9 Arithmetic and Geometric Sequences

9A General terms and summations of sequences

9A. 1 HKCEE MA $1980(1 / 1 * / 3)-\mathrm{I}-11$
Let $k>0$.
(a) (i) Find the common ratio of the geometric sequence $k, 10 k, 100 k$.
(ii) Find the sum of the first n terms of the geometric sequence $k, 10 k, 100 k, \ldots$.
(b) (i) Show that $\log _{10} k, \log _{10} 10 k, \log _{10} 100 k$ is an arithmetic sequence.
(ii) Find the sum of the first n terms of the arithmetic sequence $\log _{10} k, \log _{10} 10 k, \log _{10} 100 k, \ldots$. Also, if $n=10$, what is the sum?

9A. 2 HKCEE MA 1984(A/B) - I-10
a and b are positive numbers. $a,-2, b$ is a geometric sequence and $2, b, a$ is an arithmetic sequence.
(a) Find the value of $a b$.
(b) Find the values of a and b.
(c) (i) Find the sum to infinity of the geometric sequence $a,-2, b, \ldots$.
(ii) Find the sum to infinity of all the terms that are positive in the geometric sequence $a,-2, b, \ldots$.

9A. 3 HKCEE MA 1986(A/B I) - B -9
$2,-1,-4, \ldots$ form an arithmetic sequence.
(a) Find
(i) the nth term,
(ii) the sum of the first n terms,
(iii) the sum of the sequence from the 21st term to the 30th term.
(b) If the sum of the first n terms of the sequence is less than -1000 , find the least value of n.

9A. 4 HKCEE MA 1989-I-9

The positive numbers $1, k, \frac{1}{2}, \ldots$ form a geometric sequence.
(a) Find the value of k, leaving your answer in surd form.
(b) Express the nth term $T(n)$ in terms of n.
(c) Find the sum to infinity, expressing your answer in the form $p+\sqrt{q}$, where p and q are integers.
(d) Express the product $T(1) \times T(3) \times T(5) \times \cdots \times T(2 n \quad 1)$ in terms of n.

9A. 5 HKCEE MA 1995-I-3

(a) Find the sum of the first 20 terms of the arithmetic sequence $1,5,9, \ldots$.
(b) Find the sum to infinity of the geometric sequence $9,3,1, \ldots$.

9A. 6 HKCEE MA 1996 - I 3

The n-th term T_{n} of a sequence $T_{1}, T_{2}, T_{3}, \ldots$ is $73 n$.
(a) Write down the first 4 terms of the sequence.
(b) Find the sum of the first 100 terms of the sequence.

9A. 7 HKCEE MA $2003-\mathrm{I}-7$

Consider the arithmetic sequence $2,5,8 \ldots$. Find
(a) the 10 th term of this sequence,
(b) the sum of the first 10 terms of this sequence.

9A. 8 HKCEE MA 2005-I 7
The 1st term and the 2nd term of an arithmetic sequence are 5 and 8 respectively. If the sum of the first n terms of the sequence is 3925 , find n.

9A. 9 HKDSE MA 2015-I - 17

For any positive integer n, let $A(n)=4 n-5$ and $B(n)=10^{4 n-5}$.
(a) Express $A(1)+A(2)+A(3)+\cdots+A(n)$ in terms of n.
(b) Find the greatest value of r such that $\log (B(1) B(2) B(3) \ldots B(r)) \leq 8000$.

9A. 10 HKDSE MA 2016-I-17
The 1st term and the 38th term of an arithmetic sequence are 666 and 555 respectively. Find
(a) the common difference of the sequence,
(b) the greatest value of n such that the sum of the first n terms of the sequence is positive.

9A. 11 HKDSE MA 2018 - 16
The 3rd term and the 4th term of a geometric sequence are 720 and 864 respectively.
(a) Find the Ist term of the sequence.
(b) Find the greatest value of n such that the sum of the $(n+1)$ th term and the $(2 n+1)$ th term is less than 5×10^{14}.

9A. 12 HKDSE MA 2019-I - 16

Let α and β be real numbers such that $\left\{\begin{array}{l}\beta=5 \alpha-18 \\ \beta=\alpha^{2}-13 \alpha+63\end{array}\right.$.
(a) Find α and β.
(b) The 1 st term and the 2 nd term of an arithmetic sequence are $\log \alpha$ and $\log \beta$ respectively. Find the least value of n such that the sum of the first n terms of the sequence is greater than 888 .

9A. 13 HKDSE MA. 2020-I - 16
The 3rd term and the 6th term of a geometric sequence are 144 and 486 respectively.
(a) Find the lst term of the sequence. (2 marks)
(b) Find the least value of n such that the sum of the first n terms of the sequence is greater than 8×10^{18}.
(3 marks)

9B Applications

9B. 1 HKCEE MA $1981(1 / 2 / 3)-\mathrm{I}-10$
In Figure (1), $B_{1} C_{1} C D$ is a square inscribed in the right angled triangle $A B C . \angle C=90^{\circ}, B C=a, A C=2 a$, $B_{1} C_{1}=b$.

${ }^{\text {Figure (2) }}{ }^{C}$

Figure (3)
(a) Express b in terms of a.
(b) $B_{2} C_{2} C_{1} D_{1}$ is a square inscribed in $\triangle A B_{1} C_{1}$ (see Figure (2)).
(i) Express $B_{2} C_{2}$ in terms of b.
(ii) Hence express $B_{2} C_{2}$ in terms of a.
(c) If squares $B_{3} C_{3} C_{2} D_{2}, B_{4} C_{4} C_{3} D_{3}, B_{5} C_{5} C_{4} D_{4}, \ldots$ are drawn successively as indicated in Figure (3),
(i) write down the length of $B_{5} C_{5}$ in ternss of a.
(ii) find, in termis of a, the sum of the areas of the infinitely many squares drawn in this way.

9B. 2 HKCEE MA 1982(1/2/3) I 10
(a) (i) Find the sum of all the multiples of 3 from 1 to 1000.
(ii) Find the sum of all the multiples of 4 from 1 to 1000 (including 1000).
(b) Hence, or otherwise, find the sum of all the integers from 1 to 1000 (including 1 and 1000) which are neither multiples of 3 nor multiples of 4 .

9 B 3 HKCEE MA 1983(A/B)-I-10

A ball is dropped vertically from a height of 10 m , and when it reaches the ground, it rebounds to a height of $10 \times \frac{3}{4} \mathrm{~m}$. The ball continues to fall and rebound again, each time rebounding to $\frac{3}{4}$ of the height from which it previously fell (see the figure).

(a) Find the total distance travelled by the ball just before it makes its second rebound.
(b) Find, in terms of k, the total distance travelled by the ball just before it makes its $(k+1)$ st rebound.
(c) Find the total distance travelled by the ball before it comes to rest.

9B. 4 HKCEE MA 1985(A/B) -I 14

$\$ P$ is deposited in a bank at the interest rate of $r \%$ per annum compounded annually. At the end of each year, $\frac{1}{3}$ of the amount in the account (including principal and interest) is drawn out and the remainder is redeposited at the same rate.
Let $\$ Q_{1}, \$ Q_{2}, \$ Q_{3}, \ldots$ denote respectively the sums of money drawn out at the end of the first year, second year, third year,
(a) (i) Express Q_{1} and Q_{2} in terms of P and r.
(ii) Show that $Q_{3}=\frac{4}{27} P(1+r \%)^{3}$.
(b) $Q_{1}, Q_{2}, Q_{3}, \ldots$ form a geometric sequence. Find the common ratio in terms of r.
(c) Suppose $Q_{3}=\frac{27}{128} P$.
(i) Find the value of r.
(ii) If $P=10000$, find $Q_{1}+Q_{2}+Q_{3}+\cdots+Q_{10}$. (Give your answer correct to the nearest integer.)

In this quesiton you should leave your answers in surd form.

In the figure, $A_{1} B_{1} C_{1}$ is and equilateral triangle of side 3 and area T_{1}
(a) Find T_{1}.
(b) The points A_{2}, \bar{B}_{2} and C_{2} divide internally the line segments $A_{1} B_{1}, B_{1} C_{1}$ and $\bar{C}_{1} A_{1}$ respectively in the same ratio 1:2. The area of $\triangle A_{2} B_{2} C_{2}$ is T_{2}
(i) Find $A_{2} B_{2}$
(ii) Find T_{2}.
(c) Triangles $A_{3} B_{3} \bar{C}_{3}, A_{4} B_{4} \bar{C}_{4}, \ldots$ are constructed in a similar way. Their areas are T_{3}, T_{4}, \ldots, respectively. It is known that $T_{1}, T_{2}, T_{3}, T_{4}, \ldots$ forn a geometric sequence.
(i) Find the common ratio.
(ii) Find T_{n}.
(iii) Find the value of $T_{1}+T_{2}+\cdots+T_{n}$
(iv) Find the sum to infinity of the geometric sequence.

9B. 6 HKCEE MA $1988-\mathrm{I}-9$

(a) Write down the smallest and the largest multiples of 7 between 100 and 999.
(b) How many multiples of 7 are there between 100 and 999 ? Find the sum of these multiples.
(c) Find the sum of all positive three digit integers which are NOT divisible by 7 .

9B. 7 HKCEE MA $1990 \mathrm{I}-14$

The positive integers $1,2,3 \ldots$ are divided into groups $G_{1}, G_{2}, G_{3}, \ldots$, so that the $k^{\text {th }}$ group G_{k} consists of k consecutive integers as follows:

$$
\begin{aligned}
G_{1} & : 1 \\
G_{2} & : 2,3 \\
G_{3} & : 4,5,6 \\
& \ldots \cdots \cdots \cdots \\
& \ldots \ldots \ldots \ldots \\
& \ldots \cdots \cdots \cdots \\
G_{k-1} & : u_{1}, u_{2}, \ldots, u_{k} 1 \\
G_{k} & : v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \\
& \ldots \ldots \ldots \ldots \\
& \ldots \ldots \ldots \ldots
\end{aligned}
$$

(a) (i) Write down all the integers in the $6^{\text {th }}$ group G_{6}.
(ii) What is the total number of integers in the first 6 groups $G_{1}, G_{2}, \ldots, G_{6}$?
(b) Find, in terms of k,
(i) the last integer u_{k-1} in G_{k-1} and the first integer v_{1} in G_{k},
(ii) the sum of all the integers in G_{k}.

9B. 8 HKCEE MA 1991-I-12

A maze is formed by line segments of lengths $d_{0}, d_{1}, d_{2}, \ldots, d_{n}, \ldots$, with adjacent line segments perpendic ular to each other as shown in the figure. Let $d_{0}=10, d_{1}=8, d_{2}=10$ and $\frac{d_{n+2}}{d_{n}}=0.9$ when $n \geq 1$, i.e. $\frac{d_{3}}{d_{1}}=\frac{d_{5}}{d_{3}}=\cdots=0.9$ and $\frac{d_{4}}{d_{2}}=\frac{d_{6}}{d_{4}}=\cdot \cdot=0.9$.
(a) Find d_{3} and d_{5}, and express $d_{2 n-1}$ in terms of n.
(b) Find d_{6} and express $d_{2 n}$ in terms of n.
(c) Find, in terms of n, the sums
(i) $d_{1}+d_{3}+d_{5}+\cdots+d_{2 n-1}$,
(ii) $d_{2}+d_{4}+d_{6}+\cdots+d_{2 n}$.
(d) Find the value of the sum $d_{0}+d_{1}+d_{2}+d_{3}+\ldots$ to infinity.

9B. 9 HKCEE MA 1992-1-14

(a) Given the geometric sequence $a^{n}, a^{n-1} b, a^{n-2} b^{2}, \ldots, a^{2} b^{n-2}, a b^{n-1}$, where a and b are unequal and nonzero real numbers, find the common ratio and the sum to n terms of the geometric sequence.
(b) A man joins a saving plan by depositing in his bank account a sum of money at the beginning of every year. At the beginning of the first year, he puts an initial deposit of $\$ P$. Every year afterwards, he deposits 10% more than he does in the previous year. The bank pays interest at a rate of 8% p.a., compounded yearly.
(i) Find, in terns of P, an expression for the amount in his account at the end of
(1) the first year,
(2) the second year
(3) the third year.
(Note: You need not simplify your expressions)
(ii) Using (a), or otherwise, show that the amount in his account at the end of the nth year is $\$ 54 P\left(1.1^{n}-1.08^{n}\right)$
(c) A flat is worth $\$ 1080000$ at the beginning of a certain year and at the same time, a man joins the saving plan in (b) with an initial deposit $\$ P=\$ 20000$. Suppose the value of the flat grows by 15% every year. Show that at the end of the nth year, the value of the flat is greater than the amount in the man's account.

9B. 10 HKCEE MA 1993-I - 10

Consider the food production and population problems of a certain country. In the 1st year, the country's annual food production was 8 million tonnes. At the end of the 1 st year its population was 2 million. It is assumed that the annual food production increases by 1 million tonnes each year and the population increases by 6% each year.
(a) Find, in million tonnes, the annual food production of the country in
(i) the 3rd year,
(ii) the nth year.
(b) Find, in million tonnes, the total food production in the first 25 years.
(c) Find the population of the country at the end of
(i) the 3 rd year,
(ii) the nth year.
(d) Starting from the end of the first year, find the minimum number of years it will take for the population to be doubled.
(e) If the 'annual food production per capita' (i.e. annual food production in a certain year) is less than 0.2 tonne, the country will face a food shortage problem. Determine whether the country will face a food shortage problem or not at the end of the 100th year.

9B. 11 HKCEE MA 1994-I-15

Suppose the number of babies bom in Hong Kong in 1994 is 70000 and in subsequent years, the number of babies born each year increased by 2% of that of the previous year.
(a) Find the number of babies born in Hong Kong
(i) in the first year after 1994;
(ii) in the nth year after 1994
(b) In which year will the number of babies born in Hong Kong first exceed 90000 ?
(c) Find the total number of babies bom in Hong Kong from 1997 to 2046 inclusive.
(d) It is known that from 1901 to 2099, a year is a leap year if its number is divisible by 4
(i) Find the number of leap years between 1997 and 2046.
(ii) Find the total number of babjes born in Hong Kong in the leap years between 1997 and 2046.

9B. 12 HKCEE MA $1997-\mathrm{I}-10$

Suppose the population of a town grows by 2% each year and its population at the end of 1996 was 300000 . (a) Find the population at the end of 1998.
(b) At the end of which year will the population just exceed 330000 ?

9B. 13 HKCEEMA 1997 - I 15

As shown below, figure A_{1} is a square of side ℓ. To the middle of each of three sides of figure A_{1}, a square of side $\frac{\ell}{3}$ is added to give figure A_{2}.
Following the same pattern, squares of side $\frac{\ell}{9}$ are added to figure A_{2} to give figure A_{3}. The process is repeated indefinitely to give figures $A_{4}, A_{5}, \ldots, A_{n}, \ldots$
(a) (i) Table 1 shows the numbers and the lengths of sides of the squares added when producing A_{2} from A_{1}, A_{3} from A_{2} and A_{4} from A_{3}. Complete Table 1.
(ii) Find the total area of all the squares in A_{4}.
(iii) As n increases indefinitely, the total area of all the squares in A_{n} tends to a constant k. Express k in terms of ℓ.
(b) The overlapping line segments in figures $A_{1}, A_{2}, A_{3}, \ldots, A_{n}, \ldots$ are removed to form figures B_{1}, B_{2}, B_{3}, \ldots, B_{n}, \ldots as shown.
(i) Complete Table 2.
(ii) Write down the perimeter of B_{n}.

What would the perimeter of B_{n}. become if n increases indefinitely?

Table 1	$A_{1} \rightarrow A_{2}$	$A_{2} \rightarrow A_{3}$	$A_{3} \rightarrow A_{4}$
Number of squares added	3	9	
Length of sides of the squares added	$\frac{\ell}{3}$	$\frac{\ell}{9}$	

Table 2	B_{1}	B_{2}	B_{3}	B_{4}
Perimeter	4ℓ			

9B. 14 HKCEE MA $1998-1 \quad 13$

In Figure (1), $A_{1} B_{1} C_{1} D_{1}$ is a square of side $14 \mathrm{~cm} . A_{2}, B_{2}, C_{2}$ and D_{2} divide $A_{1} B_{1}, B_{1} C_{1}, C_{1} D_{1}$ and $D_{1} A_{1}$ respectively in the ratio 3:4 and form the square $A_{2} B_{2} C_{2} D_{2}$. Following the same pattern, A_{3}, B_{3}, C_{3} and D_{3} divide $A_{2} B_{2}, B_{2} C_{2}, C_{2} D_{2}$ and $D_{2} A_{2}$ respectively in the ratio $3: 4$ and form the square $A_{3} B_{3} C_{3} D_{3}$. The process is repeated indefinitely to give squares $A_{4} B_{4} C_{4} D_{4}, A_{5} B_{5} C_{5} D_{5}, \ldots, A_{n} B_{n} C_{n} D_{n}, \ldots$.

Figure (2)
(a) Find $A_{2} B_{2}$.
(b) Find $A_{2} A_{3}: A_{1} A_{2}$
(c) An ant starts at A_{1} and crawls along the path $A_{1} A_{2} A_{3} \ldots A_{n} \ldots$ as shown in Figure (2). Show that the total distance crawled by the ant cannot exceed 21 cm .

9B. 15 HKCEE MA 1999-I - 17

The manager of a factory estimated that in year 2000, the income of the factory will drop by $r \%$ each month from $\$ 500000$ in January to $\$ 284400$ in December.
(a) Find r correct to the nearest integer.
(b) Suppose the factory's production cost is $\$ 400000$ in January 2000. The manager proposed to cut the cost by $\$ 20000$ every month (i.e., the cost will be $\$ 380000$ in February and $\$ 360000$ in March etc.) and claimed that it would not affect the monthly income.
(i) Using the value of r obtained in (a), show that the factory will still make a profit for the whole year.
(ii) The factory will start a research project at the beginning of year 2000 on improving its production method. The cost of running the research project is $\$ 300000$ per month. The project will be stopped at the end of the k th month if the total cost spent in these k months on running the project exceeds the total production cost for the remaining months of the year
Show that $k^{2}-71 k+348<0$. Hence determine how long the research project will last.

9B. 16 HKCEEMA 2000-I -14

An auditorium has 50 rows of seats. All seats are numbered in numerical order from the first row to the last row, and from left to right, as shown in the figure. The first row has 20 seats. The second row has 22 seats. Each succeeding row has 2 more seats than the previous one.
(a) How many seats are there in the last row?
(b) Find the total number of seats in the first n rows. Hence deternine in which row the seat numbered 2000 is located.

9B. 17 HKCEEMA 2001-I 12

$F_{1}, F_{2}, F_{3}, \ldots, F_{40}$ as shown below are 40 similar figures. The perimeter of F_{1} is 10 cm . The perimeter of each succeeding figure is 1 cm longer than that of the previous one.

(a) (i) Find the perimeter of F_{40}.
(ii) Find the sum of the perimeters of the 40 figures.
(b) It is known that the area of F_{1} is $4 \mathrm{~cm}^{2}$.
(i) Find the area of F_{2}.
(ii) Determine with justification whether the areas of $F_{1}, F_{2}, F_{3}, \ldots, F_{40}$ form an arithmetic sequence.

9B. 18 HKCEEMA 2001-I-14

(a) [Out of syllabus: The result "The solution to the equation $x^{5} \quad 6 x+5=0$ is $x \approx 1.091$ " is obtained.]
(b) From 1997 to 2000, Mr. Chan deposited $\$ 1000$ in a bank at the beginning of each year at an interest rate of $r \%$ per annum, compounded yearly. For the money deposited, the amount accumulated at the beginning of 2001 was $\$ 5000$. Using (a), find r correct to 1 decimal place.

98. 19 HKCEE MA 2002-I-13

A line segment $A B$ of length 3 m is cut into three equal parts $A C_{1}, C_{1} C_{2}$ and $C_{2} B$ as shown in Figure (1).

On the middle part $C_{1} C_{2}$, an equilateral triangle $C_{1} C_{2} C_{3}$ is drawn as shown in Figure (2).
(a) Find, in surd form, the area of triangle $C_{1} C_{2} C_{3}$.
(b) Each of the line segments $A C_{1}, C_{1} C_{3}, C_{3} C_{2}$ and $C_{2} B$ in Figure (2) is further divided into three equal parts. Similar to the previous process, four smaller equilateral triangles are drawn as shown in Figure (3). Find, in surd form, the total area of all the equilateral triangles.

Figure (3)
(c) Figure (4) shows all the equilateral triangles so generated when the previous process is repeated again. What would the total area of all the equilateral triangles become if this process is repeated indefinitely? Give your answer in surd form.

9. Arithmetic and Geometric Sequences

9B. 20 HKCEEMA 2003 I- 15
Figure (1) shows an equilateral triangle $A_{0} B_{0} C_{0}$ of side 1 m . Another triangle $A_{1} B_{1} C_{1}$ is inscribed in triangle $A_{0} B_{0} C_{0}$ such that $\frac{A_{0} A_{1}}{A_{0} B_{0}}=\frac{B_{0} B_{1}}{B_{0} C_{0}}=\frac{C_{0} C_{1}}{C_{0} A_{0}}=k$. where $0<k<1$. Let $A_{1} B_{1}=x \mathrm{~m}$.
(a) (i) Express the area of triangle $A_{1} B_{0} B_{1}$ in terms of k.
(ii) Express x in terms of k.
(iii) Explain why $A_{1} B_{1} C_{1}$ is an equilateral triangle.
(b) Another equilateral triangle $A_{2} B_{2} C_{2}$ in inscribed in triangle $A_{1} B_{1} C_{1}$ such that $\frac{A_{1} A_{2}}{A_{1} B_{1}}=\frac{B_{1} B_{2}}{B_{1} C_{1}}=\frac{C_{1} C_{2}}{C_{1} A_{1}}=k$ as shown in Figure (2).
(i) Prove that the triangles $A_{1} B_{0} B_{1}$ and $A_{2} B_{1} B_{2}$ are similar.
(ii) The above process of inscribing triangles is repeated indefinitely to generate equilateral triangles $A_{3} B_{3} C_{3}, A_{4} B_{4} C_{4}, A_{5} B_{5} C_{5}, \ldots$. Find the total area of the triangles $A_{1} B_{0} B_{1}, A_{2} B_{1} B_{2}, A_{3} B_{2} B_{3}, \ldots$.

Figure (1)

Figure (2)

9B. 21 HKCEE MA 2004-I-15

In Figure (1), $F_{1}, F_{2}, F_{3} \ldots$ are square frames. The perimeter of F_{1} is 8 cm . Starting from F_{2}, the perimeter of each square frame is 4 cm longer than the perimeter of the previous frame.

F_{2}
Figure (1)
(a) (i) Find the perimeter of F_{10}
(ii) If a thin metal wire of length 1000 cm is cut into pieces and these pieces are then bent to form the above square frames, find the greatest number of distinct square frames that can be formed.
(b) Figure (2) shows three similar solid right pyramids S_{1}, S_{2} and S_{3}. The total lengths of the four sides of the square bases of S_{1}, S_{2} and S_{3} are equal to the perimeters of F_{1}, F_{2} and F_{3} respectively.
(i) Do the volumes of S_{1}, S_{2} and S_{3} form a geometric sequence? Explain your answer.
(ii) When the length of the slant edge of S_{1} is 5 cm , find the volume of S_{3}. Give the answer in surd form.

S_{1}

S_{2}

S_{3}

9B. 22 HKCEE MA 2005 I-16

Peter borrows a loan of \$200 000 from a bank at an interest rate of 6% per annum, compounded monthly. For each successive month after the day when the loan is taken, Ioan interest is calculated and then a monthly instalment of $\$ x$ is immediately paid to the bank until the loan is fully repaid (the last instalment may be less than $\$ x$), where $x<200000$.
(a) (i) Find the loan interest for the 1st month.
(ii) Express, in terms of x, the amount that Peter still owes the bank after paying the 1 st instalment.
(iii) Prove that if Peter has not yet fully repaid the loan after paying the nth instalment, he still owes the bank $\$\left\{200000(1.005)^{n}-200 x\left[(1.005)^{n}-1\right]\right\}$.
(b) Suppose that Peter's monthly instalment is $\$ 1800$ (the last instalment may be less than $\$ 1800$).
(i) Find the number of menths for Peter to fully repay the loan.
(ii) Peter wants to fully repay the loan with a smaller monthly instalment. He requests to pay a monthly instalment of $\$ 900$. However, the bank refuses his request. Why?

9B. 23 HKCEE MA 2008-I-16

In the current financial year of a city, the amount of salaries tax charged for a citizen is calculated according to the following rules:

Net chargeable income $(\$)$	Rate
On the first 30000	$a \%$
On the next 30000	10%
On the next 30000	$b \%$
Remainder	24%

The net chargeable income is equal to the net total income minus the sum of allowances. The salaries tax charged shall not exceed the standard rate of salaries tax applied to the net total income. The standard rate of salaries tax for the current financial year is 20%.

It is given that $a, 10, b, 24$ is an arithmetic sequence.

(a) Find a and b.

(b) Suppose that in the current financial year of the city, the sum of allowances of a citizen is $\$ 172000$. (i) Let $\$ P$ be the net total income of the citizen. If the citizen has to pay salaries tax at the standard rate, express the amount of salaries tax charged for the citizen in terms of P.
(ii) Find the least net total income of the citizen so that the salaries tax is charged at the standard rate.
(c) Peter is a citizen in the city. In the current financial year, the net total income and the sum of allowances of Peter are $\$ 1400000$ and $\$ 172000$ respectively. In order to pay his salaries tax, Peter begins to save money 12 months before the due day of paying salaries tax. A deposit of $\$ 23000$ is saved in a bank on the same day of each month at an interest rate of 3% per annum, compounded monthly. There are totally 12 deposits. Will Peter have enough money to pay his salaries tax on the due day? Explain your answer.

9B. 24 HKCEEMA 2009-I - 15

In a city, the taxi fare is charged according to the following table:

Distance travelled	
The first 2 km (under 2 km will be counted as 2 km)	$\$ 30$
Every 0.2 km thereafter (under 0.2 km will be counted as 0.2 km)	$\$ 2.4$

Assume that there are no other extra fares.
(a) A hired taxi in the city travels a distance of $x \mathrm{~km}$, where $x \geq 2$.
(i) Suppose that x is a multiple of 0.2 . Prove that the taxi fare is $\$(6+12 x)$.
(ii) Suppose that x is not a multiple of 0.2 . Is the taxi fare $\$(6+12 x)$? Explain your answer.
(b) If a hired taxi in the city travels a distance of 3.1 km , find the taxi fare.
(c) In the city, a taxi is hired for 99 journeys. The 1 st joumey covers a distance of 3.1 km . Starting from the 2nd journey, the distance covered by each joumey is 0.5 km longer than that covered by the previous joumey. The taxi driver claims that the total taxi fare will not exceed $\$ 33000$. Is the claim correct? Explain your answer.

98. 25 HKCEE MA 2010-I 17

Figure (1) shows the circle passing through the four vertices of the square $A B C D$. A rectangular coordinate system is introduced in Figure (1) so that the coordinates of A and B are $(0,0)$ and $(8,6)$ respectively.

(a) (i) Using a suitable transfornation, or otherwise, write down the coordinates of D. Hence, or other wise, find the coordinates of the centre of the circle $A B C D$.
(ii) Find the radius of the circle $A B C D$.
(b) A student uses the circle $A B C D$ of Figure (1) to design a logo the class association. The process of designing the logo starts by constructing the inscribed circle of the square $A B C D$ such that the inscribed circle touches $A B, B C, C D$ and $D A$ at A_{1}, B_{1}, C_{1} and D_{1} respectively. The region between the square $A B C D$ and its inscribed circle is shaded as shown in Figure (2). The inscribed circle of the square $A_{1} B_{1} C_{1} D_{1}$ is then constructed such that this inscribed circle touches $A_{1} B_{1}, B_{1} C_{1}, C_{1} D_{1}$ and $D_{1} A_{1}$ at A_{2}, B_{2}, C_{2} and D_{2} respectively. The region between the square $A_{1} B_{1} C_{1} D_{1}$ and its inscribed circle is also shaded. The process is carried in until the region between the square $A_{9} B_{9} C_{9} D_{9}$ and its inscribed circle is shaded.
(i) Find the ratio of the area of the circle $A_{1} B_{1} C_{1} D_{1}$ to the area of the circle $A B C D$.
(ii) Suppose that the ratio of the total area of all the shaded regions to the area of the circle $A B C D$ is $p: 1$. The student thinks that the design of the $\log 0$ is good when p lies between 0.2 and 0.3 . According to the student, is the design of the logo good? Explain your answer.

9B. 26 HKCEEMA 2011-I-15

The figure shows a sequence of tables filled with integers. The 1st table consists of 1 row and 1 column and 1 is assigned to the cell of the 1 st table. For any integer $n>1$, the nth tableconsists of n rows and n columns and the integers in the cells of the n table satisfy the following conditions:
(1) The integer in the cell at the top left cormer is n.
(2) In each rov, the integer in the cell of the $(r+1)$ th column is greater than that of the r th column by 1 , where $1 \leq r \leq n \quad 1$.
(3) In each column, the integer in the cell of the $(r+1)$ th row is greater than that of the r th row by 1 , where $1 \leq r \leq n-1$.

					L						
		3	4	4							
		1strow	2	3			5				
1	¢				2nd row	3	4		6	6	
st table				table				3 r	table		

(a) Construct and complete the 4th table.
(b) Find the sum of all integers in the 1st row of the 99th table.
(c) Find the sum of all integers in the 99th table.
(d) Is there an odd number k such that the sum of all integers in the k th table is an even number? Explain your answer.

9. 27 HKDSEMA SP-I- 15

The seats in a theatre are numbered in numerical order from the first row to the last row, and from leff to right, as shown in the figure. The first row has 12 seats. Each succeeding row has 3 more seats than the previous one. If the theatre cannot accommodate more than 930 seats, what is the greatest number of rows in the theatre?

98. 28 HKDSE MA PP-I- 19

The amount of investment of a commercial firm in the 1st year is $\$ 4000000$. The amount of investment in each successive year is $r \%$ less than the previous year. The amount of investmentin the 4th year is $\$ 1048576$.
(a) Find r
(b) The revenue made by the firm in the 1st year is $\$ 2000000$. The revenue made in each successive year is 20% less than the previous year
(i) Find the least number of years needed for the total revenue made by the firm to exceed $\$ 9000000$.
(ii) Will the total revenue made by the firm exceed $\$ 10000000$? Explain your answer.
(iii) The manager of the firm claims that the total revenue made by the firm will exceed the total amount of investment. Do you agree? Explain your answer

9B. 29 HKDSE MA 2012-1-19

In a city, the air cargo terminal X of an airport handles goods of weight $A(n)$ tonnes in the nth year since the start of its operation, where n is a positive integer. It is given that $A(n)=a b^{2 n}$, where a and b are positive constants. It is found that the weights of the goods handled by X in the 1st year and the 2nd year since the start of its operation are 254100 tonnes and 307461 tonnes respectively.
(a) (i) Find a and b. Hence find the weight of the goods handled by X in the 4th year since the start of its operation.
(ii) Express, in terms of n, the total weight of the goods handled by X in the first n year since the start of its operation.
(b) The air cargo terminal Y starts to operate since X has been operated for 4 years. Let $B(m)$ tonnes be the weight of the goods handled by Y in the m th year since the start of its operation, where m is a positive integer. It is given that $B(m)=2 a b^{m}$.
(i) The manager of the airport claims that after Y has been operated, the weight of the goods handled by Y is less than that handled by X in each year. Do you agree? Explain your answer.
(ii) The supervisor of the airport thinks that when the total weight of the goods handled by X and Y since the start of the operation of X exceeds 20000000 tonnes, new facilities should be installed to maintain the efficiency of the air cargo terminals. According to the supervisor, in which year since the start of the operation of X should the new facilities be installed?

98.30 HKDSE MA 2013- -19

The development of public housing in a city is under study. It is given that the total fioor area of all public housing flats at the end of the 1st year is $9 \times 10^{6} \mathrm{~m}^{2}$ and in subsequent years, the total floor area of public housing flats built each year is $r \%$ of the total floor area of all public housing flats at the end of the previous year, where r is a constant, and the total floor area of public housing flats pulled down each year is $3 \times 10^{5} \mathrm{~m}^{2}$. It is found that the total floor area of all public housing flats at the end of the 3 rd year is $1.026 \times 10^{7} \mathrm{~m}^{2}$.
(a) (i) Express, in terms of r, the total floor area of all public housing flats at the end of the 2nd year.
(ii) Find r.
(b) (i) Express, in terms of n, the total floor area of all public housing flats at the end of the nth year.
(ii) At the end of which year will the total floor area of all public housing flats first exceed $4 \times 10^{7} \mathrm{~m}^{2}$?
(c) It is assumed that the total floor area of public housing flats needed at the end of the nth year is $\left(a(1.21)^{n}+b\right) \mathrm{m}^{2}$, where a and b are constants. Some research results reveal the following information:

n	The total floo area of public housing flats needed at the end of the nth year $\left(\mathrm{m}^{2}\right)$
1	1×10^{7}
2	1.063×10^{7}

A research assistant claims that based on the above assumption, the total floor area of all public housing flats will be greater than the total floor area of public housing flats needed at the end of a certain year. Is the claim correct? Explain your answer.

9B. 31 HKDSEMA 2014-I-16

In the figure, the 1st pattern consists of 3 dots. For any positive integer n, the ($n+1$)st pattern is formed by adding 2 dots to the nth pattern. Find the least value of m such that the total number of dots in the first m patterns exceeds 6888 .

9B. 32 HKDSE MA 2017-I-16
A city adopts a plan to import water from another city. It is given that the volume of water imported in the lst year since the start of the plan is $1.5 \times 10^{7} \mathrm{~m}^{3}$ and in subsequent years, the volume of water imported each year is 10% less than the volume of water imported in the previous year.
(a) Find the total volume of water imported in the first 20 years since the start of the plan.
(b) Someone claims that the total volume of water imported since the start of the plan will not exceed $1.6 \times 10^{8} \mathrm{~m}^{3}$. Do you agree? Explain your answer.

9A. General terms and summations of sequences
9A. 1 HKCEE MA 1980(1/1*/3)-I-11
(a) (i) Common ratio $=\frac{10 k}{k}=10$
(ii) $S u m=\frac{k\left(10^{n} \quad 1\right)}{10-1}=\frac{k\left(10^{n} \quad 1\right)}{9}$
(b) (i) $\log 10 k-\log k=\log \frac{10 k}{k}=1$
$\log 100 k-\log 10 k=\log \frac{100 k}{10 k}=$
Since there is a common difference, il is an $A S$.
(ii) $\operatorname{Sum}=\frac{n}{2}[2(\log k)+(n-1)(1)]$
$=n \log k+2 n-2$
Sum $=10 \log k+20-2=10 \log k+18$
9A. 2 HKCEE MA $1984(\mathrm{~A} / \mathrm{B})-\mathrm{I}-10$
(a) $\because \frac{-2}{a}=\frac{b}{-2}=$ common ratio
$a-b=b-(2)=$
$a-b=b-(\quad) \quad a=2 b+2$
Pot into (a): $\quad(2 b+2)(b)=4$
$\begin{aligned}(2 b+2)(b) & =4 \\ b^{2}+b-2 & =0\end{aligned}$
$b=-2($ rejected $)$ or
$a=4 \div 1=4$
$a=4 \div 1=4$
(c) (i) Common ratio $=\frac{-2}{4}=\frac{-1}{2}$ \therefore Sum to $\infty=\frac{4}{1-\left(\frac{-1}{2}\right)}=\frac{8}{3}$
(ii) The positive terms are the 1 st. 3 rd. 5 th. ones
\therefore Common ratio $=\left(\frac{-1}{2}\right)^{2}=\frac{1}{4}$
\Rightarrow Sum to $\infty=\frac{4}{1-\frac{1}{4}}=\frac{16}{3}$
9 A. 3 HKCEE MA 1986(A/B I)-B -9
(a) (i) Common difference $=1-2=-3$
n-th term $=2+\left(\begin{array}{ll}n & 1\end{array}\right)(-3)=5-3$
(ii) $\mathrm{Sum}=\frac{n}{2}[2+(5-3 n)]=\frac{7 n-6 n^{2}}{2}$
(iii) Required sum
$\begin{aligned} & \text { Required sum } \\ & =\frac{7(30)-6(30)^{2}}{2} \quad 7(20) \quad 6(20)^{2} \\ & 2\end{aligned}=-1465$
(b) $\frac{7 n-6 n^{2}}{2}<-1000$
$6 n^{2} \quad 7 n-2000>0$
$n<\frac{7-\sqrt{48049}}{n<12}>\frac{7+\sqrt{48049}}{12}$
\therefore Least $n=19$
9AA HKCEE MA 1989-I-9
(a) $\frac{k}{1}=\frac{\frac{1}{2}}{k} \Rightarrow k=\frac{1}{\sqrt{2}}$
(b) $T(n)=\left(\frac{1}{\sqrt{2}}\right)^{n-1}=2^{\frac{1-n}{2}}$
(c) Sum to $\infty=\frac{1}{1-\frac{1}{\sqrt{2}}}=\frac{1+\frac{1}{\sqrt{2}}}{(1)^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}}=2+\sqrt{2}$
(d) $T(1) \times T(3) \times T(5) \times \cdots \times T(2 n-1)$
$=2^{\frac{1-1}{2} \cdot 2^{2 l 2} \cdot 2^{\frac{15}{2}} \cdots \cdots \cdot 2^{\frac{1(2 n-1}{2}}}$
$=2^{0} \cdot 2^{-1} \cdot 2^{-2} \cdots \cdot \cdot 2^{-(n-1)}$
$=2^{-(1+2+\cdots+(n-1))}=2^{\frac{-n(n-1)}{2}}$
9A. 5 HKCEE MA 1995-I-3
(a) Sum $=\frac{20}{2}[2(1)+(20-1)(5-1)]=780$
(b) Sum to $\infty=\frac{9}{1-\left(\frac{3}{9}\right)}=\frac{27}{2}$

9A. 6 HKCEE MA 1996-I-3
(a) $4,1,-2,-5$
(b) $S u m=\frac{100}{2}[2(4)+(100-1)(1-4)]=14450$

9 A. 7 HKCEE MA $2003-\mathrm{I}-7$
9A. $7 \underline{\text { (a) } 10 \text { th cerm }=2+(10-1)(5-2)}=29$
(b) $\mathrm{Sum}=\frac{(2+29)(10)}{2}=155$

9A. 8 HKCEE MA 2005-I-7
$\left.{ }_{2}^{n}\left[\begin{array}{ll}2(5)+\left(\begin{array}{ll}n & 1\end{array}\right)(8 & 5\end{array}\right)\right]=3925$
$3 n^{2}+7 n-7850=0$

$$
\begin{aligned}
50 & =0 \\
n & =50 \text { or } \frac{-157}{3} \text { (rejected) }
\end{aligned}
$$

9A. 9 HKDSEMA 2015-1-17
(a) Common difference $=4$

Common difference $=4$
Sum $=\frac{n}{2}[2(4-5)+(n-1)(4)]=2 n^{2}-3 n$
(b) Note that $\log B(n)=A(n)$. Hence
$\log (B(1) B(2) B(3) . \quad B(n)) \leq 8000$
$A(1)+A(2)+A(3)+\cdots+A(n) \leq 8000$
$2 n^{2}-3 n-8000 \leq 8000$ $\begin{aligned} 2 n^{2}-3 n-8000 & \leq 0 \\ -64 & \leq n \leq 62.5\end{aligned}$
\therefore Greatest $n=62$
9A. 10 HKDSE MA 2016- 1 -17
(a) Common difference $=\frac{555-666}{38-1}=3$
(b) $\frac{n}{2}[2(666)+(n-1)(3)]>0$
$n(1335-3 n)>0$
. Greatest $n=4440<n<44$
9A. 11 HKDSE MA 2018-I-16
(a) Common ratio $=\frac{864}{720}=1.2$
\therefore lst term $=730 \div(1.2)^{2}=500$
(b) $\quad 500(1.2)^{n}+500(1.2)^{2 n}<5 \times 10^{14}$
$\left(1.2^{n}\right)^{2}+\left(1.2^{n}\right)-1 \times 10^{12}<0$
$-1000000.5<1.2^{n}<999999.5$
$n<\frac{\log 999999.5}{\log 1.2}=75.78$
\therefore Least value of n is 75

9A. 12 HKDSE MA 2019-1-16
(a) $\quad 5 \alpha-18=\alpha^{2}-13 \alpha+63$
$\Rightarrow \alpha^{2}-18 \alpha+81 \quad 0$
b) First tenn $=\log 9$

Common difference $=\log 27-\log 9=\log 3$
$\therefore \quad \frac{n}{2}[2 \log 9+(n-1) \log 3]>888$
$4 n \log 3+n^{2} \log 3 \quad n \log 3>1776$
$(\log 3) n^{2}+(3 \log 3) n \quad 1776>0$
The least n is 60 . $n 2.53$ or $n>59.53$
9A. 13 HKDSEMA $2020-\mathrm{I}-16$

Lad nodr be

$\left\{\begin{array}{l}\cos ^{-1} \times 144 \\ \operatorname{mos}^{4}=486\end{array}\right.$
$\left\{\begin{array}{l}\pi^{2}=144-\cdots-(1) \\ m^{\prime} r^{2} 486---(2)\end{array}\right.$
$(3)^{2}+(2)^{2}=$
$a^{2} 262144$
b $\begin{aligned} & \text { Therefor. ater } \\ & \text { sht } a=64 \\ & \text { inno }\end{aligned}$

$$
\begin{array}{rl}
644^{5} & 486 \\
r & =\frac{243}{32} \\
r=\frac{3}{2}
\end{array}
$$

$\xrightarrow[\frac{3}{2}-1]{\left.\frac{3}{2}\right)^{\circ}-1}>8 \times 10^{01}$
$\left(\frac{3}{2}\right)^{\circ}>6.35 \times 10^{4}+1$
$n>\operatorname{los}_{\frac{1}{2}}\left(6.25 \times 10^{10}+1\right) \quad\left(\because\left(\frac{3}{2}\right)\right)^{i s}$ is micaly itcreasing $)$ $n>95.381679 .1$

9B Applications
9B. 1 HKCEEMA 1981(1/2/3) $-1-10$
(a) By similar triangles. $\frac{b}{a}=\frac{2 a-b}{2 a}$

$$
\begin{aligned}
\frac{b}{a} & =\frac{2 a-b}{2 a} \\
\frac{b}{a} & =1-\frac{1}{2}\left(\frac{b}{a}\right) \\
\frac{3}{2} \cdot \frac{b}{a} & =1 \Rightarrow b=\frac{2}{3} d
\end{aligned}
$$

(b) (i) $B_{2} C_{2}=\frac{2}{3} b$
(ii) $B_{2} C_{2}=\frac{2}{3}\left(\frac{2}{3} a\right)=\frac{4}{9} a$
(c) (i) $B_{5} C_{5}=\left(\frac{2}{3}\right)^{5} a=\frac{32}{243} a$
(ii) $\mathrm{Sum}=\frac{\left(\frac{2}{3} a\right)^{2}}{1-\left(\frac{2}{3}\right)}=\frac{4}{3} a^{2}$

9B. 2 HKCEE MA 1982(1/2/3) $-\mathrm{I}-10$
(a) (i) $999=3(333)$

Sum of fillitios of 3
$3(1)+3(2)+3(3)+\cdots+3(333)$
$(3+999)(333)$
$=\frac{(3+999)(333)}{2}=166833$
(ii) Sum of all multiples of 4
$4(1)+4(2)+\cdots+4(250)$ $-\frac{(4+1000)(250)}{2}=125500$
(b) Required sum
$=$ Sum of all integers - Sum in (a) $=\frac{(1+1000)(1000)}{- \text { Sum in (b) }+ \text { Sum of all multiples of } 12}$ $=249999^{2}-166833-125500+\frac{(12+996)(83)}{2}$

3 HKCEE MA $1983(\mathrm{~A} B)-\mathrm{I}-10$
(a) Required distance $=10+2 \times\left(10 \times \frac{3}{4}\right)=25(\mathrm{~m})$

$$
\begin{aligned}
& \text { (b) Required distance } \\
& \begin{array}{l}
=10+2\left(10 \times \frac{3}{4}\right)+2\left(10 \times\left(\frac{3}{4}\right)^{2}\right) \\
+\cdots+2\left(10 \times\left(\frac{3}{4}\right)^{k}\right) \\
=10+\frac{2\left(10 \times \frac{3}{4}\right)\left[1-\left(\frac{3}{4}\right)^{k}\right]}{1 \frac{3}{4}_{4}^{4}} \\
=10+60\left[1-\left(\frac{3}{4}\right)^{k}\right]=70-60\left(\frac{3}{4}\right)^{k}(\mathrm{~m})
\end{array} \\
& \text { (c) Sum to } \infty=70 \mathrm{~m}
\end{aligned}
$$

(c) Sum to $\infty=70 \mathrm{~m}$
B. 4 HKCEE MA $1985(\mathrm{~A} / \mathrm{B})-\mathrm{I}-14$
(a) (i) $Q_{\mathrm{t}}=P(\mathrm{~J}+r \%) \times \frac{1}{3}=\frac{1}{3} P(1+r \%)$

$$
Q_{2}=P(1+r \%) \times \frac{\frac{3}{3}}{3} \times(1+r \%) \times \frac{1}{3}
$$

$$
=\frac{2}{9} P(1+r \%)^{2}
$$

(ii) $Q_{3}=P(1+r \%) \times \frac{2}{3} \times(1+r \%) \times \frac{2}{3} \times(1+r \%) \times \frac{1}{3}$

$$
=\frac{4}{27} P(1+r \%)^{3}
$$

(b) Common ratio $=\frac{2}{3}(1+r \%)$
 $\frac{729}{52}=(1+r \%)^{3} \Rightarrow$
(ii) $Q_{1}+Q_{2}+Q_{3}+\cdots+Q_{10}$ $=\frac{\frac{1}{3}(10000)(1+12.5 \%)\left(1-\left[\frac{2}{3}(1+12.5 \%)\right]^{10}\right)}{1}$ $=\frac{\frac{1}{3}(10000)\left(\frac{(2)}{8}\right)\left(1-0.75^{10}\right)}{1-0.75}=(\$) 14155$ (orst int)

9B. 5 HKCEE MA $1987(A / B)-1-10$
(a) $T_{1}=\frac{1}{2}(3)(3) \sin 60^{\circ}=\frac{9 \sqrt{3}}{4}$
(b) (i) $A_{2} B_{1}=3 \times \frac{2}{3}=2, B_{1} B_{2}=3 \times \frac{1}{3}=1$

$$
\therefore A_{2} B_{2}=\sqrt{2^{2}+1^{2}-2(2)(1) \cos 60^{\circ}}=\sqrt{3}
$$

(ii) Ratio in leogth $=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
& \Rightarrow \text { Ratio in area }=\left(\frac{1}{\sqrt{3}}\right)^{2}=\frac{1}{3} \\
& \therefore T_{2}=\frac{1}{3} T_{1}=\frac{3 \sqrt{3}}{4}
\end{aligned}
$$

(c) (i) $\frac{1}{3}$
(ii) $T_{n}=\frac{9 \sqrt{3}}{4} \cdot\left(\frac{1}{3}\right)^{n-1}=\frac{\sqrt{3}}{4 \cdot 3^{n-3}}$
(iii) $T_{1}+T_{2}+\cdots+T_{n}=\frac{\frac{9 \sqrt{3}}{4}\left(1-\frac{1}{3^{3}}\right)}{1-\frac{1}{3}}=\frac{27 \sqrt{3}}{8}\left(1-\frac{1}{3^{n}}\right)$
(iv) Sum to $\infty=\frac{27 \sqrt{3}}{8}$

9B. 6 HKCEEMA $1988-\mathrm{I}-9$
(a) Smallest: 105, Largest: 99
(b) 128 multiples

Sum $=\frac{-2}{2}(105+994)=70336$
(c) Sum $=\frac{900}{2}(100+999) \quad 70336=424214$
B. 7 HKCEE MA 1990 - I- 14
(a) (i) $G_{6}: 16,17,18,19,20,21$
(ii) Total number of integers $=1+2+3+4+5+6=2$
(b) (i) $\left.u_{k-1}=1+2+3+\cdots+\left(\begin{array}{ll}k \quad 1\end{array}\right)=\frac{k(k \quad 1}{2}\right)$
(ii) $\begin{aligned} v_{l} & =\frac{k(k-1)}{2}+1 \\ & =\frac{\left[\left(\frac{k k-1)}{2}+1\right)+\left(\frac{k(k-1)}{2}+k\right)\right](k)}{2} \\ & =\frac{[k(k-1)+1+k](k)}{2}=\frac{k\left(k^{2}+1\right)}{2}\end{aligned}$

9B. 8 HKCEE MA 1991-I-12
(a) $d_{3}=0.9 d_{1}=7.2 \quad d_{5}=0.9 d_{3}=6.4$
$\therefore d_{2 \pi-1}=0.9^{n-1} d_{1}=8 \cdot 0.9^{n-1}$
(b) $d_{6}=0.9 d_{4}=0.9^{2} d_{2}=8.1$
$\therefore d_{2 n}=0.9^{n}{ }^{\prime} d_{2} \quad 10 \cdot 0.9^{n-1}$
(c) (i) $d_{1}+d_{3}+\cdots+d_{2 n-1}=\frac{8\left(1-0.9^{n}\right)}{1-0.9}=80\left(1-0.9^{n}\right)$
(ii) $d_{2}+d_{4}+\cdots+d_{3 n}=\frac{10\left(1-09^{n}\right)}{1-0.9}=100\left(\begin{array}{ll}1 & 09^{n}\end{array}\right)$
(d) $d_{0}+d_{1}+\cdots=d_{0}+(80)+(100)=190$

9B. 9 HKCEE MA 1992-I- 14
(a) Common ratio $=\frac{a^{n} 1 b}{a^{n}}=\frac{b}{a}$

$$
\begin{aligned}
\therefore \text { Sum } & =\frac{a^{n}\left(1-\left(\frac{b}{d}\right)^{n}\right)}{1-\frac{a^{n}}{a}} \\
& =a^{n}\left(\frac{a^{n}-t^{n}}{a^{a}}\right) \cdot \frac{a}{a-b}=\frac{a\left(d^{n}-b^{n}\right)}{a-b}
\end{aligned}
$$

(b) (i) (1) $P(1+8 \%)=1.08 P$
(2) $(1.08 P+1.1 P)(1.08)=\left[(1.08)^{2}+(1.1)(1.08)\right] P$ 3) $\left\{\left[(1.08)^{2}+(1.1)(1.08)\right] P+(1.1)^{2} P\right\}(1.08)$ $=\left[(1.08)^{3}+(1.1)(1.08)^{2}+(1.1)^{2}(1.08)\right] P$
(ii) Take $a=1.08$ and $b=1.1$.

Amount
$\left[(1.08)^{n}+(1.1)(1.08)^{n-1}+(1.1)^{2}(1.08)^{n-2}\right.$
$\begin{array}{ll}1.08\left(1.08^{n}-1.1^{n}\right) & \left.+\cdots+(1.1)^{n}(1.08)\right] P\end{array}$
$=\frac{1.08\left(1.08^{n}-1.1^{n}\right)}{1.08-1.1^{2}} P$
$=(\$) 54\left(1.1^{n}-1.08^{n}\right) P$
(c) Value of flat at the end of the nth y year $=\$ 1080000(1.15)^{n}$ Amount in account $=\$ 54(20000)\left(1.1^{n} \quad 1.08^{n}\right)$
$=\$ 1080000\left(1.1^{n} 108^{n}\right)$
$<\$ 1080000\left(1.1^{n}\right)$
$<\$ 1080000\left(1.15^{n}\right)=$ Value of flat
9B. 10 HKCEE MA 1993-I- 10
(a) (i) Food pdin $=8+2(1)=10$ (mil. tonnes)
(ii) Food pdtn $=8+(n-1)(1)=7+n$ (mil. tonnes)
(b) Total $=\frac{25}{2}[2(8)+(25-1)(\mathrm{t})]=500$ (mil. tonnes)
(c) (i) Popln $=2(1+6 \%)^{2}=2.2472$ (mil.)
(ii) Popln $=2(1+6 \%)^{n}=2(1.06)^{n}{ }^{1}$ (mil.)
(d) Let it take n years.
$(1.06)^{n}=2 \Rightarrow n=\frac{\log 2}{\log 1.06}=11.896$
\therefore At least 12 years
(e) At the end of the 100 th year, $7+100$
Anl food pdtn per capita $=\frac{7+100}{2(1.06)^{100-1}}=0.167<0.2$ \therefore YES.

9B. 11 HKCEE MA 1994-I-15
(a) (i) No. of babies $=70000(1+2 \%)=71400$
(ii) No. of babies $=70000(1+2 \%)^{n}=70000(1.02)^{n}$
(b) Let it happen in the k th year after 1994.
$70000(1.02)^{k}>90000$

$$
1.02^{k}>\frac{9}{7} \Rightarrow k>\frac{\log \frac{9}{5}}{\log 1.02}=12.69
$$

It happens in 2007
(c) No. of years $=50$

Firsterm $=70000(1.02)^{3}$
\therefore Total $=\frac{70000(1.02)^{3}\left(1.02^{50}\right.}{1)} \quad 6282944$ (nrst
int.)
(d) (i) Leap years: 2000, 2004, 2008, ,., 2044 \Rightarrow No. of leap years $=\frac{2044-2000}{4}+1=12$
(ii) First term $=70000(1.02)^{6}$

Common ratio $=1.02^{4} 6\left[\left(102^{4}\right)^{12}-1\right.$
$=1517744{ }_{\text {(nearest integer) }}^{\left(1.02^{4}\right)}$

9B. 12 HKCEE MA 1997-1-10
(a) Population $=300000 \times(1+2 \%)^{2}=312120$
(b) Let ittake n years.
$300000(1+2 \%)^{n}>330000$
$1.02^{\pi}>1.1$
$n \log 1.02>\log 1.1$
$n>\frac{\log 1.1}{\log 102}=4.81$
After 5 years, i.e. a the end of 2001.
9B. 13 HKCEE MA 1997-1-15

(a) (i) Table 1 | 3 | 9 | 27 |
| :--- | :--- | :--- |
| $\frac{\ell}{3}$ | $\frac{\ell}{9}$ | $\frac{\ell}{27}$ |

(ii) $\frac{\left.\overline{3} \overline{9} \frac{\overline{27}}{\text { Total area }=\ell^{2}+3\left(\frac{\ell}{3}\right)^{2}}+9\left(\frac{\ell}{9}\right)^{2}+27\left(\frac{\ell}{27}\right)^{2}\right)}{}$ $=\frac{820}{729} \ell^{2}$
(iii) $k=\ell^{2}+3\left(\frac{\ell}{3}\right)^{2}+9\left(\frac{\ell}{9}\right)^{2}+27\left(\frac{\ell}{27}\right)^{2}+$. $=\ell^{2}+\frac{\ell^{2}}{3}+\frac{\ell^{2}}{9}+\frac{\ell^{2}}{27}+\cdots$ $=\frac{\ell^{2}}{1-\frac{1}{3}}=\frac{3}{2} \ell^{2}$

(b) (i) Table 2	$4 \ell \mid 6 \ell$	$8 \ell \mid 10 \ell$

(ii) Perimeter of $B_{n}=4 \ell+(n-1)(2 \ell)=2 \ell+2 \ell n$, which becomes inininitel ylarge!

9B. 14 HKCEE MA $1998-1-13$
(a) $A_{2} B_{2}=\sqrt{8^{2}+\sigma^{2}}=10(\mathrm{~cm})$
(b) $A_{2} A_{3}=\frac{3}{3+4}(10)=\frac{30}{7}$ (cm)
$\therefore A_{2} A_{3}: A_{1} A_{2}=\frac{30}{7}: 6=5: 7$
(c) Total dist $=A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{4}+\ldots$

$$
<\frac{6}{1-\frac{5}{7}}=21(\mathrm{~cm})
$$

9B. 15 HKCEE MA 1999-I- 17
(a) $500000(1-r \%)^{11}=254400$

Total income
$=500000+500$
$=500000+500000(1-5 \%)+500000(1-5 \%)^{2}$
$=\frac{500000\left(1-0.95^{12}\right)}{1-0.95}=(\$) 4596399$
Total cost
$=\frac{12}{2}[2(400000)+(12-1)(-20000)]$ $=(\$) 3480000<(\$) 4596399$ Hence, there is still a profi.
(ii) $300000 k>3480000$
$-\frac{k}{2}[2(400000)+(k-1)(-20000)]+10000 k^{2}$ $300000 k>3480000-410000 k+10000 k^{2}$
$0>k^{2}-7!k+348$
The project will last for 5 months.

9B. 16 HKCEE MA 2000-I- 14
(a) Number of seats $=20+49(2)=118$
(b) Total number of seats in the first n rows
$=\frac{n}{2}[2(20)+(n-1)(2)]=19 n+n^{2}$
$\therefore 19 n+n^{2} \geq 2000$
$n^{2}+19 n-2000 \geq 0$
$n \leq-14.28$ or $n \geq 36.22$
9B. 17 HKCEE MA 2001 - I-12
(a) (i) Perimeter $=10+39(1)=49(\mathrm{~cm})$
(ii) Sum $=\frac{(10+49)(40)}{2}=1180(\mathrm{~cm})$
(b) (i) Area of $F_{2}-\left(\text { Peri meter of } F_{2}\right)^{2}$

Area of $F_{2}=4 \times\left(\frac{11}{10}\right)^{2}=4.84\left(\mathrm{~cm}^{2}\right)$
(ii) Area of $F_{3}=4 \times\left(\frac{12}{10}\right)^{2}=5.76\left(\mathrm{~cm}^{2}\right)$
$\because 4.84-4=0.84$
$5.76-4.84=0.92 \neq 0.84$
\therefore They do not form in AS.
9B. 18 HKCEEMA 2001-I-14
(b) $1000(1+r \%)^{4}+1000(1+r \%)^{3}$
$1000(1+r \%)^{2}+1000(1+r \%)=5000$
$\frac{1000(1+r \%)\left[(1+r \%)^{4}-1\right]}{(1+r \%)-1}=5000$
$(1+r \%)^{5}-(1+r \%)=5(1+r \%)-5$
$(1+r \%)^{5}-6(1+r \%)+5=0$
$\begin{aligned} \mathrm{By}(\mathrm{a}), \quad 1+r \% & =1.091 \\ r & =9.1\end{aligned}$

9B. 19 HKCEE MA 2002-I-13

(a) Area $=\frac{1}{2}(1)(1) \sin 60^{\circ}=\frac{\sqrt{3}}{4}\left(\mathrm{~m}^{2}\right)$
(b) Area of small $\Delta=\frac{\sqrt{3}}{4} \times\left(\frac{1}{3}\right)^{2}=\frac{\sqrt{3}}{4} \cdot \frac{1}{9}$
\therefore Total area $=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} \cdot \frac{1}{9}$

$$
=\frac{\sqrt[4]{3}}{4} \cdot \frac{10^{4}}{9}=\frac{5 \sqrt{3}}{18}\left(\mathrm{~m}^{2}\right)
$$

(c) Total area $=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} \cdot \frac{1}{9}+\left(\frac{\sqrt{3}}{4} \cdot \frac{1}{9}\right) \cdot \frac{1}{9}+\ldots$

$$
=\frac{\frac{\sqrt{3}}{4}}{1-\frac{1}{9}}=\frac{9 \sqrt{3}}{32}\left(\mathrm{~m}^{2}\right)
$$

9B. 20 HKCEE MA 2003-I- 15
(a) (i) Area $=\frac{1}{2}(k)(1-k) \sin 60^{\circ}=\frac{\sqrt{3}}{4} k(1-k)\left(\mathrm{m}^{2}\right)$
(ii) $\overline{x=\sqrt{ } k^{2}+(1-k)^{2}-2(k)(1-k) \cos 60^{\circ}}$ (ii) $\begin{aligned} x & =\sqrt{k^{2}+(1-k)^{2}-2(k)(1-k) \cos 60^{\circ}} \\ & =\sqrt{1-2 k+2 k^{2}-\left(k-k^{2}\right)=\sqrt{1-3 k}+k^{2}}\end{aligned}$
(iii) $\because \triangle A_{1} B_{0} B_{1} \cong \triangle B_{1} C_{0} C_{1} \cong \triangle C_{1} A_{0} A_{1}$
$\therefore A_{1} B_{1}=B_{1} C_{1}=C_{1} A_{1}$
(b) (i) in $\triangle A_{1} B_{0} B_{1}$ and $\triangle A_{2} B_{1} B_{2}$

$$
\begin{aligned}
& \frac{A_{1} B_{0}}{B_{0} B_{1}}=\frac{1-k}{k} \quad \text { (given) } \\
& \frac{A_{2} B_{1}}{B_{1} B_{2}}=\frac{1-k}{k} \quad \text { (given) } \\
& \angle B_{0}=\angle B_{1} \quad 60^{\circ} \quad \text { (property of equil. } \triangle \text {) }
\end{aligned}
$$$\frac{\text { Area of } A_{1} B_{1} C_{1}}{\text { Area of } A_{0} B_{0} C_{0}}=\left(\frac{x}{1}\right)^{2}=1-3 k+k^{2}$

\therefore Total area $=\frac{\frac{\sqrt{3}}{4} k(1-k)}{1-\left(1-3 k+k^{2}\right)}$
$=\frac{\sqrt{3} k(1-k)}{4 k(3-k)}=\frac{\sqrt{3}(1-k)}{4(3-k)}$

9B. 21 HKCEE MA $2004-1-15$
(a) (i) Perimeler $=8 \div(10-1)(4)=44(\mathrm{~cm})$
(ii) Let n frames can be formed.

$$
\begin{gathered}
\frac{n}{2}[2(8)+(n-1)(4)] \leq 1000 \\
10 n+2 n^{2} \leq 1000 \\
n^{2}+5 n-500 \leq 0
\end{gathered}
$$

$$
\begin{aligned}
& 20 \text { frames can be fommed. } \\
& \hline
\end{aligned}
$$

$=\left(\text { Peri of } S_{1}: \text { Peri of } S_{2}: \text { Peri of } S_{3}\right)^{3}$
$=\left(\right.$ Peri of $S_{1}:$ Peri of $S_{2}:$ Peri
$=(8: 12: 16)^{3}=8: 27: 81$
Since 8:27 $\neq 27: 81$, the volumes do not form a G.S
(ii) For S_{1}, Diag of base $=\sqrt{2^{2}+2^{2}}=\sqrt{8}(\mathrm{~cm})$

$$
\begin{array}{r}
\text { Height }=\sqrt{5^{2}-\left(\frac{\sqrt{8}}{2}\right)^{2}}=\sqrt{23}(\mathrm{~cm}) \\
\text { Volume }=\frac{1}{3}(2)^{2}(\sqrt{23})=\frac{4 \sqrt{23}}{3}\left(\mathrm{~cm}^{3}\right) \\
\therefore \text { Vol of } S_{3}=\frac{4 \sqrt{23}}{3} \cdot \frac{81}{8}=\frac{27 \sqrt{23}}{2}\left(\mathrm{~cm}^{3}\right)
\end{array}
$$

9B. 22 HKCEE MA 2005-1-16
(a) (i) Interest $=200000\left(1+\frac{6 \%}{12}\right)-200000$

$$
=200000(1.005-1)=(\$) 1000
$$

(ii) Amt owed $=\$(201000-x)$
(iii) Amount owed after 2nd instalment $=[200000(1.005)-x](1.005)-x$ $=200000(1.005)^{2}-x(1.005+1)$
Amount owed after 3rd instalment
$=\left[200000(1.005)^{2}-x(1.005+1)\right](1.005)-x$
$=\left[200000(1.005)^{3}-x\left(1.005^{2}+1.005+1\right)\right.$
$=20$.
. Amount owed affer nth instament
$=200000(1.005)^{n}$

$$
-x\left(1.005^{n-}\right.
$$

$=200000(1.005)^{n}-x\left(\frac{1.005^{n}-1}{1.005-1}\right)$
$=(\$) 200000(1.005)^{n}-200 x\left[(1.005)^{n}-1\right]$
(b) (i) Let the last instalment be the $(n+1)$ st one. $200000(1.005)^{n}-200(1800)\left(1.005^{n}-1\right)<1800$
$2000(1.005)^{n}-3600(1.005)^{n}+3600<18$ $2000(1.005)^{n}-3600(1.005)^{n}+3600<18$
$\begin{aligned} 1600(1.005)^{n} & >3582 \\ 1.005^{n} & >2.238\end{aligned}$
$n>\frac{\log 223875}{\log 1.005}$
$=161.586$
The last instalment is the 16 2nd one.
(ii) $200000(1.005)^{n}-200(900)\left(1.005^{n \prime}-1\right)<900$
which tas no solution.
i. Peter cannot fully repay the loan with $x=900$

9B. 23 HKCEE MA 2008-I- 16

(a) Common difference $=\frac{24-10}{2}=7$
$\therefore a=10-7=3, b=10^{2}+7=17$
(b) (i) $\operatorname{Tax}=(P-172000) \times 20 \%=(\$) 0.2 P-34400$
(ii) $0.2 P-34400=30000 \times 3 \% \div 30000 \times 10 \%$ $+30000 \times 17 \%+(P-172000) \times 24 \%$ $=9000+024 P-62880$
$\Rightarrow 19480=0.04 P \Rightarrow P=487000$
Hence, the least ner total income is $\$ 487000$.
(c) Total amount in bank $=\frac{23000\left(1+\frac{35}{12}\right)\left[\left(1+\frac{35}{12}\right)^{12}-1\right]}{\left(1+\frac{37}{12}\right)-1}$

$$
=(\$) 280526.37
$$

Tax payable $=(1400000-172000) \times 20 \%$
< (\$)280526 37
\therefore He will have enough.

9B. 24 HKCEE MA $2009-\mathrm{I}-1$

(a) (i) Fare $=30+\frac{x-2}{0.2} \times 2.4=(\$) 6+12 x$
(ii) The fare will be $6+2 y$, where y is the least multiple of 0.2 which is larger than x of 0.2 w
$\therefore \mathrm{NO}$.
(b) Fare $=6+12(3.2)=(\$) 44.4$
(c) In the city, a taxi is hired for 99 journeys. The 1st joumey covers a distance of 3.1 km . Starting from the 2 nd journey, the dismance covered by each joumey is 0.5 km longer than that the total taxi fare will not exceed $\$ 33000$. Is the claim correct? Explain your answer.

9B. 25 HKCEE MA 2010-I-17
(a) (i) Rotate B about A anticlockwise through 90°
$\Rightarrow D=(-6,8)$
$\Rightarrow D=(-6,8)$
Cencre $=$ mid-pt of $B D=\left(\frac{-6+8}{2}, \frac{8+6}{2}\right)=(1,7)$
(ii) Radius $=\sqrt{(8-1)^{2}+(6-7)^{2}}=\sqrt{50}$
(b) (i) Radius of circle $A_{1} B_{1} C_{1} D_{1}=\frac{1}{2} A B=\frac{\sqrt{8^{2}+6^{2}}}{2}=5$
$\therefore \frac{\text { Area of circle } A_{1} B_{1} C_{1} D_{1}}{\text { Are }}$
$\left(\begin{array}{c}\left.\begin{array}{c}\text { Areatius of circle } A_{1} B_{1} C_{1} D_{1} \\ \text { Radius of circle } A B C D\end{array}\right)^{2}\end{array}=\left(\frac{5}{\sqrt{50}}\right)^{2}=\frac{1}{2}\right.$
(ii) Shaded area between sq. $A B C D$ and cl. $A_{1} B_{1} C_{1} D_{1}$
$=10^{2}-\pi(5)^{2}=100-25 \pi$
\therefore Tolal shaded area
$=(100-25 \pi)+\frac{100-25 \pi}{2}+\frac{100-25 \pi}{2^{2}}$
$+\cdots+\frac{100-25 \pi}{29}$
$-\frac{(100-25 \pi)\left[1-\left(\frac{1}{2}\right)^{10}\right]}{1-4287845}$
$\therefore p=\frac{12.8784 \frac{1}{2} 5}{7(150)^{2}}$
$\therefore P=\frac{42.87845}{\pi(\sqrt{50})^{2}}=0.27297$
which is indeed between 0.2 and 0.3 .
Hence the design is good.

9B. 26 HKCEE MA 2011-I-15

(a) | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- |
| | 5 | 6 | 7 |

5	5		7
5	6	7	8
6	7	8	9

6	7	8	9
7	8	9	10

(b) The ist row contains: $99,100, \ldots$ (99 integers) \ldots
\Rightarrow Sum $=\frac{99}{2}[2(99)+98 \times 1]=14652$
(c) Sum of all integers in the 2nd row
$=$ Sum of all integers in the 1 st row $\div 99$
Sum of all integers in the 3rd row
$=$ Sum of all integers in the 1st row $+99 \times 2$
Similarly, sum of all integers in the ith row
$=$ Sum of all integers in the 1 st row $+99 \times\left(\begin{array}{ll}i & 1\end{array}\right)$
\therefore Sum of all integers
of all integers in the 1st row $\times 99$

$$
\begin{aligned}
& -14652 \times 99+99 \times \frac{\begin{array}{c}
(1+98)(98)+9
\end{array}}{2} \\
& =1930797
\end{aligned}
$$

$$
=1930797
$$

(d) In the k th able, Ist row: $k, k+1, \ldots, k+(k \quad 1)$
\Rightarrow Sum $=\frac{[k+(2 k-1)](k)}{2}=\frac{(3 k-1) k}{2}$
\therefore Sum of all integers
$=\frac{(3 k-1)}{2}{ }^{(k)} \times k+[k+2 k+3 k \div \cdot+(k-1) k]$
$=\frac{(3 k-1) k^{2}}{2}+k \times \frac{[1+(k-1)](k-1)}{2}$
$=\frac{(3 k-1) k^{2}}{2}+\frac{k^{2}(k-1)}{2}$
$=\frac{k^{2}\left(3 k^{2} 1+k-1\right)^{2}}{2}=k^{2}(2 k-1)$, which must be odd.
\therefore NO.

9B. 27 HKDSEMASP 1-15

Let there be n rows.

$\frac{n}{2}[2(12) \div(n-1)(3)] \leq 930$

$$
\begin{aligned}
n(21+3 n) & \leq 930 \times 2 \\
n^{2}+7 n \quad 620 & \leq 0
\end{aligned}
$$

Greatest number of rows is 21 .

9B. 28 HKDSE MA PP-I-19
(a) $4000000(1-r \%)^{3}=104857$
$1-r \%=0.64 \Rightarrow r=36$
Let n be the number of years.
$2000000+2000000(0.8)+$
$+\cdots+2000000(0.8)^{n-1}>9000000$
$\begin{aligned} \frac{1-0.8^{n}}{10.8} & >\frac{9000000}{2000000} \\ 0.8^{n} & >0.1\end{aligned}$
$\begin{aligned} 0.8^{n \prime} & >0.1 \\ n \log 0.8 & >\log 0\end{aligned}$
$n>\frac{\log 0.1}{\log 08}=10.319$
. The least number of years is 11 .
(ii) Total revenue $<\frac{2000000}{108}=10000000$ - No.
(iii) In n years, total revenue $=\frac{2000000\left(1 \quad 0.8^{n}\right)}{0 .}$ $=10000000\left(1 \quad 0.8^{n}\right.$
Total investment $=\frac{4000000\left(1-0.64^{n}\right)}{=}$

$100000000(1-2.6414)$
9

Total revenue - Total investment
$=\frac{10000000}{9}\left[9\left(1 \quad 0.8^{n}\right)-10\left(1 \quad 0.64^{n}\right)\right]$
$=\frac{10000000}{9}\left[10\left(0.8^{2}\right)^{n}-9\left(0.8^{\prime \prime}\right)-1\right]$
$=\frac{10000000}{9}\left[10\left(0.8^{\prime \prime}\right)^{2} 9\left(0.8^{\prime \prime}\right)-1\right]$
$=\frac{10000000}{9}\left[10\left(0.8^{n}\right)+1\right]\left[\left(08^{n}\right)-1\right]$
$<0 \quad\left(\because 0.8^{n}<1\right.$ for any $n>0$)
Hence, Total revenue $<$ Total investmen Thus the claim is disagreed.

9B. 29 HKDSE MA 2012-I-19
(a) (i)

$\begin{cases}a b^{2} & 254100 \\ a b^{4}=307461\end{cases}$
 c $b=307461$

$\Rightarrow b^{2}=\frac{307461}{254100} \Rightarrow b=1.1 \Rightarrow a=210000$
\therefore Required weight $=(210000)(1.1)^{2(4)}$

$$
=450000 \text { (tonnes, } 3 \text { s.f.) }
$$

(ii) \quad Total weight $\left.=\frac{210000(1.1)^{2}\left[\left(1.1^{2}\right)^{n}\right.}{1} 1\right]$ $=1210000\left(1.21^{1}-1\right)$ (tonnes)
(b) (1) In the m th year, $n=m+4$.

Then, $A(m+4)=a b^{2(m+4)}$ and $B(m)=2 a b^{2 n}$
$\Rightarrow A(m+4) \quad a b^{2 m} b^{8}$
$\begin{aligned} \Rightarrow-\frac{A(m+4)}{B(m)} & =\frac{a b^{m}}{\frac{2 a b^{m}}{}} \\ & =\frac{b^{8}}{2} b^{m}\end{aligned}$

$$
=\stackrel{2}{2}=72(1.1)^{m \prime \prime}>1
$$

$\therefore A(m+4)>B(m)$, and the claim is agreed.
(ii) Total weight by Y in the fisst $n \quad 4$ years
$2(210000)(1.1)\left(1.1^{n} 41\right)$
$=4620000\left(1.1^{11-4}{ }^{1}\right.$
$1210000\left(1.21^{n}\right.$ 1)
$+4620000\left(1.1^{n-4} \quad 1\right)>20000000$
$121\left[\left(1.1^{n}\right)^{2} \quad\right.$ i $]+462\left(\frac{1.1^{n}}{1.1^{4}}-1\right)>2000$
$77.1561\left[\left(1.1^{n}\right)^{2}-1\right]+462\left(1.1^{11}-1.4641\right)>2928.2$
177.1561 $\left(1.1^{n}\right)^{2}+462\left(1.1^{11}\right)-3781.7703>0$

$$
\begin{gathered}
1.1^{n}<6.1047 \text { (rejected or } 1.1^{1}>3.4968 \\
\therefore n>\frac{\log 3.4968}{\log 1.1}=13.13
\end{gathered}
$$

. The 14th year since the start of X
B. 30 HKDSE MA 2013-I- 19
(a) (i) Total floor area $9 \times 10^{6}(1+r \%)-3 \times 10^{5}$

$$
\begin{aligned}
& =9 \times 10^{6}+9 r \times 10^{4}-3 \times 10 \\
& =(870 \div 9 r) \times 10^{4}\left(\mathrm{~m}^{2}\right)
\end{aligned}
$$

(ii) $\left[9 \times 10^{6}(1+r \%)-3 \times 10^{5}\right](1 \div r \%)$

$$
\begin{array}{ll}
150(1+r \%)^{2} & 5(1+r \%)-176=0 \\
1+r \%=\frac{11}{10} \text { or } \frac{-16}{15}(\mathrm{rej})
\end{array}
$$

(b) (i) Required area
$=9 \times 10^{6}(1.1)^{n-1}-3 \times 10^{5}(1.1)^{n-2}$

$-3 \times 10^{5}(1.1)^{n-3}$ $\begin{array}{ll} & \cdots \\ & 3 \times 10^{5}\end{array}$ $=9 \times 10^{6}(1.1)^{n-1}-3 \times 10^{5} \cdot \frac{(1.1)^{n-1}-1}{1.1-1}$ $=9 \times 10^{6}(1.1)^{n-1}-3 \times 10^{6}\left(1.1^{1 n-1}-1\right)$ $=\left[6(1: 1)^{n} 1+3\right] \times 10^{6}\left(\mathrm{~m}^{2}\right)$
(ii) $\left[6(1.1)^{n}{ }^{1}+3\right] \times 10^{6}>4 \times 10^{7}$

$$
\begin{aligned}
1.1^{n-1} & >\frac{37}{6} \\
n-1 & >\frac{\log \frac{37}{6}}{\log \lfloor .1}
\end{aligned} \Rightarrow n>20.0867 .
$$

\therefore At the end of the 3 lst year.
(c) $\left\{a(1.21)^{1}+b=1 \times 10^{7}\right.$
$\Rightarrow(1.4641 \quad 1.21) a=(1.063-1) \times 10^{7}$
$\Rightarrow a=\frac{3 \times 10^{8}}{121} \Rightarrow b=7 \times 10^{6}$
If the claim happens at the end of the nth year,

$$
\begin{gathered}
{\left[6(1.1)^{n-1}+3\right] \times 10^{6}>\frac{3 \times 10^{5}}{121}(1.21)^{n}+7 \times 10^{6}} \\
\frac{6\left(1.1^{n}\right)}{1.1}+3>\frac{300}{123}\left(1.1^{n}\right)^{2}+7
\end{gathered}
$$

$300\left(1.1^{n}\right)^{2}-660\left(1.1^{n}\right)+484<0$
Since the inequality has no solution, the claim is wrong.

9 B. 31 HKDSEMA 2014 I-16

$\frac{m}{2}[2(3)+(m-1)(2)]>6888$

$$
\begin{aligned}
m(2+m) & >6888 \\
-2 m-6888 & >0
\end{aligned}
$$

$\begin{array}{ll}m^{2}+2 m-6888 & >0 \\ (m+84)(m \quad 82)>0\end{array}$
$m<-84$ (rejected) or $m>82$
B. 32 HKDSEMA $2017-1-16$
(a) Toral volume $=\frac{1.5 \times 10^{7}\left(1-0.9^{20}\right)}{1-0 .}=1317635018\left(\mathrm{~m}^{3}\right)$
(b) Total volume $<\frac{1.5 \times 10^{7}}{1-0.9}$

$$
\begin{aligned}
& 1-0.9 \\
& =1.5 \times 10^{7}<1.6 \times 10^{8}
\end{aligned}
$$

The claim is agreed.

