16 Coordinate Geometry

16A Transformation in the rectangular coordinate plane

16A. 1 HKCEE MA 2006-I -7

In the figure, the coordinates of the points A and B are $(-2,7)$ and $(-5,5)$ respectively. A is rotated clockwise about the origin O through 90° to $A^{\prime} . B^{\prime}$ is the reflection image of B with respect to the y-axis.
(a) Write down the coordinates of A^{\prime} and B^{\prime}.
(b) Are the lengths of $A B$ and $A^{\prime} B^{\prime}$ equal? Explain your answer.

16A. 2 HKCEE MA 2009 - I -9
In the figure, the coordinates of the points A and B are $(-1,-2)$ and $(5,2)$ respectively. A is translated vertically upward by 6 units to $A^{\prime} . B^{\prime}$ is the reflection image of B with respect to the y axis.
(a) Write down the coordinates of A^{\prime} and B^{\prime}
(b) Is $A B$ parallel to $A^{\prime} B^{\prime}$? Explain your answer

16A. 3 HKCEE MA 2011 I 8
The coordinates of the point A are $(-4,6) . A$ is rotated anticlockwise about the origin O through 90° to B.
M is the mid-point of $A B$.
(a) Find the coordinates of M.
(b) Is $O M$ perpendicular to $A B$? Explain your answer.

16A. 4 HKDSE MA SP-I-8
In the figure, the coordinates of the point A are $(-2,5)$. A is rotated clockwise about the origin O through 90° to A^{\prime}. $A^{\prime \prime}$ is the reflection image of A with respect to the y-axis.
(a) Write down the coordinates of A^{\prime} and $A^{\prime \prime}$.
(b) Is $O A^{\prime \prime}$ perpendicular to $A A^{\prime}$? Explain your answer.

16A. 5 HKDSE MA $2014 \mathrm{I}-8$
The coordinates of the points P and Q are $(-3,5)$ and $(2,-7)$ respectively. P is rotated anticlockwise about the origin O through 270° to P^{\prime}. Q is translated leftwards by 21 units to Q^{\prime}.
(a) Write down the coordinates of P^{\prime} and Q^{\prime}.
(b) Prove that $P Q$ is perpendicular to $P^{\prime} Q^{\prime}$.

16A. 6 HKDSE MA 2017-I-6

The coordinates of the points A and B are (3,4) and (9,9) respectively. A is rotated anticlockwise about the origin through 90° to $A^{\prime} . B^{\prime}$ is the reflection image of B with respect to the x-axis,
(a) Write down the coordinates of A^{\prime} and B^{\prime}
(b) Prove that $A B$ is perpendicular to $A^{\prime} B^{\prime}$.

16B Straight lines in the rectangular coordinate plane

16B. 1 HKCEE MA 1992-I

L_{1} is the line passing through the point $A(10,5)$ and perpendicular to the line $L_{2}: x-2 y+5=0$
(a) Find the equation of L_{1}
(b) Find the intersection point of L_{1} and L_{2}.

16B. 2 HKCEE MA 1998 I- 8
$A(0,4)$ and $B(-2,1)$ are two points.
(a) Find the slope of $A B$.
(b) Find the equation of the line passing through $(1,3)$ and perpendicular to $A B$.

16B.3 HKCEE MA 1999 I-10
In the figure, $A(-8,8)$ and $B(16,4)$ are two points. The perpendicular bisector ℓ of the line segment $A B$ cuts $A B$ at M and the x axis at P.
(a) Find the equation of ℓ
(b) Find the length of $B P$.
(c) If N is the mid point of $A P$, find the length of $M N$.

16B. 4 HKCEE MA 2000-1-9
Let L be the straight line passing through $(4,4)$ and $(6,0)$.
(a) Find the slope of L
(b) Find the equation of L
(c) If L intersects the y axis at C, find the coordinates of C.

16B. 5 HKCEEMA 2001 - I

Two points A and B are marked in the figure.
(a) Write down the coordinates of A and B.
(b) Find the equation of the straight line joining A and B.

16B. 6 HKCEE MA 2002-I - 8
In the figure, the straight line $L: x \quad 2 y+8=0$ cuts the coordinate axes at A and B.
(a) Find the coordinates of A and B.
(b) Find the coordinates of the mid-point of $A B$.

16B. 7 HKCEE MA 2003-I 12

In the figure, $A P$ is an altitude of the triangle $A B C$. It cuts the y-axis at H.
(a) Find the slope of $B C$.
(b) Find the equation of $A P$.
(c) (i) Find the coordinates of H
(ii) Prove that the three altitudes of the triangle $A B C$ pass through the same point.

168.8 HKCEE MA 2004-I - 13

In the figure, $A B C D$ is a rhombus. The diagonals $A C$ and $B D$ cut at E.
(a) Find
(i) the coordinates of E
(ii) the equation of $B D$.
(b) It is given that the equation of $A D$ is $x+7 y-65=0$. Find
(i) the equation of $B C$,
(ii) the length of $A B$.

16B. 9 HKCEEMA $2005 \mathrm{I}-13$

In the figure, the straight line $L_{1}: 2 x-y+4=0$ cuts the x-axis and the y axis at A and B respectively. The straight line L_{2}, passing through B and perpendicular to L_{1}, cuts the x-axis at C. From the origin O, a straight ine perpendicular to L_{2} is drawn to meet L_{2} at D.
(a) Write down the coordinates of A and B.
(b) Find the equation of L_{2}.
(c) Find the ratio of the area of $\triangle O D C$ to the area of quadrilateral $O A B D$

16B. 10 HKCEEMA 2006 I- 12
In the figure, $C M$ is the perpendicular bisector of $A B$, where C and M are points lying on the x axis and $A B$ respectively. $B D$ and $C M$ intersect at K.
(a) Write down the coordinates of M.
(b) Find the equation of $C M$. Hence, or otherwise, find the coordinates of C.
(c) (i) Find the equation of $B D$.
(ii) Using the result of (c)(i), find the coordinates of K. Hence find the ratio of the area of $\triangle A M C$ to the area of $\triangle A K C$

16B. 11 HKCEEMA 2007-I-13
In the figure, the perpendicular from B to $A C$ meets $A C$ at D.
It is given that $A B=A C$ and the slope of $A B$ is $\frac{-4}{3}$.
(a) Find the equation of $A B$.
(b) Find the value of h
(c) (i) Write down the value of k
(ii) Find the area of $\triangle A B C$. Hence, or otherwise, find the length of $B D$.

16B. 12 HKCEEMA 2008-I- 12

In the figure, the coordinates of the point A are $(4,3) . A$ is rotated anticlockwise about the origin O through 90° to $B . C$ is the reflection image of A with respect to the x axis.
(a) Write down the coordinates of B and C.
(b) Are O, B and C collinear? Explain your answer.
(c) A is translated horizontally to D such that $\angle B C D=90^{\circ}$. Find the equation of the straight line passing through C and D. Hence, or otherwise, find the coordinates of D.

16B. 13 HKCEE MA 2010 I- 12

In the figure, the straight line passing through A and B is perpendicular to the straight line passing through A and C, where C is a point lying on the x-axis.
(a) Find the equation of the straight line passing through A and B.
(b) Find the coordinates of C.
(c) Find the area of $\triangle A B C$.
(d) A straight line passing through A cuts the line segment $B C$ at D such that the area of $\triangle A B D$ is 90 square units. Let $B D: D C=r: 1$. Find the value of r.

16B. 14 HKCEE AM 1982 II 2

Find the ratio in which the line segment joining $A(3,-1)$ and $B(-1,1)$ is divided by the straight line $x-y-1=0$.

16B. 15 HKCEE AM 1982-II - 10

(a) The lines $3 x \quad 2 y-8=0$ and $x \quad y-2=0$ meet at a point $P . L_{1}$ and L_{2} are lines passing through P and having slopes $\frac{1}{2}$ and 2 respectively. Find their equations.
(b) [Out of syllabus]

16B. 16 (HKCEE AM 1985 II -10)

$A(0,2), B(-3,0)$ and $C(1,0)$ are the vertices of a triangle. $P Q R S$ is a variable rectangle inscribed in the triangle with $P Q$ on the x-axis, R on $A C$ and S on $A B$, as shown in the figure. Let the length of $P S$ be h.
(a) Find the coordinates of S and R in terms of h.
(b) Let A_{1} be the area of $P Q R S$ when it is a square, A_{2} be the maximum possible area of rectangle $P Q R S$, and A_{3} be the area of $\triangle A B C$. Find the ratios $A_{1}: A_{2}: A_{3}$.
(c) The centre of $P Q R S$ is the point $M(x, y)$.

Express x and y in terms of h.
Hence show that M lies on the line $x-y+1=0$.

16B. 17 (HKCEE AM 1984 II -4)

The area of the triangle bounded by the two lines $L_{1}: x+y=4$ and $L_{2}: x-y=2 p$ and the y-axis is 9 .
(a) Find the coordinates of the point of intersection of L_{1} and L_{2} in terms of p.
(b) Hence, find the possible value(s) of p.

16B. 18 HKCEE AM 1988 - II -2

A and B are the points $(1,2)$ and $(7,4)$ respectively. P is a point on the line segment $A B$ such that $\frac{A P}{P B}=k$.
(a) Write down the coordinates of P in terns of k
(b) Hence find the ratio in which the line $7 x-3 y \quad 28=0$ divides the line segment $A B$.

16B. 19 HKCEE AM 1990- II -7

In the figure, $A(3,0), B(0,5)$ and $C(0,1)$ are three points and O is the origin. D is a point on $A B$ such that the area of $\triangle B C D$ equals half of the area of $\triangle O A B$. Find the equation of the line $C D$.

16B. 20 (HKCEE AM 1996 II 8)

Given two straight lines $L_{1}: 2 x-y-4=0$ and $L_{2}: x-2 y+4=0$. Find the equation of the straight line passing through the origin and the point of intersection of L_{1} and L_{2}.

16B. 21 (HKCEE AM 1998-II-5)

Two lines $L_{1}: 2 x+y-3=0$ and $L_{2}: x-3 y+1=0$ intersect at a point P.
(a) Find the coordinates of P.
(b) L is a line passing through P and the origin. Find the equation of L.

16B. 22 HKCEE AM 20056

The figure shows the line $L_{1}: 2 x+y-6=0$ intersecting the x axis at point P.
(a) Let θ be the acute angle between L_{1} and the x axis. Find $\tan \theta$.
(b) L_{2} is a line with positive slope passing through the origin O. If L_{1} intersects L_{2} at a point Q such that $O P=O Q$, find the equation of L_{2}.
(Candidates can use the formula $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$.)

16B. 23 (HKCEE AM 2009 3)

Given two straight lines $L_{1}: x-3 y+7=0$ and $L_{2}: 3 x-y-11=0$. Find the equation of the straight line passing through the point $(2,1)$ and the point of intersection of L_{1} and L_{2}.

16B. 24 HKCEE AM 20106

Two straight lines $L_{1}: x \quad 2 y+3=0$ and $L_{2}: 2 x-y \quad 1=0$ intersect at a point P. If L is a straight line passing through P and with equal positive intercepts, find the equation of L

16C Circles in the rectangular coordinate plane

16C. 1 HKCEEMA 1980(1/3) - B - 15

The circle $x^{2}+y^{2}-10 x+8 y+16=0$ cuts the x axis at A and B and touches the y-axis at T as shown in the figure.
(a) Find the coordinates of A, B and T.
(b) C is a point on the circle such that $A C / / T B$.
(i) Find the equation of $A C$.
(ii) Find the coordinates of C by solving simultaneously the equation of $A C$ and the equation of the given circle.

16C. 2 HKCEE MA 1981(1/3) I-13

Figure (1) shows a circle of radius 15 with centre at the origin O. The line $T P$, of slope $\frac{3}{4}(=\tan \theta)$, touches the circle at T and cuts the x axis at P.
(a) Find the equation of the circle.
(b) Calculate the length of $O P$.
(c) Find the equation of the line $T P$.

Another circle, with centre C and radius 15 , is drawn to touch $T P$ at P (see Figure (2)).
(d) Find the equation of the line $O C$.
(e) Find the equation of the circle with centre C.

16C. 3 HKCEE MA 1982(1)-I- 13

In the figure, C is the circle $x^{2}+y^{2}-14 y+40=0$ and L is the line $4 x-3 y-4=0$.
(a) Find the radius and the coordinates of the centre of the circle C.
(b) The line L^{\prime} passes through the centre of the circle C and is perpendicular to the given line L. Find the equation of the line L^{\prime}.
(c) Find the coordinates of the point of intersection of the line L and the line L^{\prime}.
(d) Hence, or otherwise, find the shortest distance between the circle C and the line L.

16C. 4 HKCEE MA 1983(A/B)-I 9

In the figure, O is the origin and A is the point $(8,2)$.
(a) B is a point on the x-axis such that the slope of $A B$ is 1 . Find the coordinates of B.
(b) C is another point on the x-axis such that $A B=A C$. Find the coordinates of C.
(c) Find the equation of the straight line $A C$. If the line $A C$ cuts the y-axis at D, find the coordinates of D.
(d) Find the equation of the circle passing through the points O, B and D. Show that this circle passes through A.

16C. 5 HKCEE MA 1984(A/B) - I-9

Let L be the line $y=k \quad x$ (k being a constant) and C be the circle $x^{2}+y^{2}=4$.
(a) If L meets C at exactly one point, find the two values of k
(b) If L intersects C at the points $A(2,0)$ and B,
(i) find the value of k and the coordinates of B;
(ii) find the equation of the circle with $A B$ as diameter.

16C. 6 HKCEE MA 1985(A/B) - I - 9

In the figure, $A(2,0)$ and $B(7,5)$ are the end-points of a diameter of the circle. P is a point on $A B$ such that $\frac{A P}{P B}=\frac{1}{4}$
(a) Find the equation of the circle.
(b) Find the coordinates of P.
(c) The chord $H P K$ is perpendicular to $A B$.
(i) Find the equation of $H P K$.
(ii) Find the coordinates of H and K.

16C. 7 HKCEE MA 1986(A/B) - I-8
The line $y \quad x-6=0$ cuts the circle $x^{2}+y^{2}-6 x-8 y=0$ at the points B and C as shown in the figure. The circle cuts the x-axis at the origin O and the point A; it also cuts the y axis at D.
(a) Find the coordinates of B and C.
(b) Find the coordinates of A and D
(c) Find $\angle A D O, \angle A B O$ and $\angle A C O$, correct to the nearest degree.
(d) Find the area of $\triangle A C O$.

16C. 8 HKCEE MA 1987(A/B)-I - 8

In the figure, O is the origin. A and B are the points $(-2,0)$ and $(4,0)$ respectively. ℓ is a straight line through A with slope 1. C is a point on ℓ such that $C O=C B$.
(a) Find the equation of ℓ.
(b) Find the coordinates of C.
(c) Find the equation of the circle passing through O, B and C.
(d) If the circle $O B C$ cuts ℓ again at D, find the coordinates of D.

16C. 9 HKCEE MA 1988-1-7

In the figure, the circle C has equation $x^{2}+y^{2}-4 x+10 y+k=0$, where k is a constant.
(a) Find the coordinates of the centre of C.
(b) If C touches the y axis, find the radius of C and the value of k.

16C. 10 HKCEE MA 1989-I - 8

Let E be the centre of the circle $\mathscr{C}_{1}: x^{2}+y^{2} \quad 2 x-4 y-20=0$. The line $\ell: x+7 y-40=0$ cuts \mathscr{C}_{1} at the points P and Q as shown in the figure.
(a) Find the coordinates of E.
(b) Find the coordinates of P and Q
(c) Find the equation of the circle \mathscr{C}_{2} with $P Q$ as diameter.
(d) Show that \mathscr{C}_{2} passes through E. Hence, or otherwise, find $\angle E P Q$.

16C. 11 HKCEE MA 1990 I-8

Let $\left(C_{1}\right)$ be the circle $x^{2}+y^{2}-2 x+6 y+1=0$ and A be the point $(5,0)$.
(a) Find the coordinates of the centre and the radius of $\left(C_{1}\right)$.
(b) Find the distance between the centre of $\left(C_{1}\right)$ and A.

Hence determine whether A lies inside, outside or on $\left(C_{1}\right)$.
(c) Let s be the shortest distance from A to $\left(C_{1}\right)$.
(i) Find s.
(ii) Another circle $\left(C_{2}\right)$ has centre A and radius s. Find its equation.
(d) A line touches the above two circles $\left(C_{1}\right)$ and $\left(C_{2}\right)$ at two distinct points E and F respectively. Draw a rough diagram to show this information Find the length of $E F$.

16C. 12 HKCEE MA 1991 -I -9

In the figure, the circle $S: x^{2}+y^{2}-4 x-2 y+4=0$ with centre C touches the x axis at A. The line $L: y=m x$, where m is a non-zero constant, passes through the origin O and touches S at B.
(a) Find the coordinates of C and A.
(b) Show that $m=\frac{4}{3}$
(c) (i) Explain why the four points O, A, C, B are concyclic.
(ii) Find the equation of the circle passing through these four points.

16C. 13 HKCEE MA 1992-I - 13

In the figure, the line $\ell: y=m x$ passes through the origin and intersects the circle $x^{2}+y^{2}-18 x-14 y+105=0$ at two distinct points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.

(a) Find the coordinates of the centre C and the radius of the circle.
(b) By substituting $y=m x$ into $x^{2}+y^{2} \quad 18 x-14 y+105=0$, show that $x_{1} x_{2}=\frac{105}{1+m^{2}}$.
(c) Express the length of $O A$ in terms of m and x_{1} and the length of $O B$ in terms of m and x_{2} Hence find the value of the product of $O A$ and $O B$.
(d) If the perpendicular distance between the line ℓ and the centre C is 3 , find the lengths of $A B$ and $O A$.

16C. 14 HKCEEMA 1993 I- 8

In the figure, L_{1} is the line passing through $A(0,7)$ and $B(10,2) ; L_{2}$ is the line passing through $C(4,0)$ and perpendicular to $L_{1} ; L_{1}$ and L_{2} meet at D.
(a) Find the equation of L_{1}.
(b) Find the equation of L_{2} and the coordinates of D.
(c) P is a point on the line segment $A B$ such that $A P: P B=k: 1$. Find the coordinates of P in terms of k. If P lies on the circle $(x-4)^{2}+y^{2}=30$, show that $2 k^{2}-16 k+7=0 \ldots \ldots \ldots$ (*)
Find the roots of equation (*).
Furthermore, if P lies between A and D, find the value of $\frac{A P}{P B}$.

16C. 15 HKCEE MA 1994 I- 12

The figure shows two circles $\quad C_{1}: x^{2}+y^{2}=1, \quad C_{2}:(x-10)^{2}+y^{2}=49$.
O is the origin and A is the centre of C_{2}. $Q P$ is an external common tangent to C_{1} and C_{2} with points of contact Q and P respectively. The slope of $Q P$ is positive.

(a) Write down the coordinates of A and the radius of C_{2}.
(b) $P Q$ is produced to cut the x axis at R. Find the x-coordinate of R by considering similar triangles.
(c) Using the result in (b), find the slope of $Q P$.
(d) Using the results of (b) and (c), find the equation of the external common tangent $Q P$
(e) Find the equation of the other external common tangent to C_{1} and C_{2}.

16C. 16 HKCEE MA 1995-I - 10

In the figure, $A(1,9)$ and $B(9,7)$ are points on a circle \mathscr{C}. The centre G of the circle lies on the line $\ell: 4 x-3 y+12=0$.
(a) Find the equation of the line $A B$.
(b) Find the equation of the perpendicular bisector of $A B$, and hence the coordinates of G.
(c) Find the equation of the circle \mathscr{E}.
(d) If $D E$ (not shows in the figure) is another chord of the circle \mathscr{C} such that $A B$ and $D E$ are equal and parallel, find
(i) the coordinates of the mid-point of $D E$, and
(ii) the equation of the line $D E$.

16C. 17 HKCEEMA 1996 I 11

\mathscr{C}_{1} is the circle with centre $A(0,2)$ and radius 2 . It cuts the y-axis at the origin O and the point B. C_{2} is another circle with equation $x^{2}+(y-2)^{2}=25$. The line L passing through B with siope 2 cuts \mathscr{C}_{2} at the points Q and R as shown in the figure.
(a) Find
(i) the equation of \mathscr{E}_{1};
(ii) the equation of L.
(b) Find the coordinates of Q and R
(c) Find the coordinates of
(i) the point on L which is nearest to A;
(ii) the point on \mathscr{E}_{1} which is nearest to Q.

16C. 18 HKCEE MA $1997-\mathrm{I}-16$

Figure (1)

(a) In Figure (1), D is a point on the circle with $A B$ as diameter and C as the centre. The tangent to the circle at A meets $B D$ produced at E. The perpendicular to this tangent through E meets $C D$ produced at F. (i) Prove that $A B / / E F$.
(ii) Prove that $F D=F E$.
(iii) Explain why F is the centre of the circle passing through D and touching $A E$ at E.
(b) A rectangular coordinate system is introduced in Figure (1) so that the coordinates of A and B are $(2,1)$ and $(6,3)$ respectively. It is found that the coordinates of D and E are $(-2,3)$ and $(-4,3)$ respectively as shown in Figure (2). Find the coordinates of F.

16C. 19 HKCEE MA 1998 I 15

The figure shows two circles C_{1} and C_{2} touching each other externally. The centre of C_{1} is $(5,0)$ and the equation of C_{2} is $(x-11)^{2}+(y+8)^{2}=49$.
(a) Find the equation of C_{1}.
(b) Find the equations of the two tangents to C_{1} from the origin.
(c) One of the tangents in (b) cuts C_{2} at two distinct points A and B. Find the coordinates of the mid-point of $A B$.

16C. 20 HKCEE MA 1999-I - 16

(Continued from 12A.17.)
(a) In Figure (1), $A B C$ is a triangle right-angled at $B . D$ is a point on $A B$. A circle is drawn with $D B$ as a diameter. The line through D and parallel to $A \bar{C}$ cuts the circle at E. $C E$ is produced to cut the circle at F.
(i) Prove that A, F, B and C are concyclic.
(ii) If M is the mid=point of $A C$, explain why $M B=M F$.
(b) In Figure (2), the equation of circle $\bar{R} \bar{S} T$ is $x^{2}+y^{2}+10 x-6 y+9=0$. QST is a straight line The coürdinates of P, Q, R, S are $(-17,0),(0,17),(-9,0)$ and $(-2,7)$ respectively.
(i) Prove that $P Q / / R S$.
(ii) Find the coordinates of T,
(iii) Are the points P, Q, O and T concyclic? Explain your answer.

Figure (1)

Figure (2)

16C. 21 HKCEE MA 2000- -16
In the figure, C is the centre of the circle $P Q S . O R$ and $O P$ are tangent to the circle at S and P respectively. $O C Q$ is a straight line and $\angle Q O P=30^{\circ}$.
(a) Show that $\angle P Q O=30^{\circ}$.
(b) Suppose $O P Q R$ is a cyclic quadrilateral.
(i) Show thăt $R Q$ is tangent to circle $P Q S$ at Q.
(ii) A rectangular coordinate system is introduced in the figure so that the coordinates of O and C are $(0,0)$ and $(6,8)$ respectively. Find the equation of $Q R$.

16C. 22 HKCEEMA 2001-I-17

Figure (1)

Figure (2)
(a) In Figure (1), $O P$ is a diameter of the circle. The altitude $Q R$ of the acute angled triangle $O P Q$ cuts the circle at S. Let the coordinates of P and S be $(p, 0)$ and (a, b) respectively.
(i) Find the equation of the circle OPS
(ii) Using (i) or otherwise, show that $O S^{2}=O P \cdot O Q \cos \angle P O Q$.
(b) In Figure (2), $A B C$ is an acute angled triangle. $A C$ and $\overline{B C}$ are diameters of the circles $A G D C$ and $B C E \bar{F}$ respectively.
(i) Show that $B E$ is an altitude of $\triangle A B C$.
(ii) Using (a) or otherwise, compare the leñgth of $C F$ with thāt of $C \bar{G}$. Justify your answer.

16C. 23 HKCEE MA 2002-I-16
In the figure, $A B$ is a diameter of the circle $A \bar{B} E G$ with centre \bar{C}. The perpendicular from G to $A B$ cuts $A B$ at $O . A E$ cuts $O G$ at $D . B E$ and $O G$ are produced to meet att F.
Mary and John try to prove $O D \cdot O F=O G^{2}$ by using two different approaches.
(a) Mary tackles the problem by first proving that $\triangle A O D \sim \triangle F O B$ and $\triangle A O G \sim \triangle G O \bar{B}$. Complete the following tasks for Mary.
(i) Prove that $\triangle A O D \sim \triangle \bar{F} O B$.
(ii) Prove that $\triangle A O G \sim \triangle G O B$.
(iii) Using (a)(i) and (a)(ii), prove that $\overline{O D} \cdot O F=O G^{2}$.
(b) John tackles the same problem by introducing a rectangular coordinate system in the figure so that the coordinates of C, D and F are $(c, 0),(0, p)$ and $(0, q)$ respectively; where c, p and q are positive numbers. He denotes the radius of the circle by r.
Comiplete the following tasks for John.
(i) Express the slopes of $A D$ and $B F$ in terms of c, p, q and r.
(ii) Using (b)(i), prove that $O D \cdot O F=O G^{2}$.

16C. 24 HKCEE MA 2003-I - 17

(Continued from 12B.16.)

Figure (2)
(a) In Figure (1), $O P$ is a common tangent to the circles C_{1} and C_{2} at the points O and P respectively. The common chord $K M$ when produced intersects $O P$ at $N . R$ and S are points on $K O$ and $K P$ respectively such that the straight line $R M S$ is parallel to $O P$.
(i) By considering triangles $N P M$ and $N K P$, prove that $N P^{2}=N K \cdot N M$.
(ii) Prove that $R M=M S$.
(b) A rectangular coordinate system, with O as the origin, is introduced to Figure (1) so that the coordinates of P and M are ($p, 0$) and (a, b) respectively (see Figure (2)). The straight line $R S$ meets C_{1} and C_{2} again at F and G respectively while the straight lines $F O$ and $G P$ meet at Q.
(i) Express $F G$ in terms of p.
(ii) Express the coordinates of F and Q in terms of a and b
(iii) Prove that triangle $Q R S$ is isosceles.

16C. 25 HKCEEMA 2004-I- 16
(Continued from 12B.17.)
In the figure, $B C$ is a tangent to the circle $O A B$ with $B C / / O A$. $O A$ is produced to D such that $A D=O B . B D$ cuts the circle at E.
(a) Prove that $\triangle A D E \cong \triangle B O E$.
(b) Prove that $\angle B E O=2 \angle B O E$
(c) Suppose $O E$ is a diameter of the circle $O A E B$.
(i) Find $\angle B O E$.
(ii) A rectangular coordinate system is introduced in the figure so that the coordinates of O and B are $(0,0)$ and $(6,0)$ respectively. Find the equation of the circle $O A E B$.

16C. 26 HKCEE MA 2005-I - 17

Figure (1)

Figure (2)
(a) In Figure (1), $M N$ is a diameter of the circle $M O N R$. The chord $R O$ is perpendicular to the straight line $P O Q . R N Q$ and $R M P$ are straight lines.
(i) By considering triangles $O Q R$ and $O R P$, prove that $O R^{2}=O P \cdot O Q$.
(ii) Prove that $\triangle M O N \sim \triangle P O R$.
(b) A rectangular coordinate system, with O as the origin, is introduced to Figure (1) so that R lies on the positive y-axis and the coordinates of P and Q are $(4,0)$ and ($-9,0$) respectively (see Figure (2)).
(i) Find the coordinates of R.
(ii) If the centre of the circle MONR lies in the second quadrant and $O N=\frac{3 \sqrt{13}}{2}$, find the radius and the coordinates of the centre of the circle MONR.

16C. 27 HKCEE MA 2006 I 16

In the figure, G and H are the circumcentre and the orthocentre of $\triangle A B C$ respectively. $A H$ produced meets $B C$ at O. The perpendicular from G to $B C$ meets $B C$ at $R . B S$ is a diameter of the circle which passes through A, B and C.
(a) Prove that
(i) $A H C S$ is a parallelogram,
(ii) $A H=2 G R$.
(b) A rectangular coordinate system, with O as the origin, is introduced in the figure so that the coordinates of A, B and C are $(0,12),(-6,0)$ and $(4,0)$ respectively.
(i) Find the equation of the circle which passes through A, B and C.
(ii) Find the coordinates of H.
(iii) Are B, O, H and G concyclic? Explain your answer

(a) In Figure (1), $A C$ is the diameter of the semi-circle $A B C$ with centre O. D is a point lying on $A C$ such that $A B=B D . I$ is the in centre of $\triangle A B D . A I$ is produced to meet $B C$ at $E . B I$ is produced to meet $A C$ at G.
(i) Prove that $\triangle A B G \cong \triangle D B G$.
(ii) By considering the triangles $A G I$ and $A B E$, prove that $\frac{G I}{A G}=\frac{B E}{A B}$.
(b) A rectangular coordinate system, with O as the origin, is introduced to Figure (1) so that the coordinates of C and D are $(25,0)$ and $(11,0)$ respectively and B lies in the second quadrant (see Figure (2)). It is found that $B E: A B=1: 2$
(i) Find the coordinates of G
(ii) Find the equation of the inscribed circle of $\triangle A B D$

16C29 HKCEE MA 2008-I-17
(Continued from 12A.25.)
Figure (1) shows a circle passing through A, B and $C . I$ is the in centre of $\triangle A B C$ and $A I$ produced meets the circle at P.

Figure (1)

Figure (2)
(a) Prove that $B P=C P=I P$
(b) Figure (2) is constructed by adding three points G, Q and R to Figure (1), where G is the circumcentre of $\triangle A B C, P Q$ is a diameter of the circle and R is the foot of the perpendicular from I to $B C$. A rectangular coordinate system is then introduced in Figure (2) so that the coordinates of B, C and I are $(-80,0)$, $(64,0)$ and $(0,32)$ respectively.
(i) Find the equation of the circle with centre P and radius $B P$.
(ii) Find the coordinates of Q.
(iii) Are B, Q, I and R concyclic? Explain your answer.

16C. 30 HKCEE MA 2011-I-16

In the figure, $\triangle P Q R$ is an isosceles triangle with $P Q=P R$. It is given that S is a point lying on $Q R$ and the orthocentre of $\triangle P Q R$ lies on $P S$. A rectangular coordinate system is introduced in the figure so that the coordinates of P and Q are $(16,80)$ and $(-32,-48)$ respectively. It is given that $Q R$ is parallel to the x axis.
(a) Find the equation of the perpendicular bisector of $P R$.
(b) Find the coordinates of the circumcentre of $\triangle P Q R$.
(c) Let C be the circle which passes through P, Q and R.
(i) Find the equation of C
(ii) Are the centre C and the in-centre of $\triangle P Q R$ the same point? Explain your answer.

16C.31 HKCEE AM 1981 II 6
The circles $C_{1}: x^{2}+y^{2}+7 y+11=0$ and $C_{2}: x^{2}+y^{2}+6 x+4 y+8=0$ touch each other externally at P.
(a) Find the coordinates of P.
(b) Find the equation of the common tangent at P.

16C. 32 (HKCEE AM 1981 - II - 12)

The line $L: y=m x+2$ meets the circle $C: x^{2}+y^{2}=1$ at the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$.
(a) (i) Show that x_{1} and x_{2} are the roots of the quadratic equation $\left(m^{2}+1\right) x^{2}+4 m x+3=0$.
(ii) Hence, or otherwise, show that the length of the chord $A B$ is $2 \sqrt{\frac{m^{2}-3}{m^{2}+1}}$.
(b) Find the values of m such that
(i) L meets C at two distinct points,
(ii) L is a tangent to C,
(iii) L does not meet C.
(c) For the two tangents in (b)(ii), let the corresponding points of contact be P and Q. Find the equation of $P Q$.

16C. 33 (HKCEE AM 1982 II 8)

M is the point $(5,6), L$ is the line $5 x+12 y=32$ and C is the circle with M as centre and touching L.
(a) (i) Find the equation of the straight line passing through M and perpendicular to L.
(ii) Hence, or otherwise, find the equation of C.
(b) Show that C also touches the y axis.
(c) Find the equation of the tangent (other than the y-axis) to C from the origin.
(d) $P(2,2)$ is a point on C. Q is another point on C such that $P Q$ is a diameter. Find the equation of the circle which passes through P, Q and the origin.

16C 34 HKCEE AM 1984-II-6

Given the equation $x^{2}+y^{2}-2 k x+4 k y+6 k^{2} \quad 2=0$.
(a) Find the range of values of k so that the equation represents a circle with radius greater than 1.
(b) [Out of syllabus]

16C. 35 (HKCEE AM 1985 II-5)

If the equation $x^{2}+y^{2}+k x-(2+k) y=0$ represents a circle with radius $\sqrt{5}$,
(a) find the value(s) of k,
(b) find the equation(s) of the circle(s).

16C. 36 HKCEE AM 1986-II-10

The circles $C_{1}: x^{2}+y^{2}-4 x+2 y+1=0$ and $C_{2}: x^{2}+y^{2}-10 x-4 y+19=0$ have a common chord $A B$.
(a) (i) Find the equation of the line $A B$.
(ii) Find the equation of the circle with $A B$ as a chord such that the area of the circle is a minimum.
(b) The circle C_{1} and another circle C_{3} are concentric. If $A B$ is a tangent to C_{3}, find the equation of C_{3}.
(c) [Out of syllabus]

16C. 37 HKCEE AM 1987-II-11

In the figure, A and B are the points $(8,0)$ and $(16,0)$ respectively. The equation of the circle C_{1} is $x^{2}+y^{2}-16 x-4 y+64=0$. OH and $B H$ are tangents to C_{1}.
(a) (i) Show that C_{1} touches the x axis at A.
(ii) Find the equation of $O H$.
(iii) Find the equation of $B H$.
(b) In the figure, the equation of $O K$ is $4 x+3 y=0$. The circle $C_{2}: x^{2}+y^{2}-16 x+2 f y+c=0$ is the inscribed circle of $\triangle O B K$ and touches the x-axis at A.
x-axis at A.
(i) Find the values of the constants c and f.
(ii) Find area of $\triangle O B H$: area of $\triangle O B K$.

16C. 38 (HKCEE AM 1988 II -11)

In the figure, S is the centre of the circle C which passes through $H(-3,6)$ and touches the line $x \quad 5 y+59=0$ at $K(1,12)$.
(a) Find the coordinates of S. Hence, or other wise, find the equation of the circle C.
(b) The line $L: 3 x-2 y \quad 5=0$ cuts the circle C at A and B. Find the equation of the circle with $A B$ as diameter.

16C. 39 HKCEE AM 1993 - II- 11

$A(0,2)$ is the centre of circle C_{1} with radius 4. $B\left(3, \frac{3}{4}\right)$ is the centre of circle C_{2} which touches the x axis.
$P(s, t)$ is any point in the shaded region as shown in the figure.
(a) Find $A B$ and the radius of C_{2}.

Hence show that C_{1} and C_{2} touch each other.
(b) If P is the centre of a circle which touches the x axis and C_{1}, showthat $4 t=12-s^{2}$.
(c) If P is the centre of a circle which touches the x-axis and C_{2}, show that $3 t=\left(\begin{array}{ll}s & 3\end{array}\right)^{2}$.
(d) Given that there are two circles in the shaded region, each of which touches the x-axis, C_{1} and C_{2}. Using (b) and (c), find the equations of the two circles, giving your answers in the of the two circles, giving your
form $(x-h)^{2}+(y-k)^{2}=r^{2}$.

16C. 40 HKCEE AM 1994-II-9

Given two points $A(5,5)$ and $B(7,1)$. Let (h, k) be the centre of a circle C which passes through A and B.
(a) Express h in terms of k.

Hence show that the equation of C is $x^{2}+y^{2} \quad 4 k x-2 k y+30 k-50=0$.
(b) If the tangent to C at B is parallel to the line $y=\frac{1}{2} x$, find the equation of C.
(c) [Out of syllabus]

16C. 41 HKCEE AM 1995-II - 10

C_{1} is the circle $x^{2}+y^{2}-16 x-36=0$ and C_{2} is a circle centred at the point $A(-7,0) . C_{1}$ and C_{2} touch externally as shown in the figure. $P(h, k)$ is a point in the second quadrant.
(a) Find the centre and radius of C_{1}.

Hence find the radius of C_{2}.
(b) If P is the centre of a circle which touches both C_{1} and C_{2} externally, show that $8 h^{2}-k^{2} \quad 8 h-48=0$.
(c) C_{3} is a circle centred at the point $B(-7,40)$ and of the same radius as C_{2}.
(i) If P is the centre of a circle which touches both C_{2} and C_{3} externally, write down the equation of the locus of P.
(ii) Find the equation of the circle, with centre P, which touches all the three circles C_{1}, C_{2} and C_{3} externally.

16C. 42 (HKCEE AM 1996-II-10)

16C. 45 HKCEE AM $2002 \quad 15$

Figure (1)

(a) $D E F$ is a triangle with perimeter p and area A. A circle C_{1} of radius r is inscribed in the triangle (see Figure (1)). Show that $A=\frac{1}{2} p r$.
(b) In Figure (2), a circle C_{2} is inscribed in a right angled triangle $Q \bar{R} S$. The coordinates of Q, R and S are $(-2,1),(2,5)$ and $(5,2)$ respectively.
(i) Using (a), or otherwise, find the radius of C_{2}
(ii) Find the equation of C_{2}.

16C. 46 HKCEEAM 2005-15

The figure shows a circle $C_{1}: x^{2}+y^{2}-4 x-2 y+4=0$ centred at point A. L is the straight line $y=k x$.
(a) Find the range of k such that C_{I} and L intersect.
(b) There are two tangents from the origin O to C_{1}. Find the equation of the tangent L_{1} other than the x-axis.
(c) Suppose that L and C_{1} intersect at two distinct points P and Q. Let M be the mid-point of $P Q$
(i) Show that the x coordinate of M is $\frac{k+2}{k^{2}+1}$
(ii) [Out of syllabus]

16C. 47 HKCEE AM 2006-14

Let J be the circle $x^{2}+y^{2}=r^{2}$, where $r>0$.
(a) Suppose that the straight line $L: y=m x+c$ is a tangent to J.
(i) Show that $c^{2}=r^{2}\left(m^{2}+1\right)$.
(ii) If L passes thrüugh a point (h, k), shouw thăt $(k-m h)^{2}=r^{2}\left(m^{2}+1\right)$.
(b) J is inscribed in a triangle $P Q R$ (see the figure). The coordinates of P and R are $(7,4)$ and $(-5,-5)$ respectively.
(i) Find the radins of J
(ii) Using (a)(ii), or otherwise, find the slope of $P Q$.
(iii) Find the coordinates of Q.

16C. 48 HKCEE AM 2010-7
In the figure, a tangent $P Q$ is drawn to the circle $x^{2}+y^{2} \quad 6 x+4 y-12=0$ at the point $A(7,1) \cdot B(0,-6)$ is an other point lying on the circle. Let θ be the acute angle between $A B$ and $P Q$. Find the value of $\tan \theta$.

16C. 49 HKCEE AM 2010-15

In the figure, C_{1} is a circle with centre $(6,5)$ touching the x axis. C_{2} is a variable circle which touches the y axis and C_{1} internally.
(a) Show that the equation of locus of the centre of C_{2} is $x=\frac{1}{2} y^{2} \quad 5 y+18$.
(b) It is known that the length of the tangent from an external point $P(0,-3)$ to C_{2} is 5 and the centre of C_{2} is in the first quadrant.
(i) Find the centre of C_{2}.
(ii) Find the equations of the two tangents from P to C_{2}.

16C. 50 HKDSEMASP-I-19

In the figure, the circle passes tbrough four points A, B, C and $D . P Q$ is the tangent to the circle at C and is parallel to $B D . A C$ and $B D$ intersect at E. It is given that $A B=A D$.
(a) (i) Prove that $\triangle A B E \cong \triangle A D E$.
(ii) Are the in-centre, the orthocentre, the centroid and the circumcentre of $\triangle A B D$ collinear? Explain your answer.
(b) A rectangular coordinate system is introduced in the figure so that the coordinates of A, B and D are $(14,4),(8,12)$ and $(4,4)$ respectively. Find the equation of the tangent $P Q$.

16C. 51 HKDSE MA PP - I 14
(Continued from 12A.28.)
In the figure, $O A B C$ is a circle. It is given that $A B$ produced and $O C$ produced meet at D.
(a) Write down a pair of similar triangles in the figure.
(b) Suppose that $\angle A O D=90^{\circ}$. A rectangular coordinate system, with O as the origin, is introduced in the figure so that the coordinates of A and D are $(6,0)$ and $(0,12)$ respectively. If the ratio of the area of $\triangle B C D$ to the area of $\triangle O A D$ is $16: 45$, find
(i) the coordinates of C,
(ii) the equation of the circle $O A B C$.

16C. 52 HKDSE MA 2012-1-17

The coordinates of the centre of the circle C are $(6,10)$. It is given that the x axis is a tangent to C.
(a) Find the equation of C.
(b) The slope and the y intercept of the straight line L is -1 and k respectively. If L cuts C at A and B, express the coordinates of the mid-point of $A B$ in terms of k.

16C. 53 HKDSEMA 2015-1-14

The coordinates of the points P and Q are $(4,-1)$ and $(-14,23)$ respectively.
(a) Let L be the perpendicular bisector of $P Q$.
(i) Find the equation of L.
(ii) Suppose that G is a point lying on L. Denote the x-coordinate of G by h. Let C be the circle which is centred at G and passes through P and Q
Prove that the equation of C is $2 x^{2}+2 y^{2}-4 h x-(3 h+59) y+13 h \quad 93=0$.
(b) The coordinates of the point R are $(26,43)$. Using (a)(ii), or otherwise, find the diameter of the circle which passes through P, Q and R.

16C. 54 HKDSEMA 2016-I-20
(Continued from 12B.20.)
$\triangle O P Q$ is an obtuse-angled triangle. Denote the in-centre and the circumcentre of $\triangle O P Q$ by I and J respectively. It is given that P, I and J are collinear.
(a) Prove that $O P=P Q$.
(b) A rectangular coordinate system is introduced so that the coordinates of O and Q are $(0,0)$ and $(40,30)$ respectively while the y coordinate of P is 19. Let C be the circle which passes through O, P and Q.
(i) Find the equation of C.
(ii) Let L_{1} and L_{2} be two tangents to C such that the slope of each tangent is $\frac{3}{4}$ and the y-intercept of L_{1} is greater than that of L_{2}. L_{1} cuts the x axis and the y-axis at S and T respectively while L_{2} cuts the x-axis and y axis at U and V respectively. Someone claims that the area of the trapezium STUV exceeds 17000 . Is the claim correct? Explain your answer.

16C. 55 HKDSEMA 2018- $\mathrm{I}-19$

The coordinates of the centre of the circle C are (8,2). Denote the radius of C by r. Let L be the straight line $k x-5 y-21=0$, where k is a constant. It is given that L is a tangent to C.
(a) Find the equation of C in terms of r. Hence, express r^{2} in terms of k.
(b) L passes through the point $D(18,39)$.
(i) Find r.
(ii) It is given that L cuts the y-axis at the point E. Let F be a point such that C is the inscribed circle of $\triangle D E F$. Is $\triangle D E F$ an obtuse-angled triangle? Explain your answer.

16C. 56 HKDSE MA 2019 I 19

(Continued from 7E.5.)
Let $f(x)=\frac{1}{1+k}\left(x^{2}+(6 k-2) x+(9 k+25)\right)$, where k is a positive constant. Denote the point $(4,33)$ by F.
(a) Prove that the graph of $y=f(x)$ passes through F.
(b) The graph of $y=g(x)$ is obtained by reflecting the graph of $y=f(x)$ with respect to the y-axis and then translating the resulting graph upwards by 4 units. Let U be the vertex of the graph of $y=g(x)$. Denote the origin by O.
(i) Using the method of completing the square, express the coordinates of U in terms of k.
(ii) Find k such that the area of the circle passing through F, O and U is the least.
(iii) For any positive constant k, the graph of $y=g(x)$ passes through the same point G. Let V be the vertex of the graph of $y=g(x)$ such that the area of the circle passing through F, O and V is the least. Are F, G, O and V concyclic? Explain your answer.

16C. 57 HKDSEMA 2020 I 14

The coordinates of the points A and B are $(10,0)$ and (30,0) respectively. The circle C passes through A and B. Denote the centre of C by G. It is given that the y-coordinate of G is -15 .
(a) Find the equation of C.
(3 marks)
(b) The straight line L passes through B and G. Another straight line ℓ is parallel to L. Let P be a moving point in the rectangular coordinate plane such that the perpendicular distance from P to L is equal to the perpendicular distance from P to ℓ. Denote the locus of P by F. It is given that r passes through A.
(i) Describe the geomerric relationship between r and L.
(ii) Find the equation of Γ.
(iii) Suppose that Γ cuts C at another point H. Someone claims that $\angle G A H<70^{\circ}$. Do you agree? Explain your answer.

16D Loci in the rectangular coordinate plane

16D. 1 (HKCEE MA 1981(3) I-7)

The parabola $y^{2}=4 a x$ passes through the points $A(1,4)$ and $B(16,16)$. A point P divides $A B$ internally such that $A P: P B \quad 1: 4$.
(a) Find the coordinates of P.
(b) Show that the parabola is the locus of a moving point which is equidistant from P and the line $x=-a$.

16D. 2 HKCEE AM 1987 II 10

$P(x, y)$ is a variable point equidistant from the point $S(1,0)$ and the line $x+1=0$.
(a) Show that the equation of the locus of P is $y^{2}=4 x$.
(b) [Out of syllabus]

16D. 3 (HKCEE AM 1994 II-4)

In the figure, $P(0,4)$ and $Q(2,6)$ are two points and $R(x, y)$ is a variable point.
(a) Suppose $R_{0}=(4,4)$ (not shown in the figure). Find the area of $\triangle P Q R_{0}$.

16D. 4 HKCEE AM 1999 - II 10
$A(-3,0)$ and $B(-1,0)$ are two points and $P(x, y)$ is a variable point such that $P A=\sqrt{3} P B$. Let C be the locus of P.
(a) Show that the equation of C is $x^{2}+y^{2}=3$.
(b) $T(a, b)$ is a point on C. Find the equation of the tangent to C at T.
(c) The tangent from A to C touches C at a point S in the second quadrant. Find the coordinates of S.
(d) [Out of syllabus]

16D. 5 (HKCEE AM 2004 10)
In the figure, O is the origin and A is the point $(3,4)$. P is a variable point (not shown) such that the area of $\triangle O P A$ is always equal to 2 .
Describe the locus of P and sketch it in the figure.

16D. 6 (HKCEE AM 2011 - 16) [Difficult!]

Figure (1) shows a circle $C_{1}: x^{2}+y^{2}-10 y+16=0 . Z(x, y)$ is the centre of a circle which touch the x axis and C_{1} externally. Let S be the locus of Z.
(a) Show that the equation of S is $y=\frac{1}{16} x^{2}+1$.
(b) Let C_{2} and C_{3} be circles touching the x-axis and C_{1} externally. It is given that C_{2} passes through the point $(20,16)$ and it touches C_{3} externally. Suppose that both the centres of C_{2} and C_{3} lie in the first quadrant (see Figure (2)).
(i) Find the equation of C_{2}.
(ii) Without any algebraic manipulation, determine whether the following sentence is correct:
"The point of contact of C_{2} and C_{3} lies on S."
(c) Can we draw a circle satisfying all the following conditions?

- Its centre lies on S.
- It touches the x axis.
- It touches C_{1} internally.

Explain your answer.

16D. 7 HKDSE MA SP I 13

In the figure, the straight line $L_{1}: 4 x-3 y+12=0$ and the straight line L_{2} are perpendicular to each other and intersect at A. It is give that L_{1} cuts the y-axis at B and L_{2} passes through the point $(4,9)$.
(a) Find the equation of L_{2}.
(b) Q is a moving point in the coordinate plane such that $A Q=B Q$. Denote the locus of Q by Γ.
(i) Describe the geometric relationship between Γ and L_{2}. Explain your answer.
(ii) Find the equation of Γ.

16D. 8 HKDSEMAPP-I-8

The coordinates of the points A and B are $(-3,4)$ and $(-2,-5)$ respectively. A^{\prime} is the reflection image of A with respect to the y axis. B is rotated anticlockwise about the origin O through 90° to B^{\prime}
(a) Write down the coordinates of A^{\prime} and B^{\prime}.
(b) Let P be a moving point in the rectangular coordinate plane such that P is equidistant from A^{\prime} and B^{\prime}. Find the equation of the locus of P.

16D. 9 HKDSE MA 2012-I - 14

The y-intercepts of two parallel lines L and ℓ are -1 and 3 respectively and the x intercept of L is $3 . P$ is a moving point in the rectangular coordinate plane such that the perpendicular distance from P to L is equal to the perpendicular distance from P to ℓ. Denote the locus of P by Γ
(a) (i) Describe the geometric relationship between Γ and L.
(ii) Find the equation of Γ.
(b) The equation of the circle C is $(x-6)^{2}+y^{2}=4$. Denote the centre of C by Q
(i) Does Γ pass through Q ? Explain your answer.
(ii) If L cuts C at A and B while Γ cuts C at H and K, find the ratio of the area of $\triangle A Q H$ to the area of $\triangle B Q K$.

16D. 10 HKDSE MA 2013-I - 14

The equation of the circle C is $x^{2}+y^{2}-12 x-34 y+225=0$. Denote the centre of C by R.
(a) Write down the coordinates of R.
(b) The equation of the straight line L is $4 x+3 y+50=0$. It is found that C and L do not intersect. Let P be a point lying on L such that P is nearest to R.
(i) Find the distance between P and R.
(ii) Let Q be a moving point on C. When Q is nearest to P,
(1) describe the geometric relationship between P, Q and R;
(2) find the ratio of the area of $\triangle O P Q$ to the area of $\triangle O Q R$, where O is the origin.

16D. 11 HKDSE MA 2014-I - 12

The circle C passes through the point $A(6,11)$ and the centre of C is the point $G(0,3)$.
(a) Find the equation of C.
(b) P is a moving point in the rectangular coordinate plane such that $A P=G P$. Denote the locus of P by Γ.
(i) Find the equation of Γ.
(ii) Describe the geometric relationship between Γ and the line segment $A G$.
(iii) If r cuts C at Q and R, find the perimeter of the quadriateral $A Q G R$

16D. 12 HKDSE MA 2016 - I- 10

The coordinates of the points A and B are $(5,7)$ and $(13,1)$ respectively. Let P be a moving point in the rectangular coordinate plane such that P is equidistant from A and B. Denote the locus of P by Γ.
(a) Find the equation of Γ.
(b) Γ intersects the x-axis and the y axis at H and K respectively. Denote the origin by O. Let C be the circle which passes through O, H and K. Someone claims that the circumference of C exceeds 30 . Is the claim correct? Explain your answer.

16D. 13 HKDSE MA 2017-I - 13

The coordinates of the points E, F and G are $(-6,5),(3,11)$ and $(2,-1)$ respectively. The circle C passes through E and the centre of C is G.
(a) Find the equation of C.
(b) Prove that F lies outside C.
(c) Let H be a moving point on C. When H is farthest from F,
(i) describe the geometric relationship between F, G and H;
(ii) find the equation of the straight line which passes through F and H.

16D. 14 HKDSE MA 2019-I 17

(Continued from 12B.21.)

(a) Let a and p be the area and perimeter of $\triangle C D E$ respectively. Denote the radius of the inscribed circle of $\triangle C D E$ by r. Prove that $p r=2 a$.
(b) The coordinates of the points H and K are $(9,12)$ and $(14,0)$ respectively. Let P be a moving point in the rectangular coordinate plane such that the perpendicular distance from P to $O H$ is equal to the perpendicular distance from P to $H K$, where O is the origin. Denote the locus of P by Γ.
(i) Describe the geometric relationship between Γ and $\angle O H K$.
(ii) Using (a), find the equation of Γ.

16E Polar coordinates

16E. 1 HKCEE MA 2009-I-8

In a polar coordinate system, O is the pole. The polar coordinates of the points P and Q are $\left(k, 123^{\circ}\right)$ and $\left(24,213^{\circ}\right)$ respectively, where k is a positive constant. It is given that $P Q=25$.
(a) Is $\triangle O P Q$ a right-angled triangle? Explain your answer.
(b) Find the perimeter of $\triangle O P Q$.

16E. 2 HKDSE MA PP-I-6

In a polar coordinate system, the polar coordinates of the points A, B and C are $\left(13,157^{\circ}\right),\left(14,247^{\circ}\right)$ and $\left(15,337^{\circ}\right)$ respectively.
(a) Let O be the pole. Are A, O and C collinear? Explain your answer
(b) Find the area of $\triangle A B C$.

16E. 3 HKDSE MA 2013-I-6

In a polar coordinate system, O is the pole. The polar coordinates of the points A and B are $\left(26,10^{\circ}\right)$ and
$\left(26,130^{\circ}\right.$) respectively. Let L be the axis of reflectional symmetry of $\triangle O A B$.
(a) Describe the geometric relationship between L and $\angle A O B$.
(b) Find the polar coordinates of the point of intersection of L and $A B$.

16e. 4 HKDSE MA 2016-1-7

In a polar coordinate system, O is the pole. The polar coordinates of the points A and B are $\left(12,75^{\circ}\right)$ and
$\left(12,135^{\circ}\right)$ respectively
(a) Find $\angle A O B$.
(b) Find the perimeter of $\triangle A O B$.
(c) Write down the number of folds of rotational symmerry of $\triangle A O B$.

16 Coordinate Geometry

16A Transformation in the rectangula coordinate plane

16A.1 HKCEE MA 2006-1-7
(a) $A^{\prime}=(7,2), B^{\prime}=(5,5)$
(b) $A B=\sqrt{\sqrt{(-2+5)^{2}}+(7-5)^{2}}=\sqrt{14}$ $\overline{\left.A^{\prime} B^{\prime}=\sqrt{(7-5)^{2}+(2} \quad 5\right)^{2}=\sqrt{14}}=A B$. YES

16A.2 HKCEE MA 2009-1-9
(a) $A^{\prime}=(-1,4), B^{\prime}=(-5,2)$
(b) $m_{A B}=\frac{2+2}{5+1}=\frac{2}{3}, m_{A^{\prime} B^{\prime}}=\frac{4-2}{-15}=\frac{1}{2} \neq m_{A B}$ \therefore NO

16A 3 HKCEEMA 2011-1-8
(a) $B=(-6,-4), M=\left(\frac{-4-6}{2}, \frac{64}{2}\right)=(-5,1)$
(b) $T_{O M}=\frac{1}{-5}, m_{\Omega B}=5$
$\because m_{O M} \cdot m_{A B}=-$
16A.4 HKDSEMA SP-I-8
(a) $A^{\prime}=(5,2), A^{\prime \prime}=(2,5)$
(b) $m_{O A^{\prime \prime}}=\frac{5}{2}, m_{A^{\prime}}=\frac{-3}{7}$
$\because m_{O A^{\prime}} / m_{A^{\prime}}=\frac{15}{14} \neq-1$
$\therefore O A^{\prime \prime}$ is not perpendicular to $A A^{\prime}$.
16A. 5 HKDSE MA 2014-I-8
(a) $P^{\prime}=(5,3), Q^{\prime}=(-19,7)$
(b) $m_{P Q}=\frac{-12}{5}, m_{P Q^{\prime}}=\frac{10}{24}=\frac{5}{12}$
$\because m_{P Q m_{P^{\prime} Q^{\prime}}}=-1$
16A.6 HKDSEMA 2017-I-6
(a) $A^{\prime}=(-4,-3), B^{\prime}=(9,9)$
(b) $m_{A B}=\frac{13}{-12}, m_{A^{\prime} B^{\prime}}=\frac{12}{13}$
$\because m_{A B} m_{A^{\prime} B^{\prime} B^{\prime}}=-1$

16B Straight lines in the rectangular coordinate plane

16B. 1 HKCEE MA 1992-1-5
(a) $m_{L_{2}}=\frac{1}{2} \Rightarrow m_{L_{1}}=-2$
. Eqn of $L_{1}: y-5=-2(x-10) \Rightarrow 2 x+y-25=0$
(b) $\left\{\begin{array}{l}L_{1}: 2 x+y-25=0 \\ L_{2}: x-2 y+5=0\end{array} \Rightarrow(x, y)=(9,7)\right.$

16B. 2 HKCEE MA 1998-I - 8
(a) $m s s=\frac{4-1}{0 \div 2}=\frac{3}{2}$
(b) Required eqn: $y-3=\frac{1}{\frac{3}{-2}}(x-1) \Rightarrow 2 x \div 3 y-11=0$

16B. 3 HKCEE MA 1999-1-10
(a) $M=\left(\frac{-8+16,8-4}{2}\right)=(4,2)$

$$
\begin{aligned}
& m_{A B}=\frac{12}{24}=-\frac{1}{2} \Rightarrow m_{\varepsilon}=2 \\
& \therefore \text { Eqn of } \ell: y-2=2(x-4) \Rightarrow
\end{aligned}
$$

$$
2 x-y-6=
$$

(b) $\frac{\text { Put } y=0 \text { into eqn of } \ell \Rightarrow x=3 \Rightarrow}{B P=\sqrt{(16-3)^{2}+(-4-0)^{2}}=\sqrt{185}} P=(3,0)$
(c) $N=\left(\frac{-8+3}{2}, \frac{8+0}{2}\right)=\left(-\frac{5}{2}, 4\right)$

$$
\therefore M N=\sqrt{\left(3+\frac{5}{2}\right)^{2}+(0-4)^{2}}=\sqrt{\frac{185}{4}}=\frac{\sqrt{185}}{2}
$$

168.4 HKCEE MA 2000-1-9
(a) $m_{L}=\frac{4-0}{-4}=\frac{2}{5}$
(b) Eqn of $L: y-0=-\frac{2}{5}(x-6) \Rightarrow 2 x+5 y-12=0$
(c) Put $x=0 \Rightarrow y=\frac{12}{5} \Rightarrow C=\left(0, \frac{12}{5}\right)$

16B. 5 HKCEE MA 2001-1-7
(a) $A=(-1,5), B=(4,3)$
(b) Eqn of $A B: \frac{y-5}{x+1}=\frac{5-3}{1-4}=\frac{2}{-5}$

$$
-5(y \quad 5)=-2(x+1) \Rightarrow 2 x+5 y-23=0
$$

16B. 6 HKCEE MA 2002-I-8
(a) $x-2 y=-8 \Rightarrow \frac{x}{m 8}+\frac{y}{4}=$
$\therefore A=(8,0), \stackrel{\sim 8}{=8}(0,4)$
(b) Mid-pl of $A B=\left(\frac{-8+0}{2}, \frac{0+4}{2}\right)=(4,2)$

16B. 7 HKCEE MA 2003-I-12
(a) $m_{B C}=\frac{3 \quad 0}{0-2}=\frac{3}{2}$
(b) $m_{1 P}=-1 \div \frac{3}{2}=\frac{2}{3}$
\therefore Eqn of $A P: y-0=\frac{2}{3}(x+1) \Rightarrow 2 x-3 y+2=0$
(c) (i) Put $x=0 \Rightarrow y=\frac{2}{3} \Rightarrow H=\left(0, \frac{2}{3}\right)$
(ii) $m_{H B}=\frac{\frac{2}{3}-0}{0-2}=\frac{-1}{3}, m_{A C}=\frac{3-0}{0+1}=3=\frac{-1}{m_{H B}}$

Hence the 3 altitudes of $\triangle A B C$ are $C O, A P$ and $H B$, all passing through H.

16B. 8 HKCEE MA 2004-I- 13
(a) (i) $E=$ mid-pt of $A C=\left(\frac{2+8}{2}, \frac{9+1}{2}\right)=(5,5)$
(ii) $m_{A C}=\frac{9-1}{28}=\frac{4}{3} \Rightarrow m_{B D}=\frac{3}{4}$
\therefore Eqn of $B D: y-5=\frac{3}{4}(x-5) \Rightarrow 3 x-4 y+5=0$
(b) (i) Method 1
$m_{A D}=\frac{1}{7}$
$\Rightarrow B C: y-1=\frac{-1}{7}(x-8) \Rightarrow x+7 y-15=0$
$\frac{\text { Method 2 }}{\text { Let } B C \text { be } x+7 y+K \quad 0 .}$
Put $C:(8)+7(1)+K=0 \Rightarrow K=-15$
\therefore Eqn of $B C$ is $x+7 y-15=0$.
(ii) $\left\{\begin{array}{l}B D: 3 x-4 y+5=0 \\ B C: x+7 y \quad 15=0\end{array} \Rightarrow B=(1,2)\right.$
$\therefore A B=\sqrt{(2-1)^{2}+(9-2)^{2}}=\sqrt{50}$

16B. 9 HKCEE MA $2005-1-13$
(a) $A=(-2,0), B=(0,4)$

(c) $C=(8,0)$
$O C: A C=8:(8+2)=4: 5$
\therefore Area of $\triangle O D C$: Area of $\triangle A B C=16: 25$
\Rightarrow Area of $\triangle O D C$: Area of $O A B D=16:(25-16)$

$$
=16: 9
$$

16B. 10 HKCEE MA 2006-I - 12
(a) $M=(4,4)$
(b) $m_{A B}=\frac{1}{2} \Rightarrow m_{C M}=2$
\therefore Eqn of CM: $y-4=-2(x-4) \Rightarrow 2 x+y-12=0$
Hence, put $y=0 \Rightarrow C=(6,0)$
(c) (i) Eqn of $B D: \frac{y-0}{x-2}=\frac{8-0}{12-2}=\frac{4}{5} \Rightarrow 4 x$ Sy $8=0$
(ii) $\left\{\begin{array}{l}C M: 2 x+y-12=0 \\ B D: 4 x \quad 5 y-8=0\end{array} \Rightarrow K=\left(\frac{34}{7}, \frac{16}{7}\right)\right.$
$\{B D: 4 x \quad 5 y-8=0$
$\frac{\text { Method } 1}{\text { Area of } \triangle A M}$
$\frac{\frac{\text { elthod }}{\text { Area of } \triangle A M C ~}}{\text { Ar caof } \triangle A K C} \quad y$-coor of of K. $K=\frac{4}{\frac{16}{7}}=\frac{7}{4}$
Method 2
Area of $\triangle A M C=\frac{M C}{K C}=\frac{\sqrt{(4-6)^{2}+(4-0)^{2}}}{\sqrt{(6-6)^{2}+(0-1)}}$
$\overline{\text { Area of } \triangle A K C}=\frac{M C}{K C}=\frac{\sqrt{\left(1-\frac{34}{2}+\left(0-\frac{16}{7}\right)^{2}\right.}}{\sqrt{\left(6-\frac{7}{7}\right)^{2}+(0)}}$

$$
=\frac{\sqrt{20}}{\sqrt{\frac{30}{40}}}=\frac{7}{4}
$$

Method 3
Let $M K: K C=r: s \Rightarrow \frac{16}{7}=\frac{s(4)+r(0)}{r+s}$
$16 r+16 s=28 s$
$\quad r: s=12: 16=3: 4$
$\frac{\text { Area of } \triangle A M C}{\text { Area of } \triangle A K C}=\frac{M C}{K C}=\frac{7}{4}$

16B. 11 HKCEE MA 2007-I-13
(a) Eqn of $A B$: y $3=\frac{-4}{3}(x-10) \Rightarrow 4 x+3 y-49=0$
(b) Put $x=4 \Rightarrow y=11 \Rightarrow h=11$
(c) (i) (Since $\triangle A B C$ is isosceles, A should lie 'above' the mid-point fo $B C$.)

$$
\frac{k+10}{2}=4 \Rightarrow k=-2
$$

(ii) Area of $\triangle A B C=\frac{(10+2)(11-3)}{2}=48$
$A C=\sqrt{(4+2)^{\frac{2}{2}}+(11-3)^{2}}=10$
$\therefore B D=\frac{2 \times \text { Area of } \triangle A B C}{A C}=\frac{48}{5}$

16B. 12 HKCEE MA 2008-I-12

(a) $B=(-3,4), C=(4,-3)$
(b) $m_{O B}=\frac{4}{3}, m_{O C}=\frac{-3}{4} \neq m_{O B}$
. . NO
(c) $m_{C D}={ }_{m_{B C}}^{-1}=1$
\therefore Eqn of $C D: y+3=1(x-4) \Rightarrow x-y \quad 7=0$
D is translated horizontally from A,
$\therefore y$-coordinate of $D=y$-coordinat eof $A=3$
Put into eqn of $C D \Rightarrow x=10 \Rightarrow D=(10,3)$

16B.13 HKCEE MA 2010-I- 12

(a) Eqn of $A B: \frac{y-24}{x-6}=\frac{18-24}{2-6}=\frac{3}{4} \Rightarrow 3 x-4 y+78=0$
(b) Let $C=(x, 0)$.
$m_{A C}=\frac{-1}{m_{4 s}}=\frac{-4}{3}$
$\frac{240}{6-x}=\frac{-4}{3} \Rightarrow x=24 \Rightarrow C=(24,0)$
(c) $A B=\sqrt{(24-18)^{2}}+(6+2)^{\frac{3}{2}}=10$
$\overline{A C}=\sqrt{ }(24-6)^{2}+(0-24)^{2}=30$
\therefore Area of $\triangle A B C=\frac{10 \times 30}{2}=150$
(d) $\frac{B D}{D C}=\frac{\text { Area of } \triangle A B D}{\text { Area of } \triangle A D C} \Rightarrow \frac{r}{1}=\frac{90}{150-90} \Rightarrow r=1.5$

16B. 14 HKCEE AM 1982 - II-2
Merhod I
Eqn of $A B: \frac{y-1}{x+1}=\frac{-1-1}{3+1}=\frac{-1}{2} \Rightarrow x+2 y-1=0$
Let P be the pt of division. $\left\{\begin{array}{l}x+2 y-1=0 \\ x-y-1=0\end{array} \Rightarrow P=(1,0)\right.$
Let $A P: P B=r: 1 \Rightarrow 0=\frac{-1+(1) r}{r+1}=\frac{r-1}{r+1} \Rightarrow r=1$
\therefore The required ratio is $1: 1$.

Method?

Let the point of division be P, and $A P: P B=r: 1$.
$P=\left(\frac{3+(-1) r-1+(1) r}{r+1}\right)=\left(\frac{3-r}{r+1}, \frac{r-1}{r+1}\right)$
If P lies on $x \quad y-1=0$,
$\left(\frac{3-r}{r+1}\right)-\left(\frac{r-1}{r+1}\right)-1=0 \Rightarrow r=1$
The required ratio is $1: 1$

16B. 15 HKCEE AM 1982-II-10
(a) $\left\{\begin{array}{lll}3 x & 2 y & 8=0 \\ x-y-2=0\end{array} \Rightarrow P=(4,2)\right.$

Eqn of $L_{1}: y \quad 2=\frac{1}{2}\left(\begin{array}{ll}x & 4\end{array}\right) \Rightarrow x+2 y-8=0$
Eqn of L_{2} : y $2=2(x-4) \Rightarrow 2 x-y-6=0$

16B. 16 (HKCEE AM 1985- II-10)
(a) Method 1 - Use collinearity of points

Let $R-(r, h)$ and $S-(s, h)$
$m_{A C}=m_{A C} \Rightarrow \frac{h}{r-1}=\frac{2-0}{0-1} \Rightarrow r=1-\frac{h}{2}$
$m_{S B}=m_{A B} \Rightarrow \frac{h}{s+3}=\frac{2-0}{0-3} \Rightarrow s=\frac{3}{2} h-3$
$m_{S B}=m_{A B} \Rightarrow \frac{h}{s+3}=\overline{0+3} \Rightarrow$
$\therefore S=\left(\frac{3}{2} h-3, h\right), R=\left(\begin{array}{ll}1 & \frac{h}{2}, h\end{array}\right)$
Method $2-$ Use eqns of straight lines
Eqn of $A B: \frac{y-0}{x+3}=\frac{20}{0+3} \Rightarrow 2 x-3 y+6=0$
Put $y=h \Rightarrow x=\frac{3}{2} h-3 \Rightarrow S=\left(\frac{3}{2} h-3, h\right)$
Eqn of $A C: \frac{y-0}{x-1}=\frac{20}{0-1} \Rightarrow 2 x+y-2=0$
Puty $=h \Rightarrow x=1-\frac{h}{2} \Rightarrow R=\left(1-\frac{h}{2}, h\right)$
Method 3-Use similar triangle
$\triangle B S P \sim \triangle B A O \Rightarrow \frac{h}{2}=\frac{B P}{3} \Rightarrow B P=\frac{3}{2} h$
$\therefore x$-coordinate of $S=-3+\frac{3}{2} h \Rightarrow S=\left(\frac{3}{2} h-3, h\right)$
$\triangle A O C \sim \triangle R Q C \Rightarrow \frac{2}{h}=\frac{1}{Q C} \Rightarrow Q C=$
$\therefore x$-coordinate of $R=1-\frac{h}{2} \Rightarrow R=\left(1-\frac{h}{2}, h\right)$
(b) $R S=\left(1-\frac{h}{2}\right)-\left(\frac{3}{2} h-3\right)=4-2 h$

When $P O R S$ is a square,
$P S=R S \Rightarrow h=4-2 h \Rightarrow h=\frac{4}{3} \Rightarrow A_{1}=h^{2}=\frac{16}{9}$ Area of $P Q R S=h(4-2 h)=2\left(h^{2}-2 h\right)$
$A_{3}=\frac{2 \times 4}{2}=4$
$\therefore A_{1}: A_{2}: A_{3}=\frac{16}{9}: 2: 4=8: 9: 18$
(c) $M=$ mid-pt of $P R=\left(\frac{h}{2}-1, \frac{h}{2}\right)$
i.e. $x=\frac{h}{2}-1, y=\frac{h}{2}$

LHS $=\left(\frac{h}{2}-1\right) \quad\left(\frac{h}{2}\right)+1=0=$ RHS
$\therefore M$ lies on $x-y+1=0$

16B. 17 (HKCEE AM 1984-II-4)

(a) $\left\{\begin{array}{l}L_{1}: x+y=4 \\ L_{2}: x-y=2 p\end{array} \Rightarrow(x, y)=(2+p, 2 \quad p)\right.$
(b) y-intercept of $L_{1}=4, y$-intercept of $L_{2}=-2$
\therefore Area of $\Delta=\frac{[4-(-2 p)](2+p)}{2}$
$9=(2+p)^{2} \Rightarrow p=-5$ or 1

16 B. 18 HKCEE AM 1988-T1-2

(a) $P\left(\frac{7 k+14 k+2}{k+1}\right)$
(b) When Plies on $7 x-3 y-28=0$,
$7\left(\frac{7 k+1}{k+1}\right)-3\left(\frac{4 k+2}{k+1}\right) \quad 28=0$
$7(7 k+1)-3(4 k+2) \quad 28(k+1)=0$
\therefore The ratio is $3: 1$.

16B. 19 HKCEE AM 1990-II-7

Merhod I - Use algebra to find D
Eqn of $A B: \frac{x}{3}+\frac{y}{5}=1 \Rightarrow 5 x+3 y-15=0$
Area of $\triangle O A B=\frac{5 \times 3}{2}=\frac{15}{2} \Rightarrow$ Area of $\triangle B C D=\frac{15}{4}$
Let $D=(h, k)$. Then
$\left\{\begin{array}{l}5 h+3 k \quad 15=0 \\ \frac{15}{4}=\frac{(5-1) h}{2}=2 h\end{array} \Rightarrow D=\left(\frac{15}{8}, \frac{15}{8}\right)\right.$
Method 2-Use ratios of areas to find D
Area of $\triangle O A B=\frac{15}{2}, \triangle O A C=\frac{3}{2}, \triangle B C D=\frac{15}{4}$
\Rightarrow Area of $\triangle A C D=\frac{15}{2}-\frac{15}{4}-\frac{3}{2}=\frac{9}{4}$
$\Rightarrow \frac{B D}{D A}=\frac{\text { Area of } \triangle B C D}{\text { Area of } \triangle A C D}=\frac{\frac{15}{4}}{\frac{9}{2}}=\frac{5}{3}$
$\therefore D=\left(\frac{3(0)+5(3) 3(5)+5^{2}(0)}{5+3}\right)=\left(\frac{15}{8+3}, \frac{15}{8}\right)$
Hence.
Eqn of $C D: \frac{y 1}{x-0}=\frac{\frac{15}{8}-1}{\frac{15}{8}-0}-\frac{7}{15} \Rightarrow 7 x-15 y+15=0$

16B. 20 (HKCEEAM 1996-II-8
 $\left\{\begin{array}{l}L_{1}: 2 x-y-4=0 \\ L_{2}: x-2 y+4=0\end{array} \quad \Rightarrow(x, y)=(4,4)\right.$
 \therefore Eqn of required line: $\frac{y 0}{x-0}=\frac{40}{4-0} \Rightarrow y=$

16B.21 (HKCEE AM 1998- II-5)
(a) $\left\{\begin{array}{l}L_{1}: 2 x+y-3=0 \\ L_{2}: x-3 y+1=0\end{array} \Rightarrow P=\left(\frac{8}{7}, \frac{5}{7}\right)\right.$
(b) Eqn of $L: \frac{y 0}{x 0}=\frac{\frac{5}{8}-0}{\frac{8}{7}-0} \Rightarrow y=\frac{5}{8} x$

16B. 22 HKCEE AM 2005-6
(a) $\tan \theta=m_{L_{1}}=2$
(b) $\angle O Q P=\theta \Rightarrow \angle Q O P=180^{\circ} \quad 2 \theta$

Eqn of $L_{2}: y=x \tan \angle Q O P=x \tan \left(18 \theta^{\circ} 2 \theta\right)$

$$
\begin{aligned}
& =x \operatorname{lan} 2 \theta \\
& =-x \cdot \frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& =-x \cdot \frac{2(2)}{1-(-2)^{2}} \\
\Rightarrow y & =\frac{4}{5} x
\end{aligned}
$$

6B. 23 (HKCEE AM 2009-3)
$\left\{\begin{array}{l}L_{1}: x-2 y+3=0 \\ L_{2}: 2 x-y-1=0\end{array} \Rightarrow P=\left(\frac{5}{3}, \frac{7}{3}\right)\right.$
Mehod 1
Let the eqp of L be $\frac{x}{a}+\frac{y}{a}=1$, where $a>0$.

- Plies on L
$\therefore\left(\frac{5}{3}\right)+\left(\frac{7}{3}\right) \quad a \Rightarrow a=4$
\therefore Required line: $\frac{x}{4}+\frac{y}{4}=1 \Rightarrow x+y-4=0$
Method 2
Let L be $y-\frac{7}{3}=m\left(x-\frac{5}{3}\right) \Rightarrow 3 m x \quad 3 y+7 \quad 5 m=0$
$\Rightarrow x$-intercept $=\frac{5 m-7}{3 m}, y$-intercept $=\frac{75 m}{3}$
$\begin{aligned} \Rightarrow \frac{5 m}{3 m}=\frac{7 \quad 5 m}{3} \Rightarrow 5 m-7 & =-m(5 m-7) \\ m & =\frac{7}{5} \text { or }-1\end{aligned}$
However, when $m=\frac{7}{5}, L$ becomes $7 x-5 y=0$, which has zero
x and y-intercepts. Rejected.
. Eqn of L is: $3(1) x \quad 3 y+7 \quad 5(-1)=0 \Rightarrow x+y-4=0$

16B. 24 HKCEEAM 2010-6

$\left\{\begin{array}{l}L_{1}: x-3 y+7=0 \\ L_{2}: 3 x-y-11=0\end{array} \quad \Rightarrow(x, y)=(5,4)\right.$
Eqn of required line: $\frac{y-1}{x-2}=\frac{4-1}{5-2}=1 \Rightarrow x-y-1=0$
16C. 3 HKCEE MA 1982(1)-I-13
(a) $C: x^{2}+y^{2}-14 y+40=0 \Rightarrow x^{2}+(y-7)^{2}=3^{2}$
b) 4
(b) $m_{L}=\frac{4}{3} \Rightarrow m_{L^{\prime}}=\frac{3}{-3}$
.Eqn of $L^{\prime}: y=\frac{-3}{4} x+7$
(c) $\left\{\begin{array}{l}L: 4 x-3 y-4=0 \\ L^{\prime}: y=\frac{-3}{4} x+7\end{array}\right.$
(d) Distance between centre of C and (4.4)
$=\sqrt{(0 \cdots 4)^{2}+(7-4)^{2}}=5$
\Rightarrow Shortest dist $=5-$ radius $=2$

16C. 4 HKCEE MA 1983(A/B) - I-9
(a) Let $B=(b, 0)$.
$1=m_{A B}=\frac{2}{8-6} \Rightarrow b=6 \Rightarrow B=(6,0)$
(b) Let $C=(c, 0)$. Since $\triangle A B C$ is isosceles, A lies 'above' the mid-point of $B C$.
$\therefore \frac{c+6}{2}=8 \Rightarrow c=10 \Rightarrow C=(10,0)$
(c) Eqn of $A C: \frac{y-0}{x-10}=\frac{20}{8-10} \Rightarrow y=-x+10$
$\therefore D=(0,10)$
(d) $B D=\sqrt{6+10^{2}}=\sqrt{136}$
\quad Mid-pt of $B D=\left(\frac{6+0}{2}, \frac{0+10}{2}\right)=(3,5)$

Eqn of curcle $O B D_{\text {is }}(x-3)^{2}+(y-5)^{2}=\left(\frac{\sqrt{136}}{2}\right)$
It A int othe equation: $\Rightarrow x^{2}+y^{2} \quad 6 x \quad 10 y=0$
LHS $=(8)^{2}+(2)^{2} \quad 6(8) \quad 10(2)=0=$ RHS
$\therefore A$ lies on the circle.
16C. 5 HKCEE MA 1984(A/B)-I-9
(a) $\left\{\begin{array}{l}x^{2}+y^{2}=4 \\ y=k\end{array} \quad \Rightarrow \quad x^{2}+\left(\begin{array}{ll}k & x\end{array}\right)^{2}=4\right.$
$2 x^{2}-2 k x+k^{2} \quad 4=0 \ldots(*)$
$\Delta=4 k^{2} \quad 8\left(k^{2}-4\right)=0 \Rightarrow k= \pm \sqrt{8}$
(b) (i) If $A(2,0)$ is one fo the intersections of C and $L, 2$ is a root of che equation (*)
$2(2)^{2} \quad 2 k(2)+(2)^{2} \quad 4=0 \Rightarrow k=2$
Then (*) becomes $2 x^{2} \quad 4 x=0 \Rightarrow x=2$ or 0
$\therefore B=(0,2 \quad 0)=(0,2)$
(ii) $A B \equiv \sqrt{(20} 0)^{2}+(0-2)^{2}=\sqrt{8}$

Mid-pt of $A B=\left(\frac{2+0}{2}, \frac{0+2}{2}\right)=(1,1)$
. Eqn of circle is $(x-1)^{2}+(y-1)^{2}=\left(\frac{\sqrt{8}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2} \quad 2 x \quad 2 y=0
$$

16C. 6 HKCEE MA 1985(A/B) $1-9$
(a) $A B=\sqrt{(2-7)^{2}+(05)^{2}}=\sqrt{50}$

Mid-pt of $A B=\left(\frac{2+7}{2}, \frac{0+5}{2}\right)=\left(\frac{9}{2}, \frac{5}{2}\right)$
Eqn of circle is $\quad\left(x \quad \frac{9}{2}\right)^{2}+\left(\begin{array}{ll}y & \frac{5}{2}\end{array}\right)^{2}=\left(\frac{\sqrt{50}}{2}\right)^{2}$
(b) $p=\left(\frac{4(2)+1(7)}{1+4}, \frac{4(0)+1(5)}{1+4}\right)-(3,1)$
(c) (i) $m_{A B}=\frac{0-5}{27}=1 \Rightarrow m_{H P K}=1$

Eqn of $H P K: y \quad 1=-1\left(\begin{array}{ll}x & 3\end{array}\right) \Rightarrow x+y-4=0$
(ii) $x^{2}+y^{2}-9 x \quad 5 y+14=0$
$x+y-4=0$
$\Rightarrow x^{2}+\left(\begin{array}{llll}4 & x\end{array}\right)^{2} \quad 9 x \quad 5(4 x)+14=0$
$\begin{aligned} x & =1 \text { or } 5 \\ \Rightarrow y & =3 \text { or } 1\end{aligned}$
$\therefore H=(1,3), K=(5,1)$

16C. 7 HKCEE MA 1986(A/B) - I- 8
(a) $\left\{\begin{array}{l}x^{2}+y^{2}-6 x-8 y=0 \\ y-x \quad 6=0\end{array}\right.$
$\begin{cases}x-x & 6=0 \\ y-x^{2}\end{cases}$

$$
\begin{aligned}
-6 x-8(x+6) & =0 \\
2 x^{2} \quad 2 x-12 & =0 \\
x & =3 \text { or } 2 \\
y & =9 \text { or } 4
\end{aligned}
$$

$\therefore B=(3,9), C=(2,4)$
(b) Put $y=0 \Rightarrow x=0$ or $6 \Rightarrow A=(6,0)$

Pury $=0 \Rightarrow x=0$ or $\Rightarrow A=(6,0)$
Put $x=0 \Rightarrow y=0$ or $8 \Rightarrow D=(0,8)$
(c) $\angle A D O=\tan ^{-1} \frac{A O}{D O}=\tan \frac{6}{8}=37^{\circ}$ (nearest degree)

- $\angle A B O=\angle A C O=\angle A D O=37^{\circ}$
(d) Ar ea of $\triangle A C O=\frac{6 \times 4}{2}=12$

16C. 8 HKCEE MA 1987(A/B) $-\mathrm{T}-8$
(a) Eqn of $\ell: y \quad 0=1(x+2) \Rightarrow x \quad y+2=0$
(b) x-coordinate of $C=x$-coordinate of mid-pt of $O B=2$

Put $x=2$ into $\ell \Rightarrow y=4 \Rightarrow C=(2,4)$
(c) Let the centre of the circle be $(2, k)$.
$k^{2}+4=\left(\begin{array}{ll}4 &)^{2}\end{array}\right.$
$=\frac{3}{2}$
\therefore Eqn of circle: $\left(\begin{array}{ll}x & 2\end{array}\right)^{2} \div\left(\begin{array}{ll}y-\frac{3}{2}\end{array}\right)^{2}=\left(\begin{array}{ll}4 & \frac{3}{2}\end{array}\right)^{2}$
(d) $\left\{\begin{array}{l}x^{2}+y^{2}-4 x-3 y=0 \\ x-y+2=0\end{array}\right.$
$\Rightarrow x^{2}+(x+2)^{2}-4 x-3(x+2)=0$

$$
2 x^{2} \quad 3 x-2=0 \Rightarrow x=2 \text { or } \frac{1}{2}
$$

$\therefore D=\left(\frac{1}{2}, \frac{1}{2}+2\right)=\left(\frac{1}{2}, \frac{5}{2}\right)$
16C. 9 HKCEE MA 1988 - I-7
(a) $(2,5)$
(b) Radius of $C=x$-coordinate of centre $=2$

Radius of $C=x$-coordinate of cen
$\therefore \sqrt{2^{2}+5^{2}-k}=2 \Rightarrow k=5$

16C. 10 HKCEE MA 1989-I-8

(a) $E=(1,2)$

(b) $\left\{\begin{array}{lll}x^{2}+y^{2}-2 x & \text { 4y } & 20=0 \\ x+7 y-40 & 0\end{array}\right.$
$(x+7 y-40=0$
$\Rightarrow\left(\begin{array}{lll}40 & 7 y\end{array}\right)^{2}+y^{2}-2(40 \quad 7 y) \quad 4 y \quad 20=0$
$50 y^{2} 55 y+1500=0$
$y=5$ or 6
$x=5$ or -2
$\therefore P=(2,6) . Q=(5,5)$
$P Q=\sqrt{(2 \quad 5)^{2}+(6 \quad 5)^{2}}=\sqrt{50}$
Mid-pt of $P Q=\left(\frac{-2+5}{2}, \frac{6+5}{2}\right)=\left(\frac{3}{2}, \frac{11}{2}\right)$
\therefore Eqn of $r_{22}:\left(\begin{array}{ll}x & \frac{3}{2}\end{array}\right)^{2}+\left(\begin{array}{ll}y & \frac{11}{2}\end{array}\right)^{2}=\binom{\sqrt{50}}{2}^{2}$

$$
\Rightarrow x^{2}+y^{2}-3 x-11 y+20=0
$$

(d) PuIE (I.2) into \mathscr{C}_{2} :

LHS $=(1)^{2} \div(2)^{2}-3(1)-11(2)+20=0=$ RHS
$\therefore E$ lies on $\mathscr{C}_{2} \Rightarrow \angle E P Q=90^{\circ}$

16C. 11 HKCEE MA 1990-1-8
(a) $\left(C_{1}\right):(x \quad 1)^{2}+(y+3)^{2}=3^{2}$
(b) Required distance $=\sqrt{(1-5)^{2}+(3-0)^{2}}-5>3$ \therefore Outside
(c) (i) $s=5-3=2$
(ii) Eqn of $C_{2}: \quad \begin{gathered}(x \quad 5)^{2}+(y-0)^{2}=2^{2} \\ \Rightarrow x^{2}+y^{2}-10 x+21=0\end{gathered}$
(d)

16C. 12 HKCEE MA 1991-1-9
(a) $S:\binom{x}{2}^{2}+(y-1)^{2}=1^{2}$
(b) $\left\{\begin{array}{l}y=m x\end{array}\right.$
$\left\{\begin{array}{l}x^{2}+y^{2}\end{array} \quad 4 x-2 y+4=0\right.$
$x^{2}+(m x)^{2} \quad 4 x \quad 2(m x)+4=0$
$\left(1+m^{2}\right) x^{2}-2(2+m) x+4=0$
$\Delta=4(2+m)^{2}-16\left(1+m^{2}\right)=0$
$(2+m)^{2} \quad 4\left(1+m^{2}\right)=0$

$$
3 m^{2}-4 m=0 \Rightarrow m=0 \text { (rej.) or } \frac{4}{3}
$$

(c) (i) $\because \angle O B C=\angle O A C=90^{\circ}$ (tangent properties) $\because \angle O B C=\angle O A C=90^{\circ}$
$\because \angle O B C+\angle O A C=180^{\circ}$

> econcyclic. (opp <s supp.)

$$
\begin{aligned}
& O C=\sqrt{2^{2}+\overline{1}^{2}}=\sqrt{5} \\
& \text { Mid-pe of } O C=\left(\frac{2+0}{2}, \frac{1+0}{2}\right)=\left(1, \frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Eqn of circle: } & (x-1)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{5}}{2}\right)^{2} \\
\Rightarrow & x^{2}+y^{2}-2 x-y=0
\end{aligned}
$$

16C. 13 HKCEEMA 1992-I-13

(a) $x^{2}+y^{2}-18 x \quad 14 y+105=0 \Rightarrow(x-9)^{2}+(y-7)^{2}=5$ $\therefore C=(9,7)$, Radius $=5$
(b) $\begin{array}{rl}x^{2}+(m x)^{2}-18 x & 14(m x)+105\end{array}=0$
$\therefore x_{1} x_{2}=$ product of roots $=\frac{105}{1+m^{2}}$
(c) $O A=\sqrt{x_{1}^{2}+y_{1}^{2}}=\sqrt{x_{1}^{2}+\left(m x_{1}\right)^{2}}=x_{1} \sqrt{1+m^{2}}$ Similarly, $O B=x_{2} \sqrt{1+m^{2}}$

$$
\begin{aligned}
& \text { Similarly, } O B=x_{2} \sqrt{1}+m^{2} \\
& \therefore O A \cdot O B=\left(1+m^{2}\right) x_{1} x_{2}=\left(1+m^{2}\right) \cdot \frac{105}{1+m^{2}}=105
\end{aligned}
$$

(d) $A B=2 \sqrt{5^{2}-3^{2}}=8$
$O A \cdot(O A+A B)=105$
$O A^{2}+8 O A-105=0$
$\Rightarrow O A=15(\mathrm{rj})$ or 7

16C. 14 HKCEE MA 1993-I-8
(a) $L_{1}: \frac{y \frac{7}{x} \frac{2}{0}=\frac{7}{10-0}=\frac{1}{2} \Rightarrow x+2 y-14=0,003}{} \Rightarrow$
(b) $m_{L_{2}}=\frac{1}{\frac{-1}{1}}=2$
\therefore Eqn of $L_{2}: y-0=2(x-4) \Rightarrow 2 x y-8 \quad 0$

$$
\left\{\begin{array}{l}
x+2 y-14=0 \\
2 x-y-8=0
\end{array} \Rightarrow D=(x, y)=(6,4)\right.
$$

(c) $P=\left(\frac{1(0)+k(10) 1(7)+k(2)}{k+1}\right)-\left(\frac{10 k \quad 7+2 k}{k+1^{\prime} k+1}\right)$ If P lies on the circle,
$\left[\left(\frac{10 k}{k+1}\right)-4\right]^{2}+\left(\frac{7+2 k}{k+1}\right)^{2}=30$
$\left(\begin{array}{ll}6 k & 4\end{array}\right)^{2}+(7+2 k)^{2}=30(k+1)^{2}$

$$
\begin{aligned}
&-35=0 \\
& k=\frac{16 \pm \sqrt{200}}{4}-4 \sqrt{2} \\
& 2
\end{aligned}
$$

$\frac{A D}{D B}=\frac{6-0}{10-6}=\frac{3}{2}$
$\therefore k<\frac{3}{2}$ if P lies bet weenA and D.
i.e. $\frac{A P}{P D}=k=4-\frac{5 \sqrt{2}}{2}$

16C. 15 HKCEE MA 1994-1-12
(a) $A=(10,0)$, Radius of $C_{2}=7$
(b) $\frac{R O}{R A}=\frac{O Q}{A P} \Rightarrow \frac{R O}{R O+10}=\frac{1}{7} \Rightarrow R O=\frac{5}{3}$
$\therefore x$-coordinate of $R=\frac{5}{3}$
(c) $m_{Q P}=\tan \angle Q R O=\frac{Q Q}{Q R}=\frac{1}{\sqrt{\left(\frac{5}{3}\right)^{2}-1^{2}}}=\frac{3}{4}$
(d) Eqn of $Q P$: $y \quad 0=\frac{3}{4}\left(x+\frac{5}{3}\right) \Rightarrow 3 x-4 y+5=0$
(e) By symometry, the other tangent is:
$y-0=\frac{-3}{4}\left(x+\frac{5}{3}\right) \Rightarrow 3 x+4 y+5=0$
16C. 16 HKCEEMA 1995-I- 10
(a) Eqn of $A B: \frac{y 7}{x} 9=\frac{9-7}{1-9}=\frac{1}{4} \Rightarrow x+4 y-37=0$
(b) Mid-pt of $A B=\left(\frac{1+9}{2}, \frac{9+7}{2}\right)=(5,8)$

Stope of \perp bisector of $A B=4$
\therefore Eqn of \perp bisector is: $y \quad 8=4\left(\begin{array}{ll}x & 5\end{array}\right) \Rightarrow y=4 x \quad 12$
$\{4 x-3 y+12=0 \Rightarrow G=(6,12)$
$\left\{\begin{array}{l}y=4 x-12\end{array}\right.$
(c) Radius $=\sqrt{(6 \quad 1)^{2}+(129)^{2}}=\sqrt{34}$
\therefore Eqn of $8:(x-6)^{2}+(y 12)^{2}=34$
$x^{2}+y^{2} \quad 12 x \quad 24 y+146=0$
(d) (i) Let the mid-pt of $D E$ be (m, n). Then G is the mid-pt
of $(5,8)$ and (m, n).
$\therefore\left(\frac{s+m}{2}, \frac{8+n}{2}\right)=(6,12) \Rightarrow G=(m, n)=(7,16)$
(ii) $m_{D E}=m_{A B}=\frac{1}{4}$
$\begin{aligned} \therefore \text { Eqn of } D E: \quad y-16 & =\frac{1}{4}(x-7) \\ \Rightarrow x+4 y \quad 57 & =0\end{aligned}$

16C. 17 HKCEEMA 1996-I-11
(a) (i) $\mathscr{C}_{1}:(x-0)^{2}+(y-2)^{2}=2^{2} \Rightarrow x^{2}+y^{2} \quad 4 y=0$ (ii) $B=(0,4) \Rightarrow$ Eqn of $L: y=2 x+4$
(b) $\{L: y=2 x+4$
$\left\{\begin{array}{l}\left(\mathscr{g}_{2}: x^{2}+(y-2)^{2}=25\right. \\ x^{2}+(3 x+2)^{2}=25\end{array}\right.$
$x^{2}+(2 x+2)^{2}=25$
$5 x^{2}+8 x-21=0 \Rightarrow x=-3$ or $\frac{7}{5} \Rightarrow y=-2$ or $\frac{34}{5}$
$\therefore Q=\left(\frac{7}{5}, \frac{34}{5}\right), R=(-3,-2)$
(c) (i) Req. pt $=$ mid-pt of $Q R=\left(\frac{-4}{5}, \frac{12}{5}\right)$
(ii) $\mathrm{Req} \cdot \mathrm{pt}=$ Intersection of $A Q$ and 8 ,
$=$ the pt 'P' with $A P: P Q=2:(5-2)$
$=\left(\frac{3(0)+2\left(\frac{7}{3}\right) 3(2)+2\left(\frac{34}{3}\right)}{2+3}\right)=\left(\frac{14}{25}, \frac{98}{25}\right)$
16C. 18 HKCEE MA 1997-I- 16
(a) (i) $\angle E A B=90^{\circ}$ (tangent 1 radius)
$\angle F E A+\angle E A B=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore A B / / E F$ (int $\angle \mathrm{s}$ supp.)
(ii) $\angle F D E=\angle B D C$ (vert opp. $\angle \mathrm{s}$)
$=\angle D B C \quad$ (base $\angle \mathrm{s}$, isos. $\triangle)$
$=\angle F E D \quad$ (alt. $\angle \mathrm{s}, A B / / E F$)
(iii) If the circle touches $A E$ at E, then its centre lies on $E F$. $E F$.
If $E D$
$E D$. ED. of the circle described.
(b) $C=\left(\frac{6-2}{2}, \frac{3-1}{2}\right)=(2,1$
\therefore Let $F=\left(\frac{42}{2}, k\right)=(-3, k)$
F, D, C collinear $\Rightarrow m_{F D} \quad m_{C D}, \begin{aligned} & k-3 \\ & -3+2\end{aligned} \frac{3-1}{-2-2} \Rightarrow k=\frac{7}{2}$
$\therefore F=\left(-3, \frac{7}{2}\right)$
16C. 19 HKCEEMA 1998-I- 15
(a) Centre of $C_{2}=(11,-8)$, Radius of $C_{2}=7$

Dist btwn the 2 centres $=\sqrt{(11-5)^{2}+(-8-0)^{2}}=10$. Parius of $C_{1}=10-7=3$
\therefore Eqn of $C_{1}: \quad(x-5)^{2}+(y-0)^{2}=3^{2}$

(b) Let the tangent be $y=m x$

$\left\{\begin{array}{l}y=m x \\ x^{2}+y^{2}-10 x+16=0\end{array} \Rightarrow\left(1+m^{2}\right) x^{2}-10 x+16=0\right.$
$\Delta=100-64\left(1+m^{2}\right)=0 \Rightarrow m= \pm \frac{1}{2}$
\therefore The tangents are $y= \pm \frac{1}{2} x$
(c) $\left\{y=\frac{-1}{2} x\right.$
$\left\{\begin{array}{l}=\frac{5}{2} x \\ (x-11)^{2}+(y+8)^{2}=49\end{array} \Rightarrow \frac{5}{4} x^{2}-30 x+136=0\right.$ Sum of ris $=\frac{30}{\frac{5}{3}}=24 \Rightarrow x$-coor of mid-pt of $A B=12$ $\Rightarrow y$-coor $=\frac{\frac{-1}{4}}{2}(12)=-6 \Rightarrow$ The mid-pt $=(12,-6)$

16C. 20 HKCEE MA 1999-I-16
(a) (i) $\angle B F E=\angle B D E \quad$ ($\angle s$ in the same segment) $=\angle B A C \quad$ (corr. $\angle \mathrm{s}, A C / / D E)$
A, F, B and C are concyclic.
(converse of $\angle \mathrm{s}$ in the same segment)
(ii) $\because \angle A B C=90^{\circ}$ (given)
$A C$ is a diameter of circle $A F B C$.
(converse of \angle in sem-circle)
$\Rightarrow M$ is the centre of circle $A F B C \Rightarrow M B=M F$
(b) (i) $m P Q=\frac{17-0}{0+17}=1$
$m_{R S}=\frac{7-0}{-2+9}=1=m_{P Q}$
$\therefore P Q / / R S$
(ii) Eqn of $Q S: \frac{y-17}{x-0}=\frac{17-7}{0+2} \Rightarrow y=5 x+17$
$\left\{\begin{array}{l}y=5 x+17 \\ \end{array}\right.$
$\left\{\begin{array}{l}y=5 x+17 \\ x^{2}+y^{2}+10 x-6 y+9=0\end{array}\right.$
$x^{2}+(5 x+17)^{2}+10 x \quad 6(5 x+17)+9=0$

$$
\begin{aligned}
& x=-2 \text { or }-\frac{49}{13} \\
& \therefore T=\left(-\frac{49}{13}, 5\left(-\frac{49}{13}\right)+17\right)=\left(-\frac{49}{13},-\frac{24}{13}\right)^{2}
\end{aligned}
$$

(iii) Method I

Let the mid-pt of $P Q$ be $N=\left(\frac{-17}{2}, \frac{17}{2}\right)$
NO $\sqrt{\left(\frac{-17}{2}\right)^{2}+\left(\frac{17}{2}\right)^{2}}=\sqrt{\frac{289}{2}}$
$N T=\sqrt{\left(\frac{-49}{13}+\frac{17}{2}\right)^{2}+\left(\frac{-24}{13}-\frac{17}{2}\right)^{2}}=\sqrt{\frac{3365}{26}}$
Hence, $N T \neq N O$.
If P, Q, O and T are concyclic, the result of (a)(ii) hould apply, i.e. $N O=N T$. Thus they are not con

Mechod 2
$\because m_{\rho T} m_{Q r}=\frac{0+\frac{24}{15}}{-17+\frac{49}{15}} \cdot \frac{17+\frac{24}{15}}{0+\frac{0}{13}}=\frac{-30}{43} \neq-1$
$\therefore \angle P T Q \neq 90^{\circ}$
Thus, $\angle P T Q+\angle P O Q \neq 90^{\circ}+90^{\circ}=180^{\circ}$, and P Q, O and T are not concyclic.

16C. 21 HKCEE MA 2000-1-1

(a) In $\triangle O C P, \angle C P O=90^{\circ} \quad$ (tangent 1 radius) $\therefore \angle P Q O=60^{\circ} \div 2=30^{\circ} \quad\left(\angle 90^{\circ}\right.$ (\angle sum of \angle at O^{c}
(b) (i) $\angle S O C=\angle P O C=30^{\circ}$ (tangent properties) $\angle P Q R=180^{\circ}-\angle P O S \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.)
$=120^{\circ}$
$\Rightarrow \angle R Q O=120^{\circ}-30^{\circ}=90^{\circ}$
$R Q$ is tangent to the circle at Q
(ii) $O C=\sqrt{6^{2}+\overline{8^{2}}}=10$
$C Q=C P=O C \sin 30^{\circ}=5$
$C Q=10: 5=2: 1$
$\therefore Q=(9,12)$
$m_{C C}=\frac{4}{3} \Rightarrow m_{Q R}=\frac{-3}{4}$
\therefore Eqn of $Q R: \quad$ y $\quad 12=\frac{-3}{4}(x-9)$
$\Rightarrow 3 x+4 y-21=0$

16C. 22 HKCEE MA 2001-I- 17
(a) (i) Centre $=\left(\frac{p}{2}, 0\right)$, Radius $=\frac{p}{2}$

$$
\left.\begin{array}{rl}
\therefore \text { Eqn of } O P S: & \left(x-\frac{p}{2}\right)^{2}+y^{2}
\end{array}=\left(\frac{p}{2}\right)^{2}\right)
$$

(ii) 'Hence'
'Hence' $S(a, b)$ Hes on the circle
$\Rightarrow a^{2}+b^{2}-p a=0 \Rightarrow a^{2}+b^{2}=p a$
$\therefore a s^{2}=(a-0)^{2}+(b-0)^{2}=a^{2}+b^{2}$ $=a^{2}+b^{2}$
$=p a$ $=O P \cdot O Q \cos \angle P O Q$
Othenwise'
$\angle O S P=90^{\circ} \quad$ (\angle in semi-circle)
In $\triangle O P S$ and $\triangle O S R$,
$\begin{array}{ll}\angle P O S=\angle S O R & \text { (common) } \\ \angle O R S=\angle O S P=90^{\circ} & \text { (proved) }\end{array}$
$\angle O R S=\angle O S P=90^{\circ}$
$\therefore \triangle O P S \sim \triangle O S R$ (proved)
(AA)
$\Rightarrow \frac{O S}{O R}=\frac{O P}{O S}$ $\begin{aligned} O S^{2} & =O P \cdot O R \\ & =O P \cdot O Q \cos \angle P O Q\end{aligned}$
(b) (i) In circle $B C E, \angle C E B=90^{\circ} \quad$ (\angle in semi-circle)
i.e. $B E$ is an alditude of $\triangle A B C$.
(ii) By (a), $C G^{2}=A C \cdot B C \cos \angle A C B$

Simikrly, $A D$ is an altitude of $\triangle A B C$ by considering circle $A C D$.
$\Rightarrow C F^{2}=B C \cdot A C \cos \angle A C B=C C^{2}$
$\therefore C F=C G$

16C. 23 HKCEE MA 2000-I- 16
(b) (i) $A=(c \quad r, 0), B=(c+r, 0)$
$\pi_{\wedge D}=\frac{p 0}{0-(c-r)}=\frac{p}{r-c}$
$m_{B F}=\frac{q-0}{0-(c+r)}=\frac{q}{r+c}$
(ii) $A D \perp B F \Rightarrow \frac{p}{r c} \cdot \frac{-q}{r+c}=-1$
i.e. $\begin{aligned} O D \cdot O F & =C G^{2}-O C^{2} \\ & =O G^{2}\end{aligned}$

16C. 24 HKCEE MA 2003-I-17
(a) (i) $\ln \triangle N P M$ and $\triangle N K P$,
$\angle P N M=\angle K N P \quad$ (common)
$\angle N P M=\angle N K P \quad(\angle$ in all. segment $)$
$\angle P M N=\angle K P N \quad(\angle$ sum of $\triangle)$
$\Rightarrow N P$
$\Rightarrow \frac{N M}{N M}=\frac{N K}{N P} \quad$ (corr. sides, $\sim \Delta \mathrm{s}$)
$N P^{2}=N K \cdot N M$
$P S / / O P$
(ii) $\because R S / / O P$ (given)
$\Rightarrow \frac{\triangle K R M \sim \triangle K O N}{}$ and $\triangle K S M \sim \triangle K P N$
$\Rightarrow \frac{R M}{O N}-\frac{K M}{R N}$ and $\frac{S M}{P N}-\frac{K M}{K N}$
$\Rightarrow \frac{K M}{O N}=\frac{S M}{P N}$
Similar to (a), we have $N O^{2}=N K \cdot N M$ $N P=N O$

With the notation above, note that $O A$ (extended) an $P B$ (extended) are diameters of C_{1} and C_{2} respectively.
$A=A M$ and $M B=B G$
(\perp from centre to chord bisects chord)
(ii) $\because M=(a, b)$ and $F A=A M$,
ince $\triangle Q O P \sim \triangle Q F$ and $F G=2 O P$, we hav $F Q=20 Q \Rightarrow O$ is the mid-pt of $F Q$

$$
\begin{aligned}
& \Rightarrow 0 \text { is the mid } \\
& \Rightarrow Q=(a, b)
\end{aligned}
$$

(iii) Note that $Q M$ is vertical. Thus $Q M \perp R S$. In $\triangle Q M R$ and $\triangle Q M S$,

$$
\begin{array}{rlrl}
Q M & =Q M & & \text { (cormon) } \\
R M & =S M & & \text { (proved) } \\
\angle Q M R & =\angle Q M S=90^{\circ} & & \text { (proved) } \\
\triangle O M & \cong \triangle O M S
\end{array}
$$

$\triangle Q M R \cong \triangle Q M S$ (SAS)
e. $\triangle Q R S$ is isosceles

16C 25 HKCEE MA 2004-I-16
(a) In $\triangle A D E$ and $\triangle B O E$
$\angle A D E=\angle E B C \quad$ (alt. $\angle \mathrm{s}, O D / / B C$
$\begin{aligned} & =\angle B O E \quad \text { (} \angle \text { in alt. segment) } \\ \angle D A E & =\angle O B E \quad \text { (ext. } \angle \text { cyclic quad) }\end{aligned}$
$\begin{array}{ll}D A E=\angle O B E & \text { (ext. } \angle . \text { cyclic quad.) } \\ A D=B O & \text { (given) }\end{array}$
$\begin{array}{ll}A D=B O & (\text { given }\end{array}$
(b) $D E=O E \quad$ (corr. sides, $\cong \triangle \mathrm{s}$)
$\angle B O E=\angle A D E$ (proved)
$=\angle A O E$ (base $\angle \mathrm{s}$, isos. \triangle)
i.e. $\angle A O B=2 \angle B O E$
$\therefore \angle B E O=\angle A E D \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$) $=\angle A O B \quad$ (ext. \angle, cyclic quad.)

$$
=2 \angle B O E \text { (proved) }
$$

(c) Suppose $O E$ is a diameter of the circle OAEB.
(i) $\angle O B E=90^{\circ} \quad(\angle$ in semi-circle)

In $\triangle O B E, \angle B O E=180^{\circ}-90^{\circ}-(2 \angle B O E)$

$$
3 \angle B O E=90^{\circ} \Rightarrow \angle B O E=30^{\circ}
$$

(ii) $O B=6 \Rightarrow B E=O B \tan \angle B O E \Rightarrow E=(6,2 \sqrt{3})$ $O E=\frac{O B}{\cos 30^{\circ}}=4 \sqrt{3}$
Mid-pt of $O E=(3, \sqrt{3})$
\therefore Eqn of circle: $(x-3)^{2}+(y-\sqrt{3})^{2}=\left(\frac{4 \sqrt{3}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2}-6 x \quad 2 \sqrt{3} y=0
$$

16C. 26 HKCEE MA 2005-1-17
(a) (i) $\because M N$ is a diameter (given)
in $\angle N O M=\angle Q R P=90^{\circ} \quad(\angle$ in semi-circle $)$
$O Q R$ and $\triangle O R P$,
$\angle R O Q=\angle P O R$

$\angle Q R=\angle 90^{\circ} \angle P R O$
$\angle P O R=180^{\circ}-\angle R O P-\angle P R O$
(\angle sum of Δ)
$\Rightarrow \angle Q P O=\angle 0^{\circ} \angle P R O$
$\Rightarrow \angle Q P O=\angle P R O$
$\angle R Q O=\angle P R O \quad(\angle$ sumof $\triangle)$
$\Rightarrow \frac{O R}{O Q}=\frac{O P}{O P}$
(AAA)
$\frac{Q Q}{O R^{2}}=\frac{O P}{O R}$
$O P \cdot O Q$
(ii) In $\triangle M O N$ and $\triangle P O R$, $\angle N M O=\angle Q R O \quad$ ($\angle \mathrm{s}$ in the same segment $\angle M O N=\angle P O R \quad$ (proved) $\angle M N O=\angle R Q O \quad(\angle$ sum of $\triangle)$
$\therefore \triangle M O N \sim \triangle R Q O$ (AAA)
(b) (i) $O R=\sqrt{O P \cdot O Q}=\sqrt{4 \cdot 9}=6 \Rightarrow R=(0,6)$
(ii) In $\triangle P O R, P R=\sqrt{4^{2}}+6^{2}=\sqrt{52}$
$\frac{M N}{O N}=\frac{P R}{O R}=\frac{\sqrt{52}}{6} \Rightarrow M N=\frac{\sqrt{13}}{3} \cdot \frac{3 \sqrt{13}}{2}=\frac{13}{2}$
\therefore Radius $=\frac{13}{2} \div 2=\frac{13}{4}$
Let the centre be $(h, 6 \div 2)=(h, 3)$
$\Rightarrow \sqrt{(h \quad \overline{0})^{2}+(3 \quad \overline{0})^{2}}=\frac{13}{4} \Rightarrow h=-\frac{5}{2} \quad(h<0)$
\therefore The cencre is $\left(-\frac{5}{2}, 3\right)$

16C. 27
HKCEEMA 2006-I-16
G is the circumcentre (given)
H is $B C$ and $S A \perp A B$ (\angle in semi-circle)
$A H \perp B C$ and $C H \perp A B$
Thus, $S C / / A H$ and $S A / / C H \Rightarrow A H C S$ is a $/ /$ gram
$\frac{M e t h o d l}{\angle G R B}=\angle S C B=90^{\circ} \quad$ (proved)
$\therefore G R / / S C$ (corr. $\angle \mathrm{s}$ equal)
$\because B G=G S=$ radius
$\therefore B R=R C$ (intercept thm)
$\Rightarrow S C=2 G R$ (mid-pt thm)
Hence, $A H=S C=2 G R$ (property of $/ /$ gram) Method 2
$\because B G=G S=$ radius
and $B R=R C \quad$ (\lfloor from centre to chord bisects $\stackrel{\text { chord) }}{\Rightarrow}$
$\Rightarrow S C=2 G R$ (mid-ptthm)
(i) Lethe circe $\mathrm{be}_{\mathrm{z}}{ }^{2}+\mathrm{v}^{2}+D \mathrm{property}$ of $/ / \mathrm{gram}$)

$$
\begin{aligned}
& 14^{2}+4 D+0 E+F=0 \\
& \therefore \text { The circle is } x^{2}+y^{2}+2 x-10 y=24=0
\end{aligned}
$$

(ii) $G=(1,5) \Rightarrow G R=5$
$G=(1,5) \Rightarrow G R=5$
$\therefore H=(0,12 \quad 2 \times 5)=(0,2) \quad$ (by (a)(ii))
(iii) $m_{B G} \cdot m_{G K}=\frac{5-0}{1+6} \cdot \frac{52}{-1-0}=3 \neq-1$
$\therefore \angle B G H \neq 90^{\circ} \Rightarrow \angle B O H+\angle B G H \neq 180^{\circ}$
Hence, B, O, H and G are not concyclic.
16C. 28 HKCEE MA $2007-\mathrm{I}-17$
(a) (i) $\because I$ is the incentre of $\triangle A B D$ (given)
$\therefore \angle A B G=\angle D B G$ and $\angle B A E=\angle C A E$
In $\triangle A B G$ and $\triangle D B G$,
$\begin{aligned} \angle A B G & =\angle D B G \quad \text { (proved) } \\ A B & =D B\end{aligned}$ $\begin{array}{ll}A B=D B & \\ \text { (given) } \\ B G=B G & \text { (common) }\end{array}$ $\triangle A B G \cong \triangle D B G \quad$ (SAS)
(ii) $\because \triangle A B D$ is isosceles and $\angle A B G=\angle D B G$
$\therefore \angle B G A=90^{\circ}$ (property of isos. \triangle)
In $\triangle A G I$ and $\triangle A B E$.

$\angle A G I=90^{\circ}=\angle A B E$	(\angle in semi-circle)
$\angle I A G=\angle E A B$	(proved)
$\angle A G G=\angle A E B$	(\angle sum of \triangle)
$\triangle A G I \sim \triangle A B E$	(AAA)
$\Rightarrow G I=\frac{B E}{A B}$	(corr. sides, $\sim \triangle \mathrm{s}$)

(b) (i) $\because A G=D G$
$\therefore A G=($ Diameter $C D) \div 2$
$=(25 \times 2-(25-11)) \div 2=18$
$\therefore G=(25+18,0)=(7,0)$
(ii) By (a)(ii), $G I=\frac{1}{2} \times A G=9 \Rightarrow I=(7,9)$

Radius of inscribed circle $=G I=9$
$\begin{aligned} \therefore \text { Eqn of circle is } \quad(x+7)^{2}+(y-9)^{2} & =9^{2} \\ \Rightarrow x^{2}+y^{2}+14 x \quad 18 y+49 & =0\end{aligned}$

16C. 29 HKCEE MA $2008-\mathrm{I}-17$

(a) Method 1

Is the incentre of $\triangle A B C$ (given)
$\angle B A P=\angle C A P$
$B P=C P \quad$ (equal $\angle s$, equal chords)
Method 2
I is the incentre of $\triangle A B C$ (given)
$\angle B A P=\angle C A P$
$\angle B C P=\angle B A P \quad$ ($\angle \mathrm{s}$ in the same segment) $=\angle C A P$ (proved)
$\Rightarrow B P=C P$ (sides opp eque segnes)

Both methods

Join $C I$. Let $\angle A C I=\angle B C I=\theta$ and $\angle B C P=\phi$.
$\angle P A C=\phi$ (equal chords, equal $\angle \mathrm{s}$)
$\Rightarrow \angle P I C=\angle P A C+\angle A C I=\theta+\phi \quad($ ext. \angle of $\triangle)$
$I P=C P \quad$ (sides opp. equal $\angle \mathrm{s}$)
ie. $B P=C P=I P$
(b) (i) Let $P=\left(\frac{80+64}{2}, k\right)=(8, k)$
$\therefore(-8+380)^{2}+(k \quad 0)^{2}=\left(\begin{array}{cc}8 & 0\end{array}\right)^{2}+(k-32)^{2}$
$5184+k^{2}=64+k^{2} \quad 64 k+1024$
$\therefore P=(8,-64)$
Radius of circle BIC $=\sqrt{5184+(-64)^{2}}=\sqrt{9280}$ $\Rightarrow x^{2}+y^{2}+16 y+128 y 5120=0$
(ii) $\frac{\text { Method } I}{G B \simeq G P}$
$\begin{aligned} \quad(-8+80)^{2}+(g-0)^{2} & =(g+64)^{2} \\ 72^{2}+g^{2} & =g^{2}+128 g+2\end{aligned}$
$\therefore Q=(-8,64+2 G P)=8.5$
$\begin{aligned} \ell & =(-8, \quad 64+2(8.5+64))=(8,81)\end{aligned}$

Method2

Let the equation of circle be $x^{2}+y^{2}+D x+E y+F=0$
$\left\{\begin{array}{l}(-80)^{2}+0^{2} \quad 80 D+0 E+F=0 \\ 64^{2}+0^{2}+64 D+0 E+F=0 \\ (8)^{2}+(-64)\end{array} \Rightarrow\left\{\begin{array}{l}D=16 \\ E=17\end{array}\right.\right.$
$64^{2}+0^{2}+64 D+0 E+F=0$
$(8)^{2}+(-64)^{2}-8 D \quad 64 E+F=0$$\Rightarrow\left\{\begin{array}{l}E=-17 \\ F=-512\end{array}\right.$
$(8)^{2}+(-64)^{2}-8 D \quad 54 E+F=0 \quad\{F=-512$
\therefore Eqn of circle is $x^{2}+y^{2}+16 x \quad 17 y$
Put $x=8 \Rightarrow y^{2}-17 y-5184=0$
$\Rightarrow y=81$ or $64 \Rightarrow Q=(-8,81)$
(iii) $\frac{\text { Method } l}{m_{B Q} \cdot m_{I Q}}=\frac{810}{81} \cdot \frac{81-32}{-20}=-\frac{441}{61} \neq-1$ $m_{B Q} \cdot m_{I Q}=\frac{81}{-8+80} \cdot \frac{81-32}{-8-0}=-\frac{441}{64} \neq-1$
$\Rightarrow \angle B Q I \neq 90^{\circ} \Rightarrow \angle B Q I+\angle B R I \neq 180^{\circ}$
$\Rightarrow \angle B Q I \neq 90^{\circ} \Rightarrow \angle B Q$
Method 2
Mid-pl of $B I=\left(\frac{80+0}{2}, \frac{0+30}{2}\right)=(40,16)$
$B I=\sqrt{80^{2}+32^{1}}=\sqrt{7424}$
\therefore Eqn of circle $B R I$:
$(x+40)^{2}+(y \quad 16)^{2}=(\sqrt{7424} \div 2)^{2}$
Put $Q(-8,81)$ into $=0$
LHS $=(-8)^{2}+(81)^{2}+80(8) \quad 32(81)$ $=3393 \neq$ RHS
Thus, Q does not lie on the circle through B, R and I. The 4 points are not concyclic.
16C. 30 HKCEE MA 2011-I-16
(a) $S=(16,-48)$
$R=(32+2 \times(16+32),-48)=(64,48)$
Method I
Mid-pt of $P R=\left(\frac{16+64}{2}, \frac{80}{2}\right)=(40,16)$
$m_{\text {PR }}=\frac{48 \quad 80}{64-16}=\frac{-8}{3}$
. Eqn of L bisector: $y-16=\frac{-1}{\frac{-3}{3}}(x-40)$

$$
\Rightarrow 3 x-8 y+8=0^{3}
$$

Method 2 $\left.\sqrt{(x} 16)^{2}+6 y-80\right)^{2}=\sqrt{(x-64)^{2}+(y+48)^{2}}$ $x^{2}+y^{2}-32 x \quad 160 y+6656=x^{2}+y^{2} \quad 125 x+96 y+6400$ $96 x \quad 256 y+256=0 \Rightarrow 3 x \quad 8 y+8=0$
(b) Since $P Q=P R$ and $P S \perp Q R, P S$ is the \perp bisector of $Q R$. Since $P Q=P R$ and P)
(property of isos. Δ)
Thus the circurcentre of $\triangle P Q R$ is the intersection of the linc in (a) and $P S$.
Put $x=16$ into the egn in $(\mathrm{a}) \Rightarrow y=7 \Rightarrow(16,7)$
(c) (i) Radions $=80 \quad 7=73$
\therefore Eqn of $C: \quad(x-16)^{2}+(y \quad 7)^{2}=73^{2}$

Eqn of $C:$
$\Rightarrow x^{2}+y^{2}$
$(x-16)^{2}+(y$
$32 x$
$14 y-5024=0$

(ii) If the centre of C is the in-centre of $\triangle P Q R$, its distances to each of $P R, Q R$ and $P Q$ would also be the same (the radii of the inscribed circle).
From (a), the foot of \perp from centre to $P R=(40,16)$ \Rightarrow Dist from centre to $P R=\sqrt{(16-40)^{2}+(716)}$
Dist from centre to $Q R=7-(48) \quad 56 \neq \sqrt{657}$ Therefore, the centre of C cannot be the in-centre of $\triangle P Q R$. The claim is disagreed.

16C. 31 HKCEEAM 1981- ${ }^{1 \pi}$ - 6
(a) $C_{1}:$ Centre $=\left(0,-\frac{7}{2}\right)$, Radius $=\sqrt{\left(\frac{7}{2}\right)^{2}-11}=\frac{\sqrt{5}}{\frac{2}{3}}$

C2: Centre $=(-3,2)$, Radius $=\sqrt{3^{2}+2^{2}-8}=\sqrt{5}$
$\therefore\left(\frac{2(0)+1(3) 2\left(\frac{7}{2}\right)+1(-2)}{1+2}\right)=(-1,-3)$

(b) Slope of line joining centres $=\frac{\frac{-2}{2}+2}{0+3}=\frac{-1}{2}$
\therefore Eqn of tg: $y+3=\frac{-1}{\frac{-1}{2}}(x+1) \Rightarrow 2 x-y \quad 1=0$
16C.32 (HKCEE AM 1981- II- 12)
(a) (i) $\left\{\begin{array}{l}L: y=m x+2 \\ C: x^{2}+y^{2}=1\end{array} \Rightarrow x^{2}+(m x+2)^{2}=1\right.$
$\Rightarrow\left(1+m^{2}\right) x^{2}+4 m x+3=0$
$\therefore x_{1}$ and x_{2} are the roots of this equation.
(ii) $x_{1}+x_{2}=\frac{-4 m}{1+m^{2}}, x_{1} x_{2}=\frac{3}{1+m^{2}}$
$\Rightarrow \frac{A B=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}}{\left.=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(m x_{1}+2-m x_{2}\right.} 2\right)^{2}}$ $\left.=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(m x_{1}+2-m x_{2}\right.} \quad 2\right)^{2}$
$=\sqrt{ }\left(x_{1} x_{2}\right)^{2}+m^{2}\left(x_{1}-x_{2}\right)^{2}$
$=\frac{\left.\sqrt{x_{1}} x_{2}\right)^{2}+m^{2}\left(x_{1}-x_{2}\right)^{2}}{\sqrt{\left(1+m^{2}\right)\left[\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}\right]}}$
$=\sqrt{\left(1+m^{2}\right)\left[\frac{16 m^{2}}{\left(1+m^{2}\right)^{2}}-\frac{12}{1+m^{2}}\right]}$
$=\sqrt{\frac{16 m^{2}-12\left(1+m^{2}\right)}{1+m^{2}}-2 \sqrt{m^{2} 3} m^{2}+1}$
(b) (i) 2 distinct pts $\Rightarrow 2 \sqrt{\frac{m^{2}-3}{m^{2}+1}}>0 \Rightarrow m^{2}-3>0$

$$
\Rightarrow m<\sqrt{3} \text { or } m>\sqrt{3}
$$

(ii) Tg to $C \Rightarrow 2 \sqrt{\frac{m^{2}-3}{m^{2}+1}}=0 \Rightarrow m= \pm \sqrt{3}$
(iii) No intsn $\Rightarrow \frac{m^{2}-3}{m^{2}+1}<0 \Rightarrow-\sqrt{3}<m<\sqrt{3}$
(c) For $m= \pm \sqrt{3}$, the eqn in (a)(i) becomes
$10 x^{2} \pm 4 \sqrt{3} x+3=0 \Rightarrow x=\frac{\mp 4 \sqrt{3} \pm \sqrt{0}}{20}=\mp \frac{\sqrt{3}}{5}$
$\Rightarrow y= \pm \sqrt{3}\left(\mp \frac{\sqrt{3}}{5}\right)+2=\frac{8}{5}$
\therefore Eqn of $P Q$ is $y=\frac{8}{5} \quad$ (since i tis horizontal)

16C.33 (HKCEE AM 1982-II-8)
(a) (i) $m_{L}=\frac{-5}{12}$
\therefore Req eqn: $y-6=\frac{-1}{\frac{-5}{12}}(x-5) \Rightarrow y=\frac{12}{5} x-6$
(ii) 'Hence:
$\left\{\begin{array}{l}5 x+12 y=32 \\ y=\frac{12}{3} x-6\end{array} \quad \Rightarrow(x, y)=\left(\frac{40}{13}, \frac{18}{13}\right)\right.$
Radi usof circle $=\sqrt{\left(5-\frac{40}{13}\right)^{2}+\left(6-\frac{18}{13}\right)^{2}}=5$

$$
\begin{gathered}
\text { Eqn of } C: \quad(x-5)^{2}+(y-6)^{2}=5^{2} \\
\Rightarrow x^{2}+y^{2}-10 x-12 y+36=0
\end{gathered}
$$

Othenvise' ${ }^{\text {Let } C \text { be }(x-5)^{2}}+(y-6)^{2}=r^{2}$.
$\{5 x+12 y=32$
$\left\{(x-5)^{2}+(y-6)^{2}=r^{2}\right.$
$\Rightarrow(x-5)^{2}+\left(\frac{32-5 x}{12}-6\right)^{2}=r^{2}$
$\frac{169}{144} x^{2}-\frac{65}{9} x+\frac{325}{9}-r^{2}=0$
$\Delta=\left(\frac{65}{9}\right)^{2}-4 \cdot \frac{169}{144}\left(\frac{325}{9}-r^{2}\right)=0 \Rightarrow r^{2}=25$ \therefore Eqn of $C: \quad(x-5)^{2}+(y-6)^{2}=5^{2}$
(b) Method I
x-coordi rate of centre $=5=$ radius
$\therefore C$ touches the y-axis.
Mehod 2
Put $x=0 \Rightarrow y^{2}-12 y+36=0 \Rightarrow y=6$ (repeated) (c) Let
$\left\{\begin{array}{l}y=m x\end{array}\right.$
$x^{2}+y^{2}-10 x-12 y+36=0$
$\Rightarrow\left(1+m^{2}\right) x^{2}-2(5+6 m) x+36=0$
$\Delta=4(5+6 m)^{2}-4 \cdot 36\left(1+m^{2}\right)=0 \Rightarrow m=\frac{5}{12}$
\therefore The required tangent is $y=\frac{5}{12} x$.
(d) Let $Q=(m, n)$ Since M is the mid -plof $P Q$,
$\left(\frac{2+m}{2}, \frac{2+n}{2}\right)=(5,6) \Rightarrow(m, n)=(8,10)$
Let $x^{2}+y^{2}+D x+E y+F=0$ be the circle through P, Q

> and O. $\left\{\begin{array}{l}0^{2}+0^{2}+0 D+0 E+F=0 \\ 2^{2}+2^{2}+2 D+2 E+F=0 \\ 8^{2}+10^{2}+8 D+10 E+F=0\end{array} \Rightarrow\left\{\begin{array}{l}D=62 \\ E=66 \\ F=0\end{array}\right.\right.$ \therefore The ci rcleis $x^{2}+y^{2}+62 x-66 y=0$.

16C34 HKCEE AM 1984- 1 -6 (a) $x^{2}+y^{2}-2 k x+4 k y+6 k^{2}-2=0$ Radius $=\sqrt{ }(-k)^{2}+(2 k)^{2}-\left(6 k^{2}-2\right)>1$ $\begin{aligned} k^{2}+4 k^{2}-6 k^{2}+2 & >1^{2} \\ k^{2} & <1\end{aligned}$ $-1<k<1$

16C 35 (HKCEE AM 1985-II-5)
(a) Radius $=\sqrt{\left(\frac{k}{2}\right)^{2}+\left(\frac{2+k}{2}\right)^{2}}=\sqrt{5}$

$$
\frac{k^{2}}{4}+1+k+\frac{k^{2}}{4}=5
$$

$4 k^{2}+2 k-8=0 \Rightarrow k=-4$ or 2
(b) $k=-4 \Rightarrow x^{2}+y^{2}-4 x+2 y=0$
$k=2 \Rightarrow x^{2}+y^{2}+2 x-4 y=0$

16C. 36 HKCEE AM 1986- IT-10

(a) (i) $\int C_{1}: x^{2}+y^{2}-4 x+2 y+1=0$ $C_{2}: x^{2}+y^{2}-10 x-4 y+19=0$
$6 x+6 y \quad 18=0 \Rightarrow y=3-$ $\Rightarrow x^{2}+(3-x)^{2}-4 x+2(3-x)+1=0$ $2 x^{2}-12 x+16=0$ $x=2$ or 4
$y=1$ or -1
Hence, A and B are $(2,1)$ and $(4,-1)$.

$$
\begin{aligned}
& \text { Hence, } A \text { and } B \text { are }(2,1) \text { and }(4,-1) . \\
& \therefore \text { Eqn of } A B: \quad \frac{y-1}{x-2}=\frac{-1-1}{4-2}=\frac{-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x-2 \\
& \Rightarrow x+2 y 4=0^{4}
\end{aligned}
$$

(ii) The required circle has $A B$ as a di ameter.

Mid-ptof $A B=\left(\frac{2+4}{2}, \frac{1-1}{2}\right)=(3,0)$
$A B=\sqrt{(4-2)^{2}+(-1-1)^{2}}=\sqrt{8}$
: Req.circle is: $\quad(x-3)^{2}+(y-0)^{2}=\left(\frac{\sqrt{8}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2}-6 x+7=0
$$

b) Centre of $C_{3}=$ Centre of $C_{1}=(2,-1)$

Radi usof $C_{3}=\frac{\text { Dist. from }\left(2_{1}-1\right) \text { to } A B}{\sqrt{\left(\text { Radi usof } C_{1}\right)^{2}-\left(\frac{1}{5} A B\right)^{2}}}$
$=\frac{\sqrt{\left(\operatorname{Radi} \text { usof } C_{1}\right)^{2}-\left({ }_{2}^{2} A B\right)^{2}}}{\sqrt{(2)^{2}+(1)^{2}-1-2=2}}$
\therefore Eqn of $C_{3}: \begin{array}{r}(x-2)^{2}+(y+1)^{2}=2 \\ \Rightarrow x^{2}+y^{2}-4 x+2 y+3=0\end{array}$
16C. 37 HKCEE AM 1987- IT-11
(a) (i) Method l
$C_{1}:(x-8)^{2}+\left(\begin{array}{ll}y & 2)^{2}=2^{2}\end{array}\right.$
\Rightarrow Radius $=2=y$ coordinate of centre
C_{1} touches the x-axis, and the pointof contact is x-coord of centre, 0$)=(8,0)=A$
Method 2
urt $y=0 \Rightarrow x^{2}-16 x+64=0 \Rightarrow x=8$ (repeated)
ii) $A(8,0)$ is the only pt of contact of C_{1} and x-axis.
$\left\{\begin{array}{l}\text { Let } O=m x\end{array}\right.$
$\left\{\begin{array}{l}y=m x \\ x^{2}+y^{2}-16 x-4 y+64=0\end{array}\right.$
$\Rightarrow x^{2}+(m x)^{2}-16 x-4(m x)+64=0$
$+(m x)^{2}-16 x-4(m x)+64=0$
$\left(1+m^{2}\right) x^{2}-4(4+m) x+64=0$
$\Delta=16(4+m)^{2}-4 \cdot 64\left(1+m^{2}\right)=0$
$\begin{aligned} m^{2}+8 m+16-16-16 m^{2} & =0 \\ 15 m^{2}-8 m & =0\end{aligned}$ $m=0$ or $\frac{8}{15}$
.. Eqn of $O H$ is $y=\frac{8}{15} x$.
(iii) By symmetry, $m_{B H}=\frac{-8}{15}$

- Eqn of $B H: \quad y \sim 0=\frac{-8}{15}(x-16)$
$\Rightarrow y=\frac{-8}{15}+\frac{128}{15}$
(b) (i) Sub $A \Rightarrow 8^{2}+0^{2}-16(8)+0+c=0 \Rightarrow c=64$ Method \mid
$\left\{x^{2}+y^{2}-16 x+2 f y+64=0\right.$
$x^{2}+\left(\frac{-4}{3} x\right)^{2}-16 x+2 f\left(\frac{-4}{3} x\right)+64=0$

$$
\frac{25}{9} x^{2}-8\left(2+\frac{f}{3}\right) x+64=0
$$

$$
\Delta=64\left(2+\frac{f}{3}\right)^{2}-4 \frac{25}{9} \cdot 64=0
$$

$$
\left(2+\frac{f}{3}\right)^{2}=\frac{100}{9}
$$

$$
2+\frac{f}{3}= \pm \frac{10}{3}
$$

$$
\begin{gathered}
f=4 \text { or }-16 \\
\text { adv, } f>0 . \quad \therefore f=
\end{gathered}
$$

Since the centre is in Quad $\begin{aligned} & f V_{1}, f>0 . \therefore f=4\end{aligned}$

Method 2

Suppose the point of comact of $O K$ and C_{2} is P. Then

$$
O P=O A=8 \text {. Let } P=\left(p, \frac{-4}{3} p\right) \text {. }
$$

$$
\begin{aligned}
\sqrt{(p)^{2}+\left(\frac{-4}{3} p\right)^{2}} & =8 \\
\frac{25}{9} p^{2} & =64 \Rightarrow p= \pm \frac{24}{5}
\end{aligned}
$$

As P is in Quad IV, $\rho=\frac{24}{5} \Rightarrow P=\left(\frac{24}{5},-\frac{-32}{5}\right)$
Put into $C_{2}:$
$\left(\frac{24}{5}\right)^{2}+\left(\frac{-32}{5}\right)^{2}-16\left(\frac{24}{5}\right)+2 f\left(\frac{32}{5}\right)+64=0$

$$
\frac{256}{5}-\frac{64}{5} f=0
$$

(ii) Put $x=8$ into $O H$ and $O K$ respecti vely.
$O H \Rightarrow y=\frac{8}{15}(8)=\frac{64}{15} \Rightarrow H=\left(8, \frac{64}{15}\right)$
$O K \Rightarrow y=\frac{-4}{3}(8)=\frac{-32}{3} \Rightarrow K=\left(8, \frac{-32}{3}\right)$
$\therefore \frac{\text { Area of } \triangle O B H}{\text { Area of } \triangle O B K} \quad-(y$-cooor of $H T K)=\frac{\frac{64}{5}}{\frac{5}{2}}=\frac{2}{3}$

16C.38 (HKCEE AM 1988-II-11)
(a) $\frac{\text { Method }}{\text { Let } S=(h, k)}$
$\because K S \perp(x-5 y+59=0)$
$\therefore \frac{k-12}{h=}=m_{K S}=\frac{-1}{\frac{1}{3}}=-5 \Rightarrow k=-5 h+17$
$\because S K=S H$
$\therefore(h-1)^{2}+(k-12)^{2}=(h+3)^{2}+(k-6)^{2}$
$-2 h-24 k+145=6 h-12 k+45 \Rightarrow 2 h+3 k=2$
Solving, $h=2, k=7 \Rightarrow S=(2,7)$

Method 2

Eqn of $K S: y-12=\frac{-1}{\frac{1}{3}}(x-1) \Rightarrow y=-5 x+17$
Eqn of \perp bisector of $H K$:
$(x-1)^{2}+(y-12)^{2}=(x+3)^{2}+(y-6)^{2}$

$$
\begin{aligned}
)^{2}+(y-12)^{2} & =(x \\
\Rightarrow 2 x+3 y & =25
\end{aligned}
$$

Solving, $(x, y)=(2,7) \Rightarrow S=(2,7)$
(Note bow different concepts gave simi larcalculations.)
Hence,
Radi usof $C=\sqrt{(1-2)^{2}+(12-7)^{2}}=\sqrt{26}$
\Rightarrow Eqn of $C: \quad(x-2)^{2}+(y-7)^{2}=26$
(b) $\{L: 3 x-2 y-5=0$

$$
\begin{aligned}
&(c: x+y-4 x-14 y+27=0 \\
& \Rightarrow x^{2}+\left(\frac{3 x-5}{2}\right)^{2}-4 x-14\left(\frac{3 x-5}{2}\right)+27=0 \\
& \frac{13}{4} \frac{65}{2}, \frac{273}{4}=0 \\
& x=3 \text { or } 7 \\
& \Rightarrow y=2 \text { or } 8
\end{aligned}
$$

$\therefore A$ and B are $(3,2)$ and $(7,8)$.
\Rightarrow Centre of circle $=\left(\frac{7+3}{2}, \frac{8+2}{2}\right)=(5,5)$
Radi us $\frac{1}{2} \sqrt{(7-3)^{2}+(8-2)^{2}}=\frac{1}{2} \sqrt{52}=\sqrt{13}$
\therefore Eqn of circle: $(x-5)^{2}+(y-5)^{2}=13$

$$
\Rightarrow x^{2}+y^{2}-10 x-10 y+37=0
$$

16C. 39 HKCEE AM 1993-1I-11
(a) $A B=\sqrt{(3-0)^{2}+\left(\frac{3}{4}-2\right)^{2}}=\frac{13}{4}$

$$
\text { Radius of } C_{2}=y \text { coord nate of } B=\frac{3}{4}
$$

\because Racius of $C_{1}-$ Radi usof $C_{2}=4-\frac{3}{4}=\frac{13}{4}=A B$
C_{1} and C_{2} touch internally
(b) $A P=4-$ Radius of circle
$5^{2}+(t-2)^{2}=(4-t)^{2}$
$s^{2}+t^{2}-4 t+4=16-8 t+t^{2} \Rightarrow 4 t=12-s^{2}$
(c) $B P=\frac{13}{4}+$ Radi usof circle

$$
(s-3)^{2}+\left(t-\frac{3}{4}\right)^{2}=\left(\frac{3}{4}+t\right)^{2}
$$

$$
(s-3)^{2}=\left(t+\frac{3}{4}\right)^{2}-\left(t-\frac{3}{4}\right)^{2}=3 t
$$

(d) $\left\{\begin{array}{l}4 t=12-s^{2} \\ 3 t=(s-3)^{2}\end{array}\right.$
$\Rightarrow 3\left(12-5^{2}\right)=4(s-3)^{2}$
$36-3 s^{2}=4 s^{2}-24 s+36$ $7 s^{2}-24 s=0$

$$
s=0 \text { or } \frac{24}{7} \Rightarrow t=3 \text { or } \frac{3}{49}
$$

\therefore The required circles are $(x-0)^{2}+(y-3)^{2}=3^{2}$ and
$\left(x-\frac{24}{7}\right)^{2}+\left(y-\frac{3}{49}\right)^{2}=\left(\frac{3}{49}\right)^{2}$
16C. 40 HKCEE AM 1994- $11-9$
(a) $\quad(h-5)^{2}+(k-5)^{2}=(h-7)^{2}+(k-1)^{2}$ $-10 h+25-10 k+25=-14 h+49-2 k+$
Hence, the equationof C is
$(x-h)^{2}+(y-k)^{2}=(h-5)^{2}+(k-4)^{2}$
$x^{2}+y^{2}-2 h x-2 k y=-10 h+25-10 k+25$
$x^{2}+y^{2}-2(2 k) x-2 k y+10(2 k)+10 k-50=0$
$x^{3}+y^{2}-4 k x-2 k y+30 k-50=0$
(b) Denote the centre of C by G.
$m_{B C}=\frac{-1}{\frac{1}{2}}=-2$
$\frac{k-1}{h-7}=-2 \Rightarrow k-1=-2(2 k \quad 7) \Rightarrow k=3$
\therefore Egn of C is $x^{2}+y^{2}-4(3) x-2(3) y+30(3)-50=0$

16C. 41 HKCEE AM 1995-II 10
(a) $\begin{aligned} C_{1}:(x-8)^{2}+(y-0)^{2}=10^{2} \\ \therefore \text { Centre }=(8,0), \text { Radius }=10\end{aligned}$
\therefore Radius of $C_{2}=\left(\right.$ Dist. btwn centres of C_{1} and $\left.C_{2}\right)-10$ (b) $\begin{aligned} \sqrt{(h-8)^{2}+(k-0)^{2}} \quad 10 & =\sqrt{(h+7)^{2}+(k-0)^{2 / 2}} 5\end{aligned}$
$h^{2}+14 h+49+k^{2}=\left(\sqrt{h^{2}-16 h+64+k^{2}}-5\right)^{2}$
$30 h-40=10 \sqrt{h^{2}-16 h+64+k^{2}}$
$\begin{array}{ll}(3 h \quad 4)^{2}=h^{2} & 16 h+64+k^{2} \\ -24 h+16=h^{2} & 16 h+64+h^{2}\end{array}$
$\begin{aligned} 9 h^{2}-24 h+16 & =h^{2} \quad 16 h+64+h . \\ 8 h^{2}-h^{2}-8 h-48 & =0\end{aligned}$
(c) (i) $y=\frac{40+0}{2}=20$
(The centre lies on the \perp bisector of the segment joining the two centres. This is true because the radii of From (c)(i) $k=20$
Put into the result of (b):
$8 h^{2}-(20)^{2}-8 h-48=0$

$$
\begin{aligned}
-(20)^{2}-8 h-48 & =0 \\
h^{2}-h \quad 56 & =0 \Rightarrow h=8(\text { rej.) or }-7
\end{aligned}
$$

Centre $=(7,20)$, Radius $=20-5-15$
\therefore Eqn of req. circle: $(x+7)^{2}+(y \quad 20)^{2}=15^{2}$ $\Rightarrow x^{2}+y^{2}+14 x-40 y+224=0$

16C.42 (HKCEE AM 1996-II 10
(a) (i) Centre $=(4 k, 3 k)$

Put into the line: LHS $=3(4 k) \quad 4(3 k)=0=$ RHS \therefore The centre lies on $3 x-4 y=0$.
(i) \ddot{R} Radius $=\sqrt{(4 k)^{2}+(3 k)^{2} \quad 25\left(k^{2}-1\right)}=\sqrt{25}=5$
(b) Slope $=\frac{3}{4}$

Pick a value of k for C_{k}, e.g. $C_{0}: x^{2}+y^{2}-25=0$.
Let the equation of langent be $y=\frac{3}{4} x+b$.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
y=\frac{3}{4} x+b \\
x^{2}+y^{2} \quad 25=0
\end{array} \quad \Rightarrow x^{2}+\left(\frac{3}{4}+b\right)^{2} \quad 25=0 \\
\frac{25}{16} x^{2}+\frac{3}{2} b x+b^{2}-25=0
\end{array} \\
& \Delta=\left(\frac{3}{2} b\right)^{2} \quad 4 \cdot \frac{25}{16}\left(b^{2}-25\right)=0 \Rightarrow b= \pm \frac{25}{4}
\end{aligned}
$$

\therefore The tangents are $y=\frac{3}{4} x \pm \frac{25}{4}$.
(c) Distance $=y$-coordinate of centre $=3 k$

If is negative, the distance is $-3 k$.
$\therefore 5^{2}-(3 k)^{2}+(4)^{2} \Rightarrow k= \pm 1$

16C.43 (HKCEE AM 1998-II 2)

$\left\{\begin{array}{l}L: x-7 y+3=0\end{array}\right.$
$C:(x \quad 2)^{2}+(y+5)^{2}=a$
$\Rightarrow(7 y-3-2)^{2}+(y+5)^{2}=a \Rightarrow 50 y^{2} \quad 60 y+50 \quad a=0$
$\therefore \Delta=3600 \quad 4 \cdot 50(50-a)=0 \Rightarrow 18 \quad(50-a)=0$

16C.44 (HKCEE AM 2000-11 9)

(a) $(x+2 k+2)^{2}+\left(y+\frac{3 k+1}{2}\right)^{2}=(8 k+8)+(2 k+2)^{2}+\left(\frac{3 k+1}{2}\right)^{2}$
$(x+2 k+2)^{2} \div\left(y+\frac{3 k+1}{2}\right)^{2}=\frac{25}{4} k^{2}+\frac{35}{2} k+\frac{49}{4}$
$(x+2 k+2)^{2}+\left(y+\frac{3 k+1}{2}\right)^{2}-\left(\frac{5 k+7}{2}\right)^{2}$
(b) (i) -
$\therefore \frac{3 k+1}{2}= \pm\left(\frac{5 k+7}{2}\right) \Rightarrow k=-3$ or 1
\therefore The circles are $x^{2}+(y-1)^{2}=1\left(C_{1}\right)$ and
$(x+4)^{2}+(y-4)^{2}=16\left(C_{2}\right)$
(ii) Dist, between centres $=\sqrt{(4-0)^{2}}+\left(\begin{array}{ll}4 & 1\end{array}\right)^{2}$
\therefore Touch extermally
(c) Let the centre of C_{3} be (a, b).

- Collinear with centres of C_{1} and C_{2}
$\therefore \frac{b-1}{a-0}=\frac{4-1}{4-0}=\frac{3}{4} \Rightarrow b=\frac{3}{4} a+1$
\because Touches x-axis
\therefore Radius $=b$
Touches C_{2} extemally
$\begin{aligned} \sqrt{(a-4)^{2}+(b \sim 4)^{2}} & =4+b \\ a^{2}-8 a+16+b^{2}-8 b+16 & =(4+b)^{2}\end{aligned}$
$\begin{aligned} & \\ & a^{2} \quad 8 a+16 \quad 8 b=+8 b\end{aligned}$
$8 a+16 \quad 8 b=+8 b$
$a^{2} 8 a+16=16 b$
$=16\left(\frac{3}{4} a+1\right)$
$\begin{aligned} & a^{2}-20 a=0 \\ & \Rightarrow\end{aligned}$
$\Rightarrow a=0$ or $20 \Rightarrow b=1$ or 16
$(0,1)$ is the centre of C_{1}
C_{3} is $(x-20)^{2}+(y \quad 16)^{2}=16^{2}$

16C.A5 HKCEE AM 2002 - 15

(a) Suppose the centre is G. Then
$A=$ Area of $\triangle G D E+$ Area of $\triangle G E F+$ Area of $\triangle G F D$
$=\frac{1}{2} D E \cdot r+\frac{1}{2} E F \cdot r+\frac{1}{2} F D \cdot r$
$=\frac{1}{2}(D E+E F+F D) r=\frac{1}{2} p r$
(b) 0$)$

$$
\begin{aligned}
& =\sqrt{4^{2}+4^{2}}+\sqrt{3^{2}+3^{2}}+\sqrt{7^{2}+1^{2}} \\
& =4 \sqrt{2}+3 \sqrt{2}+5 \sqrt{2}=12 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& =4 \sqrt{2}+3 \sqrt{2}+5 \sqrt{2}=12 \sqrt{2} \\
& \therefore \text { Radius of } C_{2}=\frac{\frac{1}{2} \cdot 4 \sqrt{2} \cdot 3 \sqrt{2}}{\frac{1}{2} \cdot 12 \sqrt{2}}=\sqrt{2}
\end{aligned}
$$

(ii) Denote the points where C_{2} touches $Q R$ and $R S$ by A and B respectively. Also Iet H be the cenire of C_{2} Then $R A H B$ is a square.

ic. $R A=A H=H B-B R=\sqrt{2}$
$R H=\sqrt{(\sqrt{2})^{2}}+(\sqrt{2})^{2}=2$
$\because m_{R A}=\frac{51}{2+2}=1$ and $m_{R S}=\frac{5-2}{2}=-1$
$\therefore R H$ is vertical.
Thus, $H=(2,5-2)=(2,3)$.

- Eqn of C_{2} is $(x-2)^{2}+(y-3)^{2}=2$

16C. 46 HKCBE AM 2005-15
(a) $\left\{\begin{array}{l}L: y=k x \\ C \cdot z^{2}+y^{2}\end{array}\right.$

C: $x^{2}+y^{2} \quad 4 x-2 y+4=0$
$\Rightarrow x^{2}+(k x)^{2}-4 x \quad 2(k x)+4=0$
$\begin{array}{rl}\left(1+k^{2}\right) x^{2} & 2(2+k) x+4=0 \ldots(*)\end{array}$
$\Delta=4(2+k)^{2}-4(4)\left(1+k^{2}\right)>0$
$k^{2}+4 k+4 \quad 4-4 k^{2}>0$
$3 k^{2}-4 k<0 \Rightarrow 0<k<\frac{4}{3}$
(b) From (a), equation of the tangent is $y=\frac{4}{3} x$.
(c) (i) The x-coordinates of P and Q are the roots of (*),
\Rightarrow Sum of roots $=\frac{2(2+k)}{1+k^{2}}$
$\therefore x$-coordinate of $M=\frac{\text { Sum of roots }}{2}=\frac{2+k}{1+k^{2}}$

16C. 47 HKCEEAM 2006-14
(a) (i)

$$
\text { (i) } \left.\left.\begin{array}{l}
\left\{\begin{array}{l}
L: y=m x+c \\
J: x^{2}+y^{2}=r^{2}
\end{array}\right. \\
\Rightarrow x^{2}+(m x+c)^{2}=r^{2}
\end{array}\right\} \begin{array}{rl}
\left(1+m^{2}\right) x^{2}+2 m c x+c^{2} r^{2} & =0
\end{array}\right\} \begin{aligned}
4 m^{2} c^{2}-4\left(1+m^{2}\right)\left(c^{2}-r^{2}\right) & =0 \\
m^{2} c^{2}-c^{2}-m^{2} c^{2}+r^{2}+r^{2} m^{2} & =0 \\
c^{2} & =r^{2}\left(m^{2}+1\right)
\end{aligned}
$$

$\therefore(k-m h)^{2}=c^{2}=r^{2}\left(m^{2}+1\right)$
(b) (i) $P R: \frac{y-4}{x-7}=\frac{-5-4}{-5-7}=\frac{3}{4} \Rightarrow 3 x-4 y-5=0$
$\Rightarrow x$-intercept $=\frac{-}{3}$
y-intercept $=\frac{-5}{4}$

In the shaded triangle,

$\frac{1}{2} r \sqrt{\left(\frac{5}{3}\right)^{2}+\left(\frac{5}{4}\right)^{2}}=\frac{1}{2} \cdot \frac{5}{3} \cdot \frac{5}{4}=$ Area
$\Rightarrow r=\frac{25}{12} \div \frac{25}{12}=1$
(ii) Use (a)(ii) with $(h, k)=(7,4)$ and $r=1$.
$(4-7 m)^{2}=m^{2}+1$
$48 m^{2} \quad 56 m+15=0 \Rightarrow m=\frac{3}{4}$ or $\frac{5}{12}$
$\therefore m_{P Q}=\frac{5}{12}$
(iii) Use (a)(ii) with $(h, k)=R=(-5,5)$ and $r=1$
$(-5+5 m)^{2}=m^{2}+1$
$24 m^{2}-50 m+24=0 \Rightarrow m=\frac{3}{4}$ or $\frac{4}{3}$
$\therefore m_{Q R}=\frac{4}{3}$
Let $Q=(a, b)$. Then
$\left\{\frac{b-4}{a-7}=\frac{5}{12} \Rightarrow 5 a-12 b=-13\right.$
$\left\{\begin{array}{l}a-7 \\ \frac{b+5}{a+5}=\frac{4}{3} \Rightarrow 4 a-3 b=-5\end{array}\right.$
$\Rightarrow Q=(a, b)=\left(\frac{-7}{11}, \frac{9}{11}\right)$

16C.48 HKCEEAM 2010-7

Centre $=(3,-2)$, Radius $=5$

Let $C(m, n)$ be the diamerrically opposite pt of A on the circle.
Then $\left(\frac{m+7}{2}, \frac{n+1}{2}\right)=(3,2) \Rightarrow C=(m, n)=(-1,-5)$
$\because \angle A C B=\theta$ (\angle in alt. segment)
and $\angle A B C=90^{\circ} \frac{(\angle \text { in semi-circle) }}{\sqrt{(7-0)^{2}+(1+6)^{2}}}$
$\therefore \tan \theta=\frac{A B}{B C}=\frac{\sqrt{(7-0)^{2}+(1+6)^{2}}}{\sqrt{(0+1)^{2}}+(6+5)^{2}}=7$

16C.49 HKCEE AM 2010-15

(a) Let the centre of C_{2} be $\left(x_{1} y\right)$.

Dist. between centres $=$ Radius of $C_{2}-$ Radius of C_{1}

$$
\begin{aligned}
(x \quad 6)^{2}+(y \quad 5)^{2} & =(x-5)^{2} \\
-12 x+36+y^{2}-10 y & =-10 x
\end{aligned}
$$

$$
\begin{aligned}
x+36+y^{2}-10 y & =-10 x \\
y^{2}-10 y+36 & =2 x \Rightarrow x=\frac{1}{2} y^{2}-5 y+18
\end{aligned}
$$

(b) (i) ByPyth thm, $(x-0)^{2}+(y+3)^{2}=5^{2}+x^{2}$

(ii) Eqn of $C_{2}:(x-10)^{2}+(y-2)^{2}=10^{2}$

Let the eqns of tangents be $y=m x-3$.
$\{y=m x-3$
$\left((x-10)^{2}+(y-2)^{2}=100\right.$
$\Rightarrow(x-10)^{2}+(m x$
$\Rightarrow)^{2}=100$
$\left.1+m^{2}\right) x^{2}$
$10(m+2) x+25=0$
$\begin{array}{ll}\left(1+m^{2}\right) x^{2} & 10(m+2) x+25=0 \\ \Delta=100(m+2)^{2}-100(1)\end{array}$
$\Delta=100(m+2)^{2}-100\left(1+m^{2}\right)=0$
$\begin{aligned} m^{2}+4 m+m-1-m^{2} & =0 \Rightarrow m=\frac{-3}{4}\end{aligned}$
\therefore Eqns of tgs are $y=\frac{-3}{4} x \quad 3$ and $x=0(y$-axis $)$.

16C.50 HKDSE MA SP-I-19
(a) (i) Join B and C
$\angle D A E=\angle D B C \quad(\angle \mathrm{~s}$ in the same segment) $\begin{array}{ll}=\angle P C B & \text { (alt. } \angle \mathrm{s}, P Q / / B D) \\ =\angle B A E & (\angle \text { in all. segment })\end{array}$
In $\triangle A B E$ and $\triangle A D E$,
$A B=A D$ (given)
$\angle B A E=\angle D A E \quad$ (proved)
$A E=A E \quad$ (common) $\triangle A B E \cong \triangle A D E$ (SAS)
(ii) $\angle B A E=\angle D A E$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$) $\therefore A E$ is an \angle bisector of $\triangle A B D$. Hence, $A E . \perp B D$ (property of isos. \triangle) $\Rightarrow A E$ is an alditude of $\triangle A B D$. $B E=D E \quad$ (property of isos. \triangle)
$\Rightarrow A E$ is a median of $\triangle A B D$. $\Rightarrow A E$ is a L bisector of $\triangle A B D$.
Thus, the in centre, orthocentre, centroid and circumcentre of $\triangle A B E$ all lie on $A E$. They are collinear.
(b) $m_{P Q}=m_{B D}=\frac{12-4}{2}=2$

From (a)(ii), $A C$ is a diameter of the circle.
Method I
Let the circle be $x^{2}+y^{2}+D x+E y+F=0$.
$\left\{\begin{array}{l}14^{2}+4^{2}+14 D+4 E+F=0 \\ 8^{2}+12^{2}+8 D+12 E+F=0 \\ 4^{2}+4^{2}+4 D+4 E+F=0\end{array} \Rightarrow\left\{\begin{array}{l}D=-18 \\ E=-13 \\ F=92\end{array}\right.\right.$
\Rightarrow Centre $=(9,6.5)$
Method 2
Equ of \perp bisector of $B D$ (i.e. $A C$):
$\sqrt{(x \quad 8)^{2}+\left(y-\frac{12)^{2}}{2}\right.}=\sqrt{(x-4)^{2}+(y-4)^{2}}$
$-16 x+64-24 y+144=-8 x+16-8 y+16$
$x+2 y-22=0$
Eqn of \perp bisector of $A D: x=\frac{14+4}{2}=9$
(- $A D$ is parallel to the x-axis.) ${ }^{2}$
Solving $\left\{\begin{array}{l}x+2 y-22=0 \\ x=9\end{array}\right.$
\Rightarrow Circumcentre $=(9,6.5)$
Method 3
Let the centre be $\left(\frac{14+4}{2}, k\right)=(9, k)$.
Radius $=\sqrt{ }(9-8)^{2}+(k-12)^{2}=\sqrt{(9-4)^{2}+(k-4)^{2}}$ $k^{2}-24 k+145=k^{2}-8 k+41$
\therefore Centre $=(9,6.5)$
Hence,
Let $C=(m, n)$. Then
$\left(\frac{m+14}{2}, \frac{n+4}{2}\right)=(9,6.5) \Rightarrow C=(m, n)=(4,9)$
Eqn of $P Q: y-9=2(x-4) \Rightarrow 2 x-y+1=0$

6C. 51 HKDSE MA PP -I - 14

(a) $\triangle B C D \sim \triangle Q A D$
(b) (i) $A D=\sqrt{6^{2}+12^{2}}=\sqrt{180}$
$A D=\sqrt{6^{2}}+12^{2}=\sqrt{180}$
$\frac{C D}{A D}=\sqrt{\frac{16}{45}} \Rightarrow C D=\sqrt{\frac{16}{45} \times 180}=8$
$\therefore C=(0,12-8)=(0,4)$
(ii) $A C$ is a diameter of the circle.

Mid-pt of $A C=\left(\frac{6+0}{2}, \frac{0+4}{2}\right)=(3,2)$
$A C=\sqrt{6^{2}+4^{x}}=\sqrt{\sqrt{52}}$
$A C=\sqrt{6^{2}+4^{2}}=\sqrt{52}$
\therefore Eqn of circle $O A B C:\left(\begin{array}{ll}x & 3\end{array}\right)^{2}+\left(\begin{array}{ll}y & 2\end{array}\right)^{2}=\left(\frac{\sqrt{52}}{2}\right)^{2}$

$$
\Rightarrow x^{2}+y^{2}-6 x-4 y=0
$$

16C. 52 HKDSEMA 2012-I-17

(a) Radius $=y$ coordinate of centre $=10$

Eqn of C: $(x-6)^{2}+(y-10)^{2}=100$
(b) Eqn of L : $y=-x+k$
$\{y=-x+k$
$\left((x-6)^{2}+(y-10)^{2}=100\right.$
$\Rightarrow 2 x^{2}+(8-6)^{2}+(-x+k-10)^{2}=100$
$2^{2}+(8-2 k) x+\left(k^{2} \quad 20 k+36\right)=0$
Sum of roots $=\frac{8-2 k}{2}=k-4$
$\Rightarrow x$-coordinate of mid-pt of $A B=\frac{k-4}{?}$
y-coordinate of mid-pt of $A B=-\left(\frac{k-4}{2}\right)+k$
Mid-point of $A B=\left(\frac{k-4}{2}, \frac{k+4}{2}\right)$

16C. 53 HKDSEMA $2015-\mathrm{I}-14$

(a) (i) Merhod I

Mid-pt of $P Q=\left(\frac{4-14}{2}, \frac{-1+23}{2}\right)=(-5,11)$
$m_{P Q}=\frac{-1-23}{4-14}=\frac{-4}{3}$
\therefore Eqn of $L: y-11=\frac{-1}{\frac{-4}{3}}(x+5) \Rightarrow y=\frac{3}{4} x+\frac{59}{4}$
$\frac{\text { Mehod } 2}{\sqrt{(x-4)^{2}}+(y+1)^{2}}=\sqrt{(x+14)^{2}}+(y-23)$
$\begin{aligned}(x-4)^{2}+(y+1)^{2} & =\sqrt{(x+14)^{2}+(y-23)} \\ -8 x+16+2 y+1 & =28 x+196-46 y+529\end{aligned}$ $3 x-4 y+59=0$
(ii) Certre $=\left(h, \frac{3 h+59}{4}\right)$

Eqn of $\left(y-\frac{3 h+59}{2}\right)^{2}=(4-h)^{2}+(-1-3 h+59)^{2}$

$x^{2}-2 h x+y^{2}-\frac{3 h+59}{2} y=16-8 h+1+\frac{3 h+59}{2}$
$2 x^{2}+2 y^{x^{2}} \quad 4 h x \quad(3 h+59)^{2} y+13 h^{2} 93=0$
If C passes through R
$2(26)^{2}+2(43)^{2} \cdots 4 h(26)-(3 h+59)(43)+13 h \quad 93=0$ $2420-220 h=0$
\therefore Diameter $=2 \sqrt{(4-11)^{2}+\left(-1-\frac{3(11)+52}{4}\right)^{2}}=50$

16C54 HKDSE MA 2016-I-2

(a) Method I

Let $\angle O P J=\angle Q P J=\theta$. (in-centre)

$$
\begin{aligned}
& \text { et }=P J=Q J \text { (radii) } \\
& \text { In } \triangle P O J, \angle P O J=\angle O P=
\end{aligned}
$$

In $\triangle P O J, \angle P O J=\angle O P J=\theta$ (base $\angle \mathrm{s}$, isos. \triangle) In $\triangle P Q J, \angle P Q J=$
In $\triangle P O J$ and $\triangle P Q J$,
$\angle O P J=\angle Q P J=\theta \quad$ (in-centre)
$\angle P O J=\angle P Q J=\theta \quad$ (proved)
$P J=P J$
(commo
$\therefore \triangle P O J \cong \triangle P Q$
(AAS)
$P O=P Q$
(corr. sides, $\cong \Delta \mathrm{s}$)

Method 2

Let $\angle O P J=\angle Q P J^{\prime}=\theta$. (in-centre)
$O J=P J=Q J \quad$ (radii)
In $\triangle P O J, \angle P O J=\angle O P J=\theta \quad$ (base $\angle s$, isos. \triangle) $\Rightarrow \angle P J O=180^{\circ}-2 \theta \quad(\angle$ sum of $\triangle)$
$\Rightarrow \angle P Q O=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta$

$$
=1 / \times \sim
$$

In $\triangle P Q I, \angle P Q J=\angle Q P J=\theta$ a centre twice \angle at \odot $\Rightarrow \angle P J Q=180^{\circ}-2 \theta \quad(\angle$ sum of $\triangle)$ $\Rightarrow \angle P O Q=\left(180^{\circ} \quad 2 \theta\right) \div 2=90^{\circ}-\theta$
$\angle P Q O=\angle P O Q=90^{\circ}-\theta$ (\angle centre twice $\angle a\left(0^{\circ \prime}\right.$
$P O=P Q \quad$ (sides $=90^{\circ}-\theta$ (proved)

Method 3

Let $P J$ extended meet the circle $O P Q$ at R. Then $P R$ is a diameter of the circle.
$\therefore \angle P O R=\angle P Q R=90^{\circ} \quad$ (\angle in semi-circle)
Let $\angle O P R=\angle Q P R=\theta$. (in-centre)
In $\triangle O P R, P O=P R \cos \theta$
In $\triangle Q P R, P Q=P R \cos \theta$
$\therefore P O=P Q$
(b) (i) Let $P=(x, 19) \cdot \mathrm{By}$ (a)
$\begin{aligned} O P & =P Q \\ \sqrt{x^{2}+19^{2}} & =\sqrt{(x-40)^{2}}: \overline{(\# 9-30)^{2}}\end{aligned}$
$x^{2}+361=x^{2}-80 x+1600+121$
$x=17 \Rightarrow P=(17,19)$
Method 1
$E x^{2}+y^{2}+D x+E y+F=0$
$0^{2}+0^{2} \div 0+0 \div F=0$
$17^{2}+19^{2}+17 D+19 E+F=0$
$40^{2}+30^{2}+40 D+30 E+F=0$$\Rightarrow\left\{\begin{array}{l}D=-1 \\ E=66 \\ F=0\end{array}\right.$
Eqn of C is $x^{2}+y^{2} \quad 112 x+66 y=0$
Method 2
The centre J lies on the \perp bisector of $O Q$.
Mid-pt of $O Q=\left(\frac{40}{2}, \frac{30}{2}\right)=(20,15)$
$m_{O Q}=\frac{30}{40}=\frac{3}{4} \Rightarrow m_{\perp \text { bisecor }}=\frac{-4}{3}$
Eqn of \perp bisector: $y-15=\frac{-4}{3}(x-20)$

$$
\Rightarrow y=\frac{125-4 x}{3}
$$

Let $J=(h, k)$. Then
$\left\{\begin{array}{l}k=\frac{125^{3}}{3} \\ (h-17)^{\frac{2}{2}}\end{array}\right.$
$(h-17)^{2}+(k-19)^{2}=\left(\begin{array}{ll}h & 0\end{array}\right)^{2}+(k-0)^{2}$
$-34 h+289+k^{2}-38 k+361=h^{2}+k^{2}$
$-34 h-38\left(\frac{125-4 h}{3}\right)+650=0$ $\frac{50}{3} h-\frac{2800}{3}=0$
\therefore Eqn of C is
Eqn of C is
$\begin{aligned}(x-56)^{2}+(y+33)^{2} & =(0-56)^{2}+(0+33)^{2}\end{aligned}$
(ii)

Approach One - Find L_{1} and L_{2}

Merthod 1
Let L_{1} and L_{2} be $y=\frac{3}{4} x+c$.
$\int y=\frac{3}{4} x \div c$
$x^{2}+y^{2}-112 x+66 y=0$
$x^{2}+\left(\frac{3}{4} x+c\right)^{2}-112 x+66\left(\frac{3}{4} x+c\right)=0$ $\frac{25}{16} x^{2}+\binom{3 c-125}{2} x+\left(c^{2}+66 c\right)=0$
$\begin{aligned} \Delta=\frac{(3 c-125)^{2}}{4}-4 \cdot \frac{25}{16} \cdot\left(c^{2}+66 c\right) & =0 \\ -16 c^{2}-2400 c+15625 & =0\end{aligned}$

$$
\begin{array}{r}
-16 c^{2}-2400 c+15625=0 \\
c=-\frac{625}{4} \text { or } \frac{25}{4} \\
\therefore L_{1} \text { is } y=\frac{3}{4} x+\frac{25}{4} \Rightarrow\left\{\begin{array}{l}
s=\left(\frac{-25}{3}, 0\right) \\
T=\left(0, \frac{25}{4}\right)
\end{array}\right. \\
\quad L_{2} \text { is } y=\frac{3}{4} x-\frac{625}{4} \Rightarrow\left\{\begin{array}{l}
U=\left(\frac{625}{3}, 0\right) \\
V=\left(0, \frac{-625}{4}\right)
\end{array}\right.
\end{array}
$$

Method 2

$\because O P=P Q$ and $\angle O P J=\angle Q P J \quad$ (proved)
$\therefore O Q \perp P J$ (property of isos. \triangle)
$\Rightarrow L_{1} \perp P J \quad(O Q / / 4)$
$\Rightarrow L_{4}$ is tangent to $\mathrm{Cat} P$.
$\Rightarrow L_{t}$ is tangent to C at P.
(converse of $\angle \mathrm{s}$ in the same segment)
\therefore Eqn of $L_{1}: y \quad 19=\frac{3}{4}(x-17) \Rightarrow y=\frac{3}{4} x+\frac{25}{4}$
$\Rightarrow S=\left(\frac{-25}{3}, 0\right), T=\left(0, \frac{25}{4}\right)$
Let the diameter of C through P meet C again at
$R(r, s)$. Then $\left(\frac{17+r}{2}, \frac{19+s}{2}\right)=J=(56,-33)$
$\because L_{2}$ is tangent to C at R $\Rightarrow R=(95,-85)$
\therefore Eqn of $L_{2}: y+85=\frac{3}{4}\left(\begin{array}{ll}x & 95) \Rightarrow y=\frac{3}{4} x-\frac{625}{4}\end{array}\right.$
$\Rightarrow U=\left(\frac{625}{3}, 0\right), v=\left(0, \begin{array}{c}-625 \\ 4\end{array}\right)$

$\frac{\text { Therefore, (Me that) }}{\text { Area of trapezium STUV }}$

Area of trapezium STUV
$=$ Area of $\triangle S T U+$ Area of $\triangle S V U$
$=$ Area of $\triangle S T U+$ Area of $\triangle S V U$
$\left.=\frac{\left(\frac{65}{3}\right.}{3}+\frac{25}{3}\right)\left(\frac{23}{4}\right)$
2
$=\frac{105625}{6}=17604.2>17000 \Rightarrow$ YES
Therefore, (Me thot)
ST $\sqrt{\left(0+\frac{25}{3}\right)^{2}+\left(\frac{25}{4}-0\right)^{2}}=\frac{125}{12}$
$\left.U V=\sqrt{\left(\frac{625}{3}\right.} 0\right)^{2}+\left(\frac{625}{4}-0\right)^{\frac{1}{2}}=\frac{3125}{12}$
Height of $S T U V=$ Diameter of $C=130$
\therefore Area of $S T U V=\frac{\left(\frac{125}{12}+\frac{3125}{12}\right)(130)}{2}$

$$
=\frac{105625}{6}>17000 \Rightarrow \mathrm{YES}
$$

Let the fools of perpendiculars from P and Q to the axis be M and N respectively. Note that $O Q / L / / L$ pectively. Note that $O Q / / L_{1} / / L_{2}$.
$\because \triangle S P M \sim \triangle O Q N$
$\because P M=Q N=3$
$\therefore \frac{P M}{S M}=\frac{Q N}{O N}=\frac{3}{4} \Rightarrow S M=\frac{4}{3}(19)=\frac{76}{3}$
$\Rightarrow S=\left(17 \quad \frac{76}{3}, 0\right)=\left(\frac{25}{3}, 0\right)$
In $\triangle O S T, O T=\frac{3}{4} O S=\frac{25}{4} \Rightarrow T=\left(0, \frac{25}{4}\right)$
Area of $\triangle O S T=\frac{1}{2} \times \frac{25}{3} \times \frac{25}{4} \quad \frac{625}{4}$
$S T-\sqrt{\left(\frac{25}{3}\right)^{2}+\left(\frac{25}{4}\right)^{2}}-\frac{125}{12}$
\Rightarrow Height of $\triangle O S T$ from O to $S T\left(h_{1}{ }^{*}\right)$
$=\frac{2 \times \frac{62}{24}}{\frac{125}{12}}=5$

Refering to $M e$ thoz $P R$ is the height of trapezium

$S T U V$ as $P R \perp L_{1}$.
\therefore Height of $\triangle O U V$ from O to $U V$ ($/ h_{2}$)
$=$ Diameter of $C \quad h_{1}=2 \sqrt{56^{2}+33^{2}} \quad 5=12$

$\because \triangle O S T \sim \triangle O U V$
$\frac{O V}{O T}=\frac{O U}{O S}=\frac{h_{2}}{h_{1}}=25$
Area of $\triangle O U V=\left(\frac{h_{2}}{h_{1}}\right)^{2}$ (Area of $\triangle O S T$)
$=625$ (Area of $\triangle O S T$)
Area of $\triangle O T U=\left(\frac{O U}{O S}\right)$ (Area of $\triangle O S T$)
$=25($ Area of $\triangle O S T)$
Area of $\triangle O S V=\left(\frac{O V}{O \bar{T}}\right)($ Area of $\triangle O S T)$
\therefore Area of $S T U V=(1+625+25+25)($ A of $\triangle O S T)$
$\begin{aligned} V & =(1+625+25+25)(\mathrm{A} \text { of } \Delta O \\ & =\frac{105625}{6}>17000 \Rightarrow \mathrm{YES}\end{aligned}$

Approach Three-A hybrid of Me thodkand 3

Method 4

Let L_{1} and L_{2} be $y=\frac{3}{4} x+c$

$$
\left\{\begin{array}{l}
y={ }^{3} x+c \\
x^{2}+y^{2} \quad 112 x+66 y=0
\end{array}\right.
$$

$x^{2}+\left(\frac{3}{4} x+c\right)^{2}-112 x+66\left(\frac{3}{4} x+c\right)=0$

$$
\frac{25}{16} x^{2}+\left(\frac{3 c-125}{2}\right) x+\left(c^{2}+66 c\right)=0
$$

$$
\left.\Delta=\frac{(3 c}{4} 125\right)^{2}-4 \cdot \frac{25}{16} \cdot\left(c^{2}+66 c\right)=0
$$

$$
-16 c^{2} \quad 2400 c+15625=0
$$

$\therefore O T=\frac{25}{4}, O V=\frac{625}{4}$

$$
c=\frac{625}{4} \text { or } \frac{25}{4}
$$

$\Rightarrow \frac{O V}{O T}=25 \Rightarrow \frac{O U}{O S}=25 \quad(\because \triangle O S T \sim \triangle O U V)$ Thus,
Area of $\triangle O U V=(25)^{2}$ (Area of $\left.\triangle O S T\right)$

$$
\text { Area of } \triangle O T U=\left(\frac{O U}{O S}\right)(\text { Area of } \triangle O S T)
$$

$$
=25(\text { Area of } \triangle O S T)
$$

Area of $\triangle O S V=\left(\frac{O V}{O T}\right)($ Area of $\triangle O S T)$

$$
=25(\text { Area of } \triangle O S T)
$$

Besides, for $\triangle O S T, \frac{O T}{Q S}=$ slope $=\frac{3}{4} \Rightarrow O S=\frac{25}{3}$ \Rightarrow Area $=\frac{1}{2} \times \frac{25}{3} \times \frac{25}{4}=\frac{625}{24}$
\therefore Area of $S T U V=(1+625+25+25)(A$ of $\triangle O S T)$ $=\frac{105625}{6}>17000 \Rightarrow$ YES

16C55 HKDSEMA 2018-I- 19
(a) Eqn of C: $(x 8)^{2}+(y-2)^{2}=r^{2}$
$\left\{\begin{array}{l}L: k x-5 y-21=0 \\ c:(x)\end{array}\right.$
$\left\{\begin{array}{ll}L:(x & 8\end{array}\right)^{2}+\left(\begin{array}{ll}y & 2\end{array}\right)=r^{2}$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{ll}
x &)^{2}+\left(\begin{array}{ll}
\frac{k x}{2} & 21 \\
5
\end{array}\right)^{2}
\end{array}=r^{2}\right. \\
&(x-8)^{2}+\left(\begin{array}{ll}
\frac{k}{5} x & \frac{31}{5}
\end{array}\right)^{2}-r^{2}=0
\end{aligned}
$$

$$
\left(1+\frac{k^{2}}{25}\right) x^{2} \quad 2\left(\frac{31}{25} k+8\right) x+\frac{2561}{25}-r^{2}=0
$$

$$
\Delta=0=4\left(\frac{31}{25} k+8\right)^{2}-4\left(1+\frac{k^{2}}{25}\right)\left(\frac{2561}{25}-r^{2}\right)
$$

$$
\left(\frac{31}{25} k+8\right)^{2}=\left(1+\frac{k^{2}}{25}\right)\left(\frac{2361}{25}-r^{2}\right)
$$

$\frac{2561}{25} \quad r^{2}=\frac{(31 k+200)^{2}}{25(25}$
$\begin{aligned} r^{2} & =\frac{\left(35\left(25+k^{2}\right)\right.}{25(25} \\ r^{2} & =\frac{2561\left(25+k^{2}\right)}{25(31 k+200)^{2}}\end{aligned}$
$r^{2}=\frac{25\left(25+k^{2}\right)}{961-496 k+64 k^{2}}$
(b) (i) Pul D into L :
$k(18) 5(39)-21=0 \Rightarrow k=12$ $r=\sqrt{\frac{961-496(12)+64(12)^{2}}{25+(12)^{2}}}=5$
(ii) $E=\left(0, \frac{-21}{5}\right)$

Denote the centre of C be G, which is the in-centre of
$\triangle D E F$.
$D G=\sqrt{(18-8)^{2}+\left(\begin{array}{ll}(39 & 2)^{2}\end{array}-\sqrt{1469}\right.}$
$\Rightarrow \angle G D E=\sin ^{-1} \frac{r}{D G}=749586^{\circ}$
$\Rightarrow \angle F D E=2 \angle G D E=14.99172^{\circ}$
$E G=\sqrt{(0} 8)^{2}+\left(\frac{-21}{5}-2\right)^{2}=\sqrt{\frac{2361}{35}}$
$\Rightarrow \angle G E D=\sin ^{1} \frac{r}{E G}=29.60445^{\circ}$
$\Rightarrow \angle F E D=2 \angle G E D=59.20890^{\circ}$
$\therefore \angle D F E=180^{\circ}-14.99172^{\circ} \quad 59.20890^{\circ}$
\therefore YES

16C. 56 HKDSE MA 2019-I-19

(a) $f(4)=\frac{1}{1+k}\left((4)^{2}+(6 k-2)(4)+(9 k+25)\right)$
$=\frac{1}{1+\bar{k}}(33+33 k)=33$
Hence, the graph passes through F.

(b) (i) $g(x)=f(-x)+4$

$=\frac{1}{1+k}\left(\begin{array}{l}\left.(x)^{2}+(6 k \quad 2)(x)+(9 k+25)\right)+4\end{array}\right.$
$=\frac{1}{1+k}\left(\begin{array}{lll}x^{2} & (6 k & 2\end{array}\right) x+(3 k \quad 1)^{2}$
$\left.(3 k 1)^{2}+(9 k+25)\right)+4$
$=\frac{1}{1+k}\left(\left(\begin{array}{ll}x & \left.3 k+1)^{2}-9 k^{2}+3 k+24\right)+4 \\ 1\end{array}\right.\right.$
$\frac{1}{1+k}\left((x 3 k+1)^{2}-3(1+k)(3 k-8)\right)+4$
$\frac{1}{1+k}\left(\begin{array}{lll}x & 3 k+1\end{array}\right)^{2} \quad 3(3 k \quad 8)+4$
$=\frac{1}{1+k}(x \quad 3 k+1)^{2}+28-9 k$
$\therefore U=\left(\begin{array}{ll}3 k & 1,28\end{array} 9 k\right)$
(ii) As F varies, the circle is the smallest when $O U$ is the As F varie
diameter
$\frac{\text { Method }}{F O \perp F U} \Rightarrow m_{F O} m_{F U}=-1$

$\frac{28-9 k(28 k k)-4}{3 k-1(3 k-1)-4}=-1$
$(28-9 k)^{2} \quad 33(28 \quad 9 k)=(3 k-1)^{2}+4(3 k$
$90 k^{2} \quad 225 k-135=0$

$$
k=3 a r \frac{1}{2}(\mathrm{rej} .)
$$

Mehod 2
Mid-pt of $O U=\left(2, \frac{33}{2}\right)$
$\sqrt{(3 k-12)^{2}+\left(28-9 k-\frac{33}{2}\right)^{2}}=\sqrt{2^{2}+\left(\frac{33}{2}\right)^{2}}$
$\left(\begin{array}{ll}3 k & 1\end{array}\right)^{2} 4(3 k-1)+\left(\begin{array}{ll}28 & 9 k\end{array}\right)^{2}$
$\begin{aligned} 33(2 s & 9 k) \\ 90 k^{2}-225 k-135 & =0\end{aligned}$

$$
k=3 \text { or } \frac{-1}{2}(\text { rej. })
$$

(iii) The fixed point G is theimage of F after the above transformations. i.e. $G=(4,37)$.
$V=(3(3)-128-9(3))=(8,1)$
Method 1
$m_{G F} \cdot m_{G O}=\frac{37 \quad 33}{4} \cdot \frac{37-0}{-4-0}=\frac{37}{8} \neq-1$
G is not on the circle with $\bar{F} O$ as diameter is the circle through F, O and V) \Rightarrow NO
Method 2
The circle through $F(4,33), O(0,0)$ and $V(8,1)$ is $\left(\begin{array}{ll}x & 2)^{2}+(y \\ \left.\frac{33}{2}\right)^{2} & =2^{2}+\left(\frac{33}{2}\right)^{2}\end{array}\right.$ $x^{2}+y^{2}-4 x \quad 33 y=0$
Put $G(4,37):$ LHS $=180 \neq$ RHS $\Rightarrow \mathrm{NO}$
Method 2'
Let the circle through $F(4,33), O(0,0)$ and $V(8,1)$ bc
$4^{2}+d x+e y+f=0$.
$\left\{\begin{array}{l}4^{2}+33^{2}+4 d+33 e+f=0 \\ 0^{2}+0^{2}+0 d+0 e+f=0 \\ 8^{2}+1^{2}+8 d+e+f=0\end{array} \Rightarrow\left\{\begin{array}{l}d=4 \\ e=-33 \\ f=0\end{array}\right.\right.$
$8^{2}+1^{2}+8 d+e+f=0 \quad\{\quad f=0$
Thus, the eqn of circle $F O V$ is $x^{2}+y^{2}-4 x-33$
Put $G(-4,37):$ LHS $=180 \neq$ RHS \Rightarrow NO
6C. 57 HKDSE MA 2020-1-1

sea	LetMbebe mid poist of μ. Thmi, $G M \perp A B$ (line jolning eatre tomidept. of choced \perp deord). Slece $A B$ is bovicontal avis werticil. Thexeordinuear $G=\frac{-20+30}{2}$ Tierodera of $C=\lambda G$ $\begin{aligned} & =\sqrt{(-10-10)^{2}+[0-(-15)]^{2}} \\ & =25 \end{aligned}$ TBestiace the eqution of C is $(x-10)^{2}+[y-(-15)]^{2} z y^{2}$. is. $x^{1}+y^{2} \quad 30 x+30 y-300=0$. I'mal meparalch. Sece Γ and I mep perlled, we kow tax be slopeof Γ is sequal io the slope ofthes $\frac{-15-0}{10-30} \frac{3}{4}$ Let $P=(x y)$. $y-0=\frac{3}{4}[x-(-i 0)]$ $3 x-4 y+30 \div 0$ Thenefore the equetion of $\mathrm{Tin} 3 \mathrm{zr} 4 y+30=0$. Tet Gbe the iectiantion of $A G$ and sbe to inclimation of $A R$. Nose that $00 \leq 0<180^{\circ}$ ad $0^{\circ} \leq \phi<180^{\circ}$.

16D Loci in the rectangular coordinate plane

16D. 1 (HKCEE MA 1981(3) -I 7)

(a) $P=\left(\frac{4(1)+1(16) 4(4)+1(-16)}{1+4}\right)-(4,0)$
(b) Put A into the prabola: (4) ${ }^{2}=4 a(1) \Rightarrow a=4$ Hence, the parabola is $y^{2}=16 x$.

$x^{2}+8 x+16=x^{2} \quad 8 x+16+y^{2}$
which is the given parabola.
16D. 2 HKCEE AM $1987-11-10$
(a) $\begin{aligned}(x+1)^{2} & =(x-1)^{2}+(y 0)^{2} \\ x^{2}+2 x+1 & =x^{2} \quad 2 x+1+y^{2}\end{aligned}$

16D. 3 (HKCEE AM 1994 II-4)
(a) (Not ethat $P R_{0}$ is parallel to the x-axis. Thus:) Area $=\frac{(40)(6-4)}{2}=4$
(b) (i) A pair of lines parallel and equidistant to $P Q$

(ii) $m_{P Q}=\frac{6-4}{2-0}=-1$

Since R_{0} is a point on the locus (from (a)), the line parallel to $P Q$ and through $R_{0}(4,4)$ is:
y $4=1\left(\begin{array}{ll}x & 4)\end{array} \Rightarrow y=x\right.$
Thus, the equations are $y=x$ and $y=x+4+4=x+8$.
16D. 4 HKCEE AM $1999-\mathbb{I I}-10$
(a) $\left.\left.\begin{array}{rl}(x+3)^{2}+(y \quad 0 &)^{2} \\ =3\left[(x+1)^{2}+(y\right. & 0\end{array}\right)^{2}\right], ~ \begin{aligned} x^{2}+6 x+9+y^{2} & \left.=3 x^{2}+6 x+3+3\right)^{2}\end{aligned}$
$2 x^{2}+2 y^{2}=6 \Rightarrow x^{2}+y^{2}=3$
(b) Slope of segment joining centre and $T=\frac{b}{a}$
\Rightarrow Slope of $\operatorname{tg}=\frac{a}{b}$
\therefore Eqn of tg. $\quad y \quad b=-\frac{a}{b}(x-a)$
(c) If the tangent in (b) passes through A_{1}
$\begin{aligned} a(-3)+b(0)-3=0 & \Rightarrow a=-1 \\ & \Rightarrow b= \pm \sqrt{3-a^{2}}= \pm \sqrt{2}\end{aligned}$
Since S is in Quad II. $S=(a, b)=(-1, \sqrt{2})$

16D.5 (HKCEE AM 2004-10)
A pair of straight lines parallel and equisdistant to $O A$
$\because O A=\sqrt{3^{2}+4^{2}}=5$
\therefore Dist. from the lincs to $O A=\frac{2 \times 2}{5}=0.8$

16D6 (HKCEE AM 2011-16)
(a) Centrc of $C_{1}=(0,5)$, Radius of $C_{1}=\sqrt{5^{2} \quad 16}=3$ Radius of t heunknown circle $=y$
It touches C_{1} externally
$\sqrt{(x-0)^{2}+(y-5)^{2}}=y+3$
$x^{2}+y^{2}-10 y+25=y^{2}+6 y$

$$
x^{2}+16=16 y \Rightarrow y=\frac{1}{16} x^{2}+1
$$

(b) (2) Let (h, k) be the ceatre of C_{2}.

Then $k=\frac{1}{16} h^{2}+1$.
Radius $=k=\sqrt{(\bar{\hbar}} \quad 2 \overline{)^{2}+(k \quad 16)^{2}}$
$\begin{array}{lll}k=\sqrt{(h} & 20)^{2}+(k & 16)^{2} \\ k^{2}=k^{2}+k^{2} & 40 h & 32 k+656\end{array}$
$0=h^{2}-40 / h \quad 32\left(\frac{1}{1 h^{2}} h^{2}+1\right)+656$
$0=h^{2} \quad 40 h+624$
$\therefore(h, k)=\left(12, \frac{1}{16}(12)^{2}+1\right)=(12,10)$
\Rightarrow Eqn of C_{2} \qquad $\left(\begin{array}{ll}x & 12)^{2} \\ +(y-10)^{2} & =10^{2}\end{array}\right.$
(ii) The point of contact is collinear with the $\Rightarrow x^{2}+y^{2}$ The point of contact is collinear with the 2 ecntres which are both points on S. However, for a parabol the parabola (we call it a 'secant' line) must lie above the parabola
The sentence is not correct.
(c) A circl ethatsatisfies the first two conditions will touc hC aternally. Hence, it cannot satisfy the last condition. \therefore NO

16D. 7 HKDSEMASP-I-13
(a) $m_{L_{1}}=\frac{4}{3} \Rightarrow m_{L_{2}}=\frac{3}{4}$
\therefore Eqn of $L_{2}: y \quad 9=\frac{-3}{4}(x-4) \Rightarrow 3 x+4 y^{\prime} \quad 48=0$
(b) (i) Γ is the perpendicul arbisector of $A B$
(ii) $\therefore \Gamma / / L_{0}$
$\left\{\begin{array}{l}L_{1}: 4 x \\ 3 y+12=0\end{array}\right.$
$\left\{\begin{array}{l}L_{1}: 4 x \quad 3 y+12=0 \\ L_{2}: 3 x+4 y \quad 48=0\end{array}\right.$
$L_{2}: 3 x+4$
$B=\{0,4)$
$(x-3.84)^{2}+(y \quad 9.12)^{2}=(x-0)^{2}+(y$
$\begin{aligned}(x-3.84)^{2}+(y & 9.12)^{2}\end{aligned}=(x-0)^{2}+\left(\begin{array}{ll}y & 4\end{array}\right)$ $3 x+4 y \quad 32=0$
Method?
y-int of $\bar{L}_{1}=4 . \quad y$-int of $L_{2}=12$
$\Rightarrow y$-intercept of $\Gamma=\frac{4+12}{2}=$
\therefore Eqn of Γ is $y=\frac{-3}{4} x+8$
16D. 8 HKDSEMA PP - I- 8
(a) $A^{\prime}(3,4), \quad B^{\prime}(5,-2)$
(b) Eqn: $\left(\begin{array}{ll}x & 3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2}\end{array}\right.$
$3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2}$
$6 x \quad 8 y+25=10 x \Rightarrow 4 x-8 y+25=0$
16D. 9 HKDSE MA 2012-I-14
(a) (i) $\Gamma / / L$
(ii) y-intereept of $\Gamma=\frac{(1)+(3)}{2}=2$
$m_{L}=\frac{0+1}{3 \quad 0}=\frac{1}{3}$
Eqn of $\Gamma ; y=\frac{1}{3} x \quad 2$
(b) (i) Put Q into the eqn of Γ :

RHS $=\frac{1}{3}(6)-2=$ OLHS
$\therefore r$ passes through Q
(ii) $Q H=Q K=$ radius

In fact, $H Q R$ is a diameter of the circte) Besides, since A and B Ie on L, theirperpendicular distances to Γ is the distance bet ween L and Γ.
i.e. The beight of $\triangle A Q H$ with $Q H$ as base and the height of $\triangle B Q K$ with $Q K$ as base are the same.
\therefore Area of $\triangle A Q H:$ Area of $\triangle B Q K=1: 1$
16D. 10 HKDSE MA 2013-I-14
(a) $R \quad(6,17)$
(b) (i) Method I
$m_{L}=\frac{-}{3}$
\Rightarrow Eqn of PR: y $17=\frac{-1}{\frac{5}{3}}(x \quad 6) \Rightarrow y=\frac{3}{4} x+\frac{25}{2}$
$\left\{\begin{array}{l}P R: y=\frac{3}{4} x+\frac{23}{2} \\ L: 4 x+3 y+50=0\end{array} \Rightarrow P=(14,2)\right.$
Method 2
Let $P=(a, b)$

$$
\begin{aligned}
& \begin{array}{l}
P R \perp L \\
m_{P R}=-1 \div \frac{-4}{3}=\frac{3}{4} \Rightarrow \frac{b-17}{a-6}=\frac{3}{4}
\end{array} \\
& \left\{\begin{array}{l}
4 a+3 b+50=0 \\
\frac{b-17}{a-6}=\frac{3}{4}
\end{array} \Rightarrow(a, b)=(-14,2)\right. \\
& \frac{{ }^{a}{ }^{6}}{}=\frac{3}{4} \\
& \text { (1) }=\sqrt{(14-6})^{2}+(2 \quad 17)^{2}=25
\end{aligned}
$$

(1) $P \cdot Q$ and R are collinear.
$Q R=$ radius of circliear. $=\sqrt{6^{2}}+17^{2}-220$
$\therefore \frac{A r e d ~ o f ~}{O O P Q}=10$
$\therefore \frac{P Q}{10}=\frac{25}{10}=\frac{3}{2}$

16D. 11 HKDSE MA 2014-I- 12
(a) Radius of $C=\sqrt{(6-0)^{2}+(11-3)^{2}}=10$
\therefore Eqn of $C:(x-0)^{2}+(y-3)^{2}=10^{2}$
(b) (i) Eqn of Γ :

Eqn of Γ :
$(x-6)^{2}+(y-11)^{2}=(x-0)^{2}+(y-3)^{2}$ $-12 x-22 y+157=-6 y+9$
(ii) Γ is the perpendicular bisector of $A G$
(iii) The quadrilateral is a rhombus.
\therefore Perimeler $=4 \times$ Radius $=40$

16D. 12 HKDSE MA 2016 I- 10
(a) Eqn of Γ :
$(x \quad 5)^{2}+(y-7)^{2}=(x-13)^{2}+(y-1)^{2}$
$-10 x-14 y+74=-26 x-2 y+170$ $4 x-3 y-24=0$
(b) $H=(6,0), K=(0,-8)$

Since $\angle H O K=90, H K$ is a diameter of C iameter $=\sqrt{6^{2}+8^{2}}=10$
Circumference of $C=10 \pi=31.4>30$
\therefore YES
16. 13 HKDSE MA 2017-I-13
(a) Radius $=\sqrt{(-6-2)^{2}+(5+1)^{2}}=10$
\therefore Eqn of C : $\begin{aligned}(x-2)^{2}+(y+1)^{2} & =10^{2} \\ \Rightarrow x^{2}+y^{2}-4 x+2 y-95 & =0\end{aligned}$
(b) Mechod 1-Erom the standard form
$\frac{\text { Qecthod }- \text { Erom the standard form }}{F G=\sqrt{(-3-2)^{2}+(11+1)^{2}}}=13>$ Radius \therefore Outside
Mechod 2-From the general form Put F : LHS $=(3)^{2}+(11)^{2}-4(-3)+2(11)-95$ \therefore Outside
(c) (i) F, G and H are collinear.
(ii) Req. egn: $\frac{y+1}{x-2}=\frac{11+1}{3-2} \Rightarrow 12 x+5 y-19=0$

16D. 14 HKDSEMA 2019-I- 17
(a) Let I be the in-centre of $\triangle C D E$. Then the perpendiculars from I to $C D, D E$ and $E C$ are all r.
a $\frac{r \cdot C D}{2}+\frac{r \cdot D E}{2}+\frac{r \cdot E C}{2}$
$=\frac{r(C D+D E+E C)}{2}=\frac{r(p)}{2} \Rightarrow p r=2 a$

(b) (i) Γ is the angle bisedor of $\angle O H K$.
(ii) $O K=14$
$O K=\sqrt{9^{2}+12^{2}}-15$
$O H=120$
$A K=\sqrt{ }(9-14)^{2}+(12-0)^{2}=13$
Perimeter of $\triangle \mathrm{OHK}=42$
Area of $\triangle O H K=\frac{14 \times 12}{2}=84$
From (a), radius of inscribed circle $=\frac{42 \times 84}{2}=4$
Let the in-centre be $J(h, 4)$.

Method 1
By langent properties,
$O Q=O P=h \Rightarrow\left\{\begin{array}{l}H R=H P=15-h\end{array}\right.$
$\therefore H K=13=(15-h)+(14-h) \Rightarrow h$

Method 2
Let the inscribed circle touch $O H$ at P.
In $\triangle O J P, O P^{2}=O J^{2}-P J^{2}$
$=\left(\sqrt{h^{3}+4^{2}}\right)^{2}-4^{2}=h^{2}$
In $\triangle H J P, P H^{2}=H H^{2}-P J^{2}$

$$
\begin{aligned}
H^{2} & =H P^{2}-P f^{2} \\
& =\left(\sqrt{(h-9)^{2}+(4-12)^{2}}\right)^{2}-4^{2} \\
& =h^{2}-18 h+129
\end{aligned}
$$

$\therefore \begin{aligned} & O P+P H=O H \\ & h+\sqrt{h^{2}-18 h+129}=15\end{aligned}$
$h^{2}-18 h+129=225-30 h+h^{2}$ $\begin{aligned} 129 & =22 \\ h & =8\end{aligned}$

$\frac{\text { Hence. }}{J=(8.4)}$
Eqn of $H J$ (i.e. Γ) is $\begin{array}{rl}\frac{y-4}{x} 8 & =\frac{12-4}{9-8} \\ \Rightarrow y & y=8 x-60\end{array}$

16E Polar coordinates

16E. 1 HKCEE MA 2009-I-8
(a) $\angle P O Q=213^{\circ}-123^{\circ}=90^{\circ}$
$\therefore \triangle O P Q$ is right-angled.
(b) $k^{2}+24^{2}=25^{2} \Rightarrow k=$
\therefore Perimeter $=7 \div 24+25=56$
16E. 2 HKDSEMA PP-I- 6
(a) $\angle A O C=337^{\circ} \quad 157^{\circ}=180^{\circ}$
$\therefore A, O$ and C are collinear.
(b) $\angle A O B=247^{\circ}-157^{\circ}=90^{\circ}$
$O B$ is the height of $\triangle A B C$ with $A C$ as base.
\therefore Area $=\frac{(13+15) \times 14}{2}=196$
16E. 3 HKDSE MA 2013-I-6
(a) L bisects $\angle A O B$.
(b) Suppose L intersects $A B$ at P.
$\angle A O P=\begin{gathered}130^{\circ}-10^{\circ} \\ 2\end{gathered}=60^{\circ}, \quad O P=O A \cos 60^{\circ}=13$
\therefore The intersection $=P=\left(13,10^{\circ}+60^{\circ}\right)=\left(13,70^{\circ}\right)$
16E. 4 HKDSE MA 2016-I-7
(a) $\angle A O B=135^{\circ}-75^{\circ}=60^{\circ}$
(b) $O A=O B=12$ and $\angle A O B=60$
$\Rightarrow \triangle A O B$ is equilateral.
. Perimeter $=12 \times 3=36$
(c) 3

