-1)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{5}}{2}\right)^{2} \\
\Rightarrow & x^{2}+y^{2}-2 x-y=0
\end{aligned}
$$

## 16C. 13 HKCEEMA 1992-I-13

(a) $x^{2}+y^{2}-18 x \quad 14 y+105=0 \Rightarrow(x-9)^{2}+(y-7)^{2}=5$ $\therefore C=(9,7)$, Radius $=5$
(b) $\begin{array}{rl}x^{2}+(m x)^{2}-18 x & 14(m x)+105\end{array}=0$
$\therefore x_{1} x_{2}=$ product of roots $=\frac{105}{1+m^{2}}$
(c) $O A=\sqrt{x_{1}^{2}+y_{1}^{2}}=\sqrt{x_{1}^{2}+\left(m x_{1}\right)^{2}}=x_{1} \sqrt{1+m^{2}}$ Similarly, $O B=x_{2} \sqrt{1+m^{2}}$

$$
\begin{aligned}
& \text { Similarly, } O B=x_{2} \sqrt{1}+m^{2} \\
& \therefore O A \cdot O B=\left(1+m^{2}\right) x_{1} x_{2}=\left(1+m^{2}\right) \cdot \frac{105}{1+m^{2}}=105
\end{aligned}
$$

(d) $A B=2 \sqrt{5^{2}-3^{2}}=8$
$O A \cdot(O A+A B)=105$
$O A^{2}+8 O A-105=0$
$\Rightarrow O A=15(\mathrm{rj})$ or 7


16C. 14 HKCEE MA 1993-I-8
(a) $L_{1}: \frac{y \frac{7}{x} \frac{2}{0}=\frac{7}{10-0}=\frac{1}{2} \Rightarrow x+2 y-14=0,003}{} \Rightarrow$
(b) $m_{L_{2}}=\frac{1}{\frac{-1}{1}}=2$
$\therefore$ Eqn of $L_{2}: y-0=2(x-4) \Rightarrow 2 x y-8 \quad 0$

$$
\left\{\begin{array}{l}
x+2 y-14=0 \\
2 x-y-8=0
\end{array} \Rightarrow D=(x, y)=(6,4)\right.
$$

(c) $P=\left(\frac{1(0)+k(10) 1(7)+k(2)}{k+1}\right)-\left(\frac{10 k \quad 7+2 k}{k+1^{\prime} k+1}\right)$ If $P$ lies on the circle,
$\left[\left(\frac{10 k}{k+1}\right)-4\right]^{2}+\left(\frac{7+2 k}{k+1}\right)^{2}=30$
$\left(\begin{array}{ll}6 k & 4\end{array}\right)^{2}+(7+2 k)^{2}=30(k+1)^{2}$

$$
\begin{aligned}
&-35=0 \\
& k=\frac{16 \pm \sqrt{200}}{4}-4 \sqrt{2} \\
& 2
\end{aligned}
$$

$\frac{A D}{D B}=\frac{6-0}{10-6}=\frac{3}{2}$
$\therefore k<\frac{3}{2}$ if $P$ lies bet weenA and $D$.
i.e. $\frac{A P}{P D}=k=4-\frac{5 \sqrt{2}}{2}$

16C. 15 HKCEE MA 1994-1-12
(a) $A=(10,0)$, Radius of $C_{2}=7$
(b) $\frac{R O}{R A}=\frac{O Q}{A P} \Rightarrow \frac{R O}{R O+10}=\frac{1}{7} \Rightarrow R O=\frac{5}{3}$
$\therefore x$-coordinate of $R=\frac{5}{3}$
(c) $m_{Q P}=\tan \angle Q R O=\frac{Q Q}{Q R}=\frac{1}{\sqrt{\left(\frac{5}{3}\right)^{2}-1^{2}}}=\frac{3}{4}$
(d) Eqn of $Q P$ : $y \quad 0=\frac{3}{4}\left(x+\frac{5}{3}\right) \Rightarrow 3 x-4 y+5=0$
(e) By symometry, the other tangent is:
$y-0=\frac{-3}{4}\left(x+\frac{5}{3}\right) \Rightarrow 3 x+4 y+5=0$
16C. 16 HKCEEMA 1995-I- 10
(a) Eqn of $A B: \frac{y 7}{x} 9=\frac{9-7}{1-9}=\frac{1}{4} \Rightarrow x+4 y-37=0$
(b) Mid-pt of $A B=\left(\frac{1+9}{2}, \frac{9+7}{2}\right)=(5,8)$

Stope of $\perp$ bisector of $A B=4$
$\therefore$ Eqn of $\perp$ bisector is: $y \quad 8=4\left(\begin{array}{ll}x & 5\end{array}\right) \Rightarrow y=4 x \quad 12$
$\{4 x-3 y+12=0 \Rightarrow G=(6,12)$
$\left\{\begin{array}{l}y=4 x-12\end{array}\right.$
(c) Radius $=\sqrt{(6 \quad 1)^{2}+(129)^{2}}=\sqrt{34}$
$\therefore$ Eqn of $8:(x-6)^{2}+(y 12)^{2}=34$
$x^{2}+y^{2} \quad 12 x \quad 24 y+146=0$
(d) (i) Let the mid-pt of $D E$ be ( $m, n$ ). Then $G$ is the mid-pt
of $(5,8)$ and $(m, n)$.
$\therefore\left(\frac{s+m}{2}, \frac{8+n}{2}\right)=(6,12) \Rightarrow G=(m, n)=(7,16)$
(ii) $m_{D E}=m_{A B}=\frac{1}{4}$
$\begin{aligned} \therefore \text { Eqn of } D E: \quad y-16 & =\frac{1}{4}(x-7) \\ \Rightarrow x+4 y \quad 57 & =0\end{aligned}$

16C. 17 HKCEEMA 1996-I-11
(a) (i) $\mathscr{C}_{1}:(x-0)^{2}+(y-2)^{2}=2^{2} \Rightarrow x^{2}+y^{2} \quad 4 y=0$ (ii) $B=(0,4) \Rightarrow$ Eqn of $L: y=2 x+4$
(b) $\{L: y=2 x+4$
$\left\{\begin{array}{l}\left(\mathscr{g}_{2}: x^{2}+(y-2)^{2}=25\right. \\ x^{2}+(3 x+2)^{2}=25\end{array}\right.$
$x^{2}+(2 x+2)^{2}=25$
$5 x^{2}+8 x-21=0 \Rightarrow x=-3$ or $\frac{7}{5} \Rightarrow y=-2$ or $\frac{34}{5}$
$\therefore Q=\left(\frac{7}{5}, \frac{34}{5}\right), R=(-3,-2)$
(c) (i) Req. pt $=$ mid-pt of $Q R=\left(\frac{-4}{5}, \frac{12}{5}\right)$
(ii) $\mathrm{Req} \cdot \mathrm{pt}=$ Intersection of $A Q$ and 8 ,
$=$ the pt 'P' with $A P: P Q=2:(5-2)$
$=\left(\frac{3(0)+2\left(\frac{7}{3}\right) 3(2)+2\left(\frac{34}{3}\right)}{2+3}\right)=\left(\frac{14}{25}, \frac{98}{25}\right)$
16C. 18 HKCEE MA 1997-I- 16
(a) (i) $\angle E A B=90^{\circ}$ (tangent 1 radius)
$\angle F E A+\angle E A B=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore A B / / E F$ (int $\angle \mathrm{s}$ supp.)
(ii) $\angle F D E=\angle B D C$ (vert opp. $\angle \mathrm{s}$ )
$=\angle D B C \quad$ (base $\angle \mathrm{s}$, isos. $\triangle)$
$=\angle F E D \quad$ (alt. $\angle \mathrm{s}, A B / / E F$ )
(iii) If the circle touches $A E$ at $E$, then its centre lies on $E F$. $E F$.
If $E D$
$E D$. ED. of the circle described.
(b) $C=\left(\frac{6-2}{2}, \frac{3-1}{2}\right)=(2,1$
$\therefore$ Let $F=\left(\frac{42}{2}, k\right)=(-3, k)$
$F, D, C$ collinear $\Rightarrow m_{F D} \quad m_{C D}, \begin{aligned} & k-3 \\ & -3+2\end{aligned} \frac{3-1}{-2-2} \Rightarrow k=\frac{7}{2}$
$\therefore F=\left(-3, \frac{7}{2}\right)$
16C. 19 HKCEEMA 1998-I- 15
(a) Centre of $C_{2}=(11,-8)$, Radius of $C_{2}=7$

Dist btwn the 2 centres $=\sqrt{(11-5)^{2}+(-8-0)^{2}}=10$ . Parius of $C_{1}=10-7=3$
$\therefore$ Eqn of $C_{1}: \quad(x-5)^{2}+(y-0)^{2}=3^{2}$

## (b) Let the tangent be $y=m x$

$\left\{\begin{array}{l}y=m x \\ x^{2}+y^{2}-10 x+16=0\end{array} \Rightarrow\left(1+m^{2}\right) x^{2}-10 x+16=0\right.$
$\Delta=100-64\left(1+m^{2}\right)=0 \Rightarrow m= \pm \frac{1}{2}$
$\therefore$ The tangents are $y= \pm \frac{1}{2} x$
(c) $\left\{y=\frac{-1}{2} x\right.$
$\left\{\begin{array}{l}=\frac{5}{2} x \\ (x-11)^{2}+(y+8)^{2}=49\end{array} \Rightarrow \frac{5}{4} x^{2}-30 x+136=0\right.$ Sum of ris $=\frac{30}{\frac{5}{3}}=24 \Rightarrow x$-coor of mid-pt of $A B=12$ $\Rightarrow y$-coor $=\frac{\frac{-1}{4}}{2}(12)=-6 \Rightarrow$ The mid-pt $=(12,-6)$

16C. 20 HKCEE MA 1999-I-16
(a) (i) $\angle B F E=\angle B D E \quad$ ( $\angle s$ in the same segment) $=\angle B A C \quad$ (corr. $\angle \mathrm{s}, A C / / D E)$
$A, F, B$ and $C$ are concyclic.
(converse of $\angle \mathrm{s}$ in the same segment)
(ii) $\because \angle A B C=90^{\circ}$ (given)
$A C$ is a diameter of circle $A F B C$.
(converse of $\angle$ in sem-circle)
$\Rightarrow M$ is the centre of circle $A F B C \Rightarrow M B=M F$
(b) (i) $m P Q=\frac{17-0}{0+17}=1$
$m_{R S}=\frac{7-0}{-2+9}=1=m_{P Q}$
$\therefore P Q / / R S$
(ii) Eqn of $Q S: \frac{y-17}{x-0}=\frac{17-7}{0+2} \Rightarrow y=5 x+17$
$\left\{\begin{array}{l}y=5 x+17 \\ \end{array}\right.$
$\left\{\begin{array}{l}y=5 x+17 \\ x^{2}+y^{2}+10 x-6 y+9=0\end{array}\right.$
$x^{2}+(5 x+17)^{2}+10 x \quad 6(5 x+17)+9=0$

$$
\begin{aligned}
& x=-2 \text { or }-\frac{49}{13} \\
& \therefore T=\left(-\frac{49}{13}, 5\left(-\frac{49}{13}\right)+17\right)=\left(-\frac{49}{13},-\frac{24}{13}\right)^{2}
\end{aligned}
$$

(iii) Method I

Let the mid-pt of $P Q$ be $N=\left(\frac{-17}{2}, \frac{17}{2}\right)$
NO $\sqrt{\left(\frac{-17}{2}\right)^{2}+\left(\frac{17}{2}\right)^{2}}=\sqrt{\frac{289}{2}}$
$N T=\sqrt{\left(\frac{-49}{13}+\frac{17}{2}\right)^{2}+\left(\frac{-24}{13}-\frac{17}{2}\right)^{2}}=\sqrt{\frac{3365}{26}}$
Hence, $N T \neq N O$.
If $P, Q, O$ and $T$ are concyclic, the result of (a)(ii) hould apply, i.e. $N O=N T$. Thus they are not con

Mechod 2
$\because m_{\rho T} m_{Q r}=\frac{0+\frac{24}{15}}{-17+\frac{49}{15}} \cdot \frac{17+\frac{24}{15}}{0+\frac{0}{13}}=\frac{-30}{43} \neq-1$
$\therefore \angle P T Q \neq 90^{\circ}$
Thus, $\angle P T Q+\angle P O Q \neq 90^{\circ}+90^{\circ}=180^{\circ}$, and $P$ $Q, O$ and $T$ are not concyclic.

## 16C. 21 HKCEE MA 2000-1-1

(a) In $\triangle O C P, \angle C P O=90^{\circ} \quad$ (tangent 1 radius) $\therefore \angle P Q O=60^{\circ} \div 2=30^{\circ} \quad\left(\angle 90^{\circ}\right.$ ( $\angle$ sum of $\angle$ at $O^{c}$
(b) (i) $\angle S O C=\angle P O C=30^{\circ}$ (tangent properties) $\angle P Q R=180^{\circ}-\angle P O S \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.)
$=120^{\circ}$
$\Rightarrow \angle R Q O=120^{\circ}-30^{\circ}=90^{\circ}$
$R Q$ is tangent to the circle at $Q$
(ii) $O C=\sqrt{6^{2}+\overline{8^{2}}}=10$
$C Q=C P=O C \sin 30^{\circ}=5$
$C Q=10: 5=2: 1$
$\therefore Q=(9,12)$
$m_{C C}=\frac{4}{3} \Rightarrow m_{Q R}=\frac{-3}{4}$
$\therefore$ Eqn of $Q R: \quad$ y $\quad 12=\frac{-3}{4}(x-9)$
$\Rightarrow 3 x+4 y-21=0$

16C. 22 HKCEE MA 2001-I- 17
(a) (i) Centre $=\left(\frac{p}{2}, 0\right)$, Radius $=\frac{p}{2}$

$$
\left.\begin{array}{rl}
\therefore \text { Eqn of } O P S: & \left(x-\frac{p}{2}\right)^{2}+y^{2}
\end{array}=\left(\frac{p}{2}\right)^{2}\right)
$$

(ii) 'Hence'
'Hence' $S(a, b)$ Hes on the circle
$\Rightarrow a^{2}+b^{2}-p a=0 \Rightarrow a^{2}+b^{2}=p a$
$\therefore a s^{2}=(a-0)^{2}+(b-0)^{2}=a^{2}+b^{2}$ $=a^{2}+b^{2}$
$=p a$ $=O P \cdot O Q \cos \angle P O Q$
Othenwise'
$\angle O S P=90^{\circ} \quad$ ( $\angle$ in semi-circle)
In $\triangle O P S$ and $\triangle O S R$,
$\begin{array}{ll}\angle P O S=\angle S O R & \text { (common) } \\ \angle O R S=\angle O S P=90^{\circ} & \text { (proved) }\end{array}$
$\angle O R S=\angle O S P=90^{\circ}$
$\therefore \triangle O P S \sim \triangle O S R$ (proved)
(AA)
$\Rightarrow \frac{O S}{O R}=\frac{O P}{O S}$ $\begin{aligned} O S^{2} & =O P \cdot O R \\ & =O P \cdot O Q \cos \angle P O Q\end{aligned}$
(b) (i) In circle $B C E, \angle C E B=90^{\circ} \quad$ ( $\angle$ in semi-circle)
i.e. $B E$ is an alditude of $\triangle A B C$.
(ii) By (a), $C G^{2}=A C \cdot B C \cos \angle A C B$

Simikrly, $A D$ is an altitude of $\triangle A B C$ by considering circle $A C D$.
$\Rightarrow C F^{2}=B C \cdot A C \cos \angle A C B=C C^{2}$
$\therefore C F=C G$

16C. 23 HKCEE MA 2000-I- 16
(b) (i) $A=(c \quad r, 0), B=(c+r, 0)$
$\pi_{\wedge D}=\frac{p 0}{0-(c-r)}=\frac{p}{r-c}$
$m_{B F}=\frac{q-0}{0-(c+r)}=\frac{q}{r+c}$
(ii) $A D \perp B F \Rightarrow \frac{p}{r c} \cdot \frac{-q}{r+c}=-1$
i.e. $\begin{aligned} O D \cdot O F & =C G^{2}-O C^{2} \\ & =O G^{2}\end{aligned}$

16C. 24 HKCEE MA 2003-I-17
(a) (i) $\ln \triangle N P M$ and $\triangle N K P$,
$\angle P N M=\angle K N P \quad$ (common)
$\angle N P M=\angle N K P \quad(\angle$ in all. segment $)$
$\angle P M N=\angle K P N \quad(\angle$ sum of $\triangle)$
$\Rightarrow N P$
$\Rightarrow \frac{N M}{N M}=\frac{N K}{N P} \quad$ (corr. sides, $\sim \Delta \mathrm{s}$ )
$N P^{2}=N K \cdot N M$
$P S / / O P$
(ii) $\because R S / / O P$ (given)
$\Rightarrow \frac{\triangle K R M \sim \triangle K O N}{}$ and $\triangle K S M \sim \triangle K P N$
$\Rightarrow \frac{R M}{O N}-\frac{K M}{R N}$ and $\frac{S M}{P N}-\frac{K M}{K N}$
$\Rightarrow \frac{K M}{O N}=\frac{S M}{P N}$
Similar to (a), we have $N O^{2}=N K \cdot N M$ $N P=N O$


With the notation above, note that $O A$ (extended) an $P B$ (extended) are diameters of $C_{1}$ and $C_{2}$ respectively.
$A=A M$ and $M B=B G$
( $\perp$ from centre to chord bisects chord)
(ii) $\because M=(a, b)$ and $F A=A M$,
ince $\triangle Q O P \sim \triangle Q F$ and $F G=2 O P$, we hav $F Q=20 Q \Rightarrow O$ is the mid-pt of $F Q$

$$
\begin{aligned}
& \Rightarrow 0 \text { is the mid } \\
& \Rightarrow Q=(a, b)
\end{aligned}
$$

(iii) Note that $Q M$ is vertical. Thus $Q M \perp R S$. In $\triangle Q M R$ and $\triangle Q M S$,

$$
\begin{array}{rlrl}
Q M & =Q M & & \text { (cormon) } \\
R M & =S M & & \text { (proved) } \\
\angle Q M R & =\angle Q M S=90^{\circ} & & \text { (proved) } \\
\triangle O M & \cong \triangle O M S
\end{array}
$$

$\triangle Q M R \cong \triangle Q M S$ (SAS)
e. $\triangle Q R S$ is isosceles

16C 25 HKCEE MA 2004-I-16
(a) In $\triangle A D E$ and $\triangle B O E$
$\angle A D E=\angle E B C \quad$ (alt. $\angle \mathrm{s}, O D / / B C$
$\begin{aligned} & =\angle B O E \quad \text { ( } \angle \text { in alt. segment) } \\ \angle D A E & =\angle O B E \quad \text { (ext. } \angle \text { cyclic quad) }\end{aligned}$
$\begin{array}{ll}D A E=\angle O B E & \text { (ext. } \angle . \text { cyclic quad.) } \\ A D=B O & \text { (given) }\end{array}$
$\begin{array}{ll}A D=B O & (\text { given }\end{array}$
(b) $D E=O E \quad$ (corr. sides, $\cong \triangle \mathrm{s}$ )
$\angle B O E=\angle A D E$ (proved)
$=\angle A O E$ (base $\angle \mathrm{s}$, isos. $\triangle$ )
i.e. $\angle A O B=2 \angle B O E$
$\therefore \angle B E O=\angle A E D \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ ) $=\angle A O B \quad$ (ext. $\angle$, cyclic quad.)

$$
=2 \angle B O E \text { (proved) }
$$

(c) Suppose $O E$ is a diameter of the circle OAEB.
(i) $\angle O B E=90^{\circ} \quad(\angle$ in semi-circle)

In $\triangle O B E, \angle B O E=180^{\circ}-90^{\circ}-(2 \angle B O E)$

$$
3 \angle B O E=90^{\circ} \Rightarrow \angle B O E=30^{\circ}
$$

(ii) $O B=6 \Rightarrow B E=O B \tan \angle B O E \Rightarrow E=(6,2 \sqrt{3})$ $O E=\frac{O B}{\cos 30^{\circ}}=4 \sqrt{3}$
Mid-pt of $O E=(3, \sqrt{3})$
$\therefore$ Eqn of circle: $(x-3)^{2}+(y-\sqrt{3})^{2}=\left(\frac{4 \sqrt{3}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2}-6 x \quad 2 \sqrt{3} y=0
$$

16C. 26 HKCEE MA 2005-1-17
(a) (i) $\because M N$ is a diameter (given)
in $\angle N O M=\angle Q R P=90^{\circ} \quad(\angle$ in semi-circle $)$
$O Q R$ and $\triangle O R P$,
$\angle R O Q=\angle P O R$

$\angle Q R=\angle 90^{\circ} \angle P R O$
$\angle P O R=180^{\circ}-\angle R O P-\angle P R O$
( $\angle$ sum of $\Delta$ )
$\Rightarrow \angle Q P O=\angle 0^{\circ} \angle P R O$
$\Rightarrow \angle Q P O=\angle P R O$
$\angle R Q O=\angle P R O \quad(\angle$ sumof $\triangle)$
$\Rightarrow \frac{O R}{O Q}=\frac{O P}{O P}$
(AAA)
$\frac{Q Q}{O R^{2}}=\frac{O P}{O R}$
$O P \cdot O Q$
(ii) In $\triangle M O N$ and $\triangle P O R$, $\angle N M O=\angle Q R O \quad$ ( $\angle \mathrm{s}$ in the same segment $\angle M O N=\angle P O R \quad$ (proved) $\angle M N O=\angle R Q O \quad(\angle$ sum of $\triangle)$
$\therefore \triangle M O N \sim \triangle R Q O$ (AAA)
(b) (i) $O R=\sqrt{O P \cdot O Q}=\sqrt{4 \cdot 9}=6 \Rightarrow R=(0,6)$
(ii) In $\triangle P O R, P R=\sqrt{4^{2}+6^{2}}=\sqrt{52}$
$\frac{M N}{O N}=\frac{P R}{O R}=\frac{\sqrt{52}}{6} \Rightarrow M N=\frac{\sqrt{13}}{3} \cdot \frac{3 \sqrt{13}}{2}=\frac{13}{2}$
$\therefore$ Radius $=\frac{13}{2} \div 2=\frac{13}{4}$
Let the centre be $(h, 6 \div 2)=(h, 3)$
$\Rightarrow \sqrt{(h \quad \overline{0})^{2}+(3 \quad \overline{0})^{2}}=\frac{13}{4} \Rightarrow h=-\frac{5}{2} \quad(h<0)$
$\therefore$ The cencre is $\left(-\frac{5}{2}, 3\right)$

16C. 27
HKCEEMA 2006-I-16
$G$ is the circumcentre (given)
$H$ is $B C$ and $S A \perp A B$ ( $\angle$ in semi-circle)
$A H \perp B C$ and $C H \perp A B$
Thus, $S C / / A H$ and $S A / / C H \Rightarrow A H C S$ is a $/ /$ gram
$\frac{M e t h o d l}{\angle G R B}=\angle S C B=90^{\circ} \quad$ (proved)
$\therefore G R / / S C$ (corr. $\angle \mathrm{s}$ equal)
$\because B G=G S=$ radius
$\therefore B R=R C$ (intercept thm)
$\Rightarrow S C=2 G R$ (mid-pt thm)
Hence, $A H=S C=2 G R$ (property of $/ /$ gram) Method 2
$\because B G=G S=$ radius
and $B R=R C \quad$ ( $\lfloor$ from centre to chord bisects $\stackrel{\text { chord) }}{\Rightarrow} S$
$\Rightarrow S C=2 G R$ (mid-ptthm)
(i) Lethe circe $\mathrm{be}_{\mathrm{z}}{ }^{2}+\mathrm{v}^{2}+D \mathrm{property}$ of $/ / \mathrm{gram}$ )

$$
\begin{aligned}
& 14^{2}+4 D+0 E+F=0 \\
& \therefore \text { The circle is } x^{2}+y^{2}+2 x-10 y=24=0
\end{aligned}
$$

(ii) $G=(1,5) \Rightarrow G R=5$
$G=(1,5) \Rightarrow G R=5$
$\therefore H=(0,12 \quad 2 \times 5)=(0,2) \quad$ (by (a)(ii))
(iii) $m_{B G} \cdot m_{G K}=\frac{5-0}{1+6} \cdot \frac{52}{-1-0}=3 \neq-1$
$\therefore \angle B G H \neq 90^{\circ} \Rightarrow \angle B O H+\angle B G H \neq 180^{\circ}$
Hence, $B, O, H$ and $G$ are not concyclic.
16C. 28 HKCEE MA $2007-\mathrm{I}-17$
(a) (i) $\because I$ is the incentre of $\triangle A B D$ (given)
$\therefore \angle A B G=\angle D B G$ and $\angle B A E=\angle C A E$
In $\triangle A B G$ and $\triangle D B G$,
$\begin{aligned} \angle A B G & =\angle D B G \quad \text { (proved) } \\ A B & =D B\end{aligned}$ $\begin{array}{ll}A B=D B & \\ \text { (given) } \\ B G=B G & \text { (common) }\end{array}$ $\triangle A B G \cong \triangle D B G \quad$ (SAS)
(ii) $\because \triangle A B D$ is isosceles and $\angle A B G=\angle D B G$
$\therefore \angle B G A=90^{\circ}$ (property of isos. $\triangle$ )
In $\triangle A G I$ and $\triangle A B E$.

$\angle A G I=90^{\circ}=\angle A B E$	( $\angle$ in semi-circle)
$\angle I A G=\angle E A B$	(proved)
$\angle A G G=\angle A E B$	( $\angle$ sum of $\triangle$ )
$\triangle A G I \sim \triangle A B E$	(AAA)
$\Rightarrow G I=\frac{B E}{A B}$	(corr. sides, $\sim \triangle \mathrm{s}$ )

(b) (i) $\because A G=D G$
$\therefore A G=($ Diameter $C D) \div 2$
$=(25 \times 2-(25-11)) \div 2=18$
$\therefore G=(25+18,0)=(7,0)$
(ii) By (a)(ii), $G I=\frac{1}{2} \times A G=9 \Rightarrow I=(7,9)$

Radius of inscribed circle $=G I=9$
$\begin{aligned} \therefore \text { Eqn of circle is } \quad(x+7)^{2}+(y-9)^{2} & =9^{2} \\ \Rightarrow x^{2}+y^{2}+14 x \quad 18 y+49 & =0\end{aligned}$

## 16C. 29 HKCEE MA $2008-\mathrm{I}-17$

## (a) Method 1

Is the incentre of $\triangle A B C$ (given)
$\angle B A P=\angle C A P$
$B P=C P \quad$ (equal $\angle s$, equal chords)
Method 2
$I$ is the incentre of $\triangle A B C$ (given)
$\angle B A P=\angle C A P$
$\angle B C P=\angle B A P \quad$ ( $\angle \mathrm{s}$ in the same segment) $=\angle C A P$ (proved)
$\Rightarrow B P=C P$ (sides opp eque segnes)

## Both methods



Join $C I$. Let $\angle A C I=\angle B C I=\theta$ and $\angle B C P=\phi$.
$\angle P A C=\phi$ (equal chords, equal $\angle \mathrm{s}$ )
$\Rightarrow \angle P I C=\angle P A C+\angle A C I=\theta+\phi \quad($ ext. $\angle$ of $\triangle)$
$I P=C P \quad$ (sides opp. equal $\angle \mathrm{s}$ )
ie. $B P=C P=I P$
(b) (i) Let $P=\left(\frac{80+64}{2}, k\right)=(8, k)$
$\therefore(-8+380)^{2}+(k \quad 0)^{2}=\left(\begin{array}{cc}8 & 0\end{array}\right)^{2}+(k-32)^{2}$
$5184+k^{2}=64+k^{2} \quad 64 k+1024$
$\therefore P=(8,-64)$
Radius of circle BIC $=\sqrt{5184+(-64)^{2}}=\sqrt{9280}$ $\Rightarrow x^{2}+y^{2}+16 y+128 y 5120=0$
(ii) $\frac{\text { Method } I}{G B \simeq G P}$
$\begin{aligned} \quad(-8+80)^{2}+(g-0)^{2} & =(g+64)^{2} \\ 72^{2}+g^{2} & =g^{2}+128 g+2\end{aligned}$
$\therefore Q=(-8,64+2 G P)=8.5$
$\begin{aligned} \ell & =(-8, \quad 64+2(8.5+64))=(8,81)\end{aligned}$

## Method2

Let the equation of circle be $x^{2}+y^{2}+D x+E y+F=0$
$\left\{\begin{array}{l}(-80)^{2}+0^{2} \quad 80 D+0 E+F=0 \\ 64^{2}+0^{2}+64 D+0 E+F=0 \\ (8)^{2}+(-64)\end{array} \Rightarrow\left\{\begin{array}{l}D=16 \\ E=17\end{array}\right.\right.$
$64^{2}+0^{2}+64 D+0 E+F=0$
$(8)^{2}+(-64)^{2}-8 D \quad 64 E+F=0$$\Rightarrow\left\{\begin{array}{l}E=-17 \\ F=-512\end{array}\right.$
$(8)^{2}+(-64)^{2}-8 D \quad 54 E+F=0 \quad\{F=-512$
$\therefore$ Eqn of circle is $x^{2}+y^{2}+16 x \quad 17 y$
Put $x=8 \Rightarrow y^{2}-17 y-5184=0$
$\Rightarrow y=81$ or $64 \Rightarrow Q=(-8,81)$
(iii) $\frac{\text { Method } l}{m_{B Q} \cdot m_{I Q}}=\frac{810}{81} \cdot \frac{81-32}{-20}=-\frac{441}{61} \neq-1$ $m_{B Q} \cdot m_{I Q}=\frac{81}{-8+80} \cdot \frac{81-32}{-8-0}=-\frac{441}{64} \neq-1$
$\Rightarrow \angle B Q I \neq 90^{\circ} \Rightarrow \angle B Q I+\angle B R I \neq 180^{\circ}$
$\Rightarrow \angle B Q 1 \neq 90^{\circ} \Rightarrow \angle B Q$,
$\therefore$ They are not concyclic.
Method 2
Mid-pl of $B I=\left(\frac{80+0}{2}, \frac{0+30}{2}\right)=(40,16)$
$B I=\sqrt{80^{2}+32^{1}}=\sqrt{7424}$
$\therefore$ Eqn of circle $B R I$ :
$(x+40)^{2}+(y \quad 16)^{2}=(\sqrt{7424} \div 2)^{2}$
Put $Q(-8,81)$ into $=0$
LHS $=(-8)^{2}+(81)^{2}+80(8) \quad 32(81)$ $=3393 \neq$ RHS
Thus, $Q$ does not lie on the circle through $B, R$ and $I$. The 4 points are not concyclic.
16C. 30 HKCEE MA 2011-I-16
(a) $S=(16,-48)$
$R=(32+2 \times(16+32),-48)=(64,48)$
Method I
Mid-pt of $P R=\left(\frac{16+64}{2}, \frac{80}{2}\right)=(40,16)$
$m_{\text {PR }}=\frac{48 \quad 80}{64-16}=\frac{-8}{3}$
. Eqn of $L$ bisector: $y-16=\frac{-1}{\frac{-3}{3}}(x-40)$

$$
\Rightarrow 3 x-8 y+8=0^{3}
$$

Method 2 $\left.\sqrt{(x} 16)^{2}+6 y-80\right)^{2}=\sqrt{(x-64)^{2}+(y+48)^{2}}$ $x^{2}+y^{2}-32 x \quad 160 y+6656=x^{2}+y^{2} \quad 125 x+96 y+6400$ $96 x \quad 256 y+256=0 \Rightarrow 3 x \quad 8 y+8=0$
(b) Since $P Q=P R$ and $P S \perp Q R, P S$ is the $\perp$ bisector of $Q R$. Since $P Q=P R$ and $P$ )
(property of isos. $\Delta$ )
Thus the circurcentre of $\triangle P Q R$ is the intersection of the linc in (a) and $P S$.
Put $x=16$ into the egn in $(\mathrm{a}) \Rightarrow y=7 \Rightarrow(16,7)$
(c) (i) Radions $=80 \quad 7=73$
$\therefore$ Eqn of $C: \quad(x-16)^{2}+(y \quad 7)^{2}=73^{2}$

Eqn of $C:$
$\Rightarrow x^{2}+y^{2}$
$(x-16)^{2}+(y$
$32 x$
$14 y-5024=0$

(ii) If the centre of $C$ is the in-centre of $\triangle P Q R$, its distances to each of $P R, Q R$ and $P Q$ would also be the same (the radii of the inscribed circle).
From (a), the foot of $\perp$ from centre to $P R=(40,16)$ $\Rightarrow$ Dist from centre to $P R=\sqrt{(16-40)^{2}+(716)}$
Dist from centre to $Q R=7-(48) \quad 56 \neq \sqrt{657}$ Therefore, the centre of $C$ cannot be the in-centre of $\triangle P Q R$. The claim is disagreed.

16C. 31 HKCEEAM 1981- ${ }^{1 \pi}$ - 6
(a) $C_{1}:$ Centre $=\left(0,-\frac{7}{2}\right)$, Radius $=\sqrt{\left(\frac{7}{2}\right)^{2}-11}=\frac{\sqrt{5}}{\frac{2}{3}}$

C2: Centre $=(-3,2)$, Radius $=\sqrt{3^{2}+2^{2}-8}=\sqrt{5}$
$\therefore\left(\frac{2(0)+1(3) 2\left(\frac{7}{2}\right)+1(-2)}{1+2}\right)=(-1,-3)$

(b) Slope of line joining centres $=\frac{\frac{-2}{2}+2}{0+3}=\frac{-1}{2}$
$\therefore$ Eqn of tg: $y+3=\frac{-1}{\frac{-1}{2}}(x+1) \Rightarrow 2 x-y \quad 1=0$
16C.32 (HKCEE AM 1981- II- 12)
(a) (i) $\left\{\begin{array}{l}L: y=m x+2 \\ C: x^{2}+y^{2}=1\end{array} \Rightarrow x^{2}+(m x+2)^{2}=1\right.$
$\Rightarrow\left(1+m^{2}\right) x^{2}+4 m x+3=0$
$\therefore x_{1}$ and $x_{2}$ are the roots of this equation.
(ii) $x_{1}+x_{2}=\frac{-4 m}{1+m^{2}}, x_{1} x_{2}=\frac{3}{1+m^{2}}$
$\Rightarrow \frac{A B=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}}{\left.=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(m x_{1}+2-m x_{2}\right.} 2\right)^{2}}$ $\left.=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(m x_{1}+2-m x_{2}\right.} \quad 2\right)^{2}$
$=\sqrt{ }\left(x_{1} x_{2}\right)^{2}+m^{2}\left(x_{1}-x_{2}\right)^{2}$
$=\frac{\left.\sqrt{x_{1}} x_{2}\right)^{2}+m^{2}\left(x_{1}-x_{2}\right)^{2}}{\sqrt{\left(1+m^{2}\right)\left[\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}\right]}}$
$=\sqrt{\left(1+m^{2}\right)\left[\frac{16 m^{2}}{\left(1+m^{2}\right)^{2}}-\frac{12}{1+m^{2}}\right]}$
$=\sqrt{\frac{16 m^{2}-12\left(1+m^{2}\right)}{1+m^{2}}-2 \sqrt{m^{2} 3} m^{2}+1}$
(b) (i) 2 distinct pts $\Rightarrow 2 \sqrt{\frac{m^{2}-3}{m^{2}+1}}>0 \Rightarrow m^{2}-3>0$

$$
\Rightarrow m<\sqrt{3} \text { or } m>\sqrt{3}
$$

(ii) Tg to $C \Rightarrow 2 \sqrt{\frac{m^{2}-3}{m^{2}+1}}=0 \Rightarrow m= \pm \sqrt{3}$
(iii) No intsn $\Rightarrow \frac{m^{2}-3}{m^{2}+1}<0 \Rightarrow-\sqrt{3}<m<\sqrt{3}$
(c) For $m= \pm \sqrt{3}$, the eqn in (a)(i) becomes
$10 x^{2} \pm 4 \sqrt{3} x+3=0 \Rightarrow x=\frac{\mp 4 \sqrt{3} \pm \sqrt{0}}{20}=\mp \frac{\sqrt{3}}{5}$
$\Rightarrow y= \pm \sqrt{3}\left(\mp \frac{\sqrt{3}}{5}\right)+2=\frac{8}{5}$
$\therefore$ Eqn of $P Q$ is $y=\frac{8}{5} \quad$ (since $i$ tis horizontal)

16C.33 (HKCEE AM 1982-II-8)
(a) (i) $m_{L}=\frac{-5}{12}$
$\therefore$ Req eqn: $y-6=\frac{-1}{\frac{-5}{12}}(x-5) \Rightarrow y=\frac{12}{5} x-6$
(ii) 'Hence:
$\left\{\begin{array}{l}5 x+12 y=32 \\ y=\frac{12}{3} x-6\end{array} \quad \Rightarrow(x, y)=\left(\frac{40}{13}, \frac{18}{13}\right)\right.$
Radi usof circle $=\sqrt{\left(5-\frac{40}{13}\right)^{2}+\left(6-\frac{18}{13}\right)^{2}}=5$

$$
\begin{gathered}
\text { Eqn of } C: \quad(x-5)^{2}+(y-6)^{2}=5^{2} \\
\Rightarrow x^{2}+y^{2}-10 x-12 y+36=0
\end{gathered}
$$

Othenvise' ${ }^{\text {Let } C \text { be }(x-5)^{2}}+(y-6)^{2}=r^{2}$.
$\{5 x+12 y=32$
$\left\{(x-5)^{2}+(y-6)^{2}=r^{2}\right.$
$\Rightarrow(x-5)^{2}+\left(\frac{32-5 x}{12}-6\right)^{2}=r^{2}$
$\frac{169}{144} x^{2}-\frac{65}{9} x+\frac{325}{9}-r^{2}=0$
$\Delta=\left(\frac{65}{9}\right)^{2}-4 \cdot \frac{169}{144}\left(\frac{325}{9}-r^{2}\right)=0 \Rightarrow r^{2}=25$ $\therefore$ Eqn of $C: \quad(x-5)^{2}+(y-6)^{2}=5^{2}$
(b) Method I
$x$-coordi rate of centre $=5=$ radius
$\therefore C$ touches the $y$-axis.
Mehod 2
Put $x=0 \Rightarrow y^{2}-12 y+36=0 \Rightarrow y=6$ (repeated) (c) Let
$\left\{\begin{array}{l}y=m x\end{array}\right.$
$x^{2}+y^{2}-10 x-12 y+36=0$
$\Rightarrow\left(1+m^{2}\right) x^{2}-2(5+6 m) x+36=0$
$\Delta=4(5+6 m)^{2}-4 \cdot 36\left(1+m^{2}\right)=0 \Rightarrow m=\frac{5}{12}$
$\therefore$ The required tangent is $y=\frac{5}{12} x$.
(d) Let $Q=(m, n)$ Since $M$ is the mid -plof $P Q$,
$\left(\frac{2+m}{2}, \frac{2+n}{2}\right)=(5,6) \Rightarrow(m, n)=(8,10)$
Let $x^{2}+y^{2}+D x+E y+F=0$ be the circle through $P, Q$

> and $O$. $\left\{\begin{array}{l}0^{2}+0^{2}+0 D+0 E+F=0 \\ 2^{2}+2^{2}+2 D+2 E+F=0 \\ 8^{2}+10^{2}+8 D+10 E+F=0\end{array} \Rightarrow\left\{\begin{array}{l}D=62 \\ E=66 \\ F=0\end{array}\right.\right.$ $\therefore$ The ci rcleis $x^{2}+y^{2}+62 x-66 y=0$.

16C34 HKCEE AM 1984- 1 -6 (a) $x^{2}+y^{2}-2 k x+4 k y+6 k^{2}-2=0$ Radius $=\sqrt{ }(-k)^{2}+(2 k)^{2}-\left(6 k^{2}-2\right)>1$ $\begin{aligned} k^{2}+4 k^{2}-6 k^{2}+2 & >1^{2} \\ k^{2} & <1\end{aligned}$ $-1<k<1$

16C 35 (HKCEE AM 1985-II-5)
(a) Radius $=\sqrt{\left(\frac{k}{2}\right)^{2}+\left(\frac{2+k}{2}\right)^{2}}=\sqrt{5}$

$$
\frac{k^{2}}{4}+1+k+\frac{k^{2}}{4}=5
$$

$4 k^{2}+2 k-8=0 \Rightarrow k=-4$ or 2
(b) $k=-4 \Rightarrow x^{2}+y^{2}-4 x+2 y=0$
$k=2 \Rightarrow x^{2}+y^{2}+2 x-4 y=0$

## 16C. 36 HKCEE AM 1986- IT-10

(a) (i) $\int C_{1}: x^{2}+y^{2}-4 x+2 y+1=0$ $C_{2}: x^{2}+y^{2}-10 x-4 y+19=0$
$6 x+6 y \quad 18=0 \Rightarrow y=3-$ $\Rightarrow x^{2}+(3-x)^{2}-4 x+2(3-x)+1=0$ $2 x^{2}-12 x+16=0$ $x=2$ or 4
$y=1$ or -1
Hence, $A$ and $B$ are $(2,1)$ and $(4,-1)$.

$$
\begin{aligned}
& \text { Hence, } A \text { and } B \text { are }(2,1) \text { and }(4,-1) . \\
& \therefore \text { Eqn of } A B: \quad \frac{y-1}{x-2}=\frac{-1-1}{4-2}=\frac{-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x-2 \\
& \Rightarrow x+2 y 4=0^{4}
\end{aligned}
$$

(ii) The required circle has $A B$ as a di ameter.

Mid-ptof $A B=\left(\frac{2+4}{2}, \frac{1-1}{2}\right)=(3,0)$
$A B=\sqrt{(4-2)^{2}+(-1-1)^{2}}=\sqrt{8}$
: Req.circle is: $\quad(x-3)^{2}+(y-0)^{2}=\left(\frac{\sqrt{8}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2}-6 x+7=0
$$

b) Centre of $C_{3}=$ Centre of $C_{1}=(2,-1)$

Radi usof $C_{3}=\frac{\text { Dist. from }\left(2_{1}-1\right) \text { to } A B}{\sqrt{\left(\text { Radi usof } C_{1}\right)^{2}-\left(\frac{1}{5} A B\right)^{2}}}$
$=\frac{\sqrt{\left(\operatorname{Radi} \text { usof } C_{1}\right)^{2}-\left({ }_{2}^{2} A B\right)^{2}}}{\sqrt{(2)^{2}+(1)^{2}-1-2=2}}$
$\therefore$ Eqn of $C_{3}: \begin{array}{r}(x-2)^{2}+(y+1)^{2}=2 \\ \Rightarrow x^{2}+y^{2}-4 x+2 y+3=0\end{array}$
16C. 37 HKCEE AM 1987- IT-11
(a) (i) Method l
$C_{1}:(x-8)^{2}+\left(\begin{array}{ll}y & 2)^{2}=2^{2}\end{array}\right.$
$\Rightarrow$ Radius $=2=y$ coordinate of centre
$C_{1}$ touches the $x$-axis, and the pointof contact is $x$-coord of centre, 0$)=(8,0)=A$
Method 2
uty $y=0 \Rightarrow x^{2}-16 x+64=0 \Rightarrow x=8$ (repeated)
ii) $A(8,0)$ is the only pt of contact of $C_{1}$ and $x$-axis.
$\left\{\begin{array}{l}\text { Let } O=m x\end{array}\right.$
$\left\{\begin{array}{l}y=m x \\ x^{2}+y^{2}-16 x-4 y+64=0\end{array}\right.$
$\Rightarrow x^{2}+(m x)^{2}-16 x-4(m x)+64=0$
$+(m x)^{2}-16 x-4(m x)+64=0$
$\left(1+m^{2}\right) x^{2}-4(4+m) x+64=0$
$\Delta=16(4+m)^{2}-4 \cdot 64\left(1+m^{2}\right)=0$
$\begin{aligned} m^{2}+8 m+16-16-16 m^{2} & =0 \\ 15 m^{2}-8 m & =0\end{aligned}$ $m=0$ or $\frac{8}{15}$
.. Eqn of $O H$ is $y=\frac{8}{15} x$.
(iii) By symmetry, $m_{B H}=\frac{-8}{15}$

- Eqn of $B H: \quad y \sim 0=\frac{-8}{15}(x-16)$
$\Rightarrow y=\frac{-8}{15}+\frac{128}{15}$
(b) (i) Sub $A \Rightarrow 8^{2}+0^{2}-16(8)+0+c=0 \Rightarrow c=64$ Method $\mid$
$\left\{x^{2}+y^{2}-16 x+2 f y+64=0\right.$
$x^{2}+\left(\frac{-4}{3} x\right)^{2}-16 x+2 f\left(\frac{-4}{3} x\right)+64=0$

$$
\frac{25}{9} x^{2}-8\left(2+\frac{f}{3}\right) x+64=0
$$

$$
\Delta=64\left(2+\frac{f}{3}\right)^{2}-4 \frac{25}{9} \cdot 64=0
$$

$$
\left(2+\frac{f}{3}\right)^{2}=\frac{100}{9}
$$

$$
2+\frac{f}{3}= \pm \frac{10}{3}
$$

$$
\begin{gathered}
f=4 \text { or }-16 \\
\text { adv, } f>0 . \quad \therefore f=
\end{gathered}
$$

Since the centre is in Quad $\begin{aligned} & f V_{1}, f>0 . \therefore f=4\end{aligned}$

## Method 2

Suppose the point of comact of $O K$ and $C_{2}$ is $P$. Then

$$
O P=O A=8 \text {. Let } P=\left(p, \frac{-4}{3} p\right) \text {. }
$$

$$
\begin{aligned}
\sqrt{(p)^{2}+\left(\frac{-4}{3} p\right)^{2}} & =8 \\
\frac{25}{9} p^{2} & =64 \Rightarrow p= \pm \frac{24}{5}
\end{aligned}
$$

As $P$ is in Quad IV, $\rho=\frac{24}{5} \Rightarrow P=\left(\frac{24}{5},-\frac{-32}{5}\right)$
Put into $C_{2}:$
$\left(\frac{24}{5}\right)^{2}+\left(\frac{-32}{5}\right)^{2}-16\left(\frac{24}{5}\right)+2 f\left(\frac{32}{5}\right)+64=0$

$$
\frac{256}{5}-\frac{64}{5} f=0
$$

(ii) Put $x=8$ into $O H$ and $O K$ respecti vely.
$O H \Rightarrow y=\frac{8}{15}(8)=\frac{64}{15} \Rightarrow H=\left(8, \frac{64}{15}\right)$
$O K \Rightarrow y=\frac{-4}{3}(8)=\frac{-32}{3} \Rightarrow K=\left(8, \frac{-32}{3}\right)$
$\therefore \frac{\text { Area of } \triangle O B H}{\text { Area of } \triangle O B K} \quad-(y$-cooor of $H T K)=\frac{\frac{64}{5}}{\frac{5}{2}}=\frac{2}{3}$

16C.38 (HKCEE AM 1988-II-11)
(a) $\frac{\text { Method }}{\text { Let } S=(h, k)}$
$\because K S \perp(x-5 y+59=0)$
$\therefore \frac{k-12}{h=}=m_{K S}=\frac{-1}{\frac{1}{3}}=-5 \Rightarrow k=-5 h+17$
$\because S K=S H$
$\therefore(h-1)^{2}+(k-12)^{2}=(h+3)^{2}+(k-6)^{2}$
$-2 h-24 k+145=6 h-12 k+45 \Rightarrow 2 h+3 k=2$
Solving, $h=2, k=7 \Rightarrow S=(2,7)$

## Method 2

Eqn of $K S: y-12=\frac{-1}{\frac{1}{3}}(x-1) \Rightarrow y=-5 x+17$
Eqn of $\perp$ bisector of $H K$ :
$(x-1)^{2}+(y-12)^{2}=(x+3)^{2}+(y-6)^{2}$

$$
\begin{aligned}
)^{2}+(y-12)^{2} & =(x \\
\Rightarrow 2 x+3 y & =25
\end{aligned}
$$

Solving, $(x, y)=(2,7) \Rightarrow S=(2,7)$
(Note bow different concepts gave simi larcalculations.)
Hence,
Radi usof $C=\sqrt{(1-2)^{2}+(12-7)^{2}}=\sqrt{26}$
$\Rightarrow$ Eqn of $C: \quad(x-2)^{2}+(y-7)^{2}=26$
(b) $\{L: 3 x-2 y-5=0$

$$
\begin{aligned}
&(c: x+y-4 x-14 y+27=0 \\
& \Rightarrow x^{2}+\left(\frac{3 x-5}{2}\right)^{2}-4 x-14\left(\frac{3 x-5}{2}\right)+27=0 \\
& \frac{13}{4} \frac{65}{2}, \frac{273}{4}=0 \\
& x=3 \text { or } 7 \\
& \Rightarrow y=2 \text { or } 8
\end{aligned}
$$

$\therefore A$ and $B$ are $(3,2)$ and $(7,8)$.
$\Rightarrow$ Centre of circle $=\left(\frac{7+3}{2}, \frac{8+2}{2}\right)=(5,5)$
Radi us $\frac{1}{2} \sqrt{(7-3)^{2}+(8-2)^{2}}=\frac{1}{2} \sqrt{52}=\sqrt{13}$
$\therefore$ Eqn of circle: $(x-5)^{2}+(y-5)^{2}=13$

$$
\Rightarrow x^{2}+y^{2}-10 x-10 y+37=0
$$

16C. 39 HKCEE AM 1993-1I-11
(a) $A B=\sqrt{(3-0)^{2}+\left(\frac{3}{4}-2\right)^{2}}=\frac{13}{4}$

$$
\text { Radius of } C_{2}=y \text { coord nate of } B=\frac{3}{4}
$$

$\because$ Racius of $C_{1}-$ Radi usof $C_{2}=4-\frac{3}{4}=\frac{13}{4}=A B$
$C_{1}$ and $C_{2}$ touch internally
(b) $A P=4-$ Radius of circle
$5^{2}+(t-2)^{2}=(4-t)^{2}$
$s^{2}+t^{2}-4 t+4=16-8 t+t^{2} \Rightarrow 4 t=12-s^{2}$
(c) $B P=\frac{13}{4}+$ Radi usof circle

$$
(s-3)^{2}+\left(t-\frac{3}{4}\right)^{2}=\left(\frac{3}{4}+t\right)^{2}
$$

$$
(s-3)^{2}=\left(t+\frac{3}{4}\right)^{2}-\left(t-\frac{3}{4}\right)^{2}=3 t
$$

(d) $\left\{\begin{array}{l}4 t=12-s^{2} \\ 3 t=(s-3)^{2}\end{array}\right.$
$\Rightarrow 3\left(12-5^{2}\right)=4(s-3)^{2}$
$36-3 s^{2}=4 s^{2}-24 s+36$ $7 s^{2}-24 s=0$

$$
\begin{aligned}
24 s & =0 \text { or } \frac{24}{7} \Rightarrow t=3 \text { or } \frac{3}{49}
\end{aligned}
$$

$\therefore$ The required circles are $(x-0)^{2}+(y-3)^{2}=3^{2}$ and
$\left(x-\frac{24}{7}\right)^{2}+\left(y-\frac{3}{49}\right)^{2}=\left(\frac{3}{49}\right)^{2}$
16C. 40 HKCEE AM 1994- $11-9$
(a) $\quad(h-5)^{2}+(k-5)^{2}=(h-7)^{2}+(k-1)^{2}$ $-10 h+25-10 k+25=-14 h+49-2 k+$
Hence, the equationof $C$ is
$(x-h)^{2}+(y-k)^{2}=(h-5)^{2}+(k-4)^{2}$
$x^{2}+y^{2}-2 h x-2 k y=-10 h+25-10 k+25$
$x^{2}+y^{2}-2(2 k) x-2 k y+10(2 k)+10 k-50=0$
$x^{3}+y^{2}-4 k x-2 k y+30 k-50=0$
(b) Denote the centre of $C$ by $G$.
$m_{B C}=\frac{-1}{\frac{1}{2}}=-2$
$\frac{k-1}{h-7}=-2 \Rightarrow k-1=-2(2 k \quad 7) \Rightarrow k=3$
$\therefore$ Egn of $C$ is $x^{2}+y^{2}-4(3) x-2(3) y+30(3)-50=0$

16C. 41 HKCEE AM 1995-II 10
(a) $\begin{aligned} C_{1}:(x-8)^{2}+(y-0)^{2}=10^{2} \\ \therefore \text { Centre }=(8,0), \text { Radius }=10\end{aligned}$
$\therefore$ Radius of $C_{2}=\left(\right.$ Dist. btwn centres of $C_{1}$ and $\left.C_{2}\right)-10$ (b) $\begin{aligned} \sqrt{(h-8)^{2}+(k-0)^{2}} \quad 10 & =\sqrt{(h+7)^{2}+(k-0)^{2 / 2}} 5\end{aligned}$
$h^{2}+14 h+49+k^{2}=\left(\sqrt{h^{2}-16 h+64+k^{2}}-5\right)^{2}$
$30 h-40=10 \sqrt{h^{2}-16 h+64+k^{2}}$
$\begin{array}{ll}(3 h \quad 4)^{2}=h^{2} & 16 h+64+k^{2} \\ -24 h+16=h^{2} & 16 h+64+h^{2}\end{array}$
$\begin{aligned} 9 h^{2}-24 h+16 & =h^{2} \quad 16 h+64+h . \\ 8 h^{2}-h^{2}-8 h-48 & =0\end{aligned}$
(c) (i) $y=\frac{40+0}{2}=20$
(The centre lies on the $\perp$ bisector of the segment joining the two centres. This is true because the radii of From (c)(i) $k=20$
Put into the result of (b):
$8 h^{2}-(20)^{2}-8 h-48=0$

$$
\begin{aligned}
-(20)^{2}-8 h-48 & =0 \\
h^{2}-h \quad 56 & =0 \Rightarrow h=8(\text { rej.) or }-7
\end{aligned}
$$

Centre $=(7,20)$, Radius $=20-5-15$
$\therefore$ Eqn of req. circle: $(x+7)^{2}+(y \quad 20)^{2}=15^{2}$ $\Rightarrow x^{2}+y^{2}+14 x-40 y+224=0$

16C.42 (HKCEE AM 1996-II 10
(a) (i) Centre $=(4 k, 3 k)$

Put into the line: LHS $=3(4 k) \quad 4(3 k)=0=$ RHS $\therefore$ The centre lies on $3 x-4 y=0$.
(i) $\ddot{R}$ Radius $=\sqrt{(4 k)^{2}+(3 k)^{2} \quad 25\left(k^{2}-1\right)}=\sqrt{25}=5$
(b) Slope $=\frac{3}{4}$

Pick a value of $k$ for $C_{k}$, e.g. $C_{0}: x^{2}+y^{2}-25=0$.
Let the equation of langent be $y=\frac{3}{4} x+b$.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
y=\frac{3}{4} x+b \\
x^{2}+y^{2} \quad 25=0
\end{array} \quad \Rightarrow x^{2}+\left(\frac{3}{4}+b\right)^{2} \quad 25=0 \\
\frac{25}{16} x^{2}+\frac{3}{2} b x+b^{2}-25=0
\end{array} \\
& \Delta=\left(\frac{3}{2} b\right)^{2} \quad 4 \cdot \frac{25}{16}\left(b^{2}-25\right)=0 \Rightarrow b= \pm \frac{25}{4}
\end{aligned}
$$

$\therefore$ The tangents are $y=\frac{3}{4} x \pm \frac{25}{4}$.
(c) Distance $=y$-coordinate of centre $=3 k$

If is negative, the distance is $-3 k$.
$\therefore 5^{2}-(3 k)^{2}+(4)^{2} \Rightarrow k= \pm 1$


## 16C.43 (HKCEE AM 1998-II 2)

$\left\{\begin{array}{l}L: x-7 y+3=0\end{array}\right.$
$C:(x \quad 2)^{2}+(y+5)^{2}=a$
$\Rightarrow(7 y-3-2)^{2}+(y+5)^{2}=a \Rightarrow 50 y^{2} \quad 60 y+50 \quad a=0$
$\therefore \Delta=3600 \quad 4 \cdot 50(50-a)=0 \Rightarrow 18 \quad(50-a)=0$

## 16C.44 (HKCEE AM 2000-11 9)

(a) $(x+2 k+2)^{2}+\left(y+\frac{3 k+1}{2}\right)^{2}=(8 k+8)+(2 k+2)^{2}+\left(\frac{3 k+1}{2}\right)^{2}$
$(x+2 k+2)^{2} \div\left(y+\frac{3 k+1}{2}\right)^{2}=\frac{25}{4} k^{2}+\frac{35}{2} k+\frac{49}{4}$
$(x+2 k+2)^{2}+\left(y+\frac{3 k+1}{2}\right)^{2}-\left(\frac{5 k+7}{2}\right)^{2}$
(b) (i) -
$\therefore \frac{3 k+1}{2}= \pm\left(\frac{5 k+7}{2}\right) \Rightarrow k=-3$ or 1
$\therefore$ The circles are $x^{2}+(y-1)^{2}=1\left(C_{1}\right)$ and
$(x+4)^{2}+(y-4)^{2}=16\left(C_{2}\right)$
(ii) Dist, between centres $=\sqrt{(4-0)^{2}}+\left(\begin{array}{ll}4 & 1\end{array}\right)^{2}$
$\therefore$ Touch externally
(c) Let the centre of $C_{3}$ be $(a, b)$.

- Collinear with centres of $C_{1}$ and $C_{2}$
$\therefore \frac{b-1}{a-0}=\frac{4-1}{4-0}=\frac{3}{4} \Rightarrow b=\frac{3}{4} a+1$
$\because$ Touches $x$-axis
$\therefore$ Radius $=b$
Touches $C_{2}$ extemally
$\sqrt{(a-4)^{2}+(b \sim 4)^{2}}=4+b$
$\left.a^{2}-8 a+16+b^{2}-8 b+16=4+b\right)^{2}$
$\begin{aligned} & \\ & a^{2} \quad 8 a+16 \quad 8 b=+8 b\end{aligned}$
$8 a+16 \quad 8 b=+8 b$
$a^{2} 8 a+16=16 b$
$=16\left(\frac{3}{4} a+1\right)$
$\begin{aligned} & a^{2}-20 a=0 \\ & \Rightarrow\end{aligned}$
$\Rightarrow a=0$ or $20 \Rightarrow b=1$ or 16
$(0,1)$ is the centre of $C_{1}$
$C_{3}$ is $(x-20)^{2}+(y \quad 16)^{2}=16^{2}$


## 16C.A5 HKCEE AM $2002-15$

$A=$ Area of $\triangle G D E+$ Area of $\triangle G E F+$ Area of $\triangle G F D$
$=\frac{1}{2} D E \cdot r+\frac{1}{2} E F \cdot r+\frac{1}{2} F D \cdot r$
$=\frac{1}{2}(D E+E F+F D) r=\frac{1}{2} p r$
(b) 0$)$

$$
\begin{aligned}
& =\sqrt{4^{2}+4^{2}}+\sqrt{3^{2}+3^{2}}+\sqrt{7^{2}+1^{2}} \\
& =4 \sqrt{2}+3 \sqrt{2}+5 \sqrt{2}=12 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& =4 \sqrt{2}+3 \sqrt{2}+5 \sqrt{2}=12 \sqrt{2} \\
& \therefore \text { Radius of } C_{2}=\frac{\frac{1}{2} \cdot 4 \sqrt{2} \cdot 3 \sqrt{2}}{\frac{1}{2} \cdot 12 \sqrt{2}}=\sqrt{2}
\end{aligned}
$$

(ii) Denote the points where $C_{2}$ touches $Q R$ and $R S$ by $A$ and $B$ respectively. Also Iet $H$ be the cenire of $C_{2}$ Then $R A H B$ is a square.

ic. $R A=A H=H B-B R=\sqrt{2}$
$R H=\sqrt{(\sqrt{2})^{2}}+(\sqrt{2})^{2}=2$
$\because m_{R A}=\frac{51}{2+2}=1$ and $m_{R S}=\frac{5-2}{2}=-1$
$\therefore R H$ is vertical.
Thus, $H=(2,5-2)=(2,3)$.

- Eqn of $C_{2}$ is $(x-2)^{2}+(y-3)^{2}=2$

16C. 46 HKCBE AM 2005-15
(a) $\left\{\begin{array}{l}L: y=k x \\ C \cdot z^{2}+y^{2}\end{array}\right.$

C: $x^{2}+y^{2} \quad 4 x-2 y+4=0$
$\Rightarrow x^{2}+(k x)^{2}-4 x \quad 2(k x)+4=0$
$\begin{array}{rl}\left(1+k^{2}\right) x^{2} & 2(2+k) x+4=0 \ldots(*)\end{array}$
$\Delta=4(2+k)^{2}-4(4)\left(1+k^{2}\right)>0$
$k^{2}+4 k+4 \quad 4-4 k^{2}>0$
$3 k^{2}-4 k<0 \Rightarrow 0<k<\frac{4}{3}$
(b) From (a), equation of the tangent is $y=\frac{4}{3} x$.
(c) (i) The $x$-coordinates of $P$ and $Q$ are the roots of (*),
$\Rightarrow$ Sum of roots $=\frac{2(2+k)}{1+k^{2}}$
$\therefore x$-coordinate of $M=\frac{\text { Sum of roots }}{2}=\frac{2+k}{1+k^{2}}$

16C. 47 HKCEEAM 2006-14
(a) (i)

$$
\text { (i) } \left.\left.\begin{array}{l}
\left\{\begin{array}{l}
L: y=m x+c \\
J: x^{2}+y^{2}=r^{2}
\end{array}\right. \\
\Rightarrow x^{2}+(m x+c)^{2}=r^{2}
\end{array}\right\} \begin{array}{rl}
\left(1+m^{2}\right) x^{2}+2 m c x+c^{2} r^{2} & =0
\end{array}\right\} \begin{aligned}
4 m^{2} c^{2}-4\left(1+m^{2}\right)\left(c^{2}-r^{2}\right) & =0 \\
m^{2} c^{2}-c^{2}-m^{2} c^{2}+r^{2}+r^{2} m^{2} & =0 \\
c^{2} & =r^{2}\left(m^{2}+1\right)
\end{aligned}
$$

$\therefore(k-m h)^{2}=c^{2}=r^{2}\left(m^{2}+1\right)$
(b) (i) $P R: \frac{y-4}{x-7}=\frac{-5-4}{-5-7}=\frac{3}{4} \Rightarrow 3 x-4 y-5=0$
$\Rightarrow x$-intercept $=\frac{-}{3}$
$y$-intercept $=\frac{-5}{4}$

In the shaded triangle,

$\frac{1}{2} r \sqrt{\left(\frac{5}{3}\right)^{2}+\left(\frac{5}{4}\right)^{2}}=\frac{1}{2} \cdot \frac{5}{3} \cdot \frac{5}{4}=$ Area
$\Rightarrow r=\frac{25}{12} \div \frac{25}{12}=1$
(ii) Use (a)(ii) with $(h, k)=(7,4)$ and $r=1$.
$(4-7 m)^{2}=m^{2}+1$
$48 m^{2} \quad 56 m+15=0 \Rightarrow m=\frac{3}{4}$ or $\frac{5}{12}$
$\therefore m_{P Q}=\frac{5}{12}$
(iii) Use (a)(ii) with $(h, k)=R=(-5,5)$ and $r=1$
$(-5+5 m)^{2}=m^{2}+1$
$24 m^{2}-50 m+24=0 \Rightarrow m=\frac{3}{4}$ or $\frac{4}{3}$
$\therefore m_{Q R}=\frac{4}{3}$
Let $Q=(a, b)$. Then
$\left\{\frac{b-4}{a-7}=\frac{5}{12} \Rightarrow 5 a-12 b=-13\right.$
$\left\{\begin{array}{l}a-7 \\ \frac{b+5}{a+5}=\frac{4}{3} \Rightarrow 4 a-3 b=-5\end{array}\right.$
$\Rightarrow Q=(a, b)=\left(\frac{-7}{11}, \frac{9}{11}\right)$

## 16C.48 HKCEEAM 2010-7

## Centre $=(3,-2)$, Radius $=5$

Let $C(m, n)$ be the diamerrically opposite pt of $A$ on the circle.
Then $\left(\frac{m+7}{2}, \frac{n+1}{2}\right)=(3,2) \Rightarrow C=(m, n)=(-1,-5)$
$\because \angle A C B=\theta$ ( $\angle$ in alt. segment)
and $\angle A B C=90^{\circ} \frac{(\angle \text { in semi-circle) }}{\sqrt{(7-0)^{2}+(1+6)^{2}}}$
$\therefore \tan \theta=\frac{A B}{B C}=\frac{\sqrt{(7-0)^{2}+(1+6)^{2}}}{\sqrt{(0+1)^{2}}+(6+5)^{2}}=7$


## 16C.49 HKCEE AM 2010-15

(a) Let the centre of $C_{2}$ be $\left(x_{1} y\right)$.

Dist. between centres $=$ Radius of $C_{2}-$ Radius of $C_{1}$

$$
\begin{aligned}
(x \quad 6)^{2}+(y \quad 5)^{2} & =(x-5)^{2} \\
-12 x+36+y^{2}-10 y & =-10 x
\end{aligned}
$$

$$
\begin{aligned}
x+36+y^{2}-10 y & =-10 x \\
y^{2}-10 y+36 & =2 x \Rightarrow x=\frac{1}{2} y^{2}-5 y+18
\end{aligned}
$$

(b) (i) ByPyth thm, $(x-0)^{2}+(y+3)^{2}=5^{2}+x^{2}$

(ii) Eqn of $C_{2}:(x-10)^{2}+(y-2)^{2}=10^{2}$

Let the eqns of tangents be $y=m x-3$.
$\{y=m x-3$
$\left((x-10)^{2}+(y-2)^{2}=100\right.$
$\Rightarrow(x-10)^{2}+(m x$
$\Rightarrow)^{2}=100$
$\left.1+m^{2}\right) x^{2}$
$10(m+2) x+25=0$
$\begin{array}{ll}\left(1+m^{2}\right) x^{2} & 10(m+2) x+25=0 \\ \Delta=100(m+2)^{2}-100(1)\end{array}$
$\Delta=100(m+2)^{2}-100\left(1+m^{2}\right)=0$
$\begin{aligned} m^{2}+4 m+m-1-m^{2} & =0 \Rightarrow m=\frac{-3}{4}\end{aligned}$
$\therefore$ Eqns of tgs are $y=\frac{-3}{4} x \quad 3$ and $x=0(y$-axis $)$.

16C.50 HKDSE MA SP-I-19
(a) (i) Join $B$ and $C$
$\angle D A E=\angle D B C \quad(\angle \mathrm{~s}$ in the same segment) $\begin{array}{ll}=\angle P C B & \text { (alt. } \angle \mathrm{s}, P Q / / B D) \\ =\angle B A E & (\angle \text { in all. segment })\end{array}$
In $\triangle A B E$ and $\triangle A D E$,
$A B=A D$ (given)
$\angle B A E=\angle D A E \quad$ (proved)
$A E=A E \quad$ (common) $\triangle A B E \cong \triangle A D E$ (SAS)
(ii) $\angle B A E=\angle D A E$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$ ) $\therefore A E$ is an $\angle$ bisector of $\triangle A B D$. Hence, $A E . \perp B D$ (property of isos. $\triangle$ ) $\Rightarrow A E$ is an alditude of $\triangle A B D$. $B E=D E \quad$ (property of isos. $\triangle$ )
$\Rightarrow A E$ is a median of $\triangle A B D$. $\Rightarrow A E$ is a $L$ bisector of $\triangle A B D$.
Thus, the in centre, orthocentre, centroid and circumcentre of $\triangle A B E$ all lie on $A E$. They are collinear.
(b) $m_{P Q}=m_{B D}=\frac{12-4}{2}=2$

From (a)(ii), $A C$ is a diameter of the circle.
Method I
Let the circle be $x^{2}+y^{2}+D x+E y+F=0$.
$\left\{\begin{array}{l}14^{2}+4^{2}+14 D+4 E+F=0 \\ 8^{2}+12^{2}+8 D+12 E+F=0 \\ 4^{2}+4^{2}+4 D+4 E+F=0\end{array} \Rightarrow\left\{\begin{array}{l}D=-18 \\ E=-13 \\ F=92\end{array}\right.\right.$
$\Rightarrow$ Centre $=(9,6.5)$
Method 2
Equ of $\perp$ bisector of $B D$ (i.e. $A C$ ):
$\sqrt{(x \quad 8)^{2}+\left(y-\frac{12)^{2}}{2}\right.}=\sqrt{(x-4)^{2}+(y-4)^{2}}$
$-16 x+64-24 y+144=-8 x+16-8 y+16$
$x+2 y-22=0$
Eqn of $\perp$ bisector of $A D: x=\frac{14+4}{2}=9$
(- $A D$ is parallel to the $x$-axis.) ${ }^{2}$
Solving $\left\{\begin{array}{l}x+2 y-22=0 \\ x=9\end{array}\right.$
$\Rightarrow$ Circumcentre $=(9,6.5)$
Method 3
Let the centre be $\left(\frac{14+4}{2}, k\right)=(9, k)$.
Radius $=\sqrt{ }(9-8)^{2}+(k-12)^{2}=\sqrt{(9-4)^{2}+(k-4)^{2}}$ $k^{2}-24 k+145=k^{2}-8 k+41$
$\therefore$ Centre $=(9,6.5)$
Hence,
Let $C=(m, n)$. Then
$\left(\frac{m+14}{2}, \frac{n+4}{2}\right)=(9,6.5) \Rightarrow C=(m, n)=(4,9)$
Eqn of $P Q: y-9=2(x-4) \Rightarrow 2 x-y+1=0$

## 6C. 51 HKDSE MA PP -I - 14

(a) $\triangle B C D \sim \triangle Q A D$
(b) (i) $A D=\sqrt{6^{2}+12^{2}}=\sqrt{180}$
$A D=\sqrt{6^{2}}+12^{2}=\sqrt{180}$
$\frac{C D}{A D}=\sqrt{\frac{16}{45}} \Rightarrow C D=\sqrt{\frac{16}{45} \times 180}=8$
$\therefore C=(0,12-8)=(0,4)$
(ii) $A C$ is a diameter of the circle.

Mid-pt of $A C=\left(\frac{6+0}{2}, \frac{0+4}{2}\right)=(3,2)$
$A C=\sqrt{6^{2}+4^{x}}=\sqrt{\sqrt{52}}$
$A C=\sqrt{6^{2}+4^{2}}=\sqrt{52}$
$\therefore$ Eqn of circle $O A B C:\left(\begin{array}{ll}x & 3\end{array}\right)^{2}+\left(\begin{array}{ll}y & 2\end{array}\right)^{2}=\left(\frac{\sqrt{52}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2}-6 x-4 y=0
$$

## 16C. 52 HKDSEMA 2012-I-17

(a) Radius $=y$ coordinate of centre $=10$

Eqn of C: $(x-6)^{2}+(y-10)^{2}=100$
(b) Eqn of $L$ : $y=-x+k$
$\{y=-x+k$
$\left((x-6)^{2}+(y-10)^{2}=100\right.$
$\Rightarrow 2 x^{2}+(8-6)^{2}+(-x+k-10)^{2}=100$
$2^{2}+(8-2 k) x+\left(k^{2} \quad 20 k+36\right)=0$
Sum of roots $=\frac{8-2 k}{2}=k-4$
$\Rightarrow x$-coordinate of mid-pt of $A B=\frac{k-4}{?}$
$y$-coordinate of mid-pt of $A B=-\left(\frac{k-4}{2}\right)+k$
Mid-point of $A B=\left(\frac{k-4}{2}, \frac{k+4}{2}\right)$

## 16C. 53 HKDSEMA $2015-\mathrm{I}-14$

(a) (i) Merhod I

Mid-pt of $P Q=\left(\frac{4-14}{2}, \frac{-1+23}{2}\right)=(-5,11)$
$m_{P Q}=\frac{-1-23}{4-14}=\frac{-4}{3}$
$\therefore$ Eqn of $L: y-11=\frac{-1}{\frac{-4}{3}}(x+5) \Rightarrow y=\frac{3}{4} x+\frac{59}{4}$
$\frac{\text { Mehod } 2}{\sqrt{(x-4)^{2}}+(y+1)^{2}}=\sqrt{(x+14)^{2}}+(y-23)$
$\begin{aligned}(x-4)^{2}+(y+1)^{2} & =\sqrt{(x+14)^{2}+(y-23)} \\ -8 x+16+2 y+1 & =28 x+196-46 y+529\end{aligned}$ $3 x-4 y+59=0$
(ii) Certre $=\left(h, \frac{3 h+59}{4}\right)$


Eqn of $\left(y-\frac{3 h+59}{2}\right)^{2}=(4-h)^{2}+(-1-3 h+59)^{2}$

$x^{2}-2 h x+y^{2}-\frac{3 h+59}{2} y=16-8 h+1+\frac{3 h+59}{2}$
$2 x^{2}+2 y^{x^{2}} \quad 4 h x \quad(3 h+59)^{2} y+13 h^{2} 93=0$
If $C$ passes through $R$
$2(26)^{2}+2(43)^{2} \cdots 4 h(26)-(3 h+59)(43)+13 h \quad 93=0$ $2420-220 h=0$
$\therefore$ Diameter $=2 \sqrt{(4-11)^{2}+\left(-1-\frac{3(11)+52}{4}\right)^{2}}=50$

## 16C54 HKDSE MA 2016-I-2

## (a) Method I



Let $\angle O P J=\angle Q P J=\theta$. (in-centre)

$$
\begin{aligned}
& \text { et }=P J=Q J \text { (radii) } \\
& \text { In } \triangle P O J, \angle P O J=\angle O P=
\end{aligned}
$$

In $\triangle P O J, \angle P O J=\angle O P J=\theta$ (base $\angle \mathrm{s}$, isos. $\triangle$ ) In $\triangle P Q J, \angle P Q J=$
In $\triangle P O J$ and $\triangle P Q J$,
$\angle O P J=\angle Q P J=\theta \quad$ (in-centre)
$\angle P O J=\angle P Q J=\theta \quad$ (proved)
$P J=P J$
(commo
$\therefore \triangle P O J \cong \triangle P Q$
(AAS)
$P O=P Q$
(corr. sides, $\cong \Delta \mathrm{s}$ )

Method 2


Let $\angle O P J=\angle Q P J^{\prime}=\theta$. (in-centre)
$O J=P J=Q J \quad$ (radii)
In $\triangle P O J, \angle P O J=\angle O P J=\theta \quad$ (base $\angle s$, isos. $\triangle$ ) $\Rightarrow \angle P J O=180^{\circ}-2 \theta \quad(\angle$ sum of $\triangle)$
$\Rightarrow \angle P Q O=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta$

$$
=1 / \times \sim
$$

In $\triangle P Q I, \angle P Q J=\angle Q P J=\theta$ a centre twice $\angle$ at $\odot$ $\Rightarrow \angle P J Q=180^{\circ}-2 \theta \quad(\angle$ sum of $\triangle)$ $\Rightarrow \angle P O Q=\left(180^{\circ} \quad 2 \theta\right) \div 2=90^{\circ}-\theta$
$\angle P Q O=\angle P O Q=90^{\circ}-\theta$ ( $\angle$ centre twice $\angle a\left(0^{\circ \prime}\right.$
$P O=P Q \quad$ (sides $=90^{\circ}-\theta$ (proved)

Method 3


Let $P J$ extended meet the circle $O P Q$ at $R$. Then $P R$ is a diameter of the circle.
$\therefore \angle P O R=\angle P Q R=90^{\circ} \quad$ ( $\angle$ in semi-circle)
Let $\angle O P R=\angle Q P R=\theta$. (in-centre)
In $\triangle O P R, P O=P R \cos \theta$
In $\triangle Q P R, P Q=P R \cos \theta$
$\therefore P O=P Q$
(b) (i) Let $P=(x, 19) \cdot \mathrm{By}$ (a)
$\begin{aligned} O P & =P Q \\ \sqrt{x^{2}+19^{2}} & =\sqrt{(x-40)^{2}}: \overline{(\# 9-30)^{2}}\end{aligned}$
$x^{2}+361=x^{2}-80 x+1600+121$
$x=17 \Rightarrow P=(17,19)$
Method 1
$E x^{2}+y^{2}+D x+E y+F=0$
$0^{2}+0^{2} \div 0+0 \div F=0$
$17^{2}+19^{2}+17 D+19 E+F=0$
$40^{2}+30^{2}+40 D+30 E+F=0$$\Rightarrow\left\{\begin{array}{l}D=-1 \\ E=66 \\ F=0\end{array}\right.$
Eqn of $C$ is $x^{2}+y^{2} \quad 112 x+66 y=0$
Method 2
The centre $J$ lies on the $\perp$ bisector of $O Q$.
Mid-pt of $O Q=\left(\frac{40}{2}, \frac{30}{2}\right)=(20,15)$
$m_{O Q}=\frac{30}{40}=\frac{3}{4} \Rightarrow m_{\perp \text { bisecor }}=\frac{-4}{3}$
Eqn of $\perp$ bisector: $y-15=\frac{-4}{3}(x-20)$

$$
\Rightarrow y=\frac{125-4 x}{3}
$$

Let $J=(h, k)$. Then
$\left\{\begin{array}{l}k=\frac{125^{3}}{3} \\ (h-17)^{\frac{2}{2}}\end{array}\right.$
$(h-17)^{2}+(k-19)^{2}=\left(\begin{array}{ll}h & 0\end{array}\right)^{2}+(k-0)^{2}$
$-34 h+289+k^{2}-38 k+361=h^{2}+k^{2}$
$-34 h-38\left(\frac{125-4 h}{3}\right)+650=0$ $\frac{50}{3} h-\frac{2800}{3}=0$
$\therefore$ Eqn of $C$ is
Eqn of $C$ is
$\begin{aligned}(x-56)^{2}+(y+33)^{2} & =(0-56)^{2}+(0+33)^{2}\end{aligned}$
(ii)


## Approach One - Find $L_{1}$ and $L_{2}$

Merthod 1
Let $L_{1}$ and $L_{2}$ be $y=\frac{3}{4} x+c$.
$\int y=\frac{3}{4} x \div c$
$x^{2}+y^{2}-112 x+66 y=0$
$x^{2}+\left(\frac{3}{4} x+c\right)^{2}-112 x+66\left(\frac{3}{4} x+c\right)=0$ $\frac{25}{16} x^{2}+\binom{3 c-125}{2} x+\left(c^{2}+66 c\right)=0$
$\begin{aligned} \Delta=\frac{(3 c-125)^{2}}{4}-4 \cdot \frac{25}{16} \cdot\left(c^{2}+66 c\right) & =0 \\ -16 c^{2}-2400 c+15625 & =0\end{aligned}$

$$
\begin{array}{r}
-16 c^{2}-2400 c+15625=0 \\
c=-\frac{625}{4} \text { or } \frac{25}{4} \\
\therefore L_{1} \text { is } y=\frac{3}{4} x+\frac{25}{4} \Rightarrow\left\{\begin{array}{l}
s=\left(\frac{-25}{3}, 0\right) \\
T=\left(0, \frac{25}{4}\right)
\end{array}\right. \\
\quad L_{2} \text { is } y=\frac{3}{4} x-\frac{625}{4} \Rightarrow\left\{\begin{array}{l}
U=\left(\frac{625}{3}, 0\right) \\
V=\left(0, \frac{-625}{4}\right)
\end{array}\right.
\end{array}
$$

Method 2

$\because O P=P Q$ and $\angle O P J=\angle Q P J \quad$ (proved)
$\therefore O Q \perp P J$ (property of isos. $\triangle$ )
$\Rightarrow L_{1} \perp P J \quad(O Q / / 4)$
$\Rightarrow L_{4}$ is tangent to $\mathrm{Cat} P$.
$\Rightarrow L_{t}$ is tangent to $C$ at $P$.
(converse of $\angle \mathrm{s}$ in the same segment)
$\therefore$ Eqn of $L_{1}: y \quad 19=\frac{3}{4}(x-17) \Rightarrow y=\frac{3}{4} x+\frac{25}{4}$
$\Rightarrow S=\left(\frac{-25}{3}, 0\right), T=\left(0, \frac{25}{4}\right)$
Let the diameter of $C$ through $P$ meet $C$ again at
$R(r, s)$. Then $\left(\frac{17+r}{2}, \frac{19+s}{2}\right)=J=(56,-33)$
$\because L_{2}$ is tangent to $C$ at $R$ $\Rightarrow R=(95,-85)$
$\therefore$ Eqn of $L_{2}: y+85=\frac{3}{4}\left(\begin{array}{ll}x & 95) \Rightarrow y=\frac{3}{4} x-\frac{625}{4}\end{array}\right.$
$\Rightarrow U=\left(\frac{625}{3}, 0\right), v=\left(0, \begin{array}{c}-625 \\ 4\end{array}\right)$

## $\frac{\text { Therefore, (Me that) }}{\text { Area of trapezium STUV }}$

Area of trapezium STUV
$=$ Area of $\triangle S T U+$ Area of $\triangle S V U$
$=$ Area of $\triangle S T U+$ Area of $\triangle S V U$
$\left.=\frac{\left(\frac{65}{3}\right.}{3}+\frac{25}{3}\right)\left(\frac{23}{4}\right)$
2
$=\frac{105625}{6}=17604.2>17000 \Rightarrow$ YES
Therefore, (Me thot)
ST $\sqrt{\left(0+\frac{25}{3}\right)^{2}+\left(\frac{25}{4}-0\right)^{2}}=\frac{125}{12}$
$\left.U V=\sqrt{\left(\frac{625}{3}\right.} 0\right)^{2}+\left(\frac{625}{4}-0\right)^{\frac{1}{2}}=\frac{3125}{12}$
Height of $S T U V=$ Diameter of $C=130$
$\therefore$ Area of $S T U V=\frac{\left(\frac{125}{12}+\frac{3125}{12}\right)(130)}{2}$

$$
=\frac{105625}{6}>17000 \Rightarrow \mathrm{YES}
$$

Let the fools of perpendiculars from $P$ and $Q$ to the axis be $M$ and $N$ respectively. Note that $O Q / L / / L$ pectively. Note that $O Q / / L_{1} / / L_{2}$.
$\because \triangle S P M \sim \triangle O Q N$
$\because P M=Q N=3$
$\therefore \frac{P M}{S M}=\frac{Q N}{O N}=\frac{3}{4} \Rightarrow S M=\frac{4}{3}(19)=\frac{76}{3}$
$\Rightarrow S=\left(17 \quad \frac{76}{3}, 0\right)=\left(\frac{25}{3}, 0\right)$
In $\triangle O S T, O T=\frac{3}{4} O S=\frac{25}{4} \Rightarrow T=\left(0, \frac{25}{4}\right)$
Area of $\triangle O S T=\frac{1}{2} \times \frac{25}{3} \times \frac{25}{4} \quad \frac{625}{4}$
$S T-\sqrt{\left(\frac{25}{3}\right)^{2}+\left(\frac{25}{4}\right)^{2}}-\frac{125}{12}$
$\Rightarrow$ Height of $\triangle O S T$ from $O$ to $S T\left(h_{1}{ }^{*}\right)$
$=\frac{2 \times \frac{62}{24}}{\frac{125}{12}}=5$


## Refering to $M e$ thoz $P R$ is the height of trapezium

$S T U V$ as $P R \perp L_{1}$.
$\therefore$ Height of $\triangle O U V$ from $O$ to $U V$ ( $/ h_{2}$ )
$=$ Diameter of $C \quad h_{1}=2 \sqrt{56^{2}+33^{2}} \quad 5=12$

$\because \triangle O S T \sim \triangle O U V$
$\frac{O V}{O T}=\frac{O U}{O S}=\frac{h_{2}}{h_{1}}=25$
Area of $\triangle O U V=\left(\frac{h_{2}}{h_{1}}\right)^{2}$ (Area of $\triangle O S T$ )
$=625$ (Area of $\triangle O S T$ )
Area of $\triangle O T U=\left(\frac{O U}{O S}\right)$ (Area of $\triangle O S T$ )
$=25($ Area of $\triangle O S T)$
Area of $\triangle O S V=\left(\frac{O V}{O \bar{T}}\right)($ Area of $\triangle O S T)$
$\therefore$ Area of $S T U V=(1+625+25+25)($ A of $\triangle O S T)$
$\begin{aligned} V & =(1+625+25+25)(\mathrm{A} \text { of } \Delta O \\ & =\frac{105625}{6}>17000 \Rightarrow \mathrm{YES}\end{aligned}$

## Approach Three-A hybrid of Me thodkand 3

## Method 4

Let $L_{1}$ and $L_{2}$ be $y=\frac{3}{4} x+c$

$$
\left\{\begin{array}{l}
y={ }^{3} x+c \\
x^{2}+y^{2} \quad 112 x+66 y=0
\end{array}\right.
$$

$x^{2}+\left(\frac{3}{4} x+c\right)^{2}-112 x+66\left(\frac{3}{4} x+c\right)=0$

$$
\frac{25}{16} x^{2}+\left(\frac{3 c-125}{2}\right) x+\left(c^{2}+66 c\right)=0
$$

$$
\left.\Delta=\frac{(3 c}{4} 125\right)^{2}-4 \cdot \frac{25}{16} \cdot\left(c^{2}+66 c\right)=0
$$

$$
-16 c^{2} \quad 2400 c+15625=0
$$

$\therefore O T=\frac{25}{4}, O V=\frac{625}{4}$

$$
c=\frac{625}{4} \text { or } \frac{25}{4}
$$

$\Rightarrow \frac{O V}{O T}=25 \Rightarrow \frac{O U}{O S}=25 \quad(\because \triangle O S T \sim \triangle O U V)$ Thus,
Area of $\triangle O U V=(25)^{2}$ (Area of $\left.\triangle O S T\right)$

$$
\text { Area of } \triangle O T U=\left(\frac{O U}{O S}\right)(\text { Area of } \triangle O S T)
$$

$$
=25(\text { Area of } \triangle O S T)
$$

Area of $\triangle O S V=\left(\frac{O V}{O T}\right)($ Area of $\triangle O S T)$

$$
=25(\text { Area of } \triangle O S T)
$$

Besides, for $\triangle O S T, \frac{O T}{Q S}=$ slope $=\frac{3}{4} \Rightarrow O S=\frac{25}{3}$ $\Rightarrow$ Area $=\frac{1}{2} \times \frac{25}{3} \times \frac{25}{4}=\frac{625}{24}$
$\therefore$ Area of $S T U V=(1+625+25+25)(A$ of $\triangle O S T)$ $=\frac{105625}{6}>17000 \Rightarrow$ YES

16C55 HKDSEMA 2018-I- 19
(a) Eqn of C: $(x 8)^{2}+(y-2)^{2}=r^{2}$
$\left\{\begin{array}{l}L: k x-5 y-21=0 \\ c:(x)\end{array}\right.$
$\left\{\begin{array}{ll}L:(x & 8\end{array}\right)^{2}+\left(\begin{array}{ll}y & 2\end{array}\right)=r^{2}$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{ll}
x & )^{2}+\left(\begin{array}{ll}
\frac{k x}{2} & 21 \\
5
\end{array}\right)^{2}
\end{array}=r^{2}\right. \\
&(x-8)^{2}+\left(\begin{array}{ll}
\frac{k}{5} x & \frac{31}{5}
\end{array}\right)^{2}-r^{2}=0
\end{aligned}
$$

$$
\left(1+\frac{k^{2}}{25}\right) x^{2} \quad 2\left(\frac{31}{25} k+8\right) x+\frac{2561}{25}-r^{2}=0
$$

$$
\Delta=0=4\left(\frac{31}{25} k+8\right)^{2}-4\left(1+\frac{k^{2}}{25}\right)\left(\frac{2561}{25}-r^{2}\right)
$$

$$
\left(\frac{31}{25} k+8\right)^{2}=\left(1+\frac{k^{2}}{25}\right)\left(\frac{2361}{25}-r^{2}\right)
$$

$\frac{2561}{25} \quad r^{2}=\frac{(31 k+200)^{2}}{25(25}$
$\begin{aligned} r^{2} & =\frac{\left(35\left(25+k^{2}\right)\right.}{25} \\ r^{2} & =\frac{2561\left(25+k^{2}\right) \quad(31 k+200)^{2}}{25}\end{aligned}$
$r^{2}=\frac{25\left(25+k^{2}\right)}{961-496 k+64 k^{2}}$
(b) (i) Pul $D$ into $L$ :
$k(18) 5(39)-21=0 \Rightarrow k=12$ $r=\sqrt{\frac{961-496(12)+64(12)^{2}}{25+(12)^{2}}}=5$
(ii) $E=\left(0, \frac{-21}{5}\right)$

Denote the centre of $C$ be $G$, which is the in-centre of
$\triangle D E F$.
$D G=\sqrt{(18-8)^{2}+\left(\begin{array}{ll}(39 & 2)^{2}\end{array}-\sqrt{1469}\right.}$
$\Rightarrow \angle G D E=\sin ^{-1} \frac{r}{D G}=749586^{\circ}$
$\Rightarrow \angle F D E=2 \angle G D E=14.99172^{\circ}$
$E G=\sqrt{(0} 8)^{2}+\left(\frac{-21}{5}-2\right)^{2}=\sqrt{\frac{2361}{35}}$
$\Rightarrow \angle G E D=\sin ^{1} \frac{r}{E G}=29.60445^{\circ}$
$\Rightarrow \angle F E D=2 \angle G E D=59.20890^{\circ}$
$\therefore \angle D F E=180^{\circ}-14.99172^{\circ} \quad 59.20890^{\circ}$
$\therefore$ YES

## 16C. 56 HKDSE MA 2019-I-19

(a) $f(4)=\frac{1}{1+k}\left((4)^{2}+(6 k-2)(4)+(9 k+25)\right)$
$=\frac{1}{1+\bar{k}}(33+33 k)=33$
Hence, the graph passes through $F$.

## (b) (i) $g(x)=f(-x)+4$

$=\frac{1}{1+k}\left(\begin{array}{l}\left.(x)^{2}+(6 k \quad 2)(x)+(9 k+25)\right)+4\end{array}\right.$
$=\frac{1}{1+k}\left(\begin{array}{lll}x^{2} & (6 k & 2\end{array}\right) x+(3 k \quad 1)^{2}$
$\left.(3 k 1)^{2}+(9 k+25)\right)+4$
$=\frac{1}{1+k}\left(\left(\begin{array}{ll}x & \left.3 k+1)^{2}-9 k^{2}+3 k+24\right)+4 \\ 1\end{array}\right.\right.$
$\frac{1}{1+k}\left((x 3 k+1)^{2}-3(1+k)(3 k-8)\right)+4$
$\frac{1}{1+k}\left(\begin{array}{lll}x & 3 k+1\end{array}\right)^{2} \quad 3(3 k \quad 8)+4$
$=\frac{1}{1+k}(x \quad 3 k+1)^{2}+28-9 k$
$\therefore U=\left(\begin{array}{ll}3 k & 1,28\end{array} 9 k\right)$
(ii) As $F$ varies, the circle is the smallest when $O U$ is the As $F$ varie
diameter
$\frac{\text { Method }}{F O \perp F U} \Rightarrow m_{F O} m_{F U}=-1$

$\frac{28-9 k(28 k k)-4}{3 k-1(3 k-1)-4}=-1$
$(28-9 k)^{2} \quad 33(28 \quad 9 k)=(3 k-1)^{2}+4(3 k$
$90 k^{2} \quad 225 k-135=0$

$$
k=3 a r \frac{1}{2}(\mathrm{rej} .)
$$

Mehod 2
Mid-pt of $O U=\left(2, \frac{33}{2}\right)$
$\sqrt{(3 k-12)^{2}+\left(28-9 k-\frac{33}{2}\right)^{2}}=\sqrt{2^{2}+\left(\frac{33}{2}\right)^{2}}$
$\left(\begin{array}{ll}3 k & 1\end{array}\right)^{2} 4(3 k-1)+\left(\begin{array}{ll}28 & 9 k\end{array}\right)^{2}$
$\begin{aligned} 33(2 s & 9 k) \\ 90 k^{2}-225 k-135 & =0\end{aligned}$

$$
k=3 \text { or } \frac{-1}{2}(\text { rej. })
$$

(iii) The fixed point $G$ is theimage of $F$ after the above transformations. i.e. $G=(4,37)$.
$V=(3(3)-128-9(3))=(8,1)$
Method 1
$m_{G F} \cdot m_{G O}=\frac{37 \quad 33}{4} \cdot \frac{37-0}{-4-0}=\frac{37}{8} \neq-1$
$G$ is not on the circle with $\bar{F} O$ as diameter is the circle through $F, O$ and $V$ ) $\Rightarrow$ NO
Method 2
The circle through $F(4,33), O(0,0)$ and $V(8,1)$ is $\left(\begin{array}{ll}x & 2)^{2}+(y \\ \left.\frac{33}{2}\right)^{2} & =2^{2}+\left(\frac{33}{2}\right)^{2}\end{array}\right.$ $x^{2}+y^{2}-4 x \quad 33 y=0$
Put $G(4,37):$ LHS $=180 \neq$ RHS $\Rightarrow \mathrm{NO}$
Method 2'
Let the circle through $F(4,33), O(0,0)$ and $V(8,1)$ bc
$4^{2}+d x+e y+f=0$.
$\left\{\begin{array}{l}4^{2}+33^{2}+4 d+33 e+f=0 \\ 0^{2}+0^{2}+0 d+0 e+f=0 \\ 8^{2}+1^{2}+8 d+e+f=0\end{array} \Rightarrow\left\{\begin{array}{l}d=4 \\ e=-33 \\ f=0\end{array}\right.\right.$
$8^{2}+1^{2}+8 d+e+f=0 \quad\{\quad f=0$
Thus, the eqn of circle $F O V$ is $x^{2}+y^{2}-4 x-33$
Put $G(-4,37):$ LHS $=180 \neq$ RHS $\Rightarrow$ NO
6C. 57 HKDSE MA 2020-1-1

sea	LetMbebe mid poist of $\mu$.   Thmi, $G M \perp A B$ (line jolning eatre tomidept. of choced $\perp$ deord).   Slece $A B$ is bovicontal avis werticil.   Thexeordinuear $G=\frac{-20+30}{2}$   Tierodera of $C=\lambda G$ $\begin{aligned} & =\sqrt{(-10-10)^{2}+[0-(-15)]^{2}} \\ & =25 \end{aligned}$   TBestiace the eqution of $C$ is $(x-10)^{2}+[y-(-15)]^{2} z y^{2}$. is.   $x^{1}+y^{2} \quad 30 x+30 y-300=0$.   I'mal meparalch.   Sece $\Gamma$ and $I$ mep perlled, we kow tax be slopeof $\Gamma$ is sequal io the slope   ofthes $\frac{-15-0}{10-30} \frac{3}{4}$   Let $P=(x y)$. $y-0=\frac{3}{4}[x-(-i 0)]$ $3 x-4 y+30 \div 0$   Thenefore the equetion of $\mathrm{Tin} 3 \mathrm{zr} 4 y+30=0$.   Tet Gbe the iectiantion of $A G$ and sbe to inclimation of $A R$. Nose that $00 \leq 0<180^{\circ}$ ad $0^{\circ} \leq \phi<180^{\circ}$.

16D Loci in the rectangular coordinate plane

## 16D. 1 (HKCEE MA 1981(3) -I 7)

(a) $P=\left(\frac{4(1)+1(16) 4(4)+1(-16)}{1+4}\right)-(4,0)$
(b) Put $A$ into the prabola: (4) ${ }^{2}=4 a(1) \Rightarrow a=4$ Hence, the parabola is $y^{2}=16 x$.

$x^{2}+8 x+16=x^{2} \quad 8 x+16+y^{2}$
which is the given parabola.
16D. 2 HKCEE AM $1987-11-10$
(a) $\begin{aligned}(x+1)^{2} & =(x-1)^{2}+(y 0)^{2} \\ x^{2}+2 x+1 & =x^{2} \quad 2 x+1+y^{2}\end{aligned}$

16D. 3 (HKCEE AM 1994 II-4)
(a) (Not ethat $P R_{0}$ is parallel to the $x$-axis. Thus:) Area $=\frac{(40)(6-4)}{2}=4$
(b) (i) A pair of lines parallel and equidistant to $P Q$

(ii) $m_{P Q}=\frac{6-4}{2-0}=-1$

Since $R_{0}$ is a point on the locus (from (a)), the line parallel to $P Q$ and through $R_{0}(4,4)$ is:
y $4=1\left(\begin{array}{ll}x & 4)\end{array} \Rightarrow y=x\right.$
Thus, the equations are $y=x$ and $y=x+4+4=x+8$.
16D. 4 HKCEE AM $1999-\mathbb{I I}-10$
(a) $\left.\left.\begin{array}{rl}(x+3)^{2}+(y \quad 0 & )^{2} \\ =3\left[(x+1)^{2}+(y\right. & 0\end{array}\right)^{2}\right], ~ \begin{aligned} x^{2}+6 x+9+y^{2} & \left.=3 x^{2}+6 x+3+3\right)^{2}\end{aligned}$
$2 x^{2}+2 y^{2}=6 \Rightarrow x^{2}+y^{2}=3$
(b) Slope of segment joining centre and $T=\frac{b}{a}$
$\Rightarrow$ Slope of $\operatorname{tg}=\frac{a}{b}$
$\therefore$ Eqn of tg. $\quad y \quad b=-\frac{a}{b}(x-a)$
(c) If the tangent in (b) passes through $A$,
$a(-3)+b(0)-3=0 \Rightarrow a=-1$
Since $S$ is in Quad II. $S=(a, b)=(-1, \sqrt{2})$

16D.5 (HKCEE AM 2004-10)
A pair of straight lines parallel and equisdistant to $O A$
$\because O A=\sqrt{3^{2}+4^{2}}=5$
$\therefore$ Dist. from the lincs to $O A=\frac{2 \times 2}{5}=0.8$


16D6 (HKCEE AM 2011-16)
(a) Centre of $C_{1}=(0,5)$, Radius of $C_{1}=\sqrt{5^{2} \quad 16}=3$ Radius of $t$ heunknown circle $=y$
It touches $C_{1}$ externally
$\sqrt{(x-0)^{2}+(y-5)^{2}}=y+3$
$x^{2}+y^{2}-10 y+25=y^{2}+6 y$

$$
x^{2}+16=16 y \Rightarrow y=\frac{1}{16} x^{2}+1
$$

(b) (2) Let $(h, k)$ be the ceatre of $C_{2}$.

Then $k=\frac{1}{16} h^{2}+1$.
Radius $=k=\sqrt{(\bar{\hbar}} \quad 2 \overline{)^{2}+(k \quad 16)^{2}}$
$\begin{array}{lll}k=\sqrt{(h} & 20)^{2}+(k & 16)^{2} \\ k^{2}=k^{2}+k^{2} & 40 h & 32 k+656\end{array}$
$0=h^{2}-40 h \quad 32\left(\frac{1}{16} h^{2}+1\right)+656$
$0=h^{2} \quad 40 h+624$
$\therefore(h, k)=\left(12, \frac{1}{16}(12)^{2}+1\right)=(12,10)$
$\Rightarrow$ Eqn of $C_{2}$ $\qquad$ $\left(\begin{array}{ll}x & 12)^{2} \\ +(y-10)^{2} & =10^{2}\end{array}\right.$
(ii) The point of contact is collinear with the $\Rightarrow x^{2}+y^{2}$ The point of contact is collinear with the 2 centres which are both points on $S$. However, for a parabol the parabola (we call it a 'secant' line) must lie above the parabola
The sentence is not correc L .
(c) A circl ethatsatisfies the first two conditions will touc hC aternally. Hence, it cannot satisfy the last condition. $\therefore$ NO

16D. 7 HKDSEMA SP-I-13
(a) $m_{L_{1}}=\frac{4}{3} \Rightarrow m_{L_{2}}=\frac{3}{4}$
$\therefore$ Eqn of $L_{2}: y \quad 9=\frac{-3}{4}(x-4) \Rightarrow 3 x+4 y^{\prime} \quad 48=0$
(b) (i) $\Gamma$ is the perpendicul arbisector of $A B$
(ii) $\therefore \Gamma / / L_{0}$
$\left\{\begin{array}{l}L_{1}: 4 x \\ 3 y+12=0\end{array}\right.$
$\left\{\begin{array}{l}L_{1}: 4 x \quad 3 y+12=0 \\ L_{2}: 3 x+4 y \quad 48=0\end{array}\right.$
$L_{2}: 3 x+4$
$B=\{0,4)$
$(x-3.84)^{2}+(y \quad 9.12)^{2}=(x-0)^{2}+(y$
$\begin{aligned}(x-3.84)^{2}+(y & 9.12)^{2}\end{aligned}=(x-0)^{2}+\left(\begin{array}{ll}y & 4\end{array}\right)$ $3 x+4 y \quad 32=0$
Method?
$y$-int of $\mathcal{L}_{t}=4 . \quad y$-int of $L_{2}=12$
$\Rightarrow y$-intercept of $\Gamma=\frac{4+12}{2}=$
$\therefore$ Eqn of $\Gamma$ is $y=\frac{-3}{4} x+8$
16D. 8 HKDSEMA PP - I- 8
(a) $A^{\prime}(3,4), \quad B^{\prime}(5,-2)$
(b) Eqn: $\left(\begin{array}{ll}x & 3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2}\end{array}\right.$
$3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2}$
$6 x \quad 8 y+25=10 x \Rightarrow 4 x-8 y+25=0$
16D. 9 HKDSE MA 2012-I-14
(a) (i) $\Gamma / / L$
(ii) $y$-intereept of $\Gamma=\frac{(1)+(3)}{2}=2$
$m_{L}=\frac{0+1}{3 \quad 0}=\frac{1}{3}$
Eqn of $\Gamma ; y=\frac{1}{3} x \quad 2$
(b) (i) Put $Q$ into the eqn of $\Gamma$ :

RHS $=\frac{1}{3}(6)-2=0$ LHS
$\therefore r$ passes through $Q$
(ii) $Q H=Q K=$ radius

In fact, $H Q R$ is a diameter of the circia) Besides, since $A$ and $B$ lie on $L$, theirperpendicula distances to $\Gamma$ is the distance bet ween $L$ and $\Gamma$.
i.e. The beight of $\triangle A Q H$ with $Q H$ as base and the height of $\triangle B Q K$ with $Q K$ as base are the same.

16D. 10 HKDSE MA 2013-I-14
(a) $R \quad(6,17)$
(b) (i) Method I
$m_{L}=\frac{-}{3}$
$\Rightarrow$ Eqn of PR: y $17=\frac{-1}{\frac{5}{3}}(x \quad 6) \Rightarrow y=\frac{3}{4} x+\frac{25}{2}$
$\left\{\begin{array}{l}P R: y=\frac{3}{4} x+\frac{23}{2} \\ L: 4 x+3 y+50=0\end{array} \Rightarrow P=(14,2)\right.$
Method 2
Let $P=(a, b)$

$$
\begin{aligned}
& \because P R \perp L \\
& \therefore m_{P R}=-1 \div \frac{-4}{3}=\frac{3}{4} \Rightarrow \frac{b-17}{a-6}=\frac{3}{4} \\
& \left\{\begin{array}{l}
4 a+3 b+50=0 \\
\frac{b-17}{a 6}=\frac{3}{4}
\end{array} \Rightarrow(a, b)=(-14,2)\right. \\
& \begin{array}{l}
\text { Hence } \\
P R=\sqrt{( } 146)^{2}+(2 \quad 17)^{2}=25 \\
\text { (1) } P . O \text { and } R \text { are collinear. }
\end{array} \\
& \text { (iin }
\end{aligned}
$$

(1) $P \cdot Q$ and $R$ are collinear.
$Q R=$ radius of circliear. $=\sqrt{6^{2}}+17^{2}-220$
$\therefore \frac{A r e d ~ o f ~}{O O P Q}=10$
$\therefore \frac{P Q}{10}=\frac{25}{10}=\frac{3}{2}$

16D. 11 HKDSE MA 2014-I- 12
(a) Radius of $C=\sqrt{(6-0)^{2}+(11-3)^{2}}=10$
$\therefore$ Eqn of $C:(x-0)^{2}+(y-3)^{2}=10^{2}$
(b) (i) Eqn of $\Gamma$ :

Eqn of $\Gamma$ :
$(x-6)^{2}+(y-11)^{2}=(x-0)^{2}+(y-3)^{2}$ $-12 x-22 y+157=-6 y+9$
(ii) $\Gamma$ is the perpendicular bisector of $A G$
(iii) The quadrilateral is a rhombus.
$\therefore$ Perimeler $=4 \times$ Radius $=40$


16D. 12 HKDSE MA 2016 I- 10
(a) Eqn of $\Gamma$ :
$(x \quad 5)^{2}+(y-7)^{2}=(x-13)^{2}+(y-1)^{2}$
$-10 x-14 y+74=-26 x-2 y+170$ $4 x-3 y-24=0$
(b) $H=(6,0), K=(0,-8)$

Since $\angle H O K=90, H K$ is a diameter of $C$ iameter $=\sqrt{6^{2}+8^{2}}=10$
Circumference of $C=10 \pi=31.4>30$
$\therefore$ YES
16. 13 HKDSE MA 2017-I-13
(a) Radius $=\sqrt{(-6-2)^{2}+(5+1)^{2}}=10$
$\therefore$ Eqn of $C$ : $\begin{aligned}(x-2)^{2}+(y+1)^{2} & =10^{2} \\ \Rightarrow x^{2}+y^{2}-4 x+2 y-95 & =0\end{aligned}$
(b) Mechod 1-Erom the standard form
$\frac{\text { Qecthod }- \text { Erom the standard form }}{F G=\sqrt{(-3-2)^{2}+(11+1)^{2}}}=13>$ Radius $\therefore$ Outside
Mechod 2-From the general form Put $F$ : LHS $=(3)^{2}+(11)^{2}-4(-3)+2(11)-95$ $\therefore$ Outside
(c) (i) $F, G$ and $H$ are collinear.
(ii) Req. egn: $\frac{y+1}{x-2}=\frac{11+1}{3-2} \Rightarrow 12 x+5 y-19=0$

16D. 14 HKDSEMA 2019-I- 17
(a) Let $I$ be the in-centre of $\triangle C D E$. Then the perpendiculars from $I$ to $C D, D E$ and $E C$ are all $r$.
a $\frac{r \cdot C D}{2}+\frac{r \cdot D E}{2}+\frac{r \cdot E C}{2}$
$=\frac{r(C D+D E+E C)}{2}=\frac{r(p)}{2} \Rightarrow p r=2 a$

(b) (i) $\Gamma$ is the angle bisedor of $\angle O H K$.
(ii) $O K=14$
$O K=\sqrt{9^{2}+12^{2}}-15$
$O H=120$
$A K=\sqrt{ }(9-14)^{2}+(12-0)^{2}=13$
Perimeter of $\triangle \mathrm{OHK}=42$
Area of $\triangle O H K=\frac{14 \times 12}{2}=84$
From (a), radius of inscribed circle $=\frac{42 \times 84}{2}=4$
Let the in-centre be $J(h, 4)$.

Method 1
By langent properties,
$O Q=O P=h \Rightarrow\left\{\begin{array}{l}H R=H P=15-h\end{array}\right.$
$\therefore H K=13=(15-h)+(14-h) \Rightarrow h$


Method 2
Let the inscribed circle touch $O H$ at $P$.
In $\triangle O J P, O P^{2}=O J^{2}-P J^{2}$
$=\left(\sqrt{h^{3}+4^{2}}\right)^{2}-4^{2}=h^{2}$
In $\triangle H J P, P H^{2}=H H^{2}-P J^{2}$

$$
\begin{aligned}
H^{2} & =H P^{2}-P f^{2} \\
& =\left(\sqrt{(h-9)^{2}+(4-12)^{2}}\right)^{2}-4^{2} \\
& =h^{2}-18 h+129
\end{aligned}
$$

$\therefore \begin{aligned} & O P+P H=O H \\ & h+\sqrt{h^{2}-18 h+129}=15\end{aligned}$
$h^{2}-18 h+129=225-30 h+h^{2}$ $\begin{aligned} 129 & =22 \\ h & =8\end{aligned}$

$\frac{\text { Hence. }}{J=(8.4)}$
Eqn of $H J$ (i.e. $\Gamma$ ) is $\begin{array}{rl}\frac{y-4}{x} 8 & =\frac{12-4}{9-8} \\ \Rightarrow y & y=8 x-60\end{array}$

## 16E Polar coordinates

16E. 1 HKCEE MA 2009-I-8
(a) $\angle P O Q=213^{\circ}-123^{\circ}=90^{\circ}$
$\therefore \triangle O P Q$ is right-angled.
(b) $k^{2}+24^{2}=25^{2} \Rightarrow k=$
$\therefore$ Perimeter $=7 \div 24+25=56$
16E. 2 HKDSEMA PP-I- 6
(a) $\angle A O C=337^{\circ} \quad 157^{\circ}=180^{\circ}$
$\therefore A, O$ and $C$ are collinear.
(b) $\angle A O B=247^{\circ}-157^{\circ}=90^{\circ}$
$O B$ is the height of $\triangle A B C$ with $A C$ as base.
$\therefore$ Area $=\frac{(13+15) \times 14}{2}=196$
16E. 3 HKDSE MA 2013-I-6
(a) $L$ bisects $\angle A O B$.
(b) Suppose $L$ intersects $A B$ at $P$.
$\angle A O P=\begin{gathered}130^{\circ}-10^{\circ} \\ 2\end{gathered}=60^{\circ}, \quad O P=O A \cos 60^{\circ}=13$
$\therefore$ The intersection $=P=\left(13,10^{\circ}+60^{\circ}\right)=\left(13,70^{\circ}\right)$
16E. 4 HKDSE MA 2016-I-7
(a) $\angle A O B=135^{\circ}-75^{\circ}=60^{\circ}$
(b) $O A=O B=12$ and $\angle A O B=60$
$\Rightarrow \triangle A O B$ is equilateral.
. Perimeter $=12 \times 3=36$
(c) 3

## 17 Counting Principles and Probability

## 17A Counting principles

## 17A.1 HKALE MS 1995-3

A teacher wants to divide a class of 18 students into 3 groups, each of 6 students, to do 3 different statistical projects.
(a) In how many ways can the students be grouped?
(b) If there are 3 girls in the class, find the probability that there is one girl in each group.

## 17A. 2 HKALE MS 1999-6

At a school sports day, the timekeeping group for running events consists of 1 chief judge, 1 referee and 10 timekeepers. The chief judge and the referee are chosen from 5 teachers while the 10 timekeepers are selected from 16 students.
(a) How many different timekeeping groups can be formed?
(b) If it is possible to have a timekeeping group with all the timekeepers being boys, what are the possible numbers of boys among the 16 students?
(c) [Out of syllabus]

## 17A. 3 HKALE MS 2011-5

The figure shows a board with routes blocked by shaded squares for an electronic toy car that goes from $A$ to $B$. At each junction, the toy car will go either East or North as shown by the arrows at $A$. The toy car will choose randomly a route from $A$ to $B$. There may be traps being set at some junctions. If the car reaches a trapped junction, it will stop and cannot reach $B$.
(a) If a trap is set at $T_{1}$, how many different routes are there for the toy car to go from $A$ to $B$ ?
(b) If a trap is set at $T_{2}$, how many different routes are there for the toy car to go from $A$ to $B$ ?


## 17A. 4 HKDSE MA 2018 -I 15

An eight-digit phone number is formed by a permutation of $2,3,4,5,6,7,8$ and 9 .
(a) How many different eight-digit phone numbers can be formed?
(b) If the first digit and the last digit of an eight-digit phone number are odd numbers, how many different eight digit phone numbers can be formed?

17A. 5 HKDSEMA 2019 I- 15
There are 21 boys and 11 girls in a class. If 5 students are selected from the class to form a committee consisting of at least 1 boy, how many different committees can be formed?

## 17B Probability (short questions)

17B. 1 HKCEE MA 1981(1/3) I-3
There are 40 students in a class, including students $A$ and $B$. If two students are to be chosen at random as class representatives, find the probability that both $A$ and $B$ are chosen.

17B. 2 HKCEE MA 1982(1/3) I-6
If two dice are thrown once, find the probability that the sum of the numbers on the dice is
(a) equal to 4 ,
(b) Iess than 4 ,
(c) greater than 4 .

17B. 3 HKCEE MA 1996-I-7
The figure shows a circular dartboard. Its surface consists of two concentric circles of radii 12 cm and 2 cm respectively.
(a) Find the area of the shaded region on the dartboard.
(b) Two darts are thrown and hit the dartboard. Find the probability that
(i) both darts hit the shaded region;
(ii) only one dart hits the shaded region.

## 17B. 4 HKCEEMA 1998-I-11

There are 8 white socks, 4 yellow socks and 2 red socks in a drawer. A boy randomlytakes out 2 socks from the drawer.
(a) Find the probability that the socks taken out are both white.
(b) Find the probability that the socks taken out are of the same colour.

## 17B. 5 HKCEE MA $1999 \mathrm{I}-12$

Mr . Sun is waiting for a bus at a bus stop. It is known that $75 \%$ of the buses are air-conditioned, of which $20 \%$ have Octopus machines installed. No Octopus machines have been installed on buses without airconditioning.
(a) Find the probability that the next bus has an Octopus machine installed.
(b) The bus fare is $\$ 3.00$. Mr. Sun does not have an Octopus card but has two 1-dollar coins and three 2-dollar coins in his pocket. If he randomly takes out two coins, what is the probability that the total value of these coins is exactly $\$ 3.00$ ?

## 17B. 6 HKCEE MA $2000 \quad \mathrm{I}-12$

A box contains nine hundred cards, each marked with a different 3-digit number from 100 to 999 . A card is drawn randomly from the box.
(a) Find the probability that two of the digits of the number drawn are zero.
(b) Find the probability that none of the digits of the number drawn is zero.
(c) Find the probability that exactly one of the digits of the number drawn is zero.

17B. 7 HKCEE MA 2004-I-8
A box contains nine cards numbered $1,2,3,4,5,6,7,8$ and 9 respectively.
(a) If one card is randomly drawn from the box, find the probability that the number drawn is odd.
(b) If two cards are randomly drawn from the box one by one with replacement, find the probability that the product of the numbers drawn is even.

17B. 8 HKCEE MA 2006-I-8
There are ten cards numbered $2,3,5,8,11,11,12,15,19$ and $k$ respectively, where $k$ is a positive integer. It is given that the mean of the ten numbers is 11
(a) Find the value of $k$.
(b) A card is randomly drawn from the ten cards. Find the probability that the number drawn is a multiple of 3 .

## 17B. 9 HKCEEMA 2008-I-5

A box contains three cards numbered 2,3 and 4 respectively while a bag contains two balls numbered 6 and 7 respectively. If one card and one ball are randomly drawn from the box and the bag respectively, find the probability that the sum of the numbers drawn is 10 .

## 17B. 10 HKCEE MA 2009 I-5

The table below shows the distribution of the ages of all employees in a department of a company.

Employee Age (x)	$x<30$	$30 \leq x<40$	$x \geq 40$
Administrative officer	7	21	30
Clerk	53	57	32

If an employee is randomly selected from the department, find the probability that the selected employee is an administrative officer under the age of 40 .

## 17B. 11 HKALE MS $1994 \quad 1$

(a) Write down the sample space of the sex patterns of the children of a 2-child family in the order of their ages. (You may use B to denote a boy and G to denote a girl.)
(b) Assume that having a boy or having a girl is equally likely. It is known that a family has two children and they are not both girls.
(i) Write down the sample space of the sex patterns of the children in the order of their ages.
(ii) What is the probability that the family has two sons?

## 17B. 12 HKALE MS 1994-3

Jack climbs along a cubical framework from a comer $A$ to meet Jill at the opposite comer $B$. The framework, shown in the figure, is formed by joining bars of equal length. Jack chooses randomly a path of the shortest length to meet Jill An example of such a path, which can be denoted by

Right $-U_{p}-$ Forward $-U p-$ Right - Forward
is also shown in the figure.

(a) Find the number of shortest paths from $A$ to $B$.
(b) If there is a trap at the centre $C$ of the framework which catches anyone passing through it,
(i) find the number of shortest paths from $A$ to $C$,
(ii) hence find the probability that Jack will be caught by the trap on his way to $B$.

## 17B. 13 HKALE MS 1994-7

In asking some sensitive questions such as "Are you homosexual?", a randomised response technique can be applied: The interviewee will be asked to draw a card at random from a box with 1 red card and 2 black cards and then consider the statement 'I am homosexual' if the card isred and the statement 'I am not homosexual' otherwise. He will give the response either 'True' or 'False'. The colour of the card drawn is only known to the interviewee so that nobody knows which statement he has responded to. Suppose in a survey, 790 out of 1200 interviewees give the response 'True'.
(a) Estimate the percentage of persons who are homosexual.
(b) For an interviewee who answered 'True', what is the probability that he is really homosexual?

## 17B. 14 HKALE MS 1995-5

An insurance company classifies the aeroplanes it insures into class L (low risk) and class H (high risk), and estimates the corresponding proportions of the aeroplanes as $70 \%$ and $30 \%$ respectively. The company has also found that $99 \%$ of class L and $88 \%$ of class H aeroplanes have no accident within a year. If an aeroplane insured by the company has no accident within a year, what is the probability that it belongs to
(a) class H ?
(b) class L?

## 17B. 15 HKALE MS 19966

A company buys equal quantities of fuses, in 100 -unit lots, from two suppliers A and B. The company tests two fuses randomly drawn from each lot, and accepts the lot if both fuses are non-defective.
It is known that $4 \%$ of the fuses from supplier A and $1 \%$ of the fuses from supplier B are defective. Assume that the quality of the fuses are independent of each other.
(a) What is the probability that a lot will be accepted?
(b) What is the probability that an accepted lot came from supplier A?

## 17B. 16 HKALE MS 1997-7

A brewery has a backup motor for its bottling machine. The backup motor will be automatically turned on if the original motor breaks down during operating hours. The probability that the original motor breaks down during operating hours is 0.15 and when the backup motor is turn on, it has a probability of 0.24 of brealing down. Only when both the original and backup motors break down is the machine not able to work.
(a) What is the probability that the machine is not working during operating hours?
(b) If the machine is working, what is the probability that it is operated by the original motor?
(c) The machine is working today. Find the probability that the first break down of the machine occurs on the 10th day after today.

## 17B. 17 HKALEMS 1998-6

A factory produces 3 kinds of ice cream bars $\mathrm{A}, \mathrm{B}$ and C in the ratio $1: 2: 5$. It was reported that some ice cream bars produced on 1 May, 1998 were contaminated. All ice-cream bars produced on that day were withdrawn from sale and a test was carried out. The test results showed that $0.8 \%$ of kind $A, 0.2 \%$ of kind $B$ and $0 \%$ of kind C were contaminated.
(a) Anice-cream bar produced on that day is selected randomly. Find the probability that (i) the bar is of kind A and is NOT contaminated,
(ii) the bar is NOT contaminated.
(b) If an ice cream bar produced on that day is contaminated, find the probability that it is of kind A.

## 17B. 18 HKALE MS 19995

$60 \%$ of passengers who travel by train use Octopus. A certain train has 12 compartments and there are 10 passengers in each compartment.
(a) What is the probability that exactly 5 of the passengers in a compartment use Octopus?
(b) What is the expected number of passengers using Octopus in a compartment?
(c) What is the probability that the third compartment is the first one to have exactly 5 passengers using Octopus?

17B. 19 HKALE MS 20006
Mr. Chan has 6 cups of ice-cream in his refrigerator. There are 5 different flavours as listed: 1 cup of chocolate, 1 cup of mango, 1 cup of peach, 1 cup of strawberry and 2 cups of vanilla. Mr. Chan randomly chooses 3 cups of the ice-cream. Find the probability that
(a) there is no vanilla flavour ice-cream,
(b) there is exactly 1 cup of vanilla flavour ice-cream.

## 17B. 20 HKALEMS 2000-8

A department store uses a machine to offer prizes for customers by playing games $A$ or $B$. The probability of a customer winning a prize in game $A$ is $\frac{5}{9}$ and that in game $B$ is $\frac{5}{6}$. Suppose each time the machine randomly generates either game $A$ or game $B$ with probabilities 0.3 and 0.7 respectively.
(a) Find the probability of a customer winning a prize in 1 trial.
(b) The department store wants to adjust the probabilities of generating game $A$ and game $B$ so that the probability of a customer winning a prize in 1 trial is $\frac{2}{3}$. Find the probabilities of generating game $A$ and game $B$ respectively.

## 17B. 21 HKALE MS 2001-6

3 students are randomly selected from 10 students of different weights. Find the probability that
(a) the heaviest student is in the selection,
(b) the heaviest one out of the 3 selected students is the 4 th heaviest among the 10 students,
(c) the 2 heaviest students are not both selected.

## 17B. 22 HKALE MS 2001 -7

In the election of the Legislative Council, $48 \%$ of the voters support Party $A, 39 \%$ Party $B$ and $13 \%$ Party $C$. Suppose on the pollingday, $65 \%, 58 \%$ and $50 \%$ of the supporting voters of Parties $A, B$ and $C$ respectively cast their votes
(a) A voter votes on the polling day. Find the probability that the voter supports Party $B$
(b) Find the probability that exactly 2 out of 5 voting voters support Party $B$.

## 17B. 23 HKALE MS 2002-5

Twelve boys and ten girls in a class are divided into 3 groups as shown in the table below.

	Group A	Group B	Group C
Number of boys	6	4	2
Nunciber Of girls	2	3	5

To choose a student as the class representative, a group is selected at random, then a students is chosen at random from the selected group
(a) Find the probability that a boy is chosen as the class representative.
(b) Suppose that a boy is chosen as the class representative. Find the probability that the boy is from Group A.

## 17B. 24 HKALEMS 2002 - 8

A flower shop has 13 roses of which 2 are red, 5 are white and 6 are yellow. Mary selects 3 roses randomly and the colours are recorded.
(a) Denote the red rose selected by $R$, the white rose by $W$ and the yellow rose by $Y$.

List the sample space (i.e. the set of all possible combinations of the colours of roses selected, for example, $1 R 2 W$ denotes that 1 red rose and 2 white roses are selected).
(b) Find the probability that Mary selects exactly one red rose.
(c) Given that Mary has selected exactly one red rose, find the probability that only one of the other two roses is white.

## 17B. 25 HKALE MS 2003-12

A teacher randomly selected 7 students froma class of 13 boys and 17 girls to form a group to take part in a flag selling activity.
(a) Find the probability that the group consists of at least 1 boy and 1 girl.
(b) Given that the group consists of at least 1 boy and 1 girl, find the probability that there are more than 3 girls in the group.
(c) [Out of syllabus]

## 17B26 HKALE MS 2004-6

David has forgotten his uncle's mobile phone number. He can only remember that the phone number is $98677 X Y Z$, where $X, Y$ and $Z$ are the forgotten digits. Find the probability that
(a) at least 2 of the forgotten digits are different;
(b) the forgotten digits are permutations of 2,3 and 8;
(c) exactly 2 of the forgotten digits have already appeared among the first five digits of the phone number.

## 17B. 27 HKALE MS 2004-10

A certain test gives a positive result in $94 \%$ of the people who have disease $S$. The test gives a positive result in $14 \%$ of the people who do not have disease $S$. In a city, $7.5 \%$ of the citizens have disease $S$.
(a) Find the probability that the test gives a positive result for a randomly selected citizen.
(b) Given that the test gives a positive result for a randomly selected citizen, find the probability that the citizen does not have disease $S$.
(c) [Out of syllabus]

## 17B. 28 HKALE MS 2007-6

David has 10 shirts and 3 bags: 1 blue shirt, 4 yellow shirts, 5 white shirts, 1 yellow bag and 2 white bags. He randomly chooses 3 shirts from the 10 shirts and randomly puts the chosen shirts into 3 bags so that each bag contains 1 shirt.
(a) Find the probability that the yellow bag contains the blue shirt and each of the two white bags contains 1 yellow shirt.
(b) Find the probability that each of these three bags contains 1 shirt of a colour different from the bag.

## 17B. 29 HKALEMS 2009-5

It is known that $36 \%$ of the customers of a certain supermarket will bring their own shopping bags. There are 3 cashiers and each cashier has 5 customers in queue.
(a) Find the probability that among all the customers in queue, at least 4 of them have brought their own shopping bags.
(b) If exactly 4 customers in queue have brought their own shopping bags, what is the probability that each cashier will have at least 1 customer who has brought his/her own shopping bag?

17B. 30 HKALEMS 20114
Peter and Susan play a shooting game. Each of them will shoot a target twice. Each shot will score 1 point if it hits the target. The one who has a higher score is the winner. It is known that the probabilities of hitting the target in one shot forPeter and Susan are 0.55 and 0.75 respectively.
(a) Find the probability that Susan will be the winner.
(b) Given that Peter scores at least I point, what is the probability that Susan is the winner?

## 17B. 31 HKALE MS 20115

(Continued from 17A.3.)
The figure shows a board with routes blocked by shaded squares for an electronic toy car that goes from $A$ to $B$. At each junction, the toy car will go either East or North as shown by the arrows at $A$. The toy car will choose randomly a route from $A$ to $B$. There may be traps being set at some junctions. If the car reaches a trapped junction, it will stop and cannot reach $B$.
(a) If a trap is set at $T_{1}$, how many different routes are there for the toy car to go from $A$ to $B$ ?
(b) If a trap is set at $T_{2}$, how many different routes are there for the toy car to go from $A$ to $B$ ?
(c) If two traps are set at $T_{1}$ and $T_{2}$, find the prob ability that the toy car can reach $B$ from $A$.


17B. 32 HKALE MS 20134
In a game, a player will ping 4 balls one by one and each ball will randomly fall into 4 different slots as shown in the figure. A prize will be given if all the 4 balls are aligned in a horizontal or a vertical row.
(a) What is the probability that a player wins the prize?
(b) What is the probability that a player wins the prize given that first two balls are in two different slots?


## 17B. 33 HKDSEMASP-I- 16

A committee consists of 5 teachers from school $A$ and 4 teachers from school $B$. Four teachers are randomly selected from the committee.
(a) Find the probability that only 2 of the selected teachers are from school $A$.
(b) Find the probability that the numbers of selected teachers from school $A$ and school $B$ are different.

17B. 34 HKDSEMAPP-I- 13
(To continue as 18A.9.)
The bar chart below shows the distribution of the most favourite fruits of the students in a group. It is given that each student has only one most favourite fruit.

Distribution of the most favourite fruits of the students in the group


If a student is randomly selected from the group, the probability that the most favourite fruit is apple is $\frac{3}{20}$.
(a) Find $k$.
(b) Suppose that the above distribution is represented by a pie chart.

## 17B. 35 HKDSE MA PP - $1-16$

There are 18 boys and 12 girls in a class. From the class, 4 students are randomly selected to form the class committee.
(a) Find the probability that the class committee consists of boys only.
(b) Find the probability that the class committee consists of at least 1 boy and 1 girl.

## 17B. 36 HKDSEMA 2012 I- 16

There are 8 departments in a company. To form a task group of 16 members, 2 representatives are nominated by each department. From the task group, 4 members are randomly selected.
(a) Find the probability that the 4 selected members are nominated by 4 different departments.
(b) Find the probability that the 4 selected members are nominated by at most 3 different departments.

## 17B. 37 HKDSEMA $2013-\mathrm{I}-16$

A box contains 5 white cups and 11 blue cups. If 6 cups are randomly drawn from the box at the same time,
(a) find the probability that at least 4 white cups are drawn;
(b) find the probability that at least 3 blue cups are drawn.

## 17B. 38 HKDSE MA 2015-I - 3

Bag $A$ contains four cards numbered $1,3,5$ and 7 respectively while bag $B$ contains five cards numbered 2 , $4,6,8$ and 10 respectively. If one card is randomly drawn from each bag, find the probability that the sum of the two numbers drawn is less than 9 .

## 17B. 39 HKDSEMA 2015-I- 16

A box contains 5 red bowls, 6 yellow bowls and 3 white bowls. If 4 bowls are randomly drawn from the box at the same time,
(a) find the probability that exactly 2 red bowis are drawn
(b) find the probability that at least 2 red bowls are drawn.

## 17B. 40 HKDSE MA 2016-I-9

The frequency distribution table and the cumulative frequency distribution table below show the distribution of the heights of the plants in a garden.

Height $(\mathrm{m})$		Frequency
0.1	0.3	$a$
0.4	-0.6	4
0.7	0.9	$b$
1.0	1.2	$c$
1.3	1.5	15
1.6	1.8	3


Height less than (m)	Cumulative frequency
0.35	2
0.65	$x$
0.95	13
1.25	$y$
1.55	37
1.85	$z$

(a) Find $x, y$ and $z$
(b) If a plant is randomly selected from the garden, find the probability that the height of the selected plant is less than 1.25 m butnot less than 0.65 m .

## 17B. 41 HKDSE MA 2016-I - 15

If 4 boys and 5 girls randomly form a queue, find the probability that no boys are next to each other in the queue.

## 17B. 42 HKDSE MA 2017-I-7

The pie chart shows the distribution of the seasons of birth of the students in a school
If a student is randomly selected from the school, then the probability
that the selected student was born in spring is $\frac{1}{9}$.
(a) Find $x$
(b) In the school, there are 180 students born in winter. Find the number of students in the school.


Distribution of the seasons of birth of the students in a school

## (Continued from 18C.48.)

## 17B. 43 HKDSE MA 2017-I-11

The stem-and leaf diagram shows the distribution of the hourly wages (in dollars) of the workers in a group.
It is given that the mean and the range of the distribution are $\$ 70$ and $\$ 22$ respectively.
(a) Find the median and the standard deviation of the above distribution
(b) If a worker is randomly selected from the group, find the probability that the hourly wage of the selected worker exceeds $\$ 70$

## 17B. 44 HKDSEMA $2017-\mathrm{I}-17$

In a bag, there are 4 green pens, 7 blue pens and 8 black pens. If 5 pens are randomly drawn from the bag at the same time,
(a) find the probability that exactly 4 green pens are drawn;
(b) find the probability that exactly 3 green pens are drawn;
(c) find the probability that not more than 2 green pens are drawn.

## 17B. 45 HKDSEMA 2018-I -4

A box contains $n$ white balis, 5 black balls and 8 red balls. If a ball is randomly drawn from the box, then the probability of drawing a red ball is $\frac{2}{5}$. Find the value of $n$.

## 17B.46 HKDSE MA $2019-\mathrm{I}-8$

The pie chart below shows the distribution of the numbers of rings owned by the girls in a group.
(a) Write down the mode of the distribution.
(b) Find the mean of the distribution.
(c) If a girl is randomly selected from the group, find the probability that the selected girl owns more than 3 rings.


Distribution of the numbers of rings owned by the girls in the group

## 17B.47 HKDSE MA 2020-I 15

In a box, there are 3 blue plates, 7 green plates and 9 purple plates. If 4 plates are randomly selected from the box at the same time, find
(a) the probability that 4 plates of the same colour are selected;
(b) the probability that at least 2 plates of different colours are selected.

## 17C Probability (structural questions)

17C. 1 HKCEE MA 1980(1/3) - I-14
The examination for a professional qualification consists of a theory paper and a practical paper. To obtain the qualification, a candidate has to pass both papers. If a candidate fails in either paper, he needs only sit that paper again.
The probabilities of passing the theory paper for two candidates $A$ and $B$ are both $\frac{9}{10}$ and their probabilities of passing the practical paper are both $\frac{2}{3}$. Find the probabilities of the following events:
(a) Candidate $A$ obtaining the qualification by sitting each paper only once.
(b) Candidate $A$ failing in one of the two papers but obtaining the qualification with one re examination.
(c) At least one of the candidates $A$ and $B$ obtaining the qualification without any re examination.

## 17C. 2 HKCEE MA 1983(A/B) I 11

In a short test, there are 3 questions. For each question, 1 mark will be awarded for a correct answer and no marks for a wrong answer. The probability that John correctly answers a question in the test is 0.6 . Find the probability that
(a) John gets 3 marks in the test
(b) John gets no marks in the test
(c) John gets 1 mark in the test.
(d) John gets 2 marks in the test

## 17C. 3 HKCEE MA 1984(A/B) I-11

(a) There are two bags. Each bag contains 1 red, 1 black and 1 white ball. One ball is drawn randomly from each bag. Find the probability that
(i) the two balls drawn are both red
(ii) the two balls drawnare of the same colour
(iii) the two balls drawn are of different colours.
(b) A box contains 2 red, 2 black and 3 white balls. One ball is drawnrandomly from the box. After putting the ball back into the box, one ball is again drawn randomly. Find the probability that
(i) the two balls drawn are both red;
(ii) the two balls drawn are of the same colour;
(iii) the two balls drawn are of different colours.

## 17C. 4 HKCEE MA 1985(A/B)-I-10

(a) If two dice are thrown,
(i) find the probability that the sum of the numbers on the two dice is greater than 9 ;
(ii) find the probability that the sum of the numbers on the two dice is greater than 9 or the numbers on the two dice are equal.
(b) In a game, two dice are thrown. In each throw, 2 points are gained if the sum of the numbers on the two dice is greater than 9 or the numbers on the two dice are equal; otherwise 1 point is lost. Using the result in (a)(ii), find the probability of
(i) losing a total of 2 points in two throws,
(ii) gaining a total of 1 point in two throws.

17C-5 HKCEE MA 1986(A/B) I 13
A box contains wooden blocks of 5 different shapes $A, B, C, D$ and $E$. For each shape, there are 5 different colours red, orange, yellow, green and blue. For each colour of each shape, there is one block of each of the sizes $L, M$ and $S$. (Hint. There are altogether 75 blocks in the box.)
(a) When a block is picked out randomly from the box, what is the probability that it is of
(i) red colour?
(ii) blue colour and shape $C$ ?
(iii) size $S$, shape $A$ or $E$ but not yellow?
(b) Two blocks are drawn at random from the box, one after the other. The first block drawn is put back into the box before the second is drawn. Find the probability that
(i) the first block drawn is of size $L$ and the second block is of size $S$
(ii) one of the blocks drawn is of size $L$ and the other of size $S$,
(iii) the two blocks drawn are of different sizes.

## 17C. 6 HKCEE MA 1987(A/B) - 1-13

$P, Q$ and $R$ are three bags. $P$ contains 1 black ball, 2 green balls and 3 white balls; $Q$ contains 4 green balls $R$ contains 5 white balls. A ball is drawn at random from $P$ and is put into $Q$; then a ball is drawn at random from $Q$ and is put into $R$. Find the probability that
(a) the black ball still remains in $P$
(b) the black ball is in $Q$,
(c) the black ball is in $R$,
(d) all the balls in $R$ are white.

## 17C. 7 HKCEE MA 1988 -I- 11

The figure shows the cumulative frequency curve of the marks of 600 students in a mathematics contest.
(a) From the curve, find
(j) the median, and
(ii) the interquartile range of the distribution of marks.
(b) A student with marks greater than or equal to 100 will be awarded a prize.
(i) Find the number of students who will be awarded prizes.
(ii) If one student is chosen at random from the 600 students, find the probability that the student is a prizewinner
(iii) If two students are chosen at random, find the probability that
(l) both of them are prizewinners,
(2) at least one of them is a prize winner.


Marks (less than)

## 17C. 8 HKCEE MA $1989 \ldots \mathrm{I}-13$

(a) Bag A contains a number of balls. Some are black and the rest are white. A ball is drawn at random from bag $A$. Let $p$ be the probability that the ball drawn is black and $q$ be the probability that the ball drawn is white. If $p=3 q$, find $q$.
(b) Bag $C$ contains 10 balls of which $n(2 \leq n \leq 10)$ balls are black.
(i) If two balls are drawn at random from bag $C$, find the probability, in terms of $n$, that both balls are black.
(ii) If the probability obtained in (i) is greater that $\frac{1}{3}$, find the possible values of $n$.
(c) Bag $M$ contains 1 red and 1 green ball. Bag $N$ contains 3 red and 2 green balls. A ball is drawn at random from bag $M$ and put into bag $N$; then a ball is drawn at random from bag $N$. Find the probability that the ball drawn from bag $N$ is red.

## 17C. 9 HKCEE MA 1990-I - 13

## The figure shows 3 bags $A, B$ and $C$

Bag $A$ contains 1 white ball $(W)$ and 1 red ball $(R)$.
Bag $B$ contains 1 yellow ball $(Y)$ and 2 green balls $(G)$
Bag $C$ contains only 1 yellow ball $(Y)$.
(a) Peter choose one bag at random and then randomly draws one ball from the bag. Find the probability that (i) the ball drawn is green;

$\operatorname{Bag} A$


Bag $B$


Bag $C$
(ii) the ball drawn is yellow.
(b) After Peter has drawn a ball in the way described in (a), he puts it back into the original bag. Next, Alice chooses one bag at random and then randomly draws one ball from the bag. Find the probability that
(i) the balls drawn by Peter and Alice are both green;
(ii) the balls drawn by Peter and Alice are both yellow and from the same bag.

## 17C. 10 HKCEE MA 1991 I 10

The practical test for a driving licence consists of two independent parts, $A$ and $B$. To pass the practical test, a candidate must pass in both parts. If a candidate fails in any one of these parts, the candidate may take that part again. Statistics shows that the passing percentages for Part $A$ and Part $B$ are $70 \%$ and $60 \%$ respectively.
(a) A candidate takes the practical test. Find the probabilities that the candidate
(i) fails Part $A$ on the first attempt and passes it on the second attempt,
(ii) passes Part $A$ in no more than two attempts,
(iii) passes the practical test in no more than two attempts in each part.
(b) In a sample of 10000 candidates taking the practical test, how many of them would you expect to pass the practical test in no more than two attempts in each part?

## 17C. 11 HKCEE MA 1992-I-10

The figure shows a one way road network system from Town $P$ to Towns $R, S$ and $T$. Any car leaving Town $P$ will pass though either Tunnel $A$ or Tunnel $B$ and arrive at Towns $R, S$ or $T$ via the roundabout $Q$. A survey shows that $\frac{2}{5}$ of the cars leaving $P$ will pass through Tunnel $A$. The survey also shows that $\frac{1}{7}$ of all the cars passing through the roundabout $Q$ will amive at $R, \frac{2}{7}$ at $S$, and $\frac{4}{7}$ at $T$.
(a) Find the probabilities that a car leaving $P$ will
(i) pass through Tunnel $B$,
(ii) notarrive at $T$,
(iii) arrive at $R$ through Tunnel $B$,
(iv) pass through Tunnel $A$ but not arrive at $R$.
(b) Two cars leave $P$. Find the probabilities that
(i) one of them arrives at $R$ and theother one at $S$,
(ii) both of them arrive at $S$, one through Tunnel $A$ and the other one through Tunnel $B$.


17C. 12 HKCEE MA 1993-I - 13
Legislative Council


In a Legislative Council election, each registered voter in a constituency (i.e. district) could select only one candidate in that constituency and cast one vote for that candidate. The candidate who got the greatest number of valid votes won the election in that constituency.

In the Tuen Mun constituency, there were 3 candidates, $A, B$ and $C . A$ belonged to a political party called 'The Democrats'; $B$ and $C$ belonged to a political party called 'The Liberals'.
In the Yuen Long constituency, there were 2 candidates, $P$ and $Q . P$ belonged to 'The Democrats' and $Q$ belonged to 'The Liberals'.
(a) A survey conducted before the election showed that the probabilities of winning the election for $A, B$ and $C$ were respectively $0.65,0.25$ and 0.1 while the probabilities of winning the election for $P$ and $Q$ were respectively 0.45 and 0.55 . Calculate from the above data the following probabilities:
(i) The elections in the Tuen Mun and Yuen Long constituencies would both be won by 'The Democrats'.
(ii) The elections in the Tuen Mun and Yuen Long constituencies would both be won by the same party.
(b) After the election, it was found that in the Tuen Mun constituency there were 40000 valid votes of which $A$ got $70 \%, B$ got $20 \%$ and $C$ got $10 \%$; in the Yuen Long constituency, there were 20000 valid votes of which $P$ got $40 \%$ and $Q$ got $60 \%$. Suppose two votes were chosen at random (one after the other with replacement) from the 60000 valid votes in the two constituencies. What would be the probability that
(i) both votes came from the Tuen Mun constituency and were for 'The Democrats',
(ii) both votes were for 'The Democrats',
(iii) the votes were for different parties?

## 17C. 13 HKCEE MA 1994-I-9

Siu Ming lives in Tuen Mun. He travels to school either by LRT (Light Railway Transit) or on foot. The probability of being late for school is $\frac{1}{7}$ if he travels by LRT and $\frac{1}{10}$ if he travels on foot.
(a) In a certain week, Siu Ming travels to school by LRT on Monday. Tuesday and Wednesday. Find the probability that
(i) he will be late on all these three days;
(ii) he will not be late on all these three days.
(b) In the same week, Siu Ming travels to school on foot on Thursday, Friday and Saturday. Find the probability that
(i) he will be late on Thursday and Friday only in these three days;
(ii) he will be late on any two of these three days.
(c) On Sunday, Siu Ming goes to school to take part in a basketball match. If he is equally likely to travel by LRT or on foot, find the probability that he will be late on that day.

## 17C. 14 HKCEE MA 1995-I-11

17C. 14 HKCEE MA 1995 $-1-11$
If Wai Ming studies in the evening for a test the next day, the probability of him passing the test is $\frac{4}{5}$. If he
does not study in the evening for the test, he will certainly fail.

## (a) (You may use Figure (1) to help you answer this part.)

(i) If Wai Ming studies in the evening for a test the next day, find the probability $p$ that he will fail the test.
(ii) If Wai Ming does not study in the evening for a test the next day, find the probability $q$ that he will pass the test and the probability $r$ that he will fail the test.
(b) (You may use Figure (1) and Figure (2) to help you answer this part.)

There are four teams competing for the World Women's Volleyball Championship (WWVC) with two games in the semi finals: China against U.S.A. and Japan against Cuba.
The winner of each game will be competing in the final for the Championship. The four teams have an equal chance of beating their opponents.
(i) Find the probability that China will win the Championship.
(ii) The final of the WWVC will be shown on television on a Sunday evening and Wai Ming has a test the next day Wai Ming will definitely watch the TV programme if China gets to the final and the probability of him studying afterwards for the test is $\frac{1}{3}$. If China fails to get to the final, he will not watch that programme at all and will study for the test.
(1) Find the probability that Wai Ming will study for the test.
(2) Find the probability that Wai Ming will pass the test.

Figure (1)


231

## 17C. 15 HKCEE MA 1997-I- 14

In a small pond, there were exactly 40 small fish and 10 large fish. The ranges of their weights W g are shown in the table.
In the morning on a certain day, a man went fishing in the pond. He canght two fish and their total weight was $T \mathrm{~g}$. Suppose each fish was equally likely to be caught.
(a) Find the probability that
(i) $0<T \leq 200$,

	Weight (Wg)
Small fish	$0<W \leq 100$
Large fish	$500 \leq W \leq 600$

(iii) $1000 \leq T \leq 1200$,
(iv) $T>1200$.
(b) Suppose the two fish he caught in the morning were returned alive to the pond. He went fishing again in the pond in the afternoon and also caught two fish.
(i) If the total weight of the fish caught in the morning was 650 g , find the probability that the difference between the total weights of the fish caught in the moming and in the afternoon is more than 200 g .
(ii) Find the probability that the difference between the total weights of the fish caught in the morning and in the aftermoon is more than 200 g .

17C. 16 HKCEEMA 2002-I-12
(Continued from 18C.11.)
The cumulative frequency polygon of the distribution
of the numbers of books read by the participants


Two hundred students participated in a summer reading programme. The figure shows the cumulative frequency polygon of the distribution of the numbers of books read by the participants.
(a) The table below shows the frequency distribution of the numbers of books read by the participants. Using the graph in the figure, complete the table.

Number of books read $(x)$	Number of participants	Award
$0<x \leq 5$	66	Certificate
$5<x \leq 15$		Book coupon
$15<x \leq 25$	64	Bronze medal
$25<x \leq 35$		Silver medal
$35<x \leq 50$	10	Gold medal

(b) Using the graph in the figure, find the inter-quartile range of the distribution.
(c) Two participants were chosen randomly from those awarded with medals. Find the probability that
(i) they both won gold medals;
(ii) they won different medals.

## 17C. 17 HKCEEMA 2003-I- 16

John will participate in a contest to be held at a university. If John wins the contest, he will go to Canteen $X$ for lunch. Otherwise, he will go to Canteen $Y$. Table (1) shows the types of set lunches and the prices served in the two canteens. He will choose one type of set lunch randomly.


Table (1)


## Table (2)

(a) If the probability of John winning the contest is $\frac{1}{10}$, find the probability that he will spend $\$ 15$ for lunch.
(b) If John takes a bus leaving at 8:00 a.m. to the university, his probability of winning the contest will be $\frac{1}{10}$. If he misses the bus, he will take a train leaving at $8: 20 \mathrm{a} . \mathrm{m}$. Owing to his nervousness, his probability of winning will be reduced to $\frac{2}{25}$.
(i) Suppose John misses the bus, find the probability that he will spend $\$ 15$ for lunch.
(ii) Table (2) shows the cost of a single trip by bus or train.

It is known that the probability of John taking the bus is twice that of taking the train.
(1) Find the probability that John will spend $\$ 15$ for lunch after the contest.
(2) If John goes home by train after lunch, find the probability that he will spend more than a total of $\$ 30$ for the lunch and the transportation of the two trips.

## 17C. 18 HKCEE MA 2005-I - 11

Seven players take part in a men's singles tennis knock out toumament. They are randomly assigned to the positions $1,2,3,4,5,6$ and 7 . It is known that Albert and Billy are in positions 2 and 7 respectively. The winner of each game proceeds to the next round as shown in the figure and the loser is knocked out. Billy goes straight to the semi finals. In each game, each player has an equal chance of beating his opponent.
(a) Write down the probability that Albert will reach the semi-finals.
(b) Find the probability that Albert will be the champion.
(c) Find the probability that Albert will fail to reach the final.
(d) Find the probability that Albert will play against Billy in the final.


17C. 19 HKCEE MA 2006-I - 14
(Continued from 18C.14.)
The stem and leaf diagram below show the distributions of the scores (in marks) of the students of classes $A$ and $B$ in a test, where $a, b, c$ and $d$ are non-negative integers less than 10 . It is given that each class consists of 25 students.

## Class A

Stem (tens)
$\left\lvert\, \frac{\text { Leaf (units) }}{\text { Ctem (tens) }}\right.$


			1	1	1	1	2	2	3	3	5	6	7	8
2	5	7	8	8			2	1	1	5	5	5	7	8
	3	5	6	7	9									
3	3	5	6	9	9	9	3	$d$						

(a) (i) Find the inter-quartile range of the scoredistribution of the students of class $A$ and the inter quartile range of the score distribution of the students of class $B$.
(ii) Using the results of (a)(i), state which one of the above score distributions is less dispersed. Explain your answer.
(b) The passing score of the test is 20 marks. From the 50 students, 3 students are randomly selected.
(i) Find the probability that exactly 2 of the selected students pass the test.
(ii) Find the probability that exactly 2 of the selected students pass the test and both of them are in the same class.
(iii) Given that exactly 2 of the selected students pass the test, find the probability that both of them are in the same class.

## 17C. 20 HKCEE MA 2007-I - 15

The following table shows the results of a survey about the sizes of shirts dressed by 80 students on a certain school day.

Student Size	Small	Medium	Large	Total
Boy	8	28	12	48
Girl	20	8	4	32

(a) On that school day, a student is randomly selected from the 80 students.
(i) Find the probability that the selected student is a boy.
(ii) Find the probability that the selected student is a boy and he dresses a shirt of large size.
(iii) Find the probability that the selected student is a boy or the selected student dresses a shirt of large size.
(iv) Given that the selected student is a boy, find the probability that he dresses a shirt of large size.
(b) On the school day, two students are randomly selected from the 80 students.
(i) Find the probability that the two selected students both dress shirts of large size.
(ii) Is the probability of dressing shirts of the same size by the two selected students greater than that of dressing different sizes? Explain your answer.

## 17C. 21 HKCEE MA 2008 I-1 4

The stem-and-leaf diagram below shows the suggested bonuses (in dollars) of the 36 salesgirls of a boutique:

$$
\begin{aligned}
& \text { Stem (thousands) | Leaf (hundreds) } \\
& \begin{array}{l|lllll}
2 & 4 & 4 & 7 & & \\
3 & 2 & 5 & 6 & 6 & 8
\end{array} \\
& \begin{array}{lllllllll} 
& 3 & 5 & 4 & 4 & 7 & 8 & 8 & 8
\end{array} \\
& \begin{array}{llllll}
3 & 3 & 3 & 4 & 4 & 7 \\
0 & 0 & 3 & 4 & 4 & 6
\end{array} \\
& \begin{array}{lllllll}
2 & 3 & 3 & 4 & 4 & 9 & 9
\end{array} \\
& \begin{array}{llll}
0 & 4 & 4 & 8
\end{array} \\
& 8 \text { 2 } 3
\end{aligned}
$$

(a) The suggested bonus of each salesgirl of the boutique is based on her perfornance. The following table shows the relation between level of performance and suggested bonus:

Level of performance	Suggested bonus $(\$ x)$
Excellent	$x>6500$
Good	$4500<x \leq 6500$
Fair	$x \leq 4500$

(i) From the 36 salesgirl, one of them is randomly selected. Given that the level of perfornance of the selected salesgirl is good, find the probability that her suggested bonus is less than $\$ 5500$.
(ii) From the 36 salesgirls, two of them are randomly selected.
(1) Find the probability that the level of perfornance of one selected salesgirl is excellent and that of the other is good.
(2) Find the probability that the levels of performance of the two selected salesgirls are different.

## 17C. 22 HKCEE MA 2009-I - 14

The frequency distribution table shows the lifetime (in hours) of a batch of randomly chosen light bulbs of brand $A$ and a batch of randomly chosen light bulbs of brand $B$.

Lifetime $(x$ hours $)$	Frequency	
	Brand $A$	Brand $B$
$1000 \leq x<1100$	8	4
$1100 \leq x<1200$	50	12
$1200 \leq x<1300$	42	40
$1300 \leq x<1400$	10	36
$1400 \leq x<1500$	10	28

(a) According to the above frequency distribution, which brand of light bulbs is likely to have a longer lifetime? Explain your answer.
(b) If the lifetime of a light bulb is not less than 1300 hours, then the light bulb is classified as good. Otherwise, it is classified as acceptable.
(i) If a light bulb is randomly chosen from the batch of light bulbs of brand $A$, find the probability that the chosen light bulb is acceptable.
(ii) If two light bulbs are randomly chosen from the batch of light bulbs of brand $A$, find the probability that at least one of the two chosen light bulbs is good.
(iii) The following 2 methods describe how 2 light bulbs are chosen from the 2 batches of light bulbs. Method 1: One batch is randomly selected from the two batches of light bulbs and two light bulbs are then randomly chosen from the selected batch.
Method 2: One light bulb is randomly chosen from each of the two batches of light bulbs.
Which one of the above two methods should be adopted in order to have a greater chance of choosing at least one good light bulb? Explain your answer.

## 17C. 23 HKCEE MA 2010-I 14

An athlete, Alice, of a school gets the following results (in seconds) in 10 practices of 1500 m race:

$$
279,280,264,267,283,281,281,266,284,265
$$

(a) Two results are randomly selected from the above results
(i) Find the probability that both the best two results are not selected.
(ii) Find the probability that only one of the best two results is selected.
(iii) Find the probability that at most one of the best two results is selected.
(b) Another athlete, Betty, of the school gets the following results (in seconds) in 10 practices of 1500 m rac̄e: $\quad 272,269,275,274,273,274,270,275,266,272$
Alice and Betty will represent the school to participate in the 1500 m race in the inter school athletic meet.
(i) Which athlete is likely to get a better result? Explain your answer.
(ii) The best record of the 1500 m race in the past inter school athletic meets is 267 seconds. Which athlete has a greater chance of breaking the record? Explain your answer.

17C. 24 HKCEE MA 2011 I 14
In a bank, the queuing times (in minutes) of 1 2ustomers are recorded as follows:

$$
5.1,5.2,5.4,6.1,6.7,7.1,7.4,7.7,7.8,8.4 \quad 9.0 \quad 10.1
$$

It is found that if the queuing time of a customer in the bank is less than 8 minutes, then the probability that
the customer makes a complaint is $\frac{1}{6}$. Otherwise, the probability that the customer makes a complaint is $\frac{1}{3}$.
(a) If a customer is randomly selected from the 1 Zustomers, find the probability that the selected customer does not make a complaint
(b) Two customers are now randomly selected from the 12 customers.
(i) If the queuing time of the selected customer is less than 8 minutes and the queuing time of the othe customer is not less than 8 minutes, find the probability that both of them do not make complaints.
(ii) Find the probability that the queuing times of both of the selected customers are not less than 8 minutes and both of them do not make complaints.
(iii) Is the probability of not making complaints by the two selected customers greater than the proba bility of making complaints by both of them? Explain your answer.

## 17C. 25 HKALEMS 1994-1

A day is regarded as humid if the relative humidity is over $80 \%$ and is regarded as dry otherwise. In city K , the probability of having a humid day is 0.7 .
(a) Assume that whether a day is dry or humid is independent from day to day.
(i) Find the probability of having exactly 3 dry days in a week.

## (ii) [Out of syllabus]

(iii) Today is dry. What is the probability of having two or more humid days before the next dry day?
(b) After some research, it is known that the relative humidity in city $K$ depends solely on that of the previous day. Given a dry day, the probability that the following day is dry is 0 . Ind given a humid day the probability that the following day is humid is 0.8 .
(i) If it is dry on March 19, what is the probability that it will be humid on March 20 and dry on March 21?
(ii) If it is dry on March 1 9what is the probability that it will be dry on March 21?
(iii) Suppose it is dry on both March 1 gand March 21 . What is the probability that it is humid on March 2 0?

## 17C. 26 HKALE MS 1 995-1 1

Madam Wong purchases cartons of oranges from a supplier every day. Her buying policy is to randomly select five oranges from a carton and accept the carton if all five are not rotten. Under usual circumstances $2 \%$ of the oranges are rotten.
(a) Find the probability that a carton of oranges will be rejected by Madam Wong.
(b) [Out of syllabus]
(c) Today, Madam Wong has a target of buying 20 acceptable cartons of oranges from the supplier. Instead of applying the stopping rule in (b), she will keep on inspecting the cartons until her target is achieved. Unfortunately, the supplier has a stock of 22 cartons only.
(i) Find the probability that she can achieve her target.
(ii) Assuming she can achieve her target, find the probability that she needs to inspect 20 cartons only.
(d) The supplier would like to import oranges of better quality so that each carton will have at least a $95 \%$ probability of being accepted by Madain Wong. If $r \%$ of these oranges are rotten, find the greatest acceptable value of $r$.

17C. 27 HKALE MS 19983
4 Ostudents participate in a 5 -day summer camp. The stem-and-leaf diagram below shows the distribution of heights in cm of these students.
(a) Find the median of the distribution of heights.
(b) A student is to be selected randomly to hoist the school flag every day during the camp. Find the probability that Stem (tens) | Leaf (units)
(i) the fourth day will be the first time that a student taller than 170 cm will be selected,
(ii) out of the 5 selected students, exactly 3 are taller than $17 \mathbb{c m}$.
$\begin{array}{llll}4 & 5 & 6 & 9\end{array}$
$\begin{array}{llllllllllllll}1 & 0 & 1 & 3 & 4 & 4 & 4 & 5 & 5 & 6 & 7 & 8 & 8 & 9\end{array}$
$\begin{array}{llllllllllllll}1 & 6 & 1 & 1 & 2 & 3 & 3 & 4 & 5 & 6 & 7 & 7 & 8 & 8 \\ 1 & 7 & 0 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & & & & \end{array}$

18	1	$4^{2}$

## 17C. 28 HKALEMS 1998 -

## John and Mary invite 8 friends to their Christmas party

(a) When playing a game, all of the 1 Qarticipants are arranged in a row. Find the number of arrangements that can be made if
(i) there is no restriction,
(ii) John and Mary are next to each other.
(b) By the end of the party, the participants are arranged in 2 rows of 5 in order to take a photograph. Find the number of arrangements that can be made if
(i) there is no restriction,
(ii) John and Mary are next to each other.

## 17C. 29 HKALE MS 19997

Three control towers $A, B$ and $C$ are in telecommunication contact by means of three cables $X, Y$ and $Z$ as shown in the figure $A$ and $B$ remain in contact only if $Z$ is operative or if both cables $X$ and $Y$ are operative. Cables $X, Y$ and $Z$ are subject to failure in any one day with probabilities $0.01 \mathrm{G}, 02$ and 0.0 respectively. Such failures occurs independently.
(a) Find, to 4 significant figures, the probability that, on a particular day
(i) both cables $X$ and $Z$ fail to operate,
(ii) all cables $X, Y$ and $Z$ fail to operate,

(iii) $A$ and $B$ will not be able to make contact.
(b) Given that cable $X$ fails to operate on a particular day, what is the probability that $A$ and $B$ are not able to make contact?
(c) Given that $A$ and $B$ are not able to make contact on a particular day, what is the probability that cable $X$ has failed?

## 17C. 30 HKALE MS 2002-7

Twenty two students in a class attended an examination. The stem and leaf diagram below shows the distri bution of the examination marks of these students.
(a) Find the mean of the examination marks.
(b) Two students left the class after the examination and their marks are deleted from the stem and leaf diagram. The mean of the remaining marks is then increased by 1.2 and there are two modes. Find the two deleted marks.
(c) Two students are randomly selected from the remaining 20 students. Find the probability that their marks are both higher than 75 .

Stem (tens)	Leaf (units)					
3	5	7				
4	2	4	6			
5	0	3	4	4	4	5
6	1	2	5	5	8	
7	3	8	9			
8	4	8				
9	5					

## 17C. 31 HKALE MS 200311

In a game, two boxes $A$ and $B$ each contains $n$ balls which are numbered $1,2, \ldots, n$. A player is asked to draw a ball randomly from each box. If the number drawn from box $A$ is greater than that from box $B$, the player wins a prize.
(a) Find the probability that the two numbers drawn are the same.
(b) Let $p$ be the probability that a player wins the prize.
(i) Find, in terns of $p$ only, the probability that the number drawn from box $B$ is greater than that from box $A$.
(ii) Using the result of (i), express $p$ in terms of $n$.
(iii) If the above game is designed so that at least $46 \%$ of the players win the prize, find the least value of $n$.
(c) Two winners, John and Mary, are selected to play another game. They take turns to throw a fair six sided die. The first player who gets a number ' 6 ' wins the game. John will throw the die first.
(i) Find the probability that John will win the game on his third throw
(ii) Find the probability that John will win the game.
(iii) Given that Mary has won the game, find the probability that Mary did not win the game before her third throw.

## 17C. 32 HKALE MS 200411

A manufacturer of brand $C$ potato chips runs a promotion plan. Each packet of brand $C$ potato chips contains either a red coupon or a blue coupon. Four red coupons can be exchanged for a toy. Five blue coupons can be exchanged for a lottery ticket. It is known that $30 \%$ of the packets contain red coupons and the rest contain blue coupons.
(a) Find the probability that a lottery ticket can be exchanged only when the 6 th packet of brand $C$ potato chips has been opened.
(b) A person buys 10 packets of brand $C$ potato chips.
(i) Find the probability that at least 1 toy can be exchanged.
(ii) Find the probability that exactly 1 toy and exactly 1 lottery ticket can be exchanged.
(iii) Given that at least 1 toy can be exchanged, find the probability that exactly 1 lottery ticket can also be exchanged.
(c) Two persons buy 10 packets of brand $C$ potato chips each. Assume that they do not share coupons or exchange coupons with each other.
(i) Find the probability that they can each get at least 1 toy.
(ii) Find the probability that one of them can get at least 1 toy and the other can get 2 lottery tickets.

## 17C. 33 HKALE MS 2005-6

Mrs. Wong has 12 bottles of fruit juice in her hitchen: 1 bottle of grape juice, 6 bottles of apple juice and 5 bottles of orange juice. She randomly chooses 4 bottles to serve her friends, Ann, Billy, Christine and Donald.
(a) Find the probability that exactly 2 bottles of otange juice are chosen by Mrs. Wong.
(b) Suppose that each of the four friends randomly selects a bottle of fruit juice from the 4 bottles offered by Mrs. Wong.
(i) If only 2 of the bottes of fruit juice offered by Mrs. Wong are orange juice, find the probability that both Ann and Billy select orange juice.
(ii) Find the probability that fewer than 4 of the bottles of fruit juice offered by Mrs. Wong are orange juice and both Ann and Billy select orange juice.

17C. 34 HKALE MS 20105
(Continued from 18B.14.)
The following stem-and-leaf diagram shows the distribution of the test scores of 21 students taking a statistics course. Let $\bar{x}$ be the mean of these 21 scores.
It is known that if the smallest value of these 21 scores is removed, the range is decreased by 27 and the mean is increased by 2 .
(a) Find the values of $a, b$ and $\bar{x}$.
(b) The teacher wants to select 6 students to participate in a competition by first excluding the student with the lowest score. If the students are randomly selected, find the probability that there will be
(i) no students with score higher than 70 begin selected;
(ii) at least 2 students with scores higher than 70 being selected.

Stem (Tens)	Leaf (Units)						
2	$a$						
3							
4	9						
5	0	0	1	3	7	7	
6	0	2	3	5	5	5	9
7	0	3	4	9			
8	2	$b$					

17C. 35 HKALEMS 20126
(Continued from 18C35.)
An educational psychologist adopts the Internet Addiction Test to measure the students' level of Internet addiction. The scores of a random sample of 30 students are presented in the following stem and leaf diagram. Let $\sigma$ be the standard deviation of the scores. It is known that the mean of the scores is 71 and the range of the scores is 56 .
(a) Find the values of $a, b$ and $\sigma$
(b) The psychologist classifies those scoring between 73 and 100 as excessive Internet users. If 4 students are selected randomly from the excessive Internet users among the students, find the probability that 3 of them will have scores higher than 80 .
(c) [Out of syllabus]

## 17C. 36 HKALE MS 2013-11

According to the school regulation, air conditioners can only be switched on if the temperature at 8 am exceeds $26^{\circ} \mathrm{C}$. From past experience, the probability that the temperature at 8 am does NOT exceed $26^{\circ} \mathrm{C}$ is $q(q>0)$. Assume that there are five school days in a week. For two consecutive school days, the probability that the air conditioners are switched on for not more than one day is $\frac{7}{16}$.
(a) (i) Show that the probability that the air-conditioners are switched on for not more than one day on two consecutive school days is $2 q-q^{2}$.
(ii) Find the value of $q$.
(b) The air conditioners are said to be fully engaged in a week if the air conditioners are switched on for all five school days in a week.
(i) Find the probability that the fifth week is the second week that the air conditioners are fully engaged.
(ii) [Out of syllabus]
(c) On a certain day, the temperature at 8 am exceeds $26^{\circ} \mathrm{C}$ and all the 5 classrooms on the first floor are reserved for class activities after school. There are 2 air-conditioners in each classroom. The number of air conditioners being switched off in the classroom after school depends on the number of students staying in the classroom. Assume that the number of students in each classroom is independent.

Case	I	II	II
Number of air conditioners being switched off	2	I	0
Probability	0.25	0.3	0.45

(i) What is the probability that all air-conditioners are switched off on the first floor after school?
(ii) Find the probability that there are exactly 2 classrooms with no air-conditioners being switched off and at most 1 classroom with exactly 1 air conditioner being switched off on the first floor after school.
(iii) Given that there are 6 air-conditioners being switched off on the first floor after school, find the probability that at least l classroom has no air conditioners being switched off.

17C. 37 HKDSE MA 2013-1 - 10
(Continued from 18C.41.)
The ages of the members of Committee $A$ are shown as follows:

$$
\begin{array}{llllllllll}
17 & 18 & 21 & 21 & 22 & 22 & 23 & 23 & 23 & 31 \\
31 & 34 & 35 & 36 & 47 & 47 & 58 & 68 & 69 & 69
\end{array}
$$

(a) Write down the median and the mode of the ages of the members of Committee $A$.
(b) The stem-and leaf diagram shows the distribution of the ages of the members of Committee $B$. It is given that the range of this distribution is 47 .
(i) Find $a$ and $b$.
(ii) From each committee, a member is randomly selected as the representative of that committee. The two representatives can join a competition when the difference of their ages exceeds 40. Find the probability that these two representatives can join the competition.

Stem (tens)	Leaf (units)			
2	$a$	5	6	7
3	3	3	8	
4	3			
5	1	2	9	
6	7	$b$		

## 17C 38 HKDSE MA 2014-I - 19

Ada and Billy play a game consisting of two rounds. In the first round, Ada and Billy take tums to throw a fair die. The player who first gets a number ' 3 ' wins the first round. Ada and Billy play the first round until one of them wins. Ada throws the die first
(a) Find the probability that Ada wins the first round of the game.
(b) In the second round of the game, balls are dropped one by one into a device containing eight tubes arranged side by side (see the figure). When a ball is dropped into the device, it falls randomly into one of the tubes. Each tube can hold at most three balls.
The player of this round adopts one of the following two options.
Option 1: Two balls are dropped one by one into the device. If the two balls fall into the same tube, then the player gets 10 tokens. If the two balls fall into two adjacent tubes, then the player gets 5 tokens. Otherwise, the player gets no tokens.
Option 2: Three balls are dropped one by one into the device. If the three balls fall into the same tube, then the player gets 50 tokens. If the three balls fall into three adjacent tubes, then the player gets 10 tokens. If the three balls fall into two adjacent tubes, then the player gets 5 tokens. Otherwise, the player gets no tokens.
(i) If the player of the second round adopts Option 1, find the expected number of tokens got.
(ii) Which option should the player of the second round adopt in order to maximise the expected number of tokens got? Explain your answer
(iii) Only the winner of the first round plays the second round. It is given that the player of the second round adopts the option which can maximise the expected number of tokens got. Billy claims that the probability of Ada getting no tokens in the game exceeds 0.9 . Is the claim correct? Explain your answer

## 17 Probability

## 17A Counting principles

17A. HKALEMS $1995-3$
(a) No of ways $=C_{6}^{18} C_{6}^{2} C_{6}^{6}=17153136$
(b) Required $\mathrm{p}=\frac{\left(C_{5}^{15} C_{1}^{\mathrm{B}}\right)\left(C_{j}^{10} \mathrm{C}_{1}^{2}\right)\left(C_{5}^{5} C_{1}^{\mathrm{l}}\right)}{17153136}=\frac{4040536}{17153136}=\frac{9}{34}$

17A. 2 HKALEMS 1999-6
(a) No of ways $=P_{2}^{3} \mathrm{Cl}_{10}^{6}=160160$
(b) $10,11,12,13,14,15,16$

17A. 3 HKALEMS 2011-5
(Each route is a 8 -step route consisting of 3 N 's and 5 E 's, such as NNNEEEEE or NNENEEEE.)
(a) Method d

The routes are all possible routes suburacted by the routes
going through $T_{1}$.
Method 2
The routes are all the routes that start from the junction in转 $A$.
$\therefore$ No of routes $=C_{2}^{7}=21$
(b) Noof ways $=C_{3}^{8} \quad C_{2}^{3} \times C_{1}^{3}=26$

17A. 4 HKDSEMA $2018-$ I- 15
(a) Required no $=81=40320$
(b) Required no $=P_{2}^{4} \times 6!=8640$

17A. 5 HKDSE MA 2019-I- 15
Required $\mathrm{no}=C_{5}^{12}+11 \quad C_{5}^{11}=200914$

17B Probability (short questions)
17B. 1 HKCEE MA 1981(1/3) -1-3
Method $l$ Required $p=\frac{1}{C_{2}^{+9}}=\frac{1}{780}$
Merhod 2 Required $p=\frac{2}{40} \times \frac{1}{39}=\frac{1}{780}$
17B. 2 HKCEE MA 1982(1/3)-I - 6
(a) Required $\mathrm{p}=\frac{3}{36}=\frac{1}{12}$
(b) Required $\mathrm{p}=\frac{3}{36}=\frac{1}{12}$
(c) Required $p=1 \quad \frac{1}{12}-\frac{1}{12}=\frac{5}{6}$

17B. 3 HKCEE MA 1996-I-7
(a) Area $=\pi(12)^{2} \quad \pi(2)^{2}=140 \pi\left(\mathrm{~cm}^{2}\right)$
(b) (i) Required $\mathrm{p}=\frac{140 \pi}{14 \pi} \times \frac{140 \pi}{144}=\frac{1225}{12}$
(ii) Required $\mathrm{p}=\frac{140 \pi}{144 \pi} \times \frac{4 \pi}{144 \pi} \times 2=\frac{35}{648}$

17B. 4 HKCEE MA 1998-I-11
(a) Required $p=\frac{8}{14} \times \frac{7}{13}=\frac{4}{13}$
(b) Required $\mathrm{p}=\frac{4}{13}+\frac{4}{14} \times \frac{3}{13}+\frac{2}{14} \times \frac{1}{13}=\frac{5}{13}$

17B. 5 HKCEE MA 1999-1-12
(a) Required $\mathrm{p}=75 \% \times 20 \%=0.15$
(b) Required $\mathrm{p}=\frac{2}{5} \times \frac{3}{4}+\frac{3}{5} \times \frac{2}{4}=\frac{3}{5}$

17B. 6 HKCEEMA2000-I- 12
(a) Required $p=\frac{9}{900}=\frac{1}{100}$
(b) Required $p=\frac{9 \times 9 \times 9}{900}=\frac{81}{810}$
(c) Required $p=1 \quad \frac{1}{100} \quad \frac{81}{100}=\frac{9}{50}$

17B. 7 HKCEE MA 2004-I-8
(a) Required $p=\frac{5}{9}$
(b) Required $p=1-P($ both odd $)=1-\left(\frac{5}{9}\right)^{2}=\frac{22}{27}$

17BS HKCEEMA $2006-\mathrm{I}-8$
(a) Sum $11 \times 10 \Rightarrow k \quad 24$
(b) Required $p=\frac{4}{10}=\frac{2}{5}$

17B. 9 HKCEEMA 2008-1-5
Favourable outcomess $4 \& 6$, 3 \& 7
$\therefore$ Required $p=\frac{2}{3 \times 2}=\frac{1}{3}$
17B. 10 HKCEE MA 2009-I -5
Required $\mathrm{p}=\frac{7+21}{7+21+30+53+57+32}=\frac{7}{50}$

17B. 11 HKALEMS 1994-1
(a) $B B, B G, G B, G G$
(b) (i) $\mathrm{BB}, \mathrm{BG}, \mathrm{GB}$
(ii) Required $\mathrm{p}=\frac{1}{3}$

17B. 12 HKALEMS 1994-3
The shortest paths must consist of 6 steps, among which 2 are 'up', 2 are 'forward' and 2 are 'right'.
(a) No of ways $=C_{2}^{6} C_{2}^{4} C_{2}^{2}=90$
(b) (i) No of ways $=C_{1}^{3} C_{1}^{2} C_{1}^{1}=6$
(ii) Required $p \quad \frac{6}{90}=\frac{1}{15}$

17B. 13 HKALE MS 1994-7
(a) Let the percentage of homosexual persons by $p$.


$$
\begin{aligned}
& \frac{790}{1200}=\frac{1}{3}(p)+\frac{2}{3}(1-p) \Rightarrow p=0.025 \\
& \therefore 2.5 \% \text { are homosexual. }
\end{aligned}
$$

(b) $P$ (Homol True) $=\frac{\frac{1}{3}(p)}{\frac{7 p 0}{200}}-1.27 \%(3$ s.E. $)$

17B. 14 HKALEMS 1995-5
$P($ No accident $)=70 \% \times 99 \%+30 \% \times 88 \%=0.957$
(a) $P(\mathrm{H} \mid$ No accident $)=\frac{30 \% \times 88 \%}{0.957}=0.276(3 \mathrm{~s} . \mathrm{f}$. $)$
(b) Methodl.
$P($ LiNo accident $)=\frac{70 \% \times 99 \%}{0.957}=0.724$ (3 s.f.)
Method 2

$$
\frac{\text { Method 2 }}{P(L \text { No accident })}=1-0.276=0.724 \text { (3 s.f.) }
$$

17B. 15 HKALEMS $1996-6$
(a) $P($ Accepted $)=P(A) P($ Accepted $[\mathrm{A})+P(B P($ Accepted $[\mathrm{B})$

$$
=\frac{1}{2} \times(1-4 \%)^{2}+\frac{1}{2} \times(1 \quad 1 \%)^{2}=0.95085
$$

(b) $P($ A $\mid$ Accepted $)=\frac{\frac{1}{2} \times(1-4 \%)^{2}}{0.98085}=0.485$ (3 s.e.)

17B. 16 HKALEMS 1997-7
(a) $P($ Not working $)=0.15 \times 0.24=0.036$
(b) $P($ Working $)=1-0.036=0.964$
$\Rightarrow$ Required $\mathrm{p}=\frac{0.85}{0.964}=0.882$ (3 s.f.)
(c) Required $p=(0.964)^{9}(0.036)=0.0259$ (3 s.f.)

## 17B. 17 HKALEMS 1998-6

(a) (i) Required $p=\frac{1}{8} \times\left(\begin{array}{ll}1 & 0.8 \%\end{array}\right)=0.124$
(ii) $\begin{aligned} \text { Required } p & =\frac{1}{8}\left(\begin{array}{ll}1 & 0.8 \%\end{array}\right)+\frac{2}{8}\left(\begin{array}{ll}1 & 0.2 \%\end{array}\right)+\frac{5}{8} \\ & =0.9985\end{aligned}$
(b) Required $\mathrm{p}=\frac{\frac{1}{8}(0.8 \%)}{1-0.9985}-\frac{2}{3}$

17B. 18 HKALEMS 1999-5
(a) Required $p=C_{3}^{10}(60 \%)^{5}(1-60 \%)^{s}=0.200658$ $=0.201$ ( 3 s.f.)
(b) Expected $\mathrm{no}=10 \times 60 \%=6$
(c) Required $p=(1-0.200658)^{2}(0200658)=0.128(3$ s.f.)

17B. 19 HKALEMS 2000-6
(a) Required $p=\frac{C_{3}^{4}}{C_{3}^{6}}=\frac{1}{5}$
(b) Required $\mathrm{p}=\frac{\mathrm{C}_{2}^{4} \mathrm{C}_{1}^{2}}{C_{3}^{6}}=\frac{3}{5}$

17B. 20 HKALEMS 2000-8
(a) Required $p=0.3 \times \frac{5}{9}+0.7 \times \frac{5}{6}=0.75$
(b) Let $a$ be the probabiity of generating game $A$
$a \times \frac{5}{9}+\left(\begin{array}{ll}1 & a) \times \frac{5}{6}=\frac{2}{3} \Rightarrow a=0.6\end{array}\right.$
$\therefore P($ Game $A)=0.6, P($ Game $B)=0.4$

17B. 21 HKALEMS 2001-6
(a) Required p $\frac{C_{2}^{0}}{C_{3}^{10}} \quad \frac{3}{10}$
(b) Required $p=\frac{C_{2}^{6}}{C_{3}^{10}}=\frac{1}{8}$
(c) Method I

Requined $p=\frac{C_{3}^{8}+C_{1}^{2} C_{2}^{8}}{C_{3}^{10}}=\frac{14}{15}$
Method 2
Required $p=1-P(2$ heaviest selected $)=1-\frac{C_{1}^{s}}{C_{3}^{0}}=\frac{14}{15}$

17B. 22 HKALEMS 2001-7
(a) Required $p=\quad 58 \% \times 39 \%$

$$
\begin{aligned}
& 65 \% \times 2 \\
& =0.375
\end{aligned}
$$

(b) Required $\mathrm{p}=(0.375)^{2}(1 \quad 0.375)^{2}=0.0343$ (3 s.f.)

17B. 23 HKALEMS2002-5
(a) Required $p=\frac{1}{3} \times \frac{6}{8}+\frac{1}{3} \times \frac{4}{7}+\frac{1}{3} \times \frac{2}{7}=\frac{15}{28}$
(b) Required $\mathrm{p}=\frac{\frac{1}{3} \times \frac{5}{8}}{\frac{15}{25}}=\frac{7}{13}$

17B. 24 HKA LBMS 2002-8
(a) $3 \mathrm{~W}, 3 \mathrm{Y}, 2 \mathrm{RIW}, 2 \mathrm{R} 1 \mathrm{Y}, 1 \mathrm{R} 2 \mathrm{~W}, 1 \mathrm{R} 2 \mathrm{Y}, 2 \mathrm{~W} 1 \mathrm{Y}, 1 \mathrm{~W} 2 \mathrm{Y}$, 1R1WIY
(b) Required $\mathrm{p}=\frac{C_{1}^{2} C_{2}^{11}}{C_{3}^{13}}=\frac{5}{13}$
(c) Method I
$\frac{\text { Method } I}{\text { Required } \mathrm{p}}=\frac{P(1 \text { R1W1Y })}{P(\text { Exactly } 1 \mathrm{R})}=\frac{C_{1}^{2} C_{1}^{5} C_{1}^{5}}{C_{1}^{2} C_{2}^{11}}=\frac{6}{11}$
Method 2
Required $\mathrm{p}=P$ (Exactly IWIY after IR is selected)

$$
=\frac{C_{1}^{5} C_{1}^{6}}{C_{2}^{1}}=\frac{6}{11}
$$

17B. 25 HKA MES 2003-12
(a) Required $p=1-P$ (No boy) $-P$ (No girl) $=1-\frac{C_{7}^{17}}{C_{7}^{30}}-\frac{C_{7}^{13}}{C_{7}^{30}}=\frac{38743}{39150}=0.990$
(b) Required $\mathrm{p}=\frac{P(4 \text { or } 5 \text { or } 6 \text { girls })}{\text { Prob in (a) }}$

17B. 26 HKA LBMS 2004-6
(a) Required $\mathrm{p}=1-P$ (all 3 same) $=1-\left(\frac{1}{10}\right)^{2}=\frac{99}{100}$
(b) Required $p=\frac{3!}{10^{3}}=\frac{3}{500}$
(c) Required $\mathrm{p}=C_{2}^{3}\left(\frac{4}{10}\right)^{2}\left(\frac{6}{10}\right)=\frac{36}{125}$

17B. 27 HKA LEMS $2004 \quad 10$
(a) Required $\mathrm{p}=7.5 \% \times 94 \%+(1-7.5 \%) \times 14 \%=0.2$
(b) Required $p=\frac{(1-7.5 \%) \times 14 \%}{0.2}=0.6475$

17B28 HKA LMS 2007-6
(a) Meriod 1 Required $p=\frac{C_{1}^{1} C_{2}^{4}}{C_{3}^{10}} \times \frac{1}{3}=\frac{1}{60}$

Method 2 Required $\mathrm{p}=\frac{1}{10} \times \frac{4}{9} \times \frac{3}{8}=\frac{1}{60}$
(b) Method I Required $\mathrm{p}=\frac{1}{60}+\frac{C_{1}^{s} C_{2}^{s}}{C_{1}^{00} C_{2}^{4}}=\frac{7}{45}$

Method 2 Required $\mathrm{p}=\frac{1}{60}+\frac{5}{10} \times \frac{5}{9} \times \frac{4}{8}=\frac{7}{45}$

## 17B. 29 HKA LBMS 2009-5

(a) Required $p=1-C_{1}^{15}(36 \%)(64 \%)^{14}-C_{1}^{15}(36 \%)^{2}(64 \%)^{13}$
 $=\frac{C_{1}^{3}(36 \%)(64 \%)^{4} \times C_{1}^{f}(36 \%)(64 \%)^{4} \times C_{2}^{3}}{C_{4}^{5}(36 \%)^{4}(645)^{11}}$
$=\frac{50}{91}=0.549$
178. 30 HKA LBMS 2011-4
$\begin{aligned} & \text { (a) Required } p \\ &=0.75^{2}\left(1-0.55^{2}\right)+0.75(1-0.75)(1-0.55)^{2}\end{aligned}$ $=0.75^{2}$
$=0.468$
(b) Requircd $\mathrm{p}=\frac{0.75^{2} \times 0.55(1 \quad 0.55) \cdot 2}{1-(1-0.55)^{2}}=0.349$

17B. 31 HKA LEMS011-5
(Each route is a 8 -step route consisting of 3 N 's and 5 E 's, such as NNNEEEEE of NNENEEBE.)
(a) Method I

The routes are all possible routes subtracted by the routes going through $T_{1}$.
. No of routes $=C_{3}^{8}-C_{3}^{2}=21$

## Method 2

The routcs are all the routes that start from the junction 1 N
from $A$. from $A$.
$\therefore$ No of routes $=C_{2}^{7}=21$
(b) No of ways $=C_{3}^{8}-C_{2}^{5} \times C_{1}^{3}=26$
(c) Required $\mathrm{p}=\frac{C_{2}^{7}-C_{1}^{4} \times C_{1}^{3}}{C_{3}^{8}}=\frac{9}{56}$

17B. 32 HKA LEMS 2013-4
(a) Required $p=\left(\frac{1}{4}\right)^{4} \times 4+\frac{4!}{4^{4}}=\frac{7}{64}$
(b) Required $p=\frac{\frac{4}{4}}{\frac{4}{4} \times \frac{3}{4}}=\frac{1}{8}$

17B. 33 HKDSE MA SP-I-16
(a) Required $\mathrm{p}=\frac{C_{1}^{5} \times C_{1}^{4}}{C_{4}^{3}}=\frac{10}{21}$
(b) Required $p=1 \quad \frac{10}{21}=\frac{11}{21}$

17B. 34 HKDSEMAPP-1-13
(a) Number of students $=6 \div \frac{3}{20}=40$
$\Rightarrow k=40-6-11 \quad 5 \quad 10=8$
17B. 35 HKDSEMA PP-I +6
(a) Required $p=\frac{C_{4}^{18}}{C_{4}^{30}}=\frac{68}{609}$
(b) Requured $\mathrm{p}=1-\frac{68}{699}-\frac{C_{4}^{12}}{C_{4}^{30}}=\frac{530}{609}$

17B. 36 HKDSEMA $20 \quad 1 \quad 2 \mathrm{I}$ I-16
(a) Required $\mathrm{p}=\frac{{ }_{9}^{C} \times\left(C_{1}^{2}\right)^{4}}{C_{4}^{1}}=\frac{8}{13}$
(b) Required $\mathrm{p}=1-\frac{8}{13}=\frac{5}{13}$

17B. 37 HKDSE MA 2013-I-16
(a) Required $p=\frac{C_{4}^{5} C_{2}^{11}+C_{5}^{5} C_{1}^{11}}{C_{6}^{16}}=\frac{1}{28}$
(b) Required $\mathrm{p}=1-\frac{1}{28}=\frac{27}{28}$

17B. 38 HKDSEMA 2015-I-3
Required $p=\frac{1+2+3}{4 \times 5}=\frac{3}{10}$
17B. 39 HKDSEMA 2015-I-16
(a) Required $p=\frac{C_{C}^{S} C^{9}}{C_{4}^{4}}=\frac{360}{1001}$
(b) Required $p=1-\frac{C_{9}^{2}}{C_{4}^{14}}-\frac{C_{1}^{\prime} C_{3}^{2}}{C_{4}^{14}} \quad \frac{5}{11}$

17B. 90 HKDSE MA 2016-I -9
(a) $x=2+4=6$
$y=37-15=22$
$z=37+3=40$
(b) Required $\mathrm{p}=\frac{22}{40}=\frac{2}{5}$

17B. 41 HKDSEMA 2016-I- 15
Required $p=\frac{P_{4}^{P} P_{5}^{S}}{(4+5) \mid}=\frac{5}{42}$
17B. 42 HKDSEMA 2017 I-7
(a) $x=360^{\circ} \times \frac{1}{9}=40^{\circ}$
(b) No of students $=180 \div \frac{360^{\circ}-90^{\circ}-158^{\circ} 40^{\circ}}{360^{\circ}}=900$

17B. 43 HKDSEMA 2017 - 11
(a) $(80+b)-61=22 \Rightarrow b=3$
$\frac{61+\cdots+(70+a)+\cdots+83}{15}=70 \Rightarrow a=2$

$$
\therefore \text { Median }=\$ 69, S D=\$ 7.33
$$

(b) Required $p=\frac{6}{15}=\frac{2}{5}$
178. 44 HKDSEMA 2017-1-17
(a) Required $\mathrm{p}=\frac{c_{1}^{7+8}}{c_{5}^{1+2+4 \%}}=\frac{5}{3876}$
(b) Required $\mathrm{p}=\frac{C_{3}^{4} \mathrm{Cl}_{2}^{15}}{C_{5}^{19}}=\frac{35}{969}$
(c) Required $p=1-\frac{5}{3876}-\frac{35}{969}=\frac{3731}{3876}$

17B.45 HKDSE MA 2018-I - 4
$\frac{8}{n+5+8}=\frac{2}{5} \Rightarrow n=7$
17B.46 HKDSE MA 2019-I-8
(a) 2
(b) Mean $=2 \times \frac{144^{\circ}}{360^{\circ}}+3 \times \frac{54^{\circ}}{360^{\circ}}+5 \times \frac{72^{\circ}}{360^{\circ}}+7 \times \frac{90^{\circ}}{360^{\circ}}=4$
(c) Required $\mathrm{p}=\frac{72+90}{360}=\frac{9}{20}$

17B. 47 HKDSE MA $2020-1-15$


17C Probability (structural questions)
17C. 1 HKCEEMA 1980(1/3) I-14
(a) Required $\mathrm{p}=\frac{9}{10} \times \frac{2}{3}=\frac{3}{5}$
(b) Required $\mathrm{p}=\frac{1}{10} \times \frac{9}{10} \times \frac{2}{3}+\frac{9}{10} \times \frac{1}{3} \times \frac{2}{3}=\frac{13}{50}$
(c) Required $\mathrm{p}=1-\left(\begin{array}{ll}1 & \frac{3}{5}\end{array}\right)^{2}=\frac{21}{25}$

17C. 2 HKCEE MA 1983(A /B) $-\mathrm{I}-1$
(a) Required $p=0.6^{3}=0.216$
(b) Required $p=(1-0.6)^{3}=0.064$
(c) Required $p=S_{1}^{3}(0.6)(0.4)^{2}=0.288$
(d) Method I

Required $p=1 \quad 0.216-0.064 \quad 0.288=0.432$
Method 2 Requircd $p=C_{2}^{3}(0.6)^{2}(0.4)=0.432$
17C3 HKCEEMA $1984(\mathrm{~A} / \mathrm{B})-\mathrm{I}-11$
(a) (i) Required $\mathrm{p}=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
(ii) Required $\mathrm{p}=\frac{1}{9} \times 3=\frac{1}{3}$
(iii) Required $\mathrm{p}=1-\frac{1}{3}=\frac{2}{3}$
(b) (i) Required $\mathrm{p}=\left(\frac{2}{7}\right)^{2}=\frac{4}{49}$
(ii) Required $\mathrm{p}=\frac{4}{49}+\left(\frac{2}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}=\frac{17}{49}$
(iii) Required $\mathrm{p}=1-\frac{17}{49}=\frac{32}{49}$

17C. 4 HKCEE MA 19 85(A /BI 10
(a) (i) Required $p=\frac{3+2+1}{36}=\frac{6}{36}=\frac{1}{6}$
(i) Required $p=\frac{6+4}{36}=\frac{5}{18}$
(b) (i) Required $\mathrm{p}=\left(1-\frac{5}{18}\right)^{2}=\frac{169}{324}$
(ii) Required $\mathrm{p}=2 \times \frac{5}{18} \times \frac{13}{18}=\frac{65}{162}$

17C. 5 HKCEE MA 19 86(A/B) $\ddagger-13$
(a) (i) Required $p=\frac{1}{s}$
(ii) Required $p=\frac{3}{75}=\frac{1}{25}$
(iii) Required $p=\frac{2 \times 4}{75}=\frac{8}{75}$
(b) (i) Required $p=\frac{1}{3} \times \frac{1}{3}=\frac{1}{9}$
(iii) Required $p=1-\frac{1}{9} \times 3=\frac{2}{3}$

17C. 6 HKCEE MA 1 987(A /B) $-1-13$
(a) Required $\mathrm{p}=\frac{5}{6}$
(b) Required $\mathrm{p}=\frac{1}{6} \times \frac{4}{5}=\frac{2}{15}$
(c) Required $\mathrm{p}=\frac{1}{6} \times \frac{1}{5}=\frac{1}{30}$
(d) Required $\mathrm{p}=\frac{3}{6} \times \frac{1}{5}=\frac{1}{10}$

17C. 7 HKCEE MA 1988-I-11
(a) (i) Median $=70$ marks
(ii) $\mathrm{IQR}=86-50=36$ (marks)
(b) (i) Number of students $=600-540=60$
(ii) Required $p=\frac{60}{600}=\frac{1}{10}$
(iii) (1) Required $p=\frac{C_{2}^{60}}{C_{2}^{500}}=\frac{59}{5990}$
(2) Required $p=1 \quad \frac{C_{2}^{560}}{C_{2}^{600}}=\frac{1139}{5990}$

17C. 8 HKCEE MA $1989-\mathrm{I}-13$
(a) $\left\{\begin{array}{l}p=3 q \\ p+q=1\end{array} \Rightarrow q=0.25\right.$
(b) (i) Required $p=\frac{n}{10} \times \frac{n-1}{9}=\frac{n(n-1)}{90}$
(ii) $\frac{n(n-1)}{90}>\frac{1}{3} \Rightarrow n^{2}-n-30>0$ $\Rightarrow n<-5$ or $n>6$
$\therefore$ Possible $n$ ' $s=7,8,9,10$
(c) Required $p=\frac{1}{2} \times \frac{4}{6}+\frac{1}{2} \times \frac{3}{6}=\frac{7}{12}$

17C. 9 HKCEE MA 1990-I-13
(a) (i) Required $p=\frac{1}{3} \times \frac{2}{3}=\frac{2}{9}$
(ii) Required $p=$
(b) (i) Required $\mathrm{p}=\frac{2}{9} \times \frac{1}{3} \times \frac{2}{3}=\frac{4}{81}$
(ii) Required $\mathrm{p}=\left(\frac{1}{3} \times \frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{2} \quad \frac{10}{81}$

17C. 10 HKCEE MA 1991-I-10
(a) (i) Required $\mathrm{p}=\left(\begin{array}{ll}1 & 70 \%\end{array}\right)(70 \%)=0.21$
(ii) Required $\mathrm{p}=70 \%+0.21=0.91$
$\begin{aligned} \text { (iii) } \text { Required } \mathrm{p} & =0.91 \times[60 \%+(1 \quad 60 \%)(60 \%)]\end{aligned}$
(b) Expected number $=10000 \times 0.7644=7644$

17C. 11 HKCEE MA 1992-1-10
(a) (i) Required $p=1 \quad \frac{2}{5}=\frac{3}{5}$
(ii) Required $p=1 \quad \frac{4}{7}=\frac{3}{7}$
(iii) Required $p=\frac{3}{5} \times \frac{1}{7}=\frac{3}{35}$
(iv) Required $p=\frac{2}{5}\left(1-\frac{1}{7}\right)=\frac{12}{35}$
(b) (i) Required $p=\frac{1}{7} \times \frac{2}{7} \times 2=\frac{4}{49}$
(ii) Required $p=\left(\frac{2}{5} \times \frac{2}{7}\right) \times\left(\frac{3}{5} \times \frac{2}{7}\right) \times 2=\frac{48}{1225}$

## 17C. 12 HKCEE MA $1993-\mathrm{I}-13$

(a) (i) Required $\mathrm{p}=0.65 \times 0.45=0.2925$
(ii) Required $p=0.2925+(0.25+0.1) \times 0.55=0.485$
(b) (i) Required $\mathrm{p}=\left(\frac{40000 \times 70 \%}{60000}\right)^{2}=\frac{49}{225}$
(ii) Req. $\mathrm{p}=\left(\frac{40000 \times 70 \%+20000 \times 40 \%}{60000}\right)^{2}-\frac{9}{25}$
(iii) Required $p=1 \frac{9}{25}\left(\frac{6000036000}{60000}\right)^{2}=\frac{12}{25}$

17C. 13 HKCEE MA 1994-I-9
(a) (i) Required $p=\left(\frac{1}{7}\right)^{3}=\frac{1}{343}$
(ii) Required $p=\left(\frac{6}{7}\right)^{3}=\frac{216}{343}$
(b) (i) Required $p=\left(\frac{1}{10}\right)^{2}\left(\frac{9}{10}\right)=\frac{9}{1000}$
(ii) Required $p=\frac{9}{1000} \times 3=\frac{27}{1000}$
(c) Required $p=\frac{1}{2} \times \frac{1}{7}+\frac{1}{2} \times \frac{1}{10}=\frac{17}{140}$

17C. 14 HKCEE MA 1995-I-11
(a) (i) $p=1-\frac{4}{5}=\frac{1}{5}$
(ii) $q=0, r=1$
(b) (i) Required $p=\frac{1}{2} \times$
(ii) (1) Required $p=\frac{1}{2} \times \frac{1}{3}+\frac{1}{2}=\frac{2}{3}$
(2) Required $p=\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$

## 17C. 15 HKCEE MA 1997-I-14

(a) (i) Required $p=\frac{C_{2}^{40}}{C_{50}^{50}}=\frac{156}{245}$
(ii) Required $p=\frac{C_{1}^{10} C_{1}^{40}}{C_{2}^{50}}=\frac{16}{49}$
(iii) Required $p=\frac{C_{2}^{10}}{C_{2}^{50}}=\frac{9}{245}$
(iv) Required $p=0$
(b) (i) Required $p=\frac{156}{245}+\frac{9}{245}=\frac{33}{49}$
(ii) Required $\begin{aligned} p & =1-\left(\frac{156}{245}\right)^{2}\left(\frac{16}{49}\right)^{2}-\left(\frac{9}{245}\right)^{2} \\ & =0.487\end{aligned}$

## 17C. 16 HKCEEMA 2002-1-12

(a) $\qquad$

$5<x \leq 15$	34	Book coupon
$15<x \leq 25$	64	Bronze medal
$25<x \leq 35$	25	Silver


$25<x \leq 35$	26	Sliver medal
$35<x<50$	10	Gold medal

## (b) $\mathrm{IQR}=23 \quad 4=19$

(c) Number of medallists $=200-100=100$
(i) Required $p=\frac{C_{2}^{10}}{C_{2}^{100}}=\frac{1}{110}$
(ii) Required $p=1-\frac{1}{110} \sim \frac{C_{2}^{26}}{C_{2}^{100}} \quad \frac{C_{2}^{64}}{C_{2}^{100}}=\frac{1282}{2475}$

17C. 17 HKCEE MA $2003-\mathrm{I}-16$
(a) Required $p=\frac{9}{10} \times \frac{1}{2}=\frac{9}{20}$
(b) (i) Required $\mathrm{p}=\frac{23}{25} \times \frac{1}{2}=\frac{23}{50}$
(ii) (1) Required $p=\frac{2}{3} \times \frac{9}{20}+\frac{1}{34} \times \frac{23}{50}=\frac{34}{75}$
(2) Required $p=1-\frac{34}{75}=\frac{41}{75}$

## 17C. 18 HKCEE MA 2005-1-11

(a) Required $p=\frac{1}{2}$
(b) Required $p=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
(c) Required $p=1 \quad \frac{1}{2} \times \frac{1}{2}=\frac{3}{4}$
(d) Required $p=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$

17C. 19 HKCEE MA 2006-I- 14
(a) (i) Class A: IQR $39 \quad 18=21$ (marks) Class $B: \mathrm{IQR}=25-11=14$ (marks)
(ii) $\because \mathrm{IQR}$ of $B<\mathrm{IQR}$ of $A$

Class $B$ is less dispersed
(b) (i) Required $p=\frac{C_{2}^{18+10} C_{1}^{2}}{C_{3}^{50}}=\frac{297}{700}$
(ii) Required $p=\frac{\left(C_{2}^{18}+C_{2}^{10}\right) C_{1}^{23}}{C_{3}^{50}}=\frac{1089}{4900}$
(iii) Required $p=\frac{\frac{1089}{4500}}{\frac{257}{4500}}=\frac{11}{21}$

17C. 20 HKCEE MA 2007 -I- 15
(a) (i) Required $\mathrm{p}=\frac{48}{80}=\frac{3}{5}$
(ii) Required $p=\frac{12}{80}=\frac{3}{20}$
(iii) Required $\mathrm{p}=\frac{48+4}{80}=\frac{13}{20}$
(iv) Required $p=\frac{12}{48}=\frac{1}{4}$
(b) (i) Required $p=\frac{\mathrm{C}_{2}^{16}}{\mathrm{C}_{2}^{6 i+}}=\frac{3}{79}$
(ii) $\because P($ same stre) $)=\frac{C_{2}^{28}}{C_{2}^{80}} \div \frac{C_{2}^{36}}{C_{2}^{80}}+\frac{3}{79}=\frac{141}{392}<\frac{1}{2}$ NO
17C. 21 HKCEEMA 2008-I-14
(a) (i) Required $p=\frac{9}{15}=\frac{3}{5}$
(ii) (1) Required $p=\frac{8 \times 15}{C_{2}^{36}}=\frac{4}{21}$
(2) Required $p=1-\frac{C_{2}^{8}}{C_{2}^{36}}-\frac{C_{2}^{15}}{C_{2}^{36}}-\frac{C_{2}^{13}}{C_{2}^{36}}=\frac{419}{630}$

17C. 22 HKCEE MA 2009-1-14
(a) For Brand $A$,
mean $=\frac{1050 \cdot s+1150 \cdot 50+1250 \cdot 42+1350 \cdot 10+1450 \cdot 10}{120}$
$\begin{aligned} \text { mean } & =1220(\mathrm{~h})\end{aligned}$
For Brand $B$
mean $=\frac{1050 \cdot 4+1150 \cdot 12+1250 \cdot 40+1350 \cdot 36+1450 \cdot 28}{}$ $\begin{aligned} \text { maxn } & =1310(\mathrm{~h})>1220(\mathrm{~h}) \quad 120\end{aligned}$ $=1310$
Brand $B$
(b) (i) Required $\mathrm{p}=\frac{8+50+42}{\frac{120}{5}}=\frac{5}{6}$
(ii) Required $\mathrm{p}=1-\frac{5}{6} \times \frac{99}{119}=\frac{73}{238}$
(iii) Method 1: required $p=\frac{1}{2} \cdot \frac{73}{238}+\frac{1}{2}\left(\begin{array}{l}1 \\ C_{2}^{56} \\ C_{2}^{200}\end{array}\right)$
$=\frac{779}{1428}$
Method 2: requiued $p=1-\frac{5}{6} \times \frac{56}{120} \quad \frac{11}{18}>\frac{779}{1428}$

17C 23 HKCEE MA 2010-1-14
(a) (i) Required $p=\frac{C_{2}^{8}}{C_{2}^{10}}=\frac{28}{45}$
(ii) Required $p=\frac{C_{1}^{2} C_{1}^{8}}{C_{2}^{0}}=\frac{16}{45}$
(iii) Method 1 Required $\mathrm{p}=\frac{28}{45}+\frac{16}{45}=\frac{44}{45}$

$$
\text { Merhod 2 Required } p=1 \quad \frac{1}{C_{2}^{10}}=\frac{44}{45}
$$

(b) (i) Alice's mean $=275 \mathrm{~s}$, Betty's mean $=272 \mathrm{~s}<275$ Betty
(ii) Alice got 3 results $<267 \mathrm{~s}$ but Betty only got 1 .

Alice
17C. 24 HKCEE MA 2011-I- 14
(a) Required $p=\frac{9}{12}\left(1-\frac{1}{6}\right)+\frac{3}{12}\left(\begin{array}{ll}1 & \frac{1}{3}\end{array}\right)=\frac{19}{24}$
(b) (i) Required $p=\frac{5}{6} \times \frac{2}{3}=\frac{5}{9}$
(ii) Required $\mathrm{p}=\left(\frac{3}{12} \cdot \frac{2}{3}\right) \times\left(\frac{2}{11} \cdot \frac{2}{3}\right)=\frac{2}{99}$
(iii) $\begin{aligned} & P \text { (both not making complaints) } \\ = & \left(\frac{9}{12} \cdot \frac{5}{6}\right) \cdot\left(\frac{8}{11} \cdot \frac{5}{6}\right)+2\left(\frac{3}{12} \cdot \frac{9}{11} \cdot \frac{5}{9}\right)+\frac{2}{99}\end{aligned}$

$$
=\frac{62}{99}>\frac{1}{2} \Rightarrow \mathrm{YES}
$$

17C. 25 HKALE MS 1994-11
(a) (i) Required $\mathrm{p}=C_{3}^{7}(30 \%)^{3}(70 \%)^{4}=0227$
(iii) Required $p$
$=1-P($ next day dry) $-P($ next day humid, then dry $)$
$=1-30 \%-(70 \%)(30 \%)$
$1-30 \%-(70 \%)(30 \%)=0.49$
(b) (i) Required $\mathrm{p}=\left(\begin{array}{ll}1-0.9\end{array}\right)(1 \quad 0.8)=0.02$
(ii) Required $\mathrm{p}=P(20 \mathrm{dry}, 21 \mathrm{dry})+P(20 \mathrm{hmd} .21 \mathrm{dry})$ $=0.02+(0.9)(0.9)=0.83$
(iii) Required $p=\frac{0.02}{0.83}=0.0241$

17C. 26 HKALE MS 1995-11
(a) Required $\mathrm{p}=1-\left(\begin{array}{ll}1 & 2 \%\end{array}\right)^{5}=0.096079=0.0961$ (3 s.f.)
(c) (i) $\frac{\text { Method } I}{\text { Required } p}$
$=P(22$ good $)+P(21 \operatorname{good} 1$ bad $)+P(20 \operatorname{good} 2$ bad $)$ $=(0.903921)^{22}+C_{1}^{22}(0.903921)^{21}(0.096079)$
$=0.64455=0.645(3$ s.f. $)\left(+C_{2}^{22}(0.903921)^{20}(0.096079)\right.$
Method 2
Required $p=P(1$ st 20 accepted $)$
$+P(1$ rejected in 1 st 20,21 st accepted $)$
$+P(2$ rejected in 1 st 21,22 nd accepted $)$ $=(0.903921)^{20}$
$+C_{1}^{20}(0.096079)(0.903921)^{20}$
$=0.64455=\overline{0} .645$ ( 3 s.f.)
(ii) Required $p=\frac{(0.903921)^{20}}{0.64455}=0.206$
(d) $(1 r \%)^{5} \geq 0.95 \Rightarrow 1 r \% \geq \sqrt[5]{0.95} \Rightarrow r \leq 1.02$ Hence, the greatest acceptable value of $r$ is 1.02 .

17C. 27 HKALEMS 1998 - 3
(a) Median $=(161+162) \div 2=161.5(\mathrm{~cm})$
(b) (i) Required $\mathrm{p}=\left(\frac{31}{40}\right)^{3}\left(\frac{9}{40}\right)=0.105$
(ii) Required $\mathrm{p}=C_{3}^{5}\left(\frac{31}{40}\right)^{2}\left(\frac{9}{40}\right)^{3}=0.0684$

## 17C. 28 HKALE MS 1998-5

(a) (i) No of arrangements $=10!=3628800$
(ii) No of arrangements $=9!\times 2!=725760$
(b) (i) No of arrangements $=10!=3628800$
(ii) Method I

No of arrangements $=(9!-8!) \times 2!=645120$ Method 2
No of arrangements $=C_{3}^{8} \times 4!\times 2!\times 5!\times 2!=645120$
$\frac{\text { Method } 3}{\text { No of arrangements }}=8!\times 2 \times 8=645120$
17C. 29 HKALE MS 1999-7
(a) (i) Required $\mathrm{p}=0.015 \times 0.030=0.00045$
(ii) Required $\mathrm{p}=0.015 \times 0.025 \times 0.030=0.00001125$
(iii) Required $\mathrm{p}=0.00045+0.025 \times 0.030-0.00001125$ $=0.00118875=0.001189(4$ s.f.)
(b) Required $p=0.030$
(c) Requi redp $=\frac{0.015 \times 0.030}{0.00118875}=0.379$

17C. 30 HKALEMS 2002 -
(a) Mean $=61$
(b) Si ncethere are two modes, one deleted mark is 54. The other mark $=61 \times 22-(61+1.2) \times 20 \quad 54=44$
(c) Required $p=\frac{C_{2}^{5}}{e^{20}}=\frac{1}{19}$

17C. 31 HKALE MS 2003-11
(a) Required $p=\frac{1}{n}$
(b) (i) Required $\mathrm{p}=\mathrm{p}$
(ii) $p+p+\frac{1}{n}=1 \Rightarrow p=\left(1-\frac{1}{n}\right) \div 2=\frac{1}{2}-\frac{1}{2 n}$
(iii) $\frac{1}{2}-\frac{1}{2 n} \geq 0.46 \Rightarrow n \geq 12.5 \Rightarrow$ Jeast $n=13$
(c) (i) Required $p=\left(\frac{5}{6}\right)^{4} \frac{1}{6}=\frac{625}{7770}$
(ii) Required $\mathrm{p}=\frac{1}{6}+\left(\frac{5}{6}\right)^{2} \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \frac{1}{6}+\left(\frac{5}{6}\right)^{6} \frac{1}{6}+\ldots$

$$
\frac{\frac{1}{6}}{1-\left(\frac{5}{6}\right)^{2}}=\frac{6}{11}
$$

(iii) Required $p=\frac{\left(1-\frac{6}{11}\right)-\left(\frac{5}{6}\right) \frac{1}{6}\left(\frac{5}{6}\right)^{3} \frac{1}{6}}{1-\frac{6}{11}}=\frac{625}{1296}$

17C. 32 HKALE MS 2004-11
(a) Required $p=C_{4}^{5}(70 \%)^{4}(30 \%) \times 0.7=0.252105$
(b) (i) Required $p=1-(0.7)^{10} \sim C_{1}^{10}(0.7)^{9}(0.3)$
$-C_{2}^{10}(0.7)^{8}(0.3)^{2}-C_{3}^{10}(0.7)^{7}(0.3)^{3}$
$=0.350380$ $=0.350389=0.350(3$ s.f..$)$
(i) Required $p=C_{4}^{10}(0.7)^{6}(0.3)^{4}+C_{5}^{10}(0.7)^{5}(0.3)^{5}$ $=0.303040=0.303$ ( 3 s.f.)
(iii) Required $\mathrm{p}=\frac{0.303040}{0.350389}=0.865$
(c) (i) Required $\mathrm{p}=(0.350389)^{2}=0.123$
(ii) Required $\mathrm{p}=(0.350389)(0.7)^{10} \times 2=0.0198$

## 17C. 33 HKALEMS 20056

(a) Required $p=\frac{C_{2}^{5} C_{2}^{7}}{C_{4}^{12}}=\frac{14}{33}$
(b) (i) Merhod I Required $\mathrm{p}=\frac{P_{2}^{2} \times P_{2}^{2}}{P_{4}^{4}}=\frac{1}{6}$

Method 2 Required $\mathrm{p}=\frac{C_{2}^{2}}{C_{2}^{4}}=\frac{1}{6}$
(ii) $\frac{\text { Method I }}{\text { Required } p}=\frac{14}{33} \times \frac{1}{6}+\frac{C_{3}^{5} C_{1}^{7}}{C_{4}^{12}} \times \frac{P_{2}^{3} \times P_{2}^{2}}{P_{4}^{4}}=\frac{14}{99}$
$\underline{\text { Merhod } 2}$ Required $p=\frac{14}{33} \times \frac{1}{6}+\frac{C_{3}^{5} C_{1}^{7}}{C_{4}^{12}} \times \frac{C_{2}^{3}}{C_{2}^{4}}=\frac{14}{99}$

17C. 34 HKALE MS 2010-5
(a) $\begin{aligned} 49-(20+a)=27 \Rightarrow a & =\mathbf{2} \\ \frac{49+(80+b)}{20+49+\cdots+(80+b)} \begin{array}{l}21 \\ 20\end{array} & =2 \\ \frac{1274+b}{20}-\frac{1296+b}{21} & -2 \\ b & =6\end{aligned}$
$\bar{x}=(1296+6) \div 21=62$
(b) (i) Required $\mathrm{p}=\frac{\mathrm{C}_{6}^{15}}{\mathrm{c}_{6}^{20}} \quad \frac{1001}{7752}$
(ii) Required $p=1-\frac{1001}{7752}-\underset{C_{6}^{5}}{\substack{5 \\ C_{5}^{20}}}=\frac{937}{1938}$

17C. 35 HKALE MS 2012-6
(a) $\frac{(30+a)+52+\cdots+92+(90+b)}{30}=71$ $2120+a+b=2130$
$(90+b)-(30 \div a)=56 \Rightarrow a-b=4$
Solving. $a=7 . b=3$
$\Rightarrow \sigma=12.7$
(b) Required $p=\frac{C_{3}^{7} C_{1}^{6}}{C_{6}^{13}}=\frac{42}{143}$

17C. 36 HKALE MS 2013-11
(a) (i) Required $p=1-(1-q)^{2}=2 q-q^{2}$
(ii) $2-q^{2}=\frac{7}{16} \Rightarrow=0.25$ or 1.75 (rejected)
(b) (i) $P$ (a week is fully engaged) $=(1-q)^{5}=0.75^{5}$ $\therefore$ Required $\mathrm{p}=C_{1}^{1}\left(0.75^{5}\right)\left(1-0.75^{5}\right)^{3} \times 0.75^{5}$
(c) (i) Required $\mathrm{p}=0.25^{5}=$
(ii) Required $\left.\mathrm{p}=\mathrm{C}_{2}^{5}(0.45)^{\frac{1024}{(0.25}}+C_{1}^{3}(0.25)^{2}(0.3)\right)$
(iii) $P(6 \mathrm{a} / \mathrm{c}$ switched off $)=C_{1}^{5}(0.25)(0.3)^{4}$
$+C_{2}^{5}(0.25)^{2} C_{2}^{3}(0.3)^{3}(0.25)+C_{3}^{5}(0.25)^{3}(0.45)^{2}$
${ }^{5}(0.25)(0.3)^{4}$
$\therefore$ Required $\mathrm{p}=1-\frac{C_{1}^{5}(0.25)(0.3)^{4}}{0.117703125}=0.914$

17C. 37 HKDSE MA 2013-1-10

## (a) Median $=3$

Mode $=23$
(b) (i) $(60+b)-(20+a)=47 \Rightarrow b-a=$

$$
\because 0 \leq a \leq 5 \text { and } 7 \leq b \leq 9
$$

$\therefore(a, b)=(0,7),(1,8)$ or $(2,9)$
(ii) Required $\mathrm{p}=\frac{3+3+3+3+2+9+9}{20 \times 13}=\frac{8}{65}$

17C. 38 HKDSE MA 2014-I-19
(a) Required $p=\frac{1}{6}+\left(\frac{5}{6}\right)^{2} \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \frac{1}{6}+\left(\frac{5}{6}\right)^{6} \frac{1}{6}+\ldots$

$$
=\frac{\frac{1}{6}}{1-\left(\frac{5}{6}\right)^{2}}-\frac{6}{11}
$$

(b) (i) Expected no $=10 \times \frac{1}{8}+5 \times \frac{7 \cdot 2!}{8^{2}}=\frac{75}{32}$
(ii) Expected no of tokens with Option 2
$\begin{aligned}=50 \times \frac{1}{8^{2}}+10 \times \frac{6 \cdot 3!}{8^{3}}+5 \times \frac{7 \times 2 \times C_{2}^{3}}{8^{3}} & =\frac{485}{256} \\ & <\frac{75}{32}\end{aligned}$
Option
(iii) $P($ Ada getting no tokens $)=1-\frac{1}{6} \times\left(\frac{1}{8}+\frac{7 \cdot 2!}{8^{2}}\right)$
$=\frac{13}{16}<0.9$

NO

## 18 Statistics

## 18A Presentation of dat

## 18A. 1 HKCEE MA 1982(1)-I -

In a certain school, the numbers of students living on Hong Kong Island, in Kowloon and the New Territories are in the ratios $2: 7: 3$. The pie-chart in the figure shows the distribution
(a) Find $x, y$ and $z$.
(b) If the number of students living on Hong Kong Island is 240 , find the total number of students in the school.


18A. 2 HKCEE MA 1982(3) $-\mathrm{I}-12$

(a) The pie chart in Figure (1) shows how Mr Wong's income was distributed between his expenses and savings for March. If his rent is $\$ 2000$, find Mr Wong's income for that month.
(b) The table below shows the percentage changes when each item of Mr Wong's expenses in April is compared with that in March

Item	Food	Rent	Travelling	Education	Miscellaneous   items	Savings
Percentage   Change	Increased   by $10 \%$	Increased   by $30 \%$	Increased   by $30 \%$	No change	No change	$?$

The pie chart in Figure (2) shows how Mr Wong's income was distributed between his expenses and savings for April.
(i) Suppose that Mr Wong's income in March and April were the same.
(1) Find $x, y$ and $z$ in Figure (2).
(2) Calculate the percentage change in Mr Wong's savings for April when compared with those for March.
(ii) If Mr Wong's income in April actually increased by $37.5 \%$, what percentage of his income in April was spent on food?

18A. 3 HKCEE MA 1985(A/B) - I-7
The pie-chart in the figure shows the distribution of traffic accidents in Hong Kong in 1983. There were 4200 traffic accidents on H.K. Island, 9240 accidents in Kowloon and $n$ accidents in the New Territories. Find $n$ and $x$.


18A. 4 HKCEE MA 1998 -I - 10
The cumulative frequency polygon of the distribution of test scores of 200 students


Two hundred students took a test in Mathematics. The figure shows the cumulative frequency polygon of the distribution of the test scores.
(a) Complete the tables below.

Test score $(x)$	Cumulative frequency
$x \leq 50$	8
$x \leq 60$	50
$x \leq 70$	
$x \leq 80$	
$x \leq 90$	188
$x \leq 100$	200


Test score $(x)$	Frequency
$40<x \leq 50$	8
$50<x \leq 60$	42
$60<x \leq 70$	
$70<x \leq 80$	
$80<x \leq 90$	30
$90<x \leq 100$	12


$90<x \leq 100$	12
f the students in the test.	

## 18A. 5 HKCEE MA 1999-I- 11

A school conducted a survey on the placement of her S .5 graduates lastyear. There were 200 graduates, of which 120 were boys and 80 were girls. The placement of the boys was shown in the figure.
(a) Find the number of boys who repeated S.5.
(b) Among all the boys promoted to $S .6$, what percentage of them was promoted in their own school?
(c) The result of the survey also showed that $22.5 \%$ of the girls were promoted to $S .6$ in their own school. Find the percentage of graduates promoted toS. 6 in their own school.


The expenditure of Ada in February 2006
18A. 7 HKCEE MA 2007 - I-12
The bar chart and pie chart in the figure show the distribution of the numbers of keys owned by the students in class $A$. The numbers of students having 2 keys, 3 keys and 4 keys are 12,17 and $k$ respectively.

Distribution of the numbers of keys owned by the students in class $A$

(a) Find the value of $k$.
(b) Find the number of students in class $A$.
(c) Find the probability that a randomly selected student in class $A$ has only 1 key.
(d) It is given that the numbers of students in class $A$ and class $B$ are the same. The distributions of the numbers of keys owned by the students in class $A$ and class $B$ are also the same. The two classes are now combined to form a group. On each of the bar chart and the pie chart in the figure, is there a modification needed in order that the statistical chart can show the distribution of the numbers of key owned by the students in this group? If your answer is 'yes', write down the modification needed.

## 18A. 8 HKDSE MA SP $-1 \quad 9$

In the figure, the pie chart shows the distribution of the numbers of traffic accidents occurred in a city in a year. In that year, the number of traffic accidents occurred in District $A$ is $20 \%$ greater than that in District $B$.
(a) Find $x$
(b) Is the number of traffic accidents occurred in District $A$ greater than that in District C? Explain your answer.


The distribution of the numbers of traffic accidents occurred in the city

## 18A. 9 HKDSE MA PP $-\mathrm{I}-13$

The bar chart below shows the distribution of the most favourite fruits of the students in a group. It is given that each student has only one most favourite fruit.


If a student is randomly selected from the group, the probability that the most favourite fruit is apple is $\frac{3}{20}$. (a) Find $k$
(b) Suppose that the above distribution is represented by a pie chart.
(i) Find the angle of the sector representing that the most favourite fruit is orange.
(ii) Some new students now join the group and the most favourite fruit of each of these students is orange. Will the angle of the sector representing that the most favourite fruit is orange be doubled? Explain your answer.
18A. 10 HKDSE MA 2016-I -9
The frequency distribution table and the cumulative frequency distribution table below show the distribution
of the heights of the plants in a garden.

Height $(\mathrm{m})$	Frequency
$0.1-0.3$	$a$
$0.4-0.6$	4
$0.7-0.9$	$b$
$1.0-1.2$	$c$
$1.3-1.5$	15
$1.6-1.8$	3

(a) Find $x, y$ and $z$.

Height less than $(\mathrm{m})$	Cumulative frequency
0.35	2
0.65	$x$
0.95	13
1.25	$y$
1.55	37
1.85	$z$

246

## 18B Measures of central tendency

18B. 1 (HKCEE MA 1983(B) I 3)
The table shows the distribution of the marks of 1000 students in mathematics test:
(a) Find the class mark of the class $50-59$.
(b) Estimate the mean of the distribution of marks.

Class of Marks	Number of Students
$40-49$	100
$50 \quad 59$	300
$60-69$	400
$70 \quad 79$	200

18B. 2 HKCEE MA 1984(A/B)-I 2
The table shows the distribution of the marks of a group of students in a short test:
If the mean of the distribution is 3 , find the value of $x$.

Marks	1	2	3	4	5
Number of Students	10	10	5	20	$x$

## 18B3 HKCEE MA 1986(A/B) I-3

The table shows the number of students in three classes of a school and their average marks in a test.
If the overall average mark of the three classes is 60 , find $x$.


## 18B. 4 HKCEE MA 1991 - I-1

In the figure, the cumulative frequency polygon shows the distribution of the marks of 80 students in a Mathematics test.
(a) From the figure, write down the median of the distribution.
(b) Complete the table below.

Hence find the mean mark of the students in the test.

Marks	No. of students
$20-29$	
$30-39$	
$40 \quad 49$	
$50-59$	
$60-69$	



## 18B. 7 HKCEE MA 1996 I 14

A youth centre has done a survey on the amount of money \$x teenagers spent on buying clothes for Christmas. The results of the survey are shown in Tables (1) and (2)

Table (1) The amount of money spent by boys

on buying cloches		
0	Frequency	Percencage $(\%)$
$0<x \leq 200$	70	20.0
$200<x \leq 400$	17	4.9
$400<x \leq 600$	83	13.7
$600<x \leq 800$	92	26.3
$800<x \leq 1000$	36	10.3
$x>1000$	4	1.1
Total frequency $=$	350	

Thble (2)
The amount of money spent by girls on buying clothes for Christmas

	Fiequenc ${ }_{\text {\% }}$	Pexceutage (\%)
0	81	15.0
$0<x \leq 200$	51	9.4
$200<x<400$	135	25.0
$400<x \leq 600$	87	16.1
$600<x \leq 800$	74	13.7
$800<x \leq 1000$	56	10.4
$x>1000$	57	10.5
Total frequency $=$	541	

(a) A number in Table (1) was accidentally covered in ink. What should this number be?
(b) Explain why the sum of the percentages in Table (2) is 100.1 instead of 100.
(c) The cumulative frequency polygon of the distribution of $x(x \leq 1000)$ for girls is drawn in Figure (3). (i) Construct the cumulative frequency table of the distribution of $x(x \leq 1000)$ for boys.
(ii) On the same graph (Figure (3)), draw the cumulative frequency polygon of the distribution in (i).
(iii) Find the medians of $x$ for boys and girls respectively in this survey.
(iv) Estimate the total number of teenagers in this survey spending not more than $\$ 700$ on buying clothes for Christmas.
(d) By considering the percentages in Tables (1) and (2), find evidence to support the statement:
"In this survey, more boys did not spend any money on buying clothes for Christmas." Explain briefly why we have to consider the percentages instead of the frequencies.

$\begin{array}{lllllllllll}10 & 20 & 30 & 45 & 50 & 60 & 65 & 65 & 65 & 70 & 70\end{array}$
Find (i) the mean, (ii) the mode and (iii) the median of the above marks.

## 18B. 8 HKCEEMA1999-I-8

The heights of 6 students are $x \mathrm{~cm}, 161 \mathrm{~cm}, 168 \mathrm{~cm}, 159 \mathrm{~cm}, 161 \mathrm{~cm}$ and 152 cm . The mean height of these students is 158 cm .
(a) Find $x$.
(b) Find the median of the heights of these students.

## 18B. 9 HKCEEMA 2000-I-11

The figure shows the cumulative frequency polygon of the distribution of the lengths of 75 songs.
(a) Complete the tables below.

Length   $(t$ seconds)	Cumulative   frequency
$t \leq 220$	3
$t \leq 240$	16
$t \leq 260$	46
$t \leq 280$	
$t \leq 300$	75


Length   $(t$ seconds $)$	Frequency
$200<t \leq 220$	3
$220<t \leq 240$	13
$240<t \leq 260$	30
$260<t \leq 280$	
$280<t \leq 300$	9

(b) Find an estimate of the mean of the distribution.
(c) Estimate from the cumulative frequency polygon the median of the distribution.
(d) What percentage of these songs have lengths greater than 220 seconds but not greater than 260 seconds?

## The cumulative frequency polygon of the distribution of the lengths of 75 songs



18B. 10 HKCEE MA 2003-I-11
(a) For the set of data $10,10,11,12,13,16$, find
(i) the mode,
(ii) the median,
(iii) the mean,
(iv) the range.
(b) Four unknown data are combined with the six data in (a) to form a set of ten data.
(i) Find the least and the greatest possible values of the median of the combined set of ten data.
(ii) If the mean of the four unknown data is 11 , find the mean of the combined set of ten data.

18B. 11 HKCEEMA 2006-I-8
There are ten cards numbered $2,3,5,8,11,11,12,15,19$ and $k$ respectively, where $k$ is a positive integer. It is given that the mean of the ten numbers is 11 .
(a) Find the value of $k$.

18B. 12 HKALEMS 1998-3
(To continue as 17 C -27.)
40 students participate in a 5 -day summer camp. The stem and leaf diagram below shows the distribution of heights in cm of these students.
(a) Find the median of the distribution of heights.
Leaf (units)

18B. 13 HKALE MS 20027
Twenty two students in a class attended an examination. The stem-and-leaf diagram below shows the distri bution of the examination marks of these students.
(a) Find the mean of the examination marks.

Stem (tens)	Leaf (units)				
3	5	7			
4	2	4	6		
5	0	3	4	4	4
6	1	2	5	5	8
7	3	8	9		
8	4	8			
9	5				

18B. 14 HKALEMS 2010 - 5
(To continue as 17 C .34 .)
The following stem-and-leaf diagram shows the distribution of the test scores of 21 students taking a statistics course. Let $\tilde{x}$ be the mean of these 21 scores.
It is known that if the smallest value of these 21 scores is removed, the range is decreased by 27 and the mean is increased by 2 .
(a) Find the values of $a, b$ and $\bar{x}$.

Stem (Tens)	Leaf (Units)						
2	$a$						
3							
4	9						
5	0	0	1	3	7	7	
6	0	2	3	5	5	5	9
7	0	3	4	9			
8	2	$b$					

## 18B. 15 HKDSE MA SP -I 14

The data below show the percentages of customers who bought newspaper $A$ from a magazine stall in city $H$ for five days randomly selected in a certain week:

$$
62 \% \quad 63 \% \quad 55 \% \quad 62 \% \quad 58 \%
$$

(a) Find the median and the mean of the above data.
(b) Let $a \%$ and $b \%$ be the percentages of customers who bought newspaper $A$ from the stall for the other two days in that week. The two percentages are combined with the above data to form a set of seven data.
(i) Write down the least possible value of the median of the combined set of seven data.
(ii) It is known that the median and the mean of the combined set of seven data are the same as that found in (a). Write down one pair of possible values of $a$ and $b$.
(c) The stall-keeper claims that since the median and the mean found in (a) exceed $50 \%$, newspaper $A$ has the largest market share among the newspapers in city $H$. Do you agree? Explain your answer.

## 18B. 16 HKDSE MA 2012-I - 10

Tom conducts a survey on the numbers of hours spent on doing homework in a week by secondary students. Questionnaires are sent out and twenty of them are returned. The stem-and-leaf diagram below shows the numbers of hours recorded in the twenty questionnaires:

$$
\begin{aligned}
& \text { Stern (tens) } \left\lvert\, \frac{\text { Leaf (units) }}{0}\right. \\
& \begin{array}{l|lllllllllllll}
1 & 1 & 0 & 1 & 1 & 2 & 3 & 4 & 5 & 5 & 6 & 6 & 7 & 7
\end{array} \\
& 3 \quad 4 \quad 6
\end{aligned}
$$

(a) Find the mean and the median of the numbers of hours recorded in the twenty questionnaires.
(b) Tom receives four more questionnaires. He finds that the mean of the numbers of hours recorded in these four questionnaires is 18. It is found that the numbers of hours recorded in two of these four questionnaires are 19 and 20.
(i) Write down the mean of the numbers of hours recorded in the twenty four questionnaires.
(ii) Is it possible that the median of the numbers of hours recorded in the twenty-four questionnaires is the same as the median found in (a)? Explain your answer.

## 18B. 17 HKDSE MA 2016-I - 12

The bar chart below shows the distribution of the ages of the children in a group, where $a>11$ and $4<b<10$. The median of the ages of the children in the group is 7.5 .

Distribution of the ages of the children in the group

(a) Find $a$ and $b$.
(b) Four more children now join the group. It is found that the ages of these four children are all different and the range of the ages of the children in the group remains unchanged. Find
(i) the greatest possible median of the ages of the children in the group,
(ii) the least possible mean of the ages of the children in the group.

## 8B. 18 HKDSE MA 2018-I-11

The following table shows the distribution of the numbers of children of some families:

\section*{| Number of children | 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Num |  |  |  |  |  | | Number of families | $k$ | 2 | 9 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |}

It is given that $k$ is a positive integer.
(a) If the mode of the distribution is 2 , write down
(i) the least possible value of $k$;
(ii) the greatest possible value of $k$.
(b) If the median of the distribution is 2 , write down
(i) the least possible value of $k$;
(ii) the greatest possible value of $k$.
(c) If the mean of the distribution is 2 , find the value of $k$

## 18B. 19 HKDSE MA 2019-I 8

The pie chart below shows the distribution of the numbers of rings owned by the girls in a group.
(a) Write down the mode of the distribution.
(b) Find the mean of the distribution.


Distribution of the numbers of rings owned by the girls in the group

## 18C Measures of dispersion

18C.I HKCEE MA 1980(3) I-8
Two classes, $A$ and $B$, each of 40 students, took a test. In the test, students may score $0,1,2,3,4,5,6,7,8$ or 9 marks. In the figure, the distribution of marks of class $A$ is shown in the bar chart on the left of $P Q$ and that of class $B$ is shown on the right
(a) Find, by inspection, which class has a greater standard deviation of marks.
(b) If 70 students from the two classes pass the test, what is the minimum mark that a student should get inorder to obtain a pass?


Number of students

18C. 2 HKCEE MA. 1981(1)-I 6
The figure shows the cumulative frequency polygon of the marks obtained by 100 students aling a mathematics test.
(a) If $75 \%$ of the students pass the test, what is the pass mark, correct to the nearest integer?
(b) If the pass mark were 40, how many students would pass the test?
(c) Find the inter quartile range

Given five real numbers $a-6, a, a+2, a+3, a+6$, find
(a) the mean,
(b) the standard deviation.

18C. 4 HKCEEMA 1988 - I 11
The figure below shows the cumulative freguency curve of the marks of 600 students in a mathematics contest.

(a) From the curve, find
(i) the median, and
(ii) the interquartile range of the distribution of marks.

## 8C. 5 HKCEE MA 1990 I 12

(a) The distribution of the monthly salaries of 100 employees in a firm is shown in the histogram in the figure.
(i) Find the modal class, median, mean, interquartile range and mean deviation (out of syllabus) of the monthly salaries of the 100 employees.
(ii) Now the firm employs 10 more employees whose monthly salaries are all $\$ 6500$. Will the standard deviation of the monthly salaries of all the employees in the firm become greater, smaller or remain unchanged? Explain briefly.
(b) The mean of 7 numbers $x_{1}, x_{2}, \ldots, x_{7}$ is $\bar{x}$ and the squares of the deviations from $\bar{x}$ are $9,4,1,0,1,4,9$ respectively. Find the tandard deviation of the 7 numbers. [not mandatory]

Distribution of monthly salaries of $\mathbf{1 0 0}$ employees


18C. 6 HKCEE MA 1993-I -7
The following frequency table shows the distribution of the scores of 200 students in a Mathematics examination.

Frequency Table	
Score	Frequency
$0-9$	20
$10-19$	40
$20-29$	60
30	39
40	49
50	59


(a) Fill in the cumulative frequency table.
(b) (i) Draw the cumulative frequency polygon on the graph paper and determine the interquartile range.
(ii) If the pass percentage is set at $60 \%$, determine the pass score from the cumulative frequency polygon.
(c) Find the mean and standard deviation of the distribution of scores. (Working steps need not be shown.)
(d) The teacher found that the scores were too low. He added 20 to each score. Write down the mean and the standard deviation of the new set of scores

## 18C. 7 HKCEE MA 1995 I-9

The cumulative frequency polygon in the figure shows the distribution of the yearly average scores of all the Secondary 2 students in School A.
(a) Find
(i) the total number of Secondary 2 students in School A;
(ii) the median of the yearly average scores, correct to the nearest integer.
(b) The students will be allocated to 3 different groups in Secondary 3 according to their yearly average scores. The top $25 \%$ will be in Group I and the bottom $25 \%$ will be in Group III. The rest will be in Group II. Find, correct to the nearest integer.
(i) the minimum yearly average score for students to be allocated to Group I;
(ii) the minimum yearly average score for students to be allocated to Group II.
(c) Fill in the class marks and frequencies in the The frequency distribution table of the yearly average table.
(d) From the table, find the mean and standard deviation of the yearly average scores.
(Working need not be shown.)
(e) Find the percentage of students whose yearly average scores are within one standard deviation from the mean.
(The distribution of the yearly average scores is not necessarily a normal distribution.)


## 18C. 8 HKCEE MA 1997-I-11

The following are the marks scored by a class of 35 students in a Mathematics test:

$$
\begin{array}{cccccccccc}
0 & 0 & 5 & 8 & 11 & 12 & 41 & 42 & 45 & 48 \\
50 & 62 & 70 & 73 & 73 & 73 & 77 & 78 & 80 & 80 \\
82 & 82 & 82 & 83 & 83 & 85 & 85 & 87 & 90 & 90 \\
95 & 95 & 95 & 95 & 98 & & & & &
\end{array}
$$

(a) Find the mean, mode, median and standard deviation of the above marks. (Working need not be shown.)
(b) Explain briefly why the mean may not be a suitable measure of central tendency of the distribution of marks in the Mathematics test.
(c) The mean and standard deviation of the marks scored by the same class of students in an English test are 63 and 15 respectively.
(i) The standard score of a student in the English test was 0.4. Find the mark the student scored in this test.
(ii) Assume that the marks in the English test are normally distributed and the marks scored by Lai Wah in both the Mathematics and English tests are 78.
(1) What percentage of her classmates scored fewer marks than Lai Wah in the Mathematics test? (2) Relative to her classmates, did Lai Wah perform better in the English test than in the Mathe matics test?
(iii) The English teacher later found that a student was given 10 marks fewer in the English test. Find the mean of the marks in the English test after the wrong mark has been corrected.

18C. 9 HKCEE MA $2001-\mathrm{I}-10$


The histogram in the figure shows the distribution of scores of a class of 40 students in a test.
(a) Complete the table.

Score $(x)$	Class mark	Frequency
$44 \leq x<52$		3
$52 \leq x<60$		
	64	15
$68 \leq x<76$		11
	80	

(b) Estimate the mean and standard deviation of the distribution.
(c) Susan scores 76 in this test. Find her standard score.
(d) Another test is given to the same class of students. It is found that the mean and standard deviation of the scores in this second test are 58 and 10 respectively. Relative to her classmates, if Susan performs equally well in these two tests, estimate her score in the second test.

18C. 10 HKCEE MA 2002-I-5
For the set of data $4,4,5,6,8,12,13,13,13,18$, find
(a) the mean,
(b) the mode
(c) the median,
(d) the standard deviation.

18C. 11 HKCEE MA $2002 \quad \mathrm{I}-12$
(To continue as $\mathbf{1 7 \mathrm { C } . 1 6 . )}$


Number of books read ( $x$ )

Two hundred students participated in a summer reading programme. The figure shows the cumulative frequency polygon of the distribution of the numbers of books read by the participants.
(a) The table below shows the frequency distribution of the numbers of books read by the participants.

Using the graph in the figure, complete the table.

Number of books read $(x)$	Number of participants	Award
$0<x \leq 5$	66	Certificate
$5<x \leq 15$		Book coupon
$15<x \leq 25$	64	Bronze medal
$25<x \leq 35$		Silver medal
$35<x \leq 50$	10	Gold medal

(b) Using the graph in the figure, find the inter quartile range of the distribution.

## 18C. 12 HKCEE MA 2004 -I - 11

A large group of students sat in a Mathematics test consisting of two papers, Paper I and Paper II. The table below shows the mean, median, standard deviation and range of the test marks of these students in each paper:

Test paper	Mean	Median	Standard deviation	Range
Paper I	46.1 marks	46 marks	15.2 marks	91 marks
Paper II	60.3 marks	60 marks	11.6 marks	70 marks

A student, John, scored 54 marks in Paper I and 66 marks in Paper II.
(a) Assume that the marks in each paper of the Mathematics test are normally distributed. Relative to other students, did John perform better in Paper II than in Paper I? Explain your answer.
(b) In a mark adjustment, the Mathematics teacher added 4 marks to the test mark of Paper I for each of these students. Write down the mean, the median and the range of the test marks of Paper I after the mark adjustment.

## 18C. 13 HKCEE MA 2005-I - 15

The scores (in marks) obtained by a class of 20 students in a music test are shown below:

$$
\begin{array}{ccccc}
84 & 86 & 90 & 93 & 100 \\
103 & 120 & 120 & 120 & 121 \\
122 & 134 & 134 & 136 & 137 \\
144 & 146 & 146 & 146 & 158
\end{array}
$$

(a) Find the mean, the mean deviation (out of syllabus) and the standard deviation of the above scores.
(b) Mary is one of the students in the class and her standard score in the music test is 1 . Is Mary one of the top $20 \%$ students of the class in the music test? Explain your answer.
(c) (i) If one student in the class withdraws, find the probability that the mean of the scores obtained by the remaining 19 students in the music test is 122 marks.
(ii) If two students in the class withdraw, find the probability that the mean of the scores obtained by the remaining 18 students in the music test is 122 marks.

## 18C. 14 HKCEE MA 2006-I - 14

(To continue as 17C.19.)
The stem and leaf diagrams below show the distributions of the scores (in marks) of the students of classes $A$ and $B$ in a test, where $a, b, c$ and $d$ are non negative integers less than 10 . It is given that each class consists of 25 students.

(a) (i) Find the inter quartile range of the score distribution of the students of class $A$ and the inter quartile range of the score distribution of the students of class $B$.
(ii) Using the resuls of (a)(i), state which one of the above score distributions is less dispersed. Explain your answer.

## 18C. 15 HKCEE MA 2007-I-4

The stem and leaf diagram below shows the distribution of weights (in kg ) of 15 teachers in a school.

$$
\begin{array}{r|lllllll}
\text { Stem (tens) } & \text { Leaf (units) } & & \\
\hline 5 & 0 & 5 & 5 & 5 & 8 & \\
6 & 2 & 3 & 7 & 8 & 8 & 9 \\
7 & 1 & 3 & 3 & 5 & &
\end{array}
$$

Find the median, the range and the standard deviation of the distribution.

## 18C. 16 HKCEE MA 2008-I - 10

The frequency distribution table and the cumulative frequency distribution table below show the distribution of the weights of the 50 babies born in a hospital during the last week, where $a, b, c, k, l$ and $m$ are integers.

Weight (kg)	Erequency
$2.6-2.8$	$a$
$2.9-3.1$	12
$3.2-3.4$	$b$
$3.5-3.7$	10
$3.8-4.0$	$c$


Weight:less than (kg) Cumulative Frequéce	
2.85	4
3.15	$k$
3.45	37
3.75	$l$
4.05	$m$

(a) Find $a, b$ and $c$.
(b) Find estimates of the mean and the standard deviation of the weights of the 50 babies bom in the hospital during the last week.

18C. 17 HKCEE MA 2008-I - 14
(Continued from 17C.21.)
The stem-and-leaf diagram below shows the suggested bonuses (in dollars) of the 36 salesgirls of a boutique:

\[

\]

(a) The suggested bonus of each salesgirl of the boutique is based on her performance. The following table shows the relation between level of performance and suggested bonus:

Level of iperfomancen Suggested bonus $(\$ x)$	
Excellent	$x>6500$
Good	$4500<x \leq 6500$
Fair	$x<4500$

(i) From the 36 salesgirl, one of them is randomly selected. Given that the level of perfonnance of the selected salesgirl is good, find the probability that her suggested bonus is less than $\$ 5500$.
(ii) From the 36 salesgirls, two of them are randomly selected.
(1) Find the probability that the level of performance of one selected salesgirl is excellent and that of the other is good.
(2) Find the probability that the levels of performance of the two selected salesgirls are different.
(b) (i) Find the median and the inter quartile range of the suggested bonuses of the 36 salesgirls.
(ii) The boutique has made a considerable profit and so the manager wants to raise the suggested bonus of each of the 36 salesgirls such that the median of the suggested bonuses will be increased by $20 \%$ and the inter-quartile range will remain unchanged. Describe how the manager should raise the suggested bonus of each of the 36 salesgirls.

## 18C. 18 HKCEE MA 2009-I - 10

The stem-and leaf diagram below shows the distribution of the typing speed (in words per minute) of 20 students in a school before training.

(a) Find the median, the range and the inter-quartile range of | Stem (tens) | Leaf (units) |
| :--- | :--- |
| 1 | 2267 |

the above distribution.	2	1	1	3	3	3	5	7	8

(b) The box-and-whisker diagram below shows the distribution

| 3 | 2 | 4 | 5 | 5 | 8 | 9 | 9 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | of the typing speed (in words per minute) of the 20 students after the training.

(i) Is the distribution of the typing speed after the training more dispersed than that before the training? Explain your answer.
(ii) The trainer claims that not less than half of these students show improvement in their typing speed after the training. Do you agree? Explain your answer.


18C. 19 HKCEE MA 2010-I-11 Stem(tens) Leaf(units)
The stem-and leaf diagram shows
that ages of the players of a football
1889
team:

3	0	1	1	1
3	0	0	1	1

(a) Find the mean, the median and the range of the ages of the players of the football team
(b) As the two oldest players leave the team, three new players join the football team. After the three players join the football team, the manager of the team finds that the mean age of the players of the football team is the same as the mean found in (a).
(i) Find the mean age of the three new players.
(ii) Furthernore, the manager finds that the median and the range of the ages of the players of the football team are the same as the median and the range found in (a) respectively. Write down two sets of possible ages of the three new players.

## 18C 20 HKCEEMA 2011 I- 10

The student union of a school conducts two surveys to Stem (tens) $\left\lvert\, \begin{aligned} & \text { Leaf (units) }\end{aligned}\right.$ measure the extent of the students' satisfaction on the services provided by the school library. A score from to 100 is used to measure the extent of satisfaction on the services, with 0 indicating absolute dissatisfaction and 100 indicating absolute satisfaction. The stem-and-leaf diagram below shows the distribution of scores rated by 32 students in the first survey.
32 students in the first survey.
(a) Find the median, the range and the inter-quartile range of the above distribution.
(b) After six months, the student union conducts the second survey to these 32 students. The box-andwhisker diagram below shows the distribution of scores rated by these students in the second survey.
(i) Is the distribution of scores in the second survey less dispersed than the first survey? Explain your answer.
(ii) The chairman of the student union claims that at least $25 \%$ of these students have a greater extent of satisfaction shown in the second survey than the first survey. Do you agree? Explain your answer.


## 18C. 21 HKALEMS 1994-4

The figure shows the cumulative frequency polygon of weights (in kg ) for a group of 100 students.

Cumulative frequency polygon of weights for a group of 100 students


Weights of a group of $\mathbf{1 0 0}$ students

(a) Use the graph paper provided to draw a histogram of the weights.
(b) Determine the inter-quartile range of the weights from the cumulative frequency polygon.
(c) Determine the mean weight from the histogram.

## 18C. 22 HKALE MS $1995-1$

The numbers of hours spent by 25 students in studying for an examination are as follows:
$\begin{array}{cccccccccc}11 & 8 & 25 & 21 & 18 & 25 & 7 & 32 & 29 & 18 \\ 18 & 18 & 22 & 12 & 5 & 30 & 19 & 15 & 20 & 50 \\ 25 & 10 & 26 & 23 & 12 & & & & & \end{array}$

Complete the stem and leaf diagram for the above data.
(b) Find the mode, the median and the interquartile range of the numbers of hours spent by the 25 students.

## 18C. 23 HKALEMS 1996 _ 1

A stem-and-leaf diagram for the test scores of 30 students is shown.
(a) Find the mean, mode and interquartile range of these scores.
(b) If the score 71 is an incorrect record and the correct score is 11 , which of the statistics in (a) will have different values? Find the correct values of these statistics.


## 18C. 24 HKALE MS 1997-2

In an experiment, temperatures of a certain liquid under various experimental settings are measured. The box and whisker diagram for these temperatures (in ${ }^{\circ} \mathrm{C}$ ) is constructed below.
(a) Find the range (in ${ }^{\circ} \mathrm{C}$ ) of the temperatures.
(b) The temperature $C$ (in ${ }^{\circ} \mathrm{C}$ ) can be converted to the temperature $F$ (in ${ }^{\circ} \mathrm{F}$ ) according to the formula $F=\frac{9}{5} C+32$.
(i) Find the median and interquartile range of the temperatures in ${ }^{\circ} \mathrm{F}$.
(ii) If the mean and standard deviation of the temperatures are $22^{\circ} \mathrm{C}$ and $2^{\circ} \mathrm{C}$ respectively, find their values in ${ }^{\circ} \mathrm{F}$.


## 18C. 25 HKALE MS 1999-3

A test was carried out to see how quickly a class of students reacted to a visual instruction to press a particular key when they played a computer game. Their reaction times, measured in tenths of a second, are recorded and the statistics for the whole class are summarised below.

	Lower quartile	Upper quartile	Median	Mirimum	Maximum
Boys	8	14	11	5	17
Girls	9	16	11	7	21

(a) Draw two box-and whisker diagrams comparing the reaction times of boys and girls.
(b) Suppose a boy and a girl are randomly selected from the class. Which one will have a bigger chance of having a reaction time shorter than 1.1 seconds? Explain

18C. 26 HKALE MS 2000-5
A fitness centre advertised a programme specifically designed for women weighing 70 kg or more, and claimed that their individual weights could be reduced by at least 20 kg on com

\[

\] pletion of the programme. 21 women joined the programme

(a) Find the median and the interquartile range of these weights.
(b) On completion of the programme, the median, lower quartile and upper quartile of the weights of these women are $73 \mathrm{~kg}, 68 \mathrm{~kg}$ and 77 kg respectively. The lightest and heaviest women weigh 60 kg and 82 kg respectively Draw two box and-whisker diagrams comparing the weights of these women before and after the programme.
(c) Referring to the box and-whisker diagram in (b), someoue claimed that none of these women had re duced their individual weights by 20 kg or more on completion of the programme. Determine whether this claim is correct or not. Explain your answer briefly.

## 18C. 27 HKALE MS 2001-3

The ages of 35 members of a golf club are shown below. It is known that the median and the range of the ages are 36 and 48 respectively, and the ages of the two eldest members differ by 1.
(a) Find the unknown digits $a, b$ and $c$.

Stem (tens)	Leaf (units)								
1									
2	$\underline{a}$	8	8	9	9				
3	1	1	2	3	3	3	4	7	8
4	0	2	5	5	$b$	9	9		
5	2	2	5	5	8				
6	0	1	$\underline{c}$	6					

## 18C. 28 HKALE MS 20035

A researcher conducted a study on the time (in minutes) spent on using the Internet by university students. Thirty questionnaires were sent out and only 19 were returned. The results are as follows:

12	13	14	15	15	21	25	29
36	37	38	41	47	49	49	49
52	54	57					

(a) Construct a stem and leaf diagram for these data.
(b) Suppose that the research has received eight more questionnaires. Three of them show that the time spent on using the Internet is one hour. The other show that the time spent is more than one hour.
(i) Find the revised median and the revised interquartile range of the spent.
(ii) Describe briefly the change in the mean and the change in the range of the time spent.

## 18C. 29 HKALE MS 2004-5

Some statistics from a survey on the monthly incomes (in thousands of dollars) of a group of university graduates are summarised in the table.
(a) Using the above information, construct a box and whisker diagram to describe the distribution of the monthly incomes.
(b) A student proposes to model the distribution of the monthly incomes of the group of university graduates by a normal distribution with mean and standard deviation given in the table.
(i) [Out of syllabus]
(ii) Is the model proposed by the student appropriate? Explain your

Minimum	8
Maximum	52
Lower quartile	10
Median	17
Upper quartile	20
Mean	17.94
Standard deviation	4.7

## 18C. 30 HKALE MS 2005-4

The stem and leaf diagram below shows the distribution of heights in cm of 32 students. It is found that three records less than 150 cm are incorrect. Each of them should be 10 cm greater than the original record. Find the change in each of the following statistics after correcting the three records:
(a) the mean,
(b) the median,
(c) the mode,
(d) the range,
(e) the interquartile range.

Stem (tens) $\left\lvert\, \frac{\text { Leaf (units) }}{514}\right.$

14	5	5	6	6				7					
15	1	2	2	4	4	5	5	7	7	7	7	7	9

$\begin{array}{llllllllll}16 & 0 & 2 & 2 & 5 & 6 & 7 & 8 & 8 & 9 \\ 17 & 0 & 1 & 2 & 3 & 4 & 4 & & & \end{array}$

## 18C. 31 HKALE MS 2006-4

 $\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}$ numbers of books read.
(b) The librarian of the school ran a reading award scheme in the second term. The following table shows some statistics of the distribution of the numbers of books read by these 24 students in the second term:

i) Draw two box-and-whisker diagrams of the same scale to compare the numbers of books read by these students in the first term and in the second term.
(ii) The librarian claims that not less than $50 \%$ of these students read at least 5 more books in the second term than that in the first term. Do you agree? Explain your answer.

## 18C. 32 HKALE MS 2007-4

Albert conducted a survey on the sime spent (in hours) on watching television by 16 students. The data recorded are 3.7, 1.2, 2.1, 5.1, 2.1, 4.7, 1.9, 2.4, 2.4, 2.9, 3.6,2.3, 3.9, 2.2, 1.8 and $k$, where $k$ is the missing datum.
(a) Albert assumes that the range of these data is 5.3 hours
(i) Find the value of $k$.
(ii) Construct a stem-and leaf diagram for these data.
(iii) Find the mean and the median of these data.
(b) Albert finds that the assumption in (a) is incorrect and he can only assume that the range of these data is greater than 5.3 hours. Describe the change in the mean and the change in the median of these data due to the revision of Albert's assumption.

## 18C. 33 HKALE MS 20086

A test is taken by a class of 18 students. The marks are as follows:

$$
\begin{array}{lllllllll}
55 & 82 & 74 & 70 & 91 & 75 & 79 & 89 & 68 \\
79 & 59 & 72 & 79 & 73 & 60 & 71 & 82 & k
\end{array}
$$

where $k$ is Jane's mark.
It is known that the mean mark of the class is the same irrespective of including or excluding Jane's.
(a) Find the value of $k$
(b) If 3 student marks are selected randomly from the set of the 18 student marks, find the probability that exactly 1 of them is the mode of the set of the 18 student marks.
(c) A student mark is classified as an oullier if it lies outside the interval $(\mu-2 \sigma, \mu+2 \sigma)$, where $\mu$ is the mean and $\sigma$ is the standard deviation of the set of marks.
(i) Find all the outlier(s) of the set of the 18 student marks
(ii) In order to assess the students' performance in the test, all outliers are removed from the set. Describe the change in the median and the standard deviation of the student marks due to such removal.

## 18C. 34 HKALEMS 2011

The revision times (in minutes) of 19 students are represented by the stem and leaf diagram in the figure. It is known that the mean revision time is $(40+b)$ minutes
(a) Find $a$ and $b$
(b) Find the standard deviation of the revision times for the students.
(c) The revision times of 2 more students are added. If both the range and the mean do not change after the inclusion of the 2 data, find the range of possible values of the standard deviation of the revision imes for the 21 students.

Tens	Units						
2	6	7					
3	0	0	$a$	2	9	9	
4	$b$	3	3	3	6	8	8
5	6	9					
6	5	9					

18C. 35 HKALE MS 2012-6
(To continue as 17C.35.)
An educational psychologist adopts the Intemet Addiction Test to measure the students' level of Internet ad diction. The scores of a random sample of 30 students are presented in the following stem and-leaf diagram. Let $\sigma$ be the standard deviation of the scores. It is known that the mean of the scores is 71 and the range of the scores is 56 .
(a) Find the values of $a, b$ and $\sigma$.

| Stem (tens) | Leaf (units) |  |  |  |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | $a$ |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |
| 5 | 2 | 4 | 6 | 8 |  |  |  |  |  |
| 6 | 0 | 1 | 3 | 5 | 6 | 7 | 8 | 8 | 9 |
| 7 | 1 | 2 | 2 | 4 | 5 | 5 | 6 | 8 |  |
| 8 | 0 | 2 | 3 | 5 | 8 |  |  |  |  |
| 9 | 0 | 2 | $b$ |  |  |  |  |  |  |

## 18C. 36 HKDSE MA PP-I-9

The following table shows the distribution of the numbers of online hours spent by a group of children on a certain day.

Number of online hours	2	3	4	5
Number of children	$r$	8	12	$s$

It is given that $r$ and $s$ are positive numbers.
(a) Find the least possible value and the greatest possible value of the inter quartile range of the distribution.
(b) If $r=9$ and the median of the distribution is 3, how many possible values of $s$ are there? Explain your answer.

## 18C. 37 HKDSE MA PP $\mathrm{I}-15$

The mean score of a class of students in a test is 48 marks. The scores of Mary and John in the test are 36 marks and 66 marks respectively. The standard score of Mary in the test is -2 .
(a) Find the standard score of John in the test.
(b) A student, David, withdraws from the class and his test score is then deleted. It is given that his test score is 48 marks. Will there be any change in the standard score of John due to the deletion of the test score of David? Explain your answer.

18 C 38 HKDSE MA 2012-I - 7
The box and whisker diagram below shows the distribution of the times taken by a large group of students of an athletic club to finish a 100 m race:


The inter quartile range and the range of the distribution are 3.2 s and 6.8 s respectively.
(a) Find $a$ and $b$.
(b) The students join a training program. It is found that the longest time taken by the students to finish a 100 m race after the training is 2.9 s less than that before the training. The trainer claims that at leas $25 \%$ of the students show improvement in the time taken to finish a 100 m race after the training. Do you agree? Explain your answer.

## 18C 39 HKDSE MA 2012 - I- 15

The standard deviation of the test scores obtained by a class of students in a Mathematics test is 10 marks All the students fail in the test, so the test score of each student is adjusted such that each score is increased by $20 \%$ and then extra 5 marks are added.
(a) Find the standard deviation of the test scores after the score adjustment.
(b) Is there any change in the standard score of each student due to the score adjustment? Explain your answer.

## 18C. 40 HKDSE MA $2013-\mathrm{I}-9$

The bar chart shows the distribution of the numbers of family members of the employees of company $D$.

(a) Find the mean, the inter quartile range and the standard deviation of the above distribution.
(b) An employee Ieaves company $D$. The number of family members of this employee is 7 . Find the change in the standard deviation of the numbers of family members of the employees of company $D$ due to the leaving of this employee.

18C. 41 HKDSE MA 2013-I - 10
The ages of the members of Committee $A$ are shown as follows:

$$
\begin{array}{llllllllll}
17 & 18 & 21 & 21 & 22 & 22 & 23 & 23 & 23 & 31 \\
31 & 34 & 35 & 36 & 47 & 47 & 58 & 68 & 69 & 69
\end{array}
$$

(a) Write down the median and the mode of the ages of the members of Committee $A$.
(b) The stem and leaf diagram shows the distribution of the ages of the members of Committee $B$. It is given that the range of this distribution is 47 .

Stem (tens) | Leaf (units) (i) Find $a$ and $b$.
$\begin{array}{lll}1 & 2 & 9\end{array}$

$$
6 \mid 7 \quad b
$$

## 18C. 42 HKDSE MA 2013-I-15

The box and whisker diagram below shows the distribution of the scores (in marks) of the students of a class in a test. Susan gets the highest score while Tom gets 65 marks in the test. The standard scores of Susan and Tom in the test are 3 and 0.5 respectively.


Score (marks)
(a) Find the mean of the distribution.
(b) Susan claims that the standard scores of at least half of the students in the test are negative. Do you agree? Explain your answer.

## 18C. 43 HKDSE MA 2014 - I -4

The table below shows the distribution of the numbers of calculators owned by some students.

Number of calculators	0	1	2	3
Number of students	7	14	15	4

Find the median, the mode and the standard deviation of the above distribution.

## 18C. 44 HKDSE MA 2014 I-11

There are 33 paintings in an art gallery. The box-and whisker diagram below shows the distribution of the prices (in thousand dollars) of the paintings in the art gallery. It is given that the mean of this distribution is 53 thousand dollars.

(a) Find the range and the inter quartile range of the above distribution.
(b) Four paintings of respective prices (in thousand dollars) $32,34,58$ and 59 are now donated to a museum. Find the mean and the median of the prices of the remaining paintings in the art gallery.

## 18C. 45 HKDSE MA $2015 \quad 1 \quad 12$

The stem-and-leaf diagram shows the distribution of the weights Stem (tens) | Leaf (units) (in kg ) of the students in a football club.

| Stem (tens) | Leaf (units) |  |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 0 | 2 | 3 | 3 | 3 | 3 | 9 |
| 5 | 1 | 1 | 2 | 2 | 3 | 7 | 9 |
| 6 | 3 | 5 | 8 | 9 |  |  |  |
| 7 | 8 | 9 |  |  |  |  |  |

(a) Find the mean, the median and the range of the above distribution.
(b) Two more students now join the club. It is found that both the mean and the range of the distribution of the weights are increased by 1 kg . Find the weight of each of these students.

## 18C. 46 HKDSE MA 2015 I-15

The table below shows the means and the standard deviations of the scores of a large group of students in a Mathematics examinations and a Science examination:

Examination	Mean	Standard deviation
Mathematics	66 marks	12 marks
Science	52 marks	10 marks

The standard score of David in the Mathematics examination is -0.5 .
(a) Find the score of David in the Mathematics examination.
(b) Assume that the scores in each of the above examinations are normally distributed. David gets 49 marks in the Science examination. He claims that relative to other students, he performs better in the Science examination than in the Mathematics examination. Is the claim correct? Explain your answer.

## 18C. 47 HKDSE MA 2016-I-16

In a test, the mean of the distribution of the scores of a class of students is 61 marks. The standard scores of Albert and Mary are -2.6 and 1.4 respectively. Albert gets 22 marks. A student claims that the range of the distribution is at most 59 marks. Is the claim correct? Explain your answer.

## 18C. 48 HKDSEMA 2017 I 11

The stem-and-leaf diagram shows the distribution of the hourly wages (in dollars) of the workers in a group.
It is given that the mean and the range of the distribution are $\$ 70$ and $\$ 22$ respectively.
(a) Find the median and the standard devition of the

## 18C. 49 HKDSE MA 2018-I-10

The box-and whisker diagram below shows the distribution of the ages of the clerks in team $X$ of a company It is given that the range and the inter-quartile range of this distribution are 43 and 21 respectively.

(a) Find $a$ and $b$.
(b) There are five clerks in team $Y$ of the company and three of them are of age 38 . It is given that the range of the ages of the clerks in team $Y$ is 20 . Team $X$ and team $Y$ are now combined to form a section. The manager of the company claims that the range of the ages of the clerks in the section and the range of the ages of the clerks in team $X$ must be the same. Do you agree? Explain your answer.

## 18C. 50 HKDSE MA 2019-I 12

The stem-and leaf diagram shows the distribution of the Stem (tens) | Leaf (units) results (in seconds) of some boys in a 400 m race.
It is given that the inter-quartile range of the distribution is 8 seconds.

```
6 \(\begin{array}{lllllllll}0 & 1 & 1 & 1 & 2 & 2 & 5 & 6 & 9\end{array}\)
```

(a) Find $c$.
(b) It is given that the range of the distriburion exceeds 34 seconds and the mean of the distribution is 69 seconds. Find
(i) $a$ and $b$,
(ii) the least possible standard deviation of the distribution.

## 18C. 51 HKDSE MA 2020-I -9

The table below shows the distribution of the numbers of subjects taken by a class of students.

Number of subjects taken	4	5	6	7
Number of students	8	12	16	4

(a) Write down the mean, the median and the standard deviation of the above distribution.
(b) A new student now joins the class. The nuraber of subjects taken by the new student is 5 . Find the change in the median of the distribution due to the joining of this student.

## 18C. 52 HKDSE MA 2020 -I-11

The stem-and-leaf diagram below shows the distribution of the weights (in grams) of the letters in a bag.

Stem (tens)	Leaf(units)							
1	1	2	3	3				
2	3	3	4	5	6	9	9	
3	1	6	7	8	8	8		
4	2							
5	0	$w$						

It is given that the range of the above distribution is the triple of its inter-quartile range.
(a) Find $w$.
(b) If a letter is randomly chosen from the bag, find the probability that the weight of the chosen letter is not less than the mode of the distribution.
(2 marks)

## 18 Statistics

## 18A Presentation of data

18A. 1 HKCEE MA 1982(1)-1-7
(a) $x=360 \times \frac{2}{2+7+3}=60$

Similarly, $y=210, z=90$
(b) Total no. of students $=240 \times \frac{2+7+3}{2}=1440$

18A. 2 HKCEE MA 1982(3) $-1-12$
(a) Income $=\$ 2000 \times \frac{360^{\circ}}{100^{\circ}}=\$ 7200$
(b) (i) (1) $x=100(1+30 \%)=130$

$$
\begin{aligned}
& x=100 \\
& y=50
\end{aligned}
$$

$$
\begin{aligned}
& y=x \\
& z=360-90(1+10 \%)-130 \\
& 200(1+30 \%
\end{aligned}
$$

$$
\begin{gathered}
z=360-90(1+10 \%)-130 \\
20(1+30 \%)-50-40=15 \\
15-60
\end{gathered}
$$

(2) $\%$ change $=\frac{15-60}{60} \times 100 \%=-75 \%$
(ii) Income in April $=\$ 7200 \times(1+37.5 \%)=\$ 9900$ Expense on food $=\$ 7200 \times \frac{90^{\circ}}{360^{\circ}} \times(1+10 \%)$

$$
\therefore \text { Required } \%=\frac{=5980}{900} \times 100 \%=20 \%
$$

18A. 3 HKCEE MA 1985(A/B)-I-7

```
\angleof sector representing Kowloon =90}\times\frac{9240}{4200}=19\mp@subsup{8}{}{\circ
x =360希-90}-19\mp@subsup{8}{}{\circ}=>x=7
x 缺=36\mp@subsup{0}{}{\circ}-90
```


## 18A. 4 HKCEE MA 1998-I- 10

(a) $\left.$\begin{tabular}{|l|l|l|}
\hline$x \leq 70$ \& 102 <br>
\hline

$\quad 60<x \leq 70 \right\rvert\, 52$ 

\hline$x \leq 80$ \& 158 <br>
\hline $70<x \leq 80156$ <br>
\hline
\end{tabular}

(b) The line $x=55$ meets the c.f polygon at around $(55,29)$. . Passing \% $=\frac{200-29}{200} \times 100 \%=85.5 \%$

## 18A.5 HKCEEMA 1999-I- II

(a) $\angle$ of sector representing 'Repeated S.5' $=72^{\circ}$
$\therefore$ No of boys who repeated $\mathrm{S} .5=120 \times \frac{7^{\circ}}{200}=24$
(b) Required $\%=\frac{126^{\circ}}{126^{\circ}+144^{\circ}} \times 100 \%=46 \frac{2}{3} \%$
(c) No of boys promoted to $S .6$ in own school $=120 \times \frac{126^{\circ}}{360^{\circ}}$ $\begin{aligned} \text { No of girls promoted to S. } 6 \text { in own school } & =80 \times 22.5 \%\end{aligned}$ Requited $\%=\frac{42+18}{220} \times 100 \%=30$

## 18 A .6 HKCEEMA 2006 -I-9

(a) $x=360^{\circ}-40^{\circ}-90^{\circ}-130^{\circ}-35^{\circ}-30^{\circ}=35^{\circ}$
(b) Total expenditure $=\$ 1750 \times \frac{360^{\circ}}{35^{\circ}}=\$ 18000$
(c) Expenditure on travelling $=$ Expenditure on transportation $=\$ 1750$

18 A .7 HKCEEMA 2007-I- 12
(a) $k=17 \times \frac{63^{\circ}}{153^{\circ}}=7$
(b) No of students $=17 \times \frac{360^{\circ}}{153^{\circ}}=40$
(c) No of students with 1 key $=40-12-17-7=4$
$\therefore$ Required $\mathrm{p}=\frac{4}{40}=\frac{1}{10}$
(d) Bar: Yes. Scales on the vertical axis should be doubled Pie: No

## 18A. 8 HKDSEMASP-1-9

(a) $72=(1+20 \%) x \Rightarrow x=60$
(b) 2 of sector representing District $\mathrm{C}=78^{\circ}>72^{\circ}$ $\therefore$ NO.

18A.9 HKDSE MAPP-I- 13
(a) Number of students $=6 \div \frac{3}{20}=40$
$\Rightarrow k=40-6-11 \quad 5 \quad 10=8$
(b) (i) Required $\angle=360^{\circ} \times \frac{5}{40}=45^{\circ}$
(ii) Suppose $n$ new students will double the $\angle$ for orange. $\frac{5+n}{40+n}=\frac{45^{\circ} \times 2}{360^{\circ}} \Rightarrow n=\frac{20}{3}$
But since $n$
$n$ must be an integer, there is no $n$ satisfying the condition. NO.

## 18A. 10 HKDSEMA 2016-I-9

(a) $x=2+4=6$
$y=37-15=22$
$z=37+3=40$

18B Measures of central tendency
18B.I HKCEEMA 1983(B) - I-3
(a) Class mark $=54.5$
(b) Mean $=(44.5 \times 100+54.5 \times 300 \div 64.5 \times 400$ $+74.5 \times 200) \div 1000=61.5$

18B. 2 HKCEE MA 1984(A/B) $-1-2$
$1 \times 10+2 \times 10+3 \times 5+4 \times 20+5 x=3(10+10+5+20+x)$ $125+5 x=135+3 x \Rightarrow x=5$

18B. 3 HKCEE MA 1986(A/B)-I-3
$61 \times 40+70 x+50 \times 35=60(40+x+35)$ $4190+70 x=4500+60 x \Rightarrow x=31$

18B. 4 HKCEEMA 1991 -I -
(a) 49.5
(b)

$20-29$	10
30	39
40	
$40-49$	20
$50-59$	30
$60-69$	10

$\therefore$ Mean mark $=\{24.5 \times 10+34.5 \times 10+44.4 \times 20$ $+54.5 \times 30+64.5 \times 10) \div 80=47$

8B. 5 HKCEEMA 1992-I- 8
(a) $70(m+n)$
(b) $70(m+n)=75 m+62 n \Rightarrow 5 m=8 n \Rightarrow m: n=8: 5$
(c) No of men $=39 \times \frac{8}{8+5}=24$

18B. 6 HKCEE MA $1994-\mathrm{I}-1$ (d)
Mean $=50$ Mode $=65$ Median $=60$

18B. 7 HKCEE MA 1996 -I - 14
(a) $100 \quad 20.0-4.9-13.7-26.3-10.3-1.1=23.7$
(b) Some round-off errors bave accumulated.
(c) (i)

\section*{| $x$ | c.f. |
| :---: | :---: |
| $x \leq 0$ | 70 |
| $x \leq 200$ | 87 |
| $x \leq 400$ | 135 |
| $x \leq 600$ | 218 |
| $x \leq 800$ | 310 |
| $x \leq 1000$ | 346 | <br> (ii) (See below)}

(iii) For boys, median $=490$; for girls, median $=410$
(iv) Draw the vertical line $x=700$. It meets the polygon at around $(700,390)$ (girls) and $(700,265)$ (boys).
$\therefore$ Required $10=390+265=655$
Referring the firs 30 of iach
d) Referring to the first row of each tabte, the percentage of boys spending $\$ 0(20.0 \%)$ is indeed higher than the per centage of girls spending $\mathrm{SO}(150 \%$ ).
the frequencies because the total frequencies of boys and of girls are differenu.


18B. 8 HKCEE MA 1999-1-8
(a) $x+161+168+159+161+152=158 \times 6 \Rightarrow x=147$
(b) Median $=(159+161) \div 2=160(\mathrm{~cm})$

18B. 9 HKCEEMA 2000-I-14

(b) Mean $=\{210 \times 3+230 \times 13+250 \times 30$
$+270 \times 20+290 \times 9) \div 75=255(\mathrm{~s}, 3$ s.f. $)$
(c) Median $=254$ seconds
(d) Required $\%=\frac{13+30}{75} \times 100 \%=57.3 \%(3$ s.f.)

## 18B. 10 HKCEEMA 2003-I-11

(a) (i) 10
(ii) 11.5
(iii) 12 (iv) $16-10=6$
(b) (i) (When all 4 new data are large,) Least possible median $=(13+16) \div 2=14.5$ (When all 4 new data are smalli,)
Greatest possible median $=10$
(ii) New mean $=(12 \times 6+11 \times 4) \div 10=11.6$

## (a). 11 HKC.FEMA2006-1-8

(a) $11 \times 10=86+k \Rightarrow k=24$

18B. 12 HKALE MS 1998-3 (a) Median $=(161+162) \div 2=161.5(\mathrm{~cm})$

## 8B. 13 HKALEMS 2002-7

(a) Mean $=6 \mathrm{I}$
(b) Since there are two modes, one deleted mark is 54. The other mark $=61 \times 22-(61+1.2) \times 20-54=44$

18B. 14 HKALE MS 2010-
(a) $49 \sim(20+a)=27 \Rightarrow a=$

$$
\begin{aligned}
\frac{49+\cdots+(80+b)}{20}-\frac{22+49+\cdots+(80+b)}{21} & =2 \\
\frac{1274+b}{20}-\frac{1296+b}{21} & 2
\end{aligned}
$$

$\dot{x}=(1296+6) \div 21=62$
18B. 15 HKDSE MASP-I-14
(a) Median $=62 \%$

Mean $=(55+58+62+62+63) \div 5=60(\%)$
(b) (i) $58 \%$ (when the new data are small)
(ii) (Mean unchanged $\Rightarrow$ Mean of $a$ and $b=60$ )
(Median unchanged $\Rightarrow a \leq 62$ and $b \geq 62$ ) Possible pairs: $(57,63)$, $(56,64)$ ), $(55,65)$, etc.
(c) Possible reasons for NO:

The week may not be randomly chosen. -Only one stall is considered.
Possible reasons for YES:
The week may be randomly chosen
-There may only be very few stalls in $H$.
18B. 16 HKDSEMA 2012-1-10
(a) Mean $=10+10+\cdots+36) \div 20=18$ Median $=16$
(b) (i) New mean $=$ Original mean $=18$
(ii) Let the new data be 19,20 a and $b$

Mean $=18 \Rightarrow a+b=18 \times 4 \quad 19 \quad 20=33$
Since 19 and 20 exceed the original median, $a$ and $b$ must not exceed the original median if the median is unchanged. $\Rightarrow a+b \leq 16+16=32$
Hence it is not possible.

## 18B. 17 HKDSE MA 2016-I-12

(a) Median $=7.5 \Rightarrow$ No of 6 and $7=$ No of 8,9 and 10 $11+a=11+b+4$
$a=b+4$
$a>11$ and $4<b<10$
$(a, b) \quad(12,8)$ or $(13,9)$
(b) (i) Greatest possible median $=8$
(when the 4 new ages are $7,8,9$ and 10)
(ii) Mean is least when the 4 new ages are $6,7,8$ and 9 . If $(a, b)=(12,8)$, mean $=(6 \times 12+7 \times 13+8 \times 12$ $+9 \times 9+10 \times 4) \div(12+13+12+9+4)=7.6$ If $(a, b)=(13,9)$, mean $=(6 \times 12+7 \times 14+8 \times 12$ $+9 \times 10+10 \times 4) \div(12+14+12+10+4)=7.62$ $\therefore$ Least possible mean $=7.6$

18B. 18 HKDSE MA $2018-\mathrm{I}-11$
(a) (i) 1
(ii) 8
(b) (i) 3 (when the 'gh 2 ' is the median)
(ii) 19 (when the '1st 2 ' is the median)
(c) $(0 \times k+1 \times 2+2 \times 9+3 \times 6+4 \times 7)$

$$
\div(k+2+9+6+7)=2 \Rightarrow k=9
$$

18B. 19 HKDSE MA 2019-I-8
(b) Mean $=2 \times \frac{144^{\circ}}{360^{\circ}}+3 \times \frac{54^{\circ}}{360^{\circ}}+5 \times \frac{72^{\circ}}{360^{\circ}}+7 \times \frac{90^{\circ}}{360^{\circ}}=4$

## 18C Measures of Dispersion

## 18C. 1 HKCEE MA 1980(3)-1-8

(a) Class $B$ (since its dispersion is greater)
(b) 10 students fail the test.

0,1 and 2 arks fail the tes
$\Rightarrow$ Min mark to pass test $=3$

18C. 2 HKCEE MA 1981(1)-1-6
(a) The line $y=25$ meets the polygon at around $(43,25)$ $\therefore$ Pass mark $=43$
(b) The line $x=40$ meets the polygon at around $(40,20)$ $\therefore 100-20=80$ students would pass.
(c) $\mathrm{IQR}=70-43=27$

18C. 3 HKCEE MA $1983(\mathrm{~A})-\mathrm{I}-3$
(a) Mean $\left.=\left[\begin{array}{ll}a & 6\end{array}\right)+a+(a+2)+(a+3)+(a+6)\right] \div 5$ $=a+1$
(b) $S D=S D$ of $\{6,0,2,3,6\}=4$

18C. 4 HKCEE MA 1988-I-11
(a) (i) Median $=70$ marks
(ii) $\mathrm{QQR}=86 \quad 50=36$ (marks)
(b) (i) Number of students $=600-540=60$
(1) Required $\mathrm{p}=\frac{60}{600}=\frac{1}{10}$
(iii) (1) Required $p=\frac{C_{2}^{60}}{C_{2}^{200}}=\frac{59}{5990}$
(2) Required $\mathrm{p}=1-\frac{C_{2}^{540}}{C_{2}^{500}}=\frac{1139}{5990}$

18C. 5 HKCEEMA 1990-1-12
(a) (i) Modal class $=\$ 6000 \quad \$ 7000$ Median $=\$ 6500$
Mean $=\$ 6500$ (since the dissribution is symmetric) $\mathrm{IQR}=Q_{3}-Q_{1}=\frac{7500+8500}{2} \frac{4500+5500}{2}$
(ii) $\because$ More dala are close to the mea $\therefore$ SD becomes strallier.
(b) $S D-\sqrt{\frac{9+4 \div 1+0+1+4+9}{7}}=2$

18C. 6 HKCEE MA 1993-I-7

(a) | 9.5 | 20 |
| :---: | :---: |
|  | 19.5 |

19.5	60
29.5	120


$\mathbf{2 9 . 5}$	170


49.5	190


59.5	200
(i)	See below)

Hence, $I Q R=36-17=19$ (or $35 \quad 17=18$ )
(ii) $\because 200 \times 60 \%=80$ students pass the test. $\therefore$ The passing score should be 23 .
(c) $\mathrm{SD}=12.9$
(d) $\mathrm{SD}=12.9$ (i.e. unchanged)


Score (less than)

18C. 7 HKCEEMA $1995-\mathrm{I}-9$
(a) (i) 180
(ii) 60
(b) $(25 \%$ of students $=45)$
(i) The horizontal line at 135 meets the graph at around $(75,135)$
$\substack{75}$
(ii) The horizontal line at 45 meets the graph at around $(44,45)$.

(c) \begin{tabular}{|l|l|l|}
\hline $20<x \leq 30$ \& 25 \& $\mathbf{1 2}$ <br>
\hline $30<x \leq 40$ \& 35 \& 20 <br>
\hline

 

\hline $30<x \leq 40$ \& 35 \& 20 <br>
\hline $40<x \leq 50$ \& 45 \& 28 <br>
\hline $50<x \leq 60$ \& 5 \& 32 <br>
\hline

 

\hline $40<x \leq 50$ \& 45 \& 28 <br>
\hline $50<x<60$ \& 55 \& 32 <br>
\hline $60<x \leq 50$ \& 65 \& 28 <br>
\hline

 

\hline $50<x \leq 60$ \& 55 \& 32 <br>
\hline $60<x<70$ \& 65 \& 28 <br>
\hline

 

\hline $60<x \leq 10$ \& 65 \& 28 <br>
\hline $70<x \leq 80$ \& 75 \& 30 <br>
\hline $80<x \leq 90$ \& 85 \& 2 <br>
\hline

 

\hline $80<x \leq 90$ \& 85 \& 22 <br>
\hline $90<x \leq 100$ \& 95 \& 8 <br>
\hline
\end{tabular}

(d) Mean $=59.6, \mathrm{SD}=19.0$ (3 s.f)
(e) $\bar{x} \quad \sigma=40.6, \bar{x}+\sigma=78.6$

No. of students within this range $=146 \quad 34=112$
$\therefore$ Required $\%=\frac{112}{180} \times 100 \%=62.2 \%$

18C. 8 HKCEEMA 1997-I-11
(a) Mean $=64.4$, Mode $=95$, Median $=78, \mathrm{SD}=30.6$
(b) There are several extremely small data.
(c) (i) Required mark $=63+0.4 \times 15=69$
(ii) (1) Required $\%=\frac{17}{35} \times 100 \%=48.6 \%(3$ s.f. $)$
(2) Method-Standard score
S.S. in Maths $=\frac{78-64.4}{30.6}=0.44$
S.S. in $\mathrm{Eng}=\frac{78-63}{15}=1>0.44$
. Performance in Eng was better.
Merformance in Eng was b
In Maths, her score was the median. Thus, not more than half of the classmates perform worse than her.
In Eng, her score was above the mean. Thus, more than half of the classmates perform wors than her.
$\therefore$ Performance in Eng was better.
(iii) New mean $=(63 \times 35+10) \div 35=63.3$

## 18C.

(a)

Score $(x)$	Class mid-value   (Class mark)	Frequency
$44 \leq x<52$	48	3
$52 \leq x<60$	56	9
$60 \leq \mathrm{x}<68$	64	15
$68 \leq x<76$	72	II
$76 \leq \mathrm{x}<84$	80	2

(b) Mean $=64$
$S D=8$
(c) S.S. $=\left(\begin{array}{ll}76 & 64\end{array}\right) \div 8=1.5$
(d) Let $x$ be her score in the second tes.
$1.5=\frac{x-58}{10} \Rightarrow x=73$
The required score is 73 .

## 3C.10 HKCEEMA 2002-1-5

(a) 9.6
(c) 10
(d) 4.59

## 18C. 11 HKCEE MA 2002-I - 12

> (a) | $0<x \leq 5$ | 66 | Certificate |
| :---: | :---: | :---: |
| $5<x \leq 15$ | 34 | Book coupon |
| $15<x \leq 25$ | 64 | Bronze medal |
| $25<x \leq 35$ | 26 | Silver medal |
| $35<x \leq 50$ | 10 | Gold medal |

(b) $\mathrm{IQR}=23-4=19$

18C. 12 HKCEEMA 2004-I-11
(a) S.S. in Paper I $=\frac{54-46.1}{15.2}=0.520$
S.S. in Paper II $=\frac{66 \text { 60.3 }}{11.6}=0.491<$ S.S. in Paper I
$\therefore$ NO.
(b) New mean $=50.1$ marks

New median $=50$ marks
New range $=91$ marks

## 18 C. 13 HKCEE MA $2005-1-15$

(a) Mean $=122$ marks, $\mathrm{SD}=22$ marks
(b) $\mathrm{Top} 20 \%=4$ students

Mary's score $=122+22=144$ marks, which is not within the top 4 students.
(i) (Mean unchanged $\Rightarrow$ Datumdeleted is 122 .) Required $p=\frac{1}{20}$
(ii) (Mean unchanged $\Rightarrow$ Sum of data deleted is $122 \times 2$ ) Required $p=\frac{2}{C_{2}^{23}}=\frac{1}{95}$

18C. 14 HKCEEMA 2006 -I- 14
(a) (i) Class $A: \mathrm{IQR}=39-18=21$ (marks) Class $B: \mathrm{IQR}=25-11=14$ (marks)
(ii) $\because \mathrm{IQR}$ of $B<\mathrm{IQR}$ of $A$
. Class $B$ is less dispersed

18C. 15 HKCEEMA 2007-I-4
Median $=67 \mathrm{~kg}$
Range $=25 \mathrm{~kg}$
$S D=7.65 \mathrm{~kg}$

18C. 16 HKCEE MA 2008-I- 10
(a) $a=4$
$b=37 \quad 12-4=21$
$c=50-a-12 \quad b-10=3$
(b) $\mathrm{Mean}=3.28 \mathrm{~kg}$
$\mathrm{SD}=0.299 \mathrm{~kg}$

18C. 17 HKCEE MA 2008-I -14
(a) (i) Required $\mathrm{p}=\frac{9}{15}=\frac{3}{5}$
(ii) (1) Required $\mathrm{p}=\frac{8 \times 15}{C_{2}^{36}}=\frac{4}{21}$ (2) Required $p=1-\frac{C_{2}^{8}}{C_{2}^{36}} \frac{C_{2}^{15}}{C_{2}^{36}}-\frac{C_{2}^{13}}{C_{2}^{36}}=\frac{419}{630}$
(b) (a) Median $=5000$ dollars $\mathrm{Median}=5000$ dollars
$\mathrm{IQR}=6400 \quad 4300=2100$ (doilars) (ii) Extra $\$ 1000$ to each saiesgirl

18C. 18 HKCEE MA 2009-I-10
(a) Median $=26 \mathrm{wpm}$ Range $=27 \mathrm{wpm}$
$\mathrm{IQR}=35-21=14(\mathrm{wpm})$
(b) (i) Method I

Range after training $=25 \mathrm{wpm}<27 \mathrm{wpm} \Rightarrow$ NO Method 2
QR affer training $=12 \mathrm{wpm}<14 \mathrm{wpm} \Rightarrow$ NO
(ii) Method l

Before the training, no speed was higher than 39 wpm. After the trairing, at least half of the speeds are 40 wpm or above. $\Rightarrow$ YES.
Method 2
Before the training, at least half of the speeds were 26 wpm or below. After the training, their speeds be come at least $27 \mathrm{wpm} . \Rightarrow$ YES.
Remarks
o look for arguments against these claims, it is often helpful to provide yourself with a skerch of the box or the other data.


18C. 19 HKCEEMA 2010-1-11
(a) Mean $=25$

Range $=13$
(b) (i) Let $x$ be the mean age of the 3 new players.
$(55 \times 22 \quad 31 \quad 31+3 x) \div 23=25 \Rightarrow x=29$. $\therefore$ The required mean is 29 .
(ii) Median unchanged: If one new player is younger than the median, the other two has to be older - then the median will be the 12th damm; if two younger and ane older than the mear, the median will be the 11th catum instead (which is still 26).
Range unchanged: New ages witbin 18 to 31
ossible ages: $\{25,31,31\},\{26,30,31\},\{27,29,31\}$. \{28,28,31\}

## 18C. 20 HKCEEMA 2011-I-1

## (a) Median $=57$

Range $=75 \quad 23=52$
$1 \mathrm{QR}=65-43=22$
(b) (i) Mefliod I

QR in 2nd survey $=67-50=17<22 \Rightarrow$ YES.

## Method 2

Range in 2nd survey $=78-44=34<52 \Rightarrow$ YES,
(ii) At leass $25 \%$ of the scores were 43 or below in the first survey. They have all improved to at least 44 in he second survey $\Rightarrow$ YES


(b) $\mathrm{IQR}=55 \quad 46=9(\mathrm{~kg})$
(c) Mean $=\frac{42.5 \times 20+\cdot+67.5 \times 4}{100}=50.8(\mathrm{~kg})$

18C22 HKALEMS 1995-1
(a) Stem (in 10) $\begin{array}{r}\text { Leaf (in 1) } \\ 0 \\ \hline 78\end{array}$

(b) $M o d e=18$

$$
\begin{aligned}
& \text { Median }=19 \\
& \mathrm{IQR}=25-12=13
\end{aligned}
$$

18C. 23 HKALE MS 1996-1
(a) $M$ ean $=59.4$
$\mathrm{IQR}=72-50=22$
(b) Mean becomes 57.4 .

IQR becomes $72-49=23$

## 8C. 24 HKALE MS 1997 - 2

(a) $26-18=8\left(^{\circ} \mathrm{C}\right)$
(b) (i) Median $=21.5^{\circ} \mathrm{C}=70.7^{\circ}$

$$
\begin{aligned}
& \text { Median }=21.5^{\circ} \mathrm{C}=70.7^{\circ} \mathrm{F} \\
& \mathrm{IQR}=\left[\frac{9}{5}(22.5)+32\right] \quad\left[\frac{9}{5}(20)+32\right]=4.5\left({ }^{\circ} \mathrm{F}\right)
\end{aligned}
$$

(ii) Mean $=\frac{9}{5}(22)+32=71.6\left({ }^{\circ} \mathrm{F}\right)$

$$
S D=\frac{9}{5}(2)=3.6(\mathrm{~F})
$$

18C. 25 HKALE MS 1999-3
(a)

(b) Equal chance since both of the probabilities will be 0

18C. 26 HKALE MS 2000 ~ 5
(a) $\mathrm{Median}=85 \mathrm{~kg}$
(b)

(c) No conclusion can be drawn as the diagrams show nc ind viōual dilference.

18C. 27 HKALE MS 2001-3
(a) $48=66 \quad(10+a) \Rightarrow a=8$ $30+b=36 \Rightarrow b=6$
(b)


8C. 28 HKALEMS 2003-5
(a) Stem (10 mins) $\left\lvert\, \frac{\text { Leaf (1 min) }}{2}\right.$

$$
\begin{array}{l|llll}
1 & 2 & 3 & 4 & 3 \\
2 & 1 & 5 & 9 \\
3 & 6 & 7 & 8 & \\
4 & 1 & 7 & 9 & 9 \\
5 & 2 & 4 & 7 &
\end{array}
$$

(b) (i) Revised median $=49 \mathrm{mins}$ Revised IQR $=60-25=35$ (mins)
(ii) Both will becoune larges
(2)

(o) (ii) Since the distribution is not symmetrical, the normal distribution is not an appropriate model.

## 8C. 30 HKALE MS 2005-4

(a) Change in mean $=$ Change in sum $\div 32$
$=(3 \times 10) \div 32=0.9375(\mathrm{~cm})$
(b) Median unchanged
(d) Case 1: The 3 data were 145, 145 and 146 Change in range $=-1$
Case 2: The 3 data were 145,146 and 146. Range unchanged
(e) Original $\mathrm{IQR}=168-154=1$ New $1 Q R=168-155 \quad 13$ $\Rightarrow$ Change $=-1$

## 18C. 31 HKALE MS 2006-

(a) Median $=18$
$\mathrm{YQR}=25-12=13$
(b) (i)
 Number

3	8	12	18	2526	30	35	41	46	$\begin{array}{l}\text { Number } \\ \text { of books }\end{array}$

(ii) In 1st term, the maximum number was 30 . In 2 nd term. at least haff of the numbers are 35 or above. ( $35-30=5$ ) 5 me Ag ( $35-30=$ ) 5 more books. Agreed.

18C. 32 HKALE MS 2007-4
(a) (i) ( $k$ is the largest darum since 5.1 cannot be.)
$k=1.2+5.3=6.5$
(ii) $\left.\quad \frac{\text { Stem ( } 1 \text { hour) }}{1} \right\rvert\, \frac{\text { Leaf ( } 0.1 \text { hour) }}{2}$

1	2	8	9					
2	1	1	2	3	4	4	9	
3	6	7	9					

(iii) Mcan $=3.0$

Median $=2.4$ hours
(b) Mean will become larger.

Median will be unchanged.
18C. 33 HKALE MS 2008-6
(a) $k=$ Mean of the other 17 students $=74$
(b) Required $\mathrm{p}=\frac{C_{1}^{3} C_{2}^{15}}{C_{3}^{18}}=\frac{105}{272}$
(c) (i) $\mathrm{SD}=\sigma=9.327$

Hence the interval is $(74-2 \sigma+2 \sigma)=(55.3,92.7)$ $\therefore 55$ is the only outict
(ii) Median unchanged. SD will decrease.

18C. 34 HKALEMS 2011-6
(a) $(40+b) 19=743+(30+a)+(40+b) \Rightarrow a=18 b-53$ Since $a$ and $b$ are integers. $0 \leq a \leq 2$ and $0 \leq b \leq 3$, $b=3 \Rightarrow a=1$
(b) 12.2 minutes
(c) Range unchanged: New data within 26 and 69 Mcan unchanged: New data arc (43-x,43+x) SD is smallest when both new data are 43. $\Rightarrow$ Least possible $\mathrm{SD}=11.6 \mathrm{mins}$ SD is grealest when the data are 26 and 60 $\Rightarrow$ Greatestpossible $S D=12.7 \mathrm{mins}$

18C. 35 HKALE MS 2012-6
(a) $\frac{(30+a)+52+\cdots+92+(90+b)}{30}=71$

$$
\begin{aligned}
& 30 \\
& 2120+a+b=2130 \\
& a+b=10 \\
&(90+b)-(30+a)=56 \Rightarrow a-b=4 \\
& \text { Solving, } a=7, b=3 \\
& \Rightarrow \sigma=12.7
\end{aligned}
$$

## 18C. 36 HKDSE MA PP-I-y

(a) Least possible IQR $=0$
(when there are many many 2 s or many many 5 's)
Greatest possible $\mathrm{IQR}=5-2=3$
(b) $9+8>12+s \Rightarrow s<5$
C. $s=1,2,3$ or 4 : i.e. 4 possible values of $s$

18C. 37 HKDSE MA PP-I- 15
(a) $\mathrm{SD}=(36-48) \div(-2)-6$
$\therefore$ S.S. of John $=\frac{66-48}{6}=3$
(b) Mean unchanged

SD incresses (since 'morc' data are 'far away' from mean) $\therefore$ YES (decreasc)

18C. 38 HKDSE MA 2012-1-7
(a) $a=18.1-6.8=11.3$
(b) New longest time $=18.1-2.9=15.2$ (s)

Befare the program, at least $25 \%$ of students take 15.3 s or tonge. After the program, they have shortened their time by at least $0.1 \mathrm{~s} . \Rightarrow$ YES.

18C. 39 HKDSE MA 2012-I- 15
(a) New $\mathrm{SD}=10 \times(1+20 \%)=12$
(b) Upon adjustment, the deviation of cach score from the mean is increased by $20 \%$ while the SD is also increased by $20 \%$. By the formula S.S. $=\frac{\text { Deviation }}{S D}$, there is no change in the stand ard score for each score

## 18C.40 HKDSE MA 2013-I-9

(a) Mean $=\frac{1 \times 4+2 \times 16+\cdots+7 \times 4}{4+16+\cdots+4}=3.5$ $\mathrm{IQR}=4-2=2$
$S D=1.5$
(b) New $\mathrm{SD}=1.451456$
$\therefore$ Change $=1.451456 \quad 1.5=0.0485$

18C.41 HKDSEMA 2013-I-10
(a) Median $=31$
(b) (i) $(60 \div b)-(20+a)=47 \Rightarrow b-a=7$
$\because 0 \leq a \leq 5$ and $7 \leq b \leq 9$
$\therefore(a, b)=(0,7),(1,8)$ or $(2,9)$
(ii) Required $p=\frac{3+3 \div 3+3+2 \div 9+9}{20 \times 13}=\frac{8}{65}$

18 C .42 HKDSEMA 2013 -I 15
(a) Let $\bar{x}$ and $\sigma$ be the mean and $S D$. $\left\{\begin{array}{l}90=\bar{x}+3 \sigma \\ 65=\bar{x}+0.5 \sigma\end{array} \Rightarrow\left\{\begin{array}{l}\bar{x}=60 \\ \sigma=10\end{array}\right.\right.$
(b) Scores below the mean have negative standard scores. From the box-and-whisker diagram, at least half of stodents scored 55 or below, Hence they must have negative standards scores. $\Rightarrow$ YES.

18C. 43 HKDSE.MA 2014-I-4
Modian $=1$
$\mathrm{SD}=0.899$
18C. 44 HKDSE MA 2014-I-11
(a) Range $=91-18=73$ (000 dollars)

$\begin{aligned} &=54(000 \text { dollars }) \\ & \text { Nov }\end{aligned}$

$$
\text { Nev median }=\text { original median }=55 \text { (000 dollars) }
$$

## 18C.45 HKDSEMA 2015-I- 12

(a) Mean $=55 \mathrm{~kg}$

Mcdian $=52 \mathrm{~kg}$
Range $=79 \quad 40=39(\mathrm{~kg})$
(b) Let the new weights be $a$ and $b(\mathrm{~kg})$ $a+b+55 \times 20=56 \times 22 \Rightarrow a+b=132$ Since the range is increased by only 1 , If $a=39$, then $b=132-39=93$ (rejected) f $b=80$, then $a=132-80=52$ Hence the only possibility is 52 kg and 80 kg .

## 18C.51 HKDSE MA 2020-I -

| 9 a | The mean is 5.4. |
| :--- | :--- | :--- |

The masdian is 5.5 .
The new number of suadents (corr. to 3 sig. fig)
$=41$
Therefare the median is the $21^{x}$ smallest number of sabjects taken. The chergew median is 5 .
The change in the median of the distribution $5-5.5$
18C. 52 HKDSE MA $2020-1-11$

\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{11a} \&  <br>
\hline \& $$
=15^{2}
$$ <br>
\hline \& Sinse the rape of the distritution is the triple of it intergancrilo zamge.
$$
(50+w)-11-15 \times 3
$$ <br>
\hline \& $$
w=6
$$ <br>
\hline \& Tbe requied prosobility

$\frac{6}{20}$
$\frac{3}{10}$ <br>
\hline
\end{tabular}

18C. 46 HKDSEMA 2015-I- 15
(a) Score of David $=66-0.5(12)=60$
(b) S.S. in Science $=\frac{49-52}{10}=-0.3>$ S.S. in Maths $\therefore$ YES

18C. 47 HKDSE MA 2016-T - 16
SD $=(22-61) \div(2.6)=15$
$\Rightarrow$ Score of Mary $=61+1.4(15)=82$
$\therefore$ The claim is wrong.

18C. 48 HKDSEMA 2017-I- 11
(a) $\begin{aligned} & (80+b)-61=22 \Rightarrow b=3 \\ & 61+\cdots+(70+a)+\cdots+83\end{aligned}$
$\frac{61+\cdots+(70+a)+\cdots+83}{15}=70 \Rightarrow a=2$
$\therefore$ Median $=\$ 69, S D=\$ 7.33$
(b) Required $p=\frac{6}{15}=\frac{2}{5}$

18C.49 HKDSEMA $2018-\mathrm{I}-10$
(a) $a=27+21=48$
$b=19+43=62$
(b) Least possible age in Team $Y=38-20=18$ Since $18<19$, the range of the new section would be larger than that of Tcam $X$. Disagreed.

18C. 50 HKDSE MA 2019-I-12
(a) $\mathrm{IQR}=72-(60+c)=8 \Rightarrow c=4$
(b) (i) $(80+b) \quad(50+a)>34 \Rightarrow b-a>4$

$$
\begin{aligned}
& (80+b) \quad(50+a)>34 \Rightarrow b-a>4 \\
& (50+a)+60+60 \div+79 \div(80 \div b)=69 \times 20 \\
& \Rightarrow a+b=7
\end{aligned}
$$

$$
\Rightarrow a+b=7
$$

$\therefore(a, b) \quad(0,7) \circ r(1,6)$
(ii) $S D$ is smaller when the data are less di spersed.
$\therefore$ Least possible SD occurs when $(a, b)=(1,6)$
By the calculator, Least possible $\mathrm{SD}=7.34$ (3 s.f.)

