3 Indices and Logarithms

3A Laws of indices

3A.1 HKCEE MA 1987(A) I-3(a) Simplify $\sqrt{\frac{3^{5k+2}}{27^k}}$. 3A.2 HKCEE MA 1990 - I - 2(a) Simplify $\frac{a}{\sqrt{a}}$, expressing your answer in index form. 3A.3 HKCEE MA 1993 - I - 5(b) Simplify and express with positive indices $x\left(\frac{x^{-1}}{y^2}\right)^{-3}$. 3A.4 HKCEE MA 1994 I 7(a) Simplify $\frac{(a^4b^2)^2}{ab}$ and express your answer with positive indices. 3A.5 HKCEE MA 1996-I-2 Simplify $\frac{a^{\frac{5}{4}}\sqrt[4]{a^3}}{a^{-2}}$. 3A.6 HKCEE MA 1997 - I - 2(a) Simplify $\frac{x^3y^2}{x^{-3}y}$ and express your answer with positive indices. 3A.7 <u>HKCEE MA 1998 - I - 4</u> Simplify $\frac{a^3a^4}{b^{-2}}$ and express your answer with positive indices. 3A.8 <u>HKCEE MA 1999 I-1</u> Simplify $\frac{(a^{3})^{2}}{a}$ and express your answer with positive indices 3A.9 HKCEE MA 2000 - I - 2 Simplify $\frac{x^{-3}y}{x^2}$ and express your answer with positive indices. 3A.10 HKCEE MA 2001 - I - 1 Simplify $\frac{m^3}{(mn)^2}$ and express your answer with positive indices.

3. INDICES AND LOGARITHMS

3A.11 HKCEE MA 2002 - I - 1 Simplify $\frac{(ab^2)^2}{a^5}$ and express your answer with positive indices. 3A.12 HKCEE MA 2003 - I - 4 Solve the equation $4^{x+1} = 8$. 3A.13 HKCEE MA 2004 - I - 1 Simplify $\frac{(a^{-1}b)^3}{b^2}$ and express your answer with positive indices. 3A.14 HKCEE MA 2005 -1 2 Simplify $\frac{(x^3y)^2}{y^5}$ and express your answer with positive indices. 3A.15 HKCEE MA 2006 - I - 1 Simplify $\frac{(a^3)^5}{a^{-6}}$ and express your answer with positive indices. 3A.16 HKCEE MA 2007 I-2 Simplify $\frac{m^6}{m^9 n^{-5}}$ and express your answer with positive indices 3A.17 HKCEE MA 2008 - I 1 Simplify $\frac{(ab)^3}{a^2}$ and express your answer with positive indices. 3A.18 <u>HKCEE MA 2009 – I – 2</u> Simplify $\frac{x^2}{(x^{-7}y)^3}$ and express your answer with positive indices. 3A.19 HKCEE MA 2010-1-1 Simplify $a^{14} \left(\frac{b^3}{a^2}\right)^5$ and express your answer with positive indices. 3A.20 HKCEE MA 2011 - I - 2 Simplify $\frac{x^{65}}{(x^4y^3)^2}$ and express your answer with positive indices. 3A.21 HKDSE MA SP - I - 1 Simplify $\frac{(xy)^2}{x^5y^6}$ and express your answer with positive indices. 3A.22 HKDSE MA PP - 1 - 1 Simplify $\frac{(m^5 n^{-2})^6}{m^4 n^{-3}}$ and express your answer with positive indices.

14

3A.23 <u>HKDSE MA 2012 I - 1</u> Simplify $\frac{m^{-12}n^3}{-3}$ and express your answer with positive indices.

3A.24 <u>HKDSE MA 2013 - I - 1</u> Simplify $\frac{x^{20}y^{13}}{(x^5y)^6}$ and express your answer with positive indices.

3A.25 <u>HKDSE MA 2014 - I 1</u> Simplify $\frac{(xy^{-2})^3}{y^4}$ and express your answer with positive indices.

3A.26 <u>HKDSE MA 2015 I-1</u> Simplify $\frac{m^9}{(m^3 n^{-7})^5}$ and express your answer with positive indices.

3A.27 <u>HKDSE MA 2016 - I - 1</u> Simplify $\frac{(x^8y^7)^2}{x^5y^{-6}}$ and express your answer with positive indices.

3A.28 <u>HKDSE MA 2017 - I - 2</u> Simplify $\frac{(m^4n^{-1})^3}{(m^{-2})^5}$ and express your answer with positive indices.

3A.29 <u>HKDSE MA 2018 - I - 2</u> Simplify $\frac{xy^7}{(x^{-2}y^3)^4}$ and express your answer with positive indices.

3A.30 HKDSE MA 2020- I 1

Simplify $\frac{(mn^{-2})^5}{m^4}$ and express your answer with positive indices.

3. INDICES AND LOGARITHMS

3B Logarithms

3B.1 HKCEE MA 1986(A) - I - 5(a)

Evaluate $\log_2 8 + \log_2 \frac{1}{16}$.

3B.2 <u>HKCEE MA 1987(A) – I 3(b)</u> Simplify $\frac{\log a^3b^2 - \log ab^2}{\log \sqrt{a}}$.

3B.3 <u>HKCEE MA 1988 - I - 6</u>
Give that log2 = r and log3 = s, express the following in terms of r and s:
(a) log18,
(b) log15.

3B.4 HKCEE MA 1990 - I 2(b) Simplify $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)}$, where $a_1b > 0$.

3B.5 <u>HKCEE MA 1991 -1-7</u> (Also as 6C.8.)
Let α and β be the roots of the equation 10x² + 20x + 1 = 0. Without solving the equation, find the values of
(a) 4^α × 4^β,
(b) log₁₀ α + log₁₀ β.

3B.6 <u>HKCEE MA 1992 - I 2(a)</u> If $\log x = p$ and $\log y = q$, express $\log xy$ in terms of p and q.

3B.7 <u>HKCEE MA 1994 - I 7(b)</u> If $\log 2 = x$ and $\log 3 = y$, express $\log \sqrt{12}$ in terms of x and y.

3B.8 HKCEE MA 1997 - I 2(b)

Simplify $\frac{\log 8 + \log 4}{\log 16}$.

3B.9 HKDSE MA SP - I - 17

A researcher defined Scale A and Scale B to represent the magnitude of an explosion as shown in the table: $\frac{Scale}{A} = \frac{Fe}{A}$

Scale	Formula
A	$M = \log_4 E$
B	$N = \log_8 E$

It is given that M and N are the magnitudes of an explosion on Scale A and Scale B respectively, while E is the relative energy released by the explosion. If the magnitude of an explosion is 6.4 on Scale B, find the magnitude of the explosion on Scale A.

3B.10 HKDSE MA 2014 - I - 15

The graph in the figure shows the linear relation between $\log_4 x$ and $\log_8 y$. The slope and the intercept on the horizontal axis of the graph are $\frac{-1}{3}$ and 3 respectively. Express the relation between x and y in the form $y = Ax^k$, where A and k are constants.

3B.11 HKDSE MA 2017 I 15

Let a and b be constants. Denote the graph of $y = a + \log_b x$ by G. The x intercept of G is 9 and G passes through the point (243, 3). Express x in terms of y.

17

3. INDICES AND LOGARITHMS

3C Exponential and logarithmic equations

3C.1 HKCEE MA 1980(3)-I 7

Find x if $\log_3(x-3) + \log_3(x+3) = 3$.

3C.2 HKCEE MA 1981(1) I 5 & HKCEE MA 1981(2)-I-6

Solve $4^x \approx 10$ 4^{x+1} .

3C.3 HKCEE MA 1982(1/2) I 2

If
$$\begin{cases} 4^{x-y} = 4\\ 4^{x+y} = 16 \end{cases}$$
, solve for x and y.

3C.4 HKCEE MA 1985(B) I-3

Solve $2^{2x} - 3(2^x) \quad 4 = 0.$

3C.5 HKCEE MA 1986(A) I 5(b)

If
$$2\log_{10} x - \log_{10} y = 0$$
, show that $y = x^2$.

Solve the equation $3^{2x} + 3^x - 2 = 0$.

3C.7 HKCEE MA 1993 I 5(a)

If $9^x = \sqrt{3}$, find x.

- 3C.8 HKCEE MA 1995 I-7
- Solve the following equations without using a calculator:

18

(a)
$$3^{x} = \frac{1}{\sqrt{27}};$$

(b) $\log x + 2\log 4 = \log 48.$

Provided by dse.life

3 Indices and Logarithms

3A Laws of indices	3A.14 HKC
3A.1 HKCEE MA 1987(A) - I - 3(a)	$\frac{(x^3y)^2}{5} = \frac{x^6y}{5}$
$\sqrt{\frac{3^{5k+2}}{27^k}} = \left(\frac{3^{5k+2}}{3^{3k}}\right)^{\frac{1}{2}} = (3^{2k+2})^{\frac{1}{2}} = 3^{k+1}$	3A.15 <u>HKC</u>
3A.2 <u>HKCEE MA 1990 - I - 2(a)</u>	$\frac{(a^3)^5}{a^{-6}} = \frac{a^{15}}{a^{-6}}$
$\frac{a}{\sqrt{a}} = a^{1-\frac{1}{2}} = a^{\frac{1}{2}}$	3A.16 HKC
3A.3 HKCEE MA 1993~I-5(b)	$\frac{m^9}{m^9n^{-5}} = \frac{m^9}{m^9}$
$x\left(\frac{x^{-1}}{y^2}\right)^{-3} = x\left(\frac{x^{+3}}{y^{-6}}\right) = x^4 y^6$	$\frac{3A.17}{(ab)^3} \frac{\text{HKC}}{a^2} = \frac{a^3b}{a^2}$
3A.4 <u>HKCEE MA 1994</u> <u>1-7(a)</u> $\frac{(a^{4}b^{-2})^{2}}{ab} = \frac{a^{8}b^{-4}}{ab} = \frac{a^{8-1}}{b^{1+4}} = \frac{a^{7}}{b^{5}}$	$\frac{3A.18}{\frac{x^2}{(x^{-7}y)^3}} = \frac{HKC}{x}$
3A.5 <u>HKCEE MA 1996 - I - 2</u> $\frac{a^{\frac{5}{4}}\sqrt[4]{a^3}}{a^{-2}} = \frac{a^{\frac{3}{4}}a^{\frac{3}{4}}}{a^{-2}} = a^{\frac{5}{4} + \frac{3}{4} - (-2)} = a^4$	3A.19 <u>HKC</u> $a^{14}\left(\frac{b^3}{a^2}\right)^5 =$
3A.6 <u>HKCEE MA 1997 - I - 2(a)</u> $\frac{x^3y^2}{x^{-3}y} = x^{3-(-3)}y^{2-1} = x^6y$	$\frac{3A.20}{\frac{x^{65}}{(x^4y^3)^2}} = \frac{x^4}{x^8}$
3A.7 <u>HKCEE MA 1998 - 1 - 4</u> $\frac{a^3a^4}{b^{-2}} = a^{3+4}b^2 = a^7b^2$	$\frac{3A.21}{\frac{(xy)^2}{x^{-5}y^6}} = \frac{x^2y}{x^{-5}}$
3A.8 <u>HKCEE MA 1999 – I – 1</u> $\frac{(a^{-3})^2}{a} \frac{a^{-6}}{a} = \frac{1}{a^{1+6}} = \frac{1}{a^7}$	$\frac{3A.22}{(m^5 n^{-2})^6} \frac{HKL}{m^4}$
3A.9 <u>HKCEE MA 2000 - I - 2</u> $\frac{x^{-3}y}{x^2} = \frac{y}{x^{2+3}} = \frac{y}{x^5}$	$\frac{3A.23}{\frac{m^{-12}n^8}{n^3}} = \frac{n^8}{m}$
3A.10 <u>HKCEE MA 2001 - I - 1</u> $\frac{m^3}{(mn)^2} = \frac{m^3}{m^2n^2} = \frac{m}{n^2}$	$\frac{3A.24}{(x^5y)^6} = \frac{HKT}{x^{30}}$
3A.11 <u>HKCEE MA 2002 - I - 1</u> $\frac{(ab^2)^2}{a^5} = \frac{a^2b^4}{a^5} = \frac{b^4}{a^5} = \frac{b^4}{a^3}$	$\frac{3A.25}{(xy^{-2})^3} = \frac{x^3}{x^4}$
3A.12 <u>HKCEE MA 2003 - I - 4</u> $2^{2(x+1)} = 2^3 \Rightarrow 2x+2=3 \Rightarrow x = \frac{1}{2}$	$\frac{3A.26}{m^9} \frac{\text{HKD}}{(m^3 n^{-7})^5} = -$
3A.13 <u>HKCEE MA 2004-1-1</u> $\frac{(a^{-1}b)^3}{b^2} = \frac{a^{-3}b^3}{b^2} = \frac{b^{3-2}}{a^3} = \frac{b}{a^3}$	$\frac{3A \ 27}{\left(\frac{x^5 y^7}{y^5 y^{-6}}\right)^2} = \frac{x^{10}}{x^5}$

CEE MA 2005 - I - 2 $\frac{5y^2}{y^5} = \frac{x^6}{y^3}$ CEE MA 2006 - I - I $a^{15} = a^{15} = a^{21}$ CEE MA 2007-1-2 $\frac{n^5}{9-6} = \frac{n^5}{m^3}$ CEE MA 2008 - I - 1 $r_{\rm m}^{3} = ab^{3}$ CEE MA 2009 - I - 2 $\frac{x^2}{x^{-21}y^3} = \frac{x^{2+21}}{y^3} = \frac{x^{23}}{y^3}$ CEE MA 2010 ~I - 1 $=a^{14}\cdot\frac{b^{15}}{a^{10}}=a^4b^{15}$ CEE MA 2011-1-2 $\frac{x^{65}}{8y^6} = \frac{x^{57}}{y^6}$ DSEMA SP-I-1 $\frac{x^2}{5y^6} = \frac{x^{2+5}}{y^{6-2}} = \frac{x^7}{y^4}$ DSEMAPP-I-1 $\frac{30n^{-12}}{n^{4n}3} = \frac{m^{30-4}}{n^{-3+12}} = \frac{m^{36}}{n^9}$ DSE MA 2012 - I - 1 $\frac{n^{8-3}}{n^{12}} = \frac{n^5}{m^{12}}$ SE MA 2013 - I - 1 $\frac{0^{3}y^{13}}{0^{3}y^{6}} = \frac{y^{7}}{x^{10}}$ DSE MA 2014-1-1 $\frac{x^3y^{-6}}{y^4} = \frac{x^3}{y^{4+6}} = \frac{x^3}{y^{10}}$ DSE MA 2015 - I - 1 $\frac{m^9}{m^{15}n^{-35}} = \frac{n^{35}}{m^6}$ SE MA 2016 - I - 1 $\frac{(x^{\delta}y^{7})^{2}}{x^{5}y^{-6}} = \frac{x^{16}y^{14}}{x^{5}y^{-6}} = x^{16-5}y^{14} \quad (-6) = x^{11}y^{20}$

276

Provided by dse.life

55

i

÷.

3

1

.

3A.28 HKDSE MA 2017 - I - 2

$$\frac{(m^4 n^{-1})^3}{(m^{-2})^5} = \frac{m^{12} n^{-3}}{m^{-10}} = \frac{m^{12} - \binom{10}{n}}{n^3} = \frac{m^{22}}{n^3}$$
3A.29 HKDSE MA 2018 - I - 2

$$\frac{xy^7}{(x^{-2}y^3)^4} = \frac{xy^2}{x^{-8}y^{12}} = \frac{x^{1+8}}{y^{12-7}} = \frac{x^9}{y^5}$$
3A.30 HKDSE MA 2020 - I - 1

$$\frac{(mn^{-2})^5}{m^{-4}} = m^{-(-4)} n^{-26}$$

$$= m^9 n^{-10}$$

$$= \frac{m^9}{n^{10}}$$

3B Logarithms 3B.1 HKCEE MA 1986(A) -1-5(a) $\log_2 8 + \log_2 \frac{1}{16} = \log_2 2^3 + \log_2 2^{-4} = 3 + (-4) = -1$ 3B.2 HKCEE MA 1987(A) I-3(b) $\frac{\log a^3 b^2 - \log a b^2}{\log \sqrt{a}} = \frac{\log \frac{a^3 b^2}{a b^2}}{\frac{1}{2} \log a} = \frac{\log a^2}{\frac{1}{2} \log a} = \frac{2 \log a}{\frac{1}{2} \log a} = 4$ 3B.3 HKCEE MA 1988-1-6 (a) $\log 18 = \log 2 \cdot 3^2 = \log 2 + 2\log 3 = r + 2s$ (b) $\log 15 = \log \frac{3 \times 10}{2} = \log 3 + 1 - \log 2 = s + 1 - r$ 3B.4 HKCEE MA 1990-I-2(b) $\frac{\log(a^2) + \log(b^4)}{\log(ab^2)} = \frac{\log a^2 b^4}{\log ab^2} = \frac{\log(ab^2)^2}{\log ab^2} = \frac{2\log ab^2}{\log ab^2} = 2$ 3B.5 HKCEE MA 1991-I-7 $\left(\alpha + \beta = 2\right)$ $\alpha\beta = \frac{1}{10}$ (a) $4^{\alpha} \times 4^{\beta} = 4^{\alpha+\beta} = 4^{-2} = \frac{1}{16}$ (b) $\log_{10}\alpha + \log_{10}\beta = \log_{10}\alpha\beta = \log_{10}\frac{1}{10} = -1$ 3B.6 HKCEE MA 1992 - I - 2(a) $\log xy = \log x + \log y = p + q$ 3B.7 HKCEE MA 1994 I-7(b) $\log\sqrt{12} = \frac{1}{2}\log^{2^{2}} 3 = \frac{1}{2}(2\log^{2} + \log^{3}) = \frac{2x + y}{2}$ 3B.8 HKCEE MA 1997-1-2(b) $\frac{\log 8 + \log 4}{\log 16} \quad \frac{3\log 2 + 2\log 2}{4\log 2} = \frac{5\log 2}{4\log 2} = \frac{5}{4}$ 3B.9 HKDSE MA SP-1-17 Method 1 $6.4 = \log_8 E \implies E = 8^{6.4}$ $M = \log_4 E = \log_4(8^{6.4}) = \frac{\log_2 8^{6.4}}{\log_4 6^{6.4}}$ $\int = \frac{1}{\frac{\log_2 4}{\log_2 2^{3(6.4)}}} = \frac{19.2}{2} = 9.6$ Method 2 $\begin{cases} M = \log_4 E \\ N = \log_8 E \end{cases} \Rightarrow \begin{cases} E = 4^M \\ E = 8^N \end{cases} \Rightarrow \begin{array}{c} 4^M = 8^N \\ 2^{2M} = 2^{3N} \end{cases}$ $M = \frac{3}{2}N = \frac{3}{2}(6.4) = 9.6$ 3B.10 HKDSEMA 2014-I-15 Method 1 From the graph, $(\log_4 x, \log_8 y) = (3, 0)$ and $\text{Slope} = \frac{-1}{2}$. Using point-slope form, the equation is: $\log_8 y - 0 = \frac{-1}{3} (\log_4 x - 3)$ $\log_8 y = \frac{-1}{3} \log_4 x + 1$ $= \log_4 \left(x^{\frac{-1}{3}} \cdot 4 \right)$ $\frac{\log_2 y}{\log_2 8} = \frac{\log_2 4x^{\frac{-1}{3}}}{\log_2 4}$ $\frac{\log_2 y}{3} = \frac{\log_2 4x^{\frac{1}{3}}}{2}$ $\log_2 y = \frac{3}{2} \log_2 4x^{-1}$ $= \log_2 \left(4x^{\frac{-1}{2}}\right)^{\frac{3}{2}} = \log_2 8x^{\frac{-1}{2}}$ $\Rightarrow y = 8x^{\frac{1}{2}}$ Method 2 $(\log_4 x, \log_8 y) = (3, 0) \implies (x, y) = (64, 1)$ Let the point of the line cutting the vertical axis be (0, b). $\frac{b-0}{0-3} = \frac{-1}{3} \implies b = 1$ $(\log_4 x, \log_8 y) = (0, 1) \Rightarrow (x, y) = (1, 8)$ Putting into $y = Ax^k$, \langle $1 = A(64)^k \Rightarrow 1 = 8^{1+2k} \Rightarrow k = \frac{-1}{7}$ Hence, $y = 8x^{\frac{1}{2}}$ Method 3 $y = Ax^k \implies \log_2 y = \log_2 Ax^k = \log_2 A + k \log_2 x$ $\frac{\log_{2} y}{\log_{2} 2} = \log_{2} A + k \frac{\log_{2} x}{\log_{4} 2}$ $\frac{\log_{2} y}{\log_{2} 2} = \log_{2} A + k \frac{\log_{4} x}{\log_{4} 2}$ $3 \log_{3} y = \log_{3} A + 2k \log_{4} x$ $\log_{3} y = \frac{2k}{3} \log_{4} x + \frac{1}{3} \log_{2} A$ From theory of straight lines, $\int \frac{-1}{3} = \text{Slope} = \frac{2k}{3} \implies k = \frac{-1}{2}$ $\begin{vmatrix} \frac{1}{3} = 5 \log 2 - 3 \\ 3 = x \text{-intercept} = -\frac{\frac{1}{3} \log_2 A}{\frac{2k}{2k}} = \frac{-1}{2k} \log_2 A \implies A = 2^3 = 8$ Hence, $y = 8x^{-1}$ 3B.11 HKDSE MA 2017-I-15 G passes through (9,0) and (243,3) $\begin{cases} 0 = a + \log_b 9 \\ 3 = a + \log_b 243 \end{cases} \implies 3 = \log_b 243 - \log_b 9 = \log_b \frac{243}{9}$ $\Rightarrow b^3 = 27 \Rightarrow b = 9 \Rightarrow a = -\log_b 9 = -2$ $\therefore y = -2 + \log_3 x \Rightarrow \log_3 x = y + 2 \Rightarrow x = 3^{y+2}$

3C Exponential and logarithmic equations 3C.1 HKCEE MA 1980(3)-I-7 $\log_3(x-3) + \log_3(x+3) = 3$ $\log_3(x-3)(x+3) = 3$ $x^2 - 9 = 27$ x = 6 or 6 (rejected)3C.2 HKCEE MA 1981(1) - I - 5 & 1981(2) - I - 6 $4^x = 10 - 4^{x+1}$ $4^{x} = 10 - 4^{x} \cdot 4$ $(1+4)4^{x} = 10$ $4^x = 2 \Rightarrow x = \frac{1}{2}$ 3C.3 HKCEE MA 1982(1/2)-I-2 $4^{x-y} = 4 \Rightarrow x \quad y=1$ $\int x = \frac{3}{2}$ $\begin{cases} 4^{x+y} = 16 \implies x+y=2 \end{cases} \implies$ $y = \frac{1}{2}$ 3C.4 HKCEE MA 1985(B)-I-3 2^{2x} 3(2x) 4 = 0 $(2^{x})^{2}$ 3(2^x) 4 = 0 $(2^{x}-4)(2^{x}+1)=0$ $2^x = 4 \text{ or } -1 \text{ (rejected)} \implies x = 2$ 3C.5 HKCEE MA 1986(A) - I - 5(b) $2\log_{10} x - \log_{10} y = 0$ $log_{10}x^2 = log_{10}y$ $x^2 = y$ 3C.6 HKCEE MA 1987(B)-I-3 $3^{2x} + 3^{x} - 2 = 0$ $(3^{x})^{2} + (3^{x}) - 2 = 0$ $(3^{x}+2)(3^{x}-1)=0$ $3^x = -2$ (rejected) or $1 \Rightarrow x = 0$ 3C.7 HKCEE MA 1993 - I - 5(a) $9^x = \sqrt{3}$ $3^{2x} = 3^{\frac{1}{2}} \Rightarrow 2x = \frac{1}{2} \Rightarrow x = \frac{1}{4}$ 3C.8 HKCEE MA 1995 -1-7 $\frac{1}{\sqrt{\frac{27}{3}}} = 27^{\frac{-1}{2}} = (3^3)^{\frac{-1}{2}}$ (a) 3" = x= (b) $\log x + 2\log 4 = \log 48$ $\log x + \log 4^2 = \log 48$ $\log 16x = \log 48 \implies 16x = 48 \implies x = 3$

278