3 Indices and Logarithms

3A Laws of indices
3A. 1 HKCEE MA 1987(A) I-3(a)
Simplify $\sqrt{\frac{3^{5 k+2}}{27^{k}}}$.
3A. 2 HKCEE MA 1990-I-2(a)
Simplify $\frac{a}{\sqrt{a}}$, expressing your answer in index form.
3A. 3 HKCEE MA 1993-I - 5(b)
Simplify and express with positive indices $x\left(\frac{x^{-1}}{y^{2}}\right)^{-3}$.
3A. 4 HKCEE MA 1994 I 7(a)
Simplify $\frac{\left(a^{4} b^{2}\right)^{2}}{a b}$ and express your answer with positive indices.
3A. 5 HKCEEMA 1996-I-2
Simplify $\frac{a^{\frac{5}{4}} \sqrt[4]{a^{3}}}{a^{-2}}$.
3A. 6 HKCEE MA 1997-I-2(a)
Simplify $\frac{x^{3} y^{2}}{x^{-3} y}$ and express your answer with positive indices.
3A. 7 HKCEE MA 1998 -I - 4
Simplify $\frac{a^{3} a^{4}}{b^{-2}}$ and express your answer with posivive indices.
3A. 8 HKCEEMA 1999 I-1
Simplify $\frac{\left(a{ }^{3}\right)^{2}}{a}$ and express your answer with positive indices
3A. 9 HKCEE MA $2000-\mathrm{I}-2$
Simplify $\frac{x^{-3} y}{x^{2}}$ and express your answer with positive indices.
3A. 10 HKCEE MA 2001-I-1
Simplify $\frac{m^{3}}{(m n)^{2}}$ and express your answer with positive indices.

3A. 11 HKCEEMA 2002-I-1

Simplify $\frac{\left(a b^{2}\right)^{2}}{a^{5}}$ and express your answer with positive indices.
3A. 12 HKCEEMA 2003-I-4
Solve the equation $4^{x+1}=8$.
3A. 13 HKCEE MA 2004-I-1
Simplify $\frac{\left(a^{-1} b\right)^{3}}{b^{2}}$ and express your answer with positive indices.
3A. 14 HKCEE MA 2005-1 2
Simplify $\frac{\left(x^{3} y\right)^{2}}{y^{5}}$ and express your answer with positive indices.
3A. 15 HKCEEMA 2006-1-1
Simplify $\frac{\left(a^{3}\right)^{5}}{a^{-6}}$ and express your answer with positive indices.
3A. 16 HKCEEMA $2007 \mathrm{I}-2$
Simplify $\frac{m^{6}}{m^{9} n^{-5}}$ and express your answer with positive indices
3A. 17 HKCEE MA 2008-I 1
Simplify $\frac{(a b)^{3}}{a^{2}}$ and express your answer with positive indices.
3A. 18 HKCEE MA 2009-I-2
Simplify $\frac{x^{2}}{\left(x^{-7} y\right)^{3}}$ and express your answer with positive indices.
3A. 19 HKCEEMA 2010-I-1
Simplify $a^{14}\left(\frac{b^{3}}{a^{2}}\right)^{5}$ and express your answer with positive indices.
3A:20 HKCEE MA 2011-I-2
Simplify $\frac{x^{65}}{\left(x^{4}, y^{3}\right)^{2}}$ and express your answer with positive indices.
3A. 21 HKDSE MA SP-I-1
Simplify $\frac{(x y)^{2}}{x^{5} y^{6}}$ and express your answer with positive indices.
3A. 22 HKDSEMA PP - $1-1$
Simplify $\frac{\left(m^{5} n^{-2}\right)^{6}}{m^{4} n^{-3}}$ and express your answer with positive indices.

3A. 23 HKDSE MA $2012 \quad \mathrm{I}-1$
Simplify $\frac{m^{-12} n^{3}}{n^{3}}$ and express your answer with positive indices.
3A. 24 HKDSE MA 2013-I-1
Simplify $\frac{x^{20} y^{13}}{\left(x^{5} y\right)^{6}}$ and express your answer with positive indices.
3A. 25 HKDSEMA 2014-I 1
Simplify $\frac{\left(x y^{-2}\right)^{3}}{y^{4}}$ and express your answer with positive indices.
3A. 26 HKDSE MA $2015 \mathrm{I}-1$
Simplify $\begin{gathered}m^{9} \\ \left(m^{3} n^{-7}\right)^{5}\end{gathered}$ and express your answer with positive indices.
3A. 27 HKDSEMA 2016-I-1
Simplify $\frac{\left(x^{8} y^{7}\right)^{2}}{x^{5} y^{-6}}$ and express your answer with positive indices.
3A. 28 HKDSE MA 2017-I-2
Simplify $\frac{\left(m^{4} n^{1}\right)^{3}}{\left(m^{-2}\right)^{5}}$ and express your answer with positive indices.
3A. 29 HKDSE MA 2018-I-2
Simplify $\frac{x y^{7}}{\left(x^{-2} y^{3}\right)^{4}}$ and express your answer with positive indices.
3A. 30 HKDSEMA 2020-I 1
Simplify $\frac{\left(m n^{-2}\right)^{5}}{m^{4}}$ and express your answer with positive indices.

3B Logarithms

3B. 1 HKCEE MA 1986(A)-I-5(a)
Evaluate $\log _{2} 8+\log _{2} \frac{1}{16}$

3B. 2 HKCEE MA 1987(A)-I 3(b)
Simplify $\frac{\log a^{3} b^{2}-\log a b^{2}}{\log \sqrt{a}}$.

3B. 3 HKCEE MA 1988 -I-6
Give that $\log 2=r$ and $\log 3=s$, express the following in terms of r and s :
(a) $\log 18$,
(b) $\log 15$.

3B. 4 HKCEE MA 1990-I 2(b)
Simplify $\frac{\log \left(a^{2}\right)+\log \left(b^{4}\right)}{\log \left(a b^{2}\right)}$, where $a, b>0$.

3B. 5 HKCEE MA $1991-\mathrm{I}-7$
(Also as 6C.8.)
Let α and β be the roots of the equation $10 x^{2}+20 x+1=0$. Without solving the equation, find the values of
(a) $4^{\alpha} \times 4^{\beta}$,
(b) $\log _{10} \alpha+\log _{10} \beta$

3B. 6 HKCEE MA 1992-I 2(a)
If $\log x=p$ and $\log y=q$, express $\log x y$ in terms of p and q.
3B. 7 HKCEE MA 1994-I 7(b)
If $\log 2=x$ and $\log 3=y$, express $\log \sqrt{12}$ in terms of x and y.

3B. 8 HKCEE MA 1997 -I 2(b)
Simplify $\frac{\log 8+\log 4}{\log 16}$.

3B. 9 HKDSE MA SP - I-17
A researcher defined Scale A and Scale B to represent the magnitude of an explosion as shown in the table:

It is given that M and N are the magnitudes of an explosion on Scale A and Scale B respectively, while E is the relative energy released by the explosion. If the magnitude of an explosion is 6.4 on Scale B, find the magnitude of the explosion on Scale A.

3B. 10 HKDSE MA 2014-I-15
The graph in the figure shows the linear relation between $\log _{4} x$ and $\log _{8} y$. The slope and the intercept on the horizontal axis of the graph are $\frac{-1}{3}$ and 3 respectively. Express the relation between x and y in the form $y=A x^{k}$, where A and k are constants.

3B. 11 HKDSE MA 2017 I 15

Let a and b be constants. Denote the graph of $y=a+\log _{b} x$ by G. The x intercept of G is 9 and G passes through the point $(243,3)$. Express x in terms of y.

3C Exponential and logarithmic equations
3C. 1 HKCEE MA 1980(3)-I 7
Find x if $\log _{3}(x-3)+\log _{3}(x+3)=3$.
3C. 2 HKCEE MA 1981(1) I 5 \& HKCEE MA 1981(2)-1-6
Solve $4^{x}=10 \quad 4^{x+1}$.
3C. 3 HKCEE MA 1982(1/2) I 2
If $\left\{\begin{array}{l}4^{x-y}=4 \\ 4^{x+y}=16\end{array}\right.$, solve for x and y.
3C. 4 HKCEEMA 1985(B) $1-3$
Solve $2^{2 x}-3\left(2^{x}\right) \quad 4=0$.
3C. 5 HKCEE MA 1986(A) I 5(b)
If $2 \log _{10} x-\log _{10} y=0$, show that $y=x^{2}$.
3C. 6 HKCEEMA 1987(B) I-3
Solve the equation $3^{2 x}+3^{x}-2=0$.
3C. 7 HKCEE MA 1993 I 5(a)
If $9^{x}=\sqrt{3}$, find x.
3C. 8 HKCEEMA 1995 I-7
Solve the following equations without using a calculator:
(a) $3^{x}=\frac{1}{\sqrt{27}}$;
(b) $\log x+2 \log 4=\log 48$.

3A Laws of indices
3A. 1 HKCEE MA 1987(A)-I -3(a) $\sqrt{\frac{3^{5 k+2}}{27^{k}}}=\left(\frac{3^{5 k+2}}{3^{3 k}}\right)^{\frac{1}{2}}=\left(3^{2 k+2}\right)^{\frac{1}{2}}=3^{k+1}$

3A. 2 HKCEE MA 1990-I-2(a) $\frac{a}{\sqrt{a}}=a^{1-\frac{1}{2}}=a^{\frac{1}{3}}$

3A. 3 HKCEE MA 1993-I-S(b)
$x\left(\frac{x^{-1}}{y^{2}}\right)^{-3}=x\left(\frac{x^{+3}}{y^{-6}}\right)=x^{4} y^{5}$
3A. 4 HKCEEMA 1994 1-7(a) $\frac{\left(d^{4} b^{-2}\right)^{2}}{a b}=\frac{a^{8} b^{-4}}{a b}=\frac{a^{8-1}}{b^{1+4}}=\frac{a^{7}}{b^{5}}$

3A. 5 HKCEE MA 1996 -I-2 $\frac{a^{\frac{5}{4} \sqrt[4]{a^{3}}}}{a^{-2}}=\frac{a^{\frac{5}{3}} \frac{{ }^{\frac{3}{2}}}{a^{-2}}}{a^{-2}}=a^{\frac{5}{4}+\frac{3}{3}-(-2)}=a^{4}$

3A. 6 HKCEE MA 1997-I - 2(a)
$\frac{\left.x^{3}\right)^{2}}{x^{-3} y^{2}}=x^{3-(-3)} y^{2-1}=x^{6} y$
3A. 7 HKCEE MA 1998 -1-4 $\frac{a^{3} a^{4}}{b^{-2}}=a^{3+4} b^{2}=a^{7} b^{2}$

3A. 8 HKCEE MA 1999 - I-1 $\frac{\left(a^{3}\right)^{2}}{a} \frac{a^{-6}}{a}=\frac{1}{a^{1+6}}=\frac{1}{a^{7}}$

3 A. 9 HKCEEMA $2000-\mathrm{I}-2$
$\frac{x^{-3} y}{x^{2}}=\frac{y}{x^{2+3}}=\frac{y}{x^{5}}$
3A. 10 HKCEEMA 2001-I-1 $\frac{m^{3}}{(m n)^{2}}=\frac{m^{3}}{m^{2} n^{2}}=\frac{m}{n^{2}}$ A. 11 HKCEEMA 2002-I $\frac{\left(a b^{2}\right)^{2}}{a^{5}}=\frac{a^{2} b^{4}}{a^{5}}=\frac{b^{4}}{a^{5}}=\frac{b^{4}}{a^{3}}$

3A. 12 HKCEE MA $2003-\mathrm{I}-4$ $2^{2(x+1)}=2^{3} \Rightarrow 2 x+2=3 \Rightarrow x=\frac{1}{2}$
A. 13 HKCEE MA 2004-1-1 $\frac{\left(a^{-1} b\right)^{3}}{b^{2}}=\frac{a^{-3} b^{3}}{b^{2}}=\frac{b^{3-2}}{a^{3}}=\frac{b}{a^{3}}$

3A. 14 HKCEEMA 2005-I
$\frac{\left(x^{3} y\right)^{2}}{y^{5}}=\frac{x^{5} y^{2}}{y^{5}}=\frac{x^{6}}{y^{3}}$
3A. 15 HKCEEMA 2006 -I-$\frac{\left(a^{3}\right)^{5}}{a^{-6}}=\frac{a^{15}}{a^{-6}}=a^{15} \quad(6)=a^{21}$
3A. 16 HKCEEMA 2007-I-2 $\frac{m^{6}}{m^{9} n^{-5}}=\frac{n^{5}}{m^{9-6}}=\frac{n^{5}}{m^{3}}$
3A. 17 HKCEEMA $2008-\mathrm{I}-1$ $\frac{(a b)^{3}}{a^{2}}=\frac{a^{3} b^{3}}{a^{2}}=a b^{3}$ 3A. 18 HKCEE MA 2009-I - 2 $\frac{x^{2}}{\left(x^{-7} y\right)^{3}}=\frac{x^{2}}{x^{-21} y^{3}}=\frac{x^{2+21}}{y^{3}}=\frac{x^{22}}{y^{3}}$ 3A. 19 HKCEE MA $2010 \sim \mathrm{~T}-1$ $a^{14}\left(\frac{b^{3}}{a^{2}}\right)^{5}=a^{14} \cdot \frac{b^{15}}{a^{10}}=a^{4} b^{15}$ 3A. 20 HKCEEMA 2011-1-2 $\frac{x^{65}}{\left(x^{4} y^{3}\right)^{2}}=\frac{x^{65}}{x^{8} y^{6}}=\frac{x^{57}}{y^{6}}$
3 A. 21 HKDSEMASP- $1-1$
$\frac{(x y)^{2}}{x y^{6}}=\frac{x^{2} y^{2}}{x^{-5} y^{6}}=\frac{x^{2+5}}{y^{5-2}}=\frac{x^{7}}{y^{4}}$
3A. 22 HKDSEMAPP-I-1 $\frac{\left(m^{5} n^{-2}\right)^{6}}{m^{4} n^{-3}} \frac{m^{30} n^{-12}}{m^{4} n^{3}}=\frac{m^{30-4}}{n^{-3+12}}=\frac{m^{26}}{n^{9}}$ 3 A. 23 HKDSEMA 2012-I-1 $\frac{m^{-12} n^{8}}{n^{3}}=\frac{n^{8-3}}{m^{12}}=\frac{n^{5}}{m^{12}}$
3A. 24 HKDSEMA 2013-I$\frac{x^{20} y^{13}}{\left(x^{5} y\right)^{6}}=\frac{x^{20} y^{13}}{x^{30} y^{6}}=\frac{y^{7}}{x^{10}}$ A. 25 HKDSEMA 2014-I$\frac{\left(x y^{-2}\right)^{3}}{y^{4}}=\frac{x^{3} y^{-6}}{y^{4}}=\frac{x^{3}}{y^{4+6}}=\frac{x^{3}}{y^{10}}$ 3A. 26 HKDSE MA $2015-1$ $\frac{m^{9}}{\left(m^{3} n^{-7}\right)^{5}}=\frac{m^{9}}{m^{15} n^{-35}}=\frac{n^{35}}{m^{6}}$ 3A 27 HKDSE MA 2016-I $\frac{\left(x^{8} y^{7}\right)^{2}}{x^{5} y^{-6}}=\frac{x^{15} y^{14}}{x^{5} y^{6}}=x^{16-5} y^{14}(-6)=x^{14} y^{20}$

3A. 28 HKDSEMA 2017-1-2 $\frac{\left(m^{4} n^{-1}\right)^{3}}{\left(m^{-2}\right)^{5}}=\frac{m^{12} n^{-3}}{m^{-10}}=\frac{\left.n^{12-(}\right)}{n^{3}}=\frac{m^{22}}{n^{3}}$
3A. 29 HKDSEMA $2018-1-2$ $\frac{x y^{7}}{\left(x^{-}-y^{3}\right)^{4}}=\frac{x y^{7}}{x^{-8} y^{12}}=\frac{x^{1+8}}{y^{12-7}}=\frac{x^{9}}{y^{5}}$
3A. 30 HKDSE MA 2020 $-\mathrm{I}-1$
$\frac{\left(m n^{-2}\right)^{3}}{m^{-4}}=m^{5}(-1)_{n}-26$
$=m^{9} n^{-10}$
$=\frac{m \text { P }}{n^{10}}$
3B Logarithms
3B. 1 HKCEE MA 1986(A)-I-5(a)
$\log _{2} 8+\log _{2} \frac{1}{16}=\log _{2} 2^{3}+\log _{2} 2^{-4}=3+(-4)=-1$
3B. 2 HKCEE MA 1987(A) I-3(b)
$\frac{\log a^{3} b^{2}-\log a b^{2}}{\log \sqrt{a}}=\frac{\log \frac{a^{3} b^{2}}{a b^{2}}}{\frac{1}{2} \log a}=\frac{\log a^{2}}{\frac{1}{2} \log a}=\frac{2 \log a}{\frac{1}{2} \log a}=4$
3B. 3 HKCEE MA 1988-T-6
(a) $\log 18=\log 2 \cdot 3^{2}=\log 2+2 \log 3=r+2 s$
(b) $\log 15=\log \frac{3 \times 10}{2}=\log 3+1-\log 2=s+1-r$
3B. 4 HKCEE MA 1990-1-2(b)
$\frac{\log \left(a^{2}\right)+\log \left(b^{4}\right)}{\log \left(a b^{2}\right)}=\frac{\log a^{2} b^{4}}{\log a b^{2}}=\frac{\log \left(a b^{2}\right)^{2}}{\log a b^{2}}=\frac{2 \log a b^{2}}{\log a b^{2}}=2$
3B.5 HKCEE MA 1991-I-7
$\{\alpha+\beta=2$
$\left\{\alpha \beta=\frac{1}{10}\right.$
(a) $4^{\alpha} \times 4^{\beta}=4^{\alpha+\beta}=4^{-2}=\frac{1}{16}$
(b) $\log _{10} \alpha+\log _{10} \beta=\log _{10} \alpha \beta=\log _{10} \frac{1}{10}=-1$
3B. 6 HKCEEMA 1992-I- $z(\mathrm{a})$
$\log x y=\log x+\log y=p+q$
3B. 7 HKCEEMA 1994 I-7(b)
$\log \sqrt{12}=\frac{1}{2} \log 2^{2} \cdot 3=\frac{1}{2}(2 \log 2+\log 3)=\frac{2 x+y}{2}$
3B. 8 HKCEE MA 1997-1-2(b)
$\frac{\log 8+\log 4}{\log 16} \frac{3 \log 2+2 \log 2}{4 \log 2}=\frac{5 \log 2}{4 \log 2}=\frac{5}{4}$
3B9 HKDSEMASP-I-17
Method I
$6.4=\log _{8} E \Rightarrow E=8^{6.4}$
$\therefore M=\log _{4} E=\log _{4}\left(8^{6.4}\right)=\frac{\log _{2} 8^{6.4}}{\log _{2} 4}$

$$
=\frac{\log _{2} 2^{2(6,4)}}{\log _{2} 2^{2}}=\frac{19.2}{2}=9.6
$$

Method? 2

$$
\begin{aligned}
&\left\{\begin{array} { l }
{ M = \operatorname { l o g } _ { 4 } E } \\
{ N = \operatorname { l o g } _ { 8 } E }
\end{array} \Rightarrow \left\{\begin{array}{l}
E=4^{M} \\
E=8^{N}
\end{array} \Rightarrow \begin{array}{l}
4^{M} \\
=2^{2 M}
\end{array}=8^{3 N}\right.\right. \\
& M=\frac{3}{2} N=\frac{3}{2}(6.4)=9.6
\end{aligned}
$$

3B. 10 HKDSEMA 2014-I - 15

Method l

From the graph. $\left(\log _{4} x, \log _{8} y\right)=(3,0)$ and $S l o p c=\frac{-1}{3}$
Using point-slope form, the equation is:
$\log _{8} y-0=\frac{-1}{3}\left(\log _{4} x-3\right)$

$$
\begin{aligned}
\log _{8} y & =\frac{-1}{3} \log _{4} x+1 \\
& =\log _{4}\left(x \frac{1}{\top} \cdot 4\right)
\end{aligned}
$$

$\frac{\log _{2} y}{\log _{2} 8}=\frac{\log _{2} 4 x \text { ㄱ }}{\log _{2} 4}$
$\frac{\log _{2} y}{3}=\frac{\log _{2} 4 x^{\text {弚 }}}{2}$
$\log _{2} y=\frac{3}{2} \log _{2} 4 x^{-\frac{1}{7}}$
$=\log _{2}\left(4 x^{\frac{-1}{\top}}\right)^{\frac{3}{2}}=\log _{2} 8 x^{\frac{-1}{2}}$
$\Rightarrow y^{-8 x}$
Mechod2
$\left(\log _{4} x, \log _{8} y\right)=(3,0) \Rightarrow(x, y)=(64,1)$
Let the point of the line culing the vertical axis be $(0, b)$.
$\frac{b-0}{0-3}=\frac{-1}{3} \Rightarrow b=1$
$\therefore\left(\log _{4} x, \log _{8} y\right)=(0,1) \Rightarrow(x, y)=(1,8)$
Patting into $y=A x^{k},\left\{\begin{array}{l}8=A\end{array}\right.$
Hence. $y=8 x \frac{1}{2}$.
Method 3
$x=A x^{k} \Rightarrow \log _{2} y=\log _{2} A x^{k}=\log _{2} A+k \log _{2} x$ $\frac{\log _{8} y}{\log _{8} 2}=\log _{2} A+k \frac{\log _{4} x}{\log _{1} 2}$
$\log _{8} y=\log _{2} A+2 k \log _{4}$
$\log _{8} y=\frac{2 k}{3} \log _{4} x+\frac{1}{3} \log _{2} A$
From theory of straight lines,
$\left\{\frac{-1}{3}=\right.$ Slope $=\frac{2 k}{3} \Rightarrow k=\frac{-1}{2}$
$\left\{\begin{array}{l}3=x \text {-intercept }=-\frac{\frac{1}{2} \log _{2} A}{\frac{2 k}{3}}=\frac{-1}{2 k} \log _{2} A \Rightarrow A=2^{3}=8\end{array}\right.$
Hence, $y=8 x^{\frac{1}{2}}$.

3B.11 HKDSEMA 2017-I- 15
G passes ihrough $(9,0)$ and $(243,3)$
$\Rightarrow\left\{\begin{array}{l}0=a+\log _{b} 9 \\ 3=a+\log _{b} 243\end{array} \Rightarrow 3=\log _{b} 243-\log _{b} 9=\log _{b} 243\right.$
$\Rightarrow\left\{\begin{array}{l}3=a+\log _{b} 243\end{array} \Rightarrow 3=\log _{b} 243-\log _{b} 9=\log _{b}\right.$
$\Rightarrow b^{3}=27 \Rightarrow b=9 \Rightarrow a=-\log _{b} 9=-2$
$\therefore y=-2+\log _{3} x \Rightarrow \log _{9} x=y+2 \Rightarrow x=3^{y+2}$

3C Exponential and logarithmic equations

3C. 1 HKCEEMA 1980(3)-I-7
$\log _{3}(x-3)+\log _{3}(x+3)=3$
$\log _{3}(x-3)(x+3)=3$

3C. 2 HKCEE MA 1981(1) - I-5 \& 1981(2)-1-6 $4^{x}=10-4^{x+1}$
$4^{x}=10-4^{x} .4$
$(1+4) 4^{x}=10$
$4^{x}=2 \Rightarrow x=\frac{1}{2}$

3C.3 HKCEEMA 1982(1/2)-1-2
$\left\{\begin{array}{l}4^{x-y}=4 \Rightarrow x \quad y=1 \\ 4^{x+y}=16 \Rightarrow x+y=2\end{array} \Rightarrow\left\{\begin{array}{l}x=\frac{3}{2} \\ y=\frac{1}{2}\end{array}\right.\right.$

3C. 4 HKCEEMA $1985(\mathrm{~B})-\mathrm{I}-3$
$2^{3 x} 3\left(2^{x}\right) \quad 4=0$
$\begin{array}{ll}\left(2^{x}\right)^{2} & 3\left(2^{x}\right) \\ \left(2^{x}-4\right) & 4=0 \\ \left.2^{x}+1\right) & =0\end{array}$
$\begin{aligned} 2^{x} & =4 \text { or }-1 \text { (rejected) } \Rightarrow x=2\end{aligned}$

3C. 5 HKCEEMA 1986(A)-I-5(b)
$2 \log _{10} x-\log _{10} y=0$
$\log _{10} x^{2}=\log _{10} y$

3C. 6 HKCEE MA 1987(B) $-\mathrm{I}-3$
$3^{2 x}+3^{x}-2=0$
$\left(3^{x}+2\right)\left(3^{x}-1\right)=0$
$3^{x}=-2$ (rejected) or $1 \Rightarrow x=0$

3C. 7 HKCEE MA $1993-\mathrm{I}-5(\mathrm{a})$
$9^{x}=\sqrt{3}$
$3^{2 x}=3^{\frac{1}{4}} \Rightarrow 2 x=\frac{1}{2} \Rightarrow x=\frac{1}{4}$

3C8 HKCEE MA 1995-I-7
(a) $3^{x}=\frac{1}{\sqrt{27}}=27^{\frac{-1}{2}}=\left(3^{3}\right)^{\frac{-1}{7}}$
$x=\frac{-3}{2}$
(b) $\log x+2 \log 4=\log 48$
$\log x+\log 4^{2}=\log 48$
$\log 16 x=\log 48 \Rightarrow 16 x=48 \Rightarrow x=3$

