12 Geometry of Circles

12A Angles and chords in circles

12A. 1 HKCEE MA 1980(1/1*/3)-1 10
(Continued from 15A.1.)
A, B and C are three points on the line $O X$ such that $O A=2, O B=3$ and $O C=4$. With A, B, C as centres and $O A, O B, O C$ as radii, three semi-circles are drawn as shown in the figure. A line $O Y$ cuts the three semi circles at P, Q, R respectively.
(a) If $\angle Y O X=\theta$, express $\angle P A X, \angle Q B X$ and $\angle R C X$ in terms of θ.
(b) Find the following ratios:
area of sector $O A P$: area of sector $O B Q$: area of sector $O C R$.
(c) If $R D \perp O X$, calculate the angle θ.

12A. 2 HKCEE MA 1980(1*) - I 14
In the figure, $A B=A C, A D=A E, x=y$. Straight lines $B^{\prime} D$ and $C E$ intersect at K.
(a) Prove that $\triangle A B D$ and $\triangle A C E$ are congruent.
(b) Prove that $A B C K$ is a cyclic quadrilateral.
(c) Besides the quadrilateral $A B C K$, there is another cyclic quadrilateral in the figure. Write it down (proof is not required).

12A. 3 HKCEE MA 1981(2) I 7
In the figure, O is the centre of circle $A B C . \angle O A B=40^{\circ}$. Calculate $\angle B C A$.

12A.A HKCEE MA 1982(2) -I 6
In the figure, O is the centre of the circle $B A D . B O C$ and $A D C$ are straight lines. If $\angle A D O=50^{\circ}$ and $\angle A C B=20^{\circ}$, find x, y and z.

12A. 5 HKCEE MA 1982(2) I 13

In the figure, $\triangle A D B$ and $\triangle A C E$ are equilateral triangles. $D C$ and $B E$ intersect at F.
(a) Prove that $D C=B E$. [Hint: Consider $\triangle A D C$ and $\triangle A B E$.]
(b) (i) Prove that A, D, B and F are concyclic.
(ii) Find $\angle B F D$.
(c) Let the mid points of $D B, B C$ and $C E$ be X, Y and Z respectively. Find the angles of $\triangle X Y Z$.

12A. 6 HKCEEMA 1989-I -4

$A B$ is a diameter of a circle and M is a point on the circumference. C is a point on $B M$ produced such that $B M=M C$.
(a) Draw a diagram to represent the above information.
(b) Show that $A M$ bisects $\angle B A C$.

12A. 7 HKCEE MA 1989 I-6

(To continue as 14A.4.)
In the figure, $A B C D$ is a cyclic quadrilateral with $A D=10 \mathrm{~cm}, \angle A C D=60^{\circ}$ and $\angle A C B=40^{\circ}$.
(a) Find $\angle A B D$ and $\angle B A D$.

12A. 8 HKCEE MA 1990 I-9
In the figure, $A B$ is a diameter of the circle $A D B$ and $A B C$ is an isosceles triangle with $A B=A C$.
(a) Prove that $\triangle A B D$ and $\triangle A C D$ are congruent.
(b) The tangent to the circle at D cuts $A C$ at the point E. Prove that $\triangle A B D$ and $\triangle A D E$ are similar.
(c) In (b), let $A B=5$ and $B D=4$.
(i) Find $D E$.
(ii) $C A$ is produced to meet the circle at the point F. Find $A F$.

12A. 9 HKCEEMA 1992 I-11

In the figure, A, B, C, D, E and F are points on a circle such that $A D / / F E$ and $\widehat{B C D}=\widehat{A F E} . A D$ intersects $B E$ at $X . A F$ and $D E$ are produced to meet at Y.
(a) Prove that $\triangle E F Y$ is isosceles.
(b) Prove that $B A / / D E$.
(c) Prove that A, X, E, Y are concyclic.
(d) If $b=47^{\circ}$, find f_{1}, y and x.

12A. 10 HKCEE MA 1993-I-11

The figure shows a semicircle with diameter $A D$ and centre O. The chords $A C$ and $B D$ meet at $P . Q$ is the foot of the perpendicular from P to $A D$.
(a) Show that A, Q, P, B are concyclic.
(b) Let $\angle B Q^{P}=\theta$. Find, in terms of θ,
(i) $\angle B Q C$,
(ii) $\angle B O C$.
(c) Let $\angle C A D=\phi$. Find $\angle C B Q$ in terms of ϕ.

12A. 11 HKCEE MA 1994 I- 13

In the figure, A, B, C, D are points on a circle and $A B E, G H K E, D J C E, A G D F, H J F$, $B K C F$ are straight lines. $F H$ bisects $\angle A F B$ and $G E$ bisects $\angle A E D$.
(a) Prove that $\angle F G H=\angle F K H$.
(b) Prove that $F H \perp G K$.
(c) (i) If $\angle A E D=\angle A F B$, prove that D, J, H, G are concyclic.
(ii) If $\angle A E D=28^{\circ}$ and $\angle A F B=46^{\circ}$, find $\angle B C D$.

12A. 12 HKCEEMA 1996-I- 6

In the figure, A, B, C, D are points on a circle. $C B$ and $D A$ are produced to meet at P. If $A B / / D C$, prove that $A P=B P$.

12A. 13 HKCEE MA 1997 - I-9

In the figure, $A C$ is a diameter of the circle. $A C=4 \mathrm{~cm}$ and $\angle B A C=30^{\circ}$. Find (a) $\angle B D C$ and $\angle A D B$,
(b) $\overparen{A B}: \widehat{B C}$
(c) $A B: B C$.

12A.14 HKCEEMA 1998-I-6

In the figure, A, B, C, D are points on a circle. $A C$ and $B D$ meet at E.
(a) Which triangle is similar to $\triangle E C D$?
(b) Find y.

12A. 15 HKCEE MA 1998 - I - 14

In the figure, O is the centre of the semicircle $A B C D$ and $A B=B C$. Show that $B O / / C D$.

12A. 16 HKCEEMA 1999-I-5

In the figure, A, B, C, D are points on a circle and $A C$ is a diameter. Find x and y.

12A. 17 HKCEE MA 1999-I-16
(To continue as $\mathbf{1 6 C . 2 0}$.)
(a) In the figure, $A B C$ is a triangle right angled at B. D is a point on $A B$. A circle is drawn with $D B$ as a diameter. The line through D and parallel to $A C$ cuts the circle at E. $C E$ is produced to cut the circle at F.
(i) Prove that A, F, B and C are concyclic.
(ii) If M is the mid point of $A C$, explain why $M B=M F$.

12A. 18 HKCEEMA 2000-I-7

In the figure, $A D$ and $B C$ are two parallel chords of the circle. $A C$ and $B D$ intersect at E. Find x and y.

12A. 19 HKCEE MA 2001 - I-5

In the figure, $A C$ is a diameter of the circle. Find $\angle D A C$.

12A. 20 HKCEE MA 2002-I -9

In the figure, $B D$ is a diameter of the circle $A B C D . A B=A C$ and $\angle B D C=40^{\circ}$. Find $\angle A B D$.

12A. 21 HKCEE MA 2002 I 16
(Tb continue as 16C.23.)
In the figure, $A B$ is a diameter of the circle $A B E G$ with centre C. The perpendicular from G to $A B$ cuts $A B$ at O. $A E$ cuts $O G$ at D. $B E$ and $O G$ are produced to meet at F.
Mary and John try to prove $O D \cdot O F=O G^{2}$ by using two different approaches
(a) Mary tackles the problem by first proving that $\triangle A O D \sim \triangle F O B$ and $\triangle A O G \sim \triangle G O B$. Complete the following tasks for Mary.
(i) Prove that $\triangle A O D \sim \triangle F O B$.
(ii) Prove that $\triangle A O G \sim \triangle G O B$.
(iii) Using (a)(i) and (a)(ii), prove that $O D \cdot O F=O G^{2}$.

12A. 22 HKCEE MA 2005-I - 17

(To continue as 16 C .26 .)
(a) In the figure, $M N$ is a diameter of the circle $M O N R$. The chord $R O$ is perpendicular to the straight line $P O Q . R N Q$ and $R M P$ are straight lines.
(i) By considering triangles $O Q R$ and $O R P$, prove that $O R^{2}=O P \cdot O Q$.
(ii) Prove that $\triangle M O N \sim \triangle P O R$.

12A. 23 HKCEE MA 2006-I-16

In the figure, G and H are the circumcentre and the orthocentre of $\triangle A B C$ respectively. $A H$ produced meets $B C$ at O. The perpendicular from G to $B C$ meets $B C$ at $R . B S$ is a diameter of the circle which passes through A, B and C.
(a) Prove that
(i) $A H C S$ is a parallelogram,
(ii) $A H=2 G R$.

12A. 24 HKCEE MA 2007- 1 - 17

(a) In the figure, $A C$ is the diameter of the semi circle $A B C$ with centre O. D is a point lying on $A C$ such that $A B=B D$. I is the in-centre of $\triangle A B D$. $A I$ is produced to meet $B C$ at $E . B I$ is produced to meet $A C$ at G.
(i) Prove that $\triangle A B G \cong \triangle D B G$.
(ii) By considering the triangles $A G I$ and $A B E$, prove that $\frac{G I}{A G}=\frac{B E}{A B}$.

12A. 25 HKCEE MA 2008 -I 17

The figure shows a circle passing through A, B and C. I is the in centre of $\triangle A B C$ and $A I$ produced meets the circle at P. (a) Prove that $B P=C P=I P$.

12A. 26 HKDSE MA SP I 7

In the figure, O is the centre of the semicircle $A B C D$. If $A B / / O C$ and $\angle B A D=38^{\circ}$, find $\angle B D C$.

12A. 27 HKDSE MA PP $-1-7$

In the figure, $B D$ is a diameter of the circle $A B C D$. If $A B=A C$ and $\angle B D C=36^{\circ}$, find $\angle A B D$.

12A. 28 HKDSE MA PP-I- 14

In the figure, $O A B C$ is a circle. It is given that $A B$ produced and $O C$ produced meet at D.
(a) Write down a pair of similar triangles in the fi gure.

12A. 29 HKDSE MA 2012-1-8

In the fi gure, $A B, B C, C D$ and $A D$ are chords of the circle. $A C$ and $B D$ intersect at E. It is given that $B E=8 \mathrm{~cm}, C E=20 \mathrm{~cm}$ and $D E=15 \mathrm{~cm}$.
(a) Write down a pair of similar triangles in the figure. Also find $A E$.
(b) Suppose that $A B=10 \mathrm{~cm}$. Are $A C$ and $B D$ perpendicular to each other? Explain your answer.

12A. 30 HKDSE MA 2015-I-8

in the figure, $A B C D$ is a circle. E is a point lying on $A C$ such that $B C=C E$. It is given that $A B=A D, \angle A D B=58^{\circ}$ and $\angle C B D=25^{\circ}$. Find $\angle B D C$ and $\angle A B E$.

12A. 31 HKDSEMA 2017-I - 10
(Continued from 118.11)
In the figure, $O P Q R$ is a quadrilateral such that $O P=O Q=O R . O Q$ and $P R$ intersect at the point $S . S$ is he mid-point of $P R$.
(a) Prove that $\triangle O P S \cong \triangle O R S$.
(b) It is given that O is the centre of the circle which passes through P, Q and R. If $O Q=6 \mathrm{~cm}$ and $\angle P R Q=10^{\circ}$, find the area of the sector $O P Q R$ in terms of π.

12A. 32 HKDSE MA 2018 -I- 8

In the figure, $A B C D E$ is a circle. It is given that $A B / / E D . A D$ and $B E$ intersect at the point F.
Express x and y in terms of θ.

12A. 33 HKDSE MA 2019-1-13

In the figure, O is the centre of circle $A B C D E, A C$ is a diameter of the circle. $B D$ and $O C$ intersect at the point F. It is given that $\angle A E D=115^{\circ}$.
(a) Find $\angle C B F$.
(b) Suppose that $B C / / O D$ and $O B=18 \mathrm{~cm}$. Is the perimeter of the sector $O B C$ less than 60 cm ? Explain your answer.

12B Tangents of circles

12B. 1 HKCEE MA 1980(1*)-I 8

In the figure, $T A$ and $T B$ touch the circle at A and B respectively. $\angle A C B=65^{\circ}$ Find the value of x.

12B. 2 HKCEE MA 1981(2) I-13

In the figure, circles $P M Q$ and $Q N R$ touch each other at Q $Q T$ is a common tangent. $P Q R$ is a straight line. $T P$ and $T R$ cut the circles at M and N respectively.
(a) If $\angle P=x$ and $\angle R=y$, express $\angle M Q N$ in terms of x and y.
(b) Prove that Q, M, T and N are concyclic.
(c) Prove that P, M, N and R are concyclic.
(d) There are several pairs of similar triangles in the fig ure. Name any two pairs (no proof is required).

12B. 3 HKCEE MA 1982(2) I-14

In the figure, two circles touch internally at $T . T R$ is their common tangent. $A B$ touches the smaller circle at $S . A T$ and $B T$ cut the smaller circle at P and Q respectively.
$P Q$ and $S T$ intersect at K.
(a) Prove that $P Q / / A B$.
(b) Prove that $S T$ bisects $\angle A T B$.
(c) $\triangle S T Q$ is similar to four other triangles in the figure. Write down any three of them.
(No proof is required.)

12B. 4 HKCEE MA 1983(A/B)-I 2
In the figure, O is the centre of the circle. A and B are two points on the circle such that $O A B$ is an equilateral triangle. $O A$ is produced to C such that $O A=A C$.
(a) Find $\angle A B C$
(b) Is $C B$ a tangent to the circle at B ? Give a reason for your answer

12B.5 HKCEEMA 1984(A/B) I-5
In the figure, $A P$ and $A Q$ touch the circle $B C D$ at B and D respectively. $\angle P B C=30^{\circ}$ and $\angle C D Q=80^{\circ}$. Find the values of x, y and z.

12B. 6 HKCEE MA 1985(A/B)-I - 2
In the figure, $P B$ touches the circle $A B C$ at B. $P A C$ is a straight line. $\angle A B C=60^{\circ} . A P=A B$. Find the value of x.

12B. 7 HKCEE MA 1986(A/B) I-2

In the figure, TAE and TBF are tangents to the circle $A B C$. If $\angle A T B=30^{\circ}$ and $A C / / T F$, find x and y.

12B. 8 HKCEE MA 1986(A/B) - I-6

In the figure, A, B and C are three points on the circle. $C T$ is a tangent and $A B T$ is a straight line.
(a) Name a triangle which is similar to $\triangle B C T$.
(b) Let $B T=x, A B=17$ and $C T=10 \sqrt{2}$. Find x.

12B. 9 HKCEE MA 1987(A/B) I 6

The figure shows a circle, centre O, inscribed in a sector $A B C . D, E$ and F are points of contact. $O D=1 \mathrm{~cm}, A B=r \mathrm{~cm}$ and $\angle B A C=60^{\circ}$. Find r.

12B.10 HKCEE MA 1987(A/B) I-7

In the figure, O is the centre of the circle. $A O C P$ is a straight line, $P B$ touches the circle at $B, B A=B P$ and $\angle P A B=x^{\circ}$. Find x.

12B.11 HKCEEMA 1988 I-8(b)

In the figure, $C T$ is tangent to the circle $A B T$.
(i) Find a triangle similar to $\triangle A C T$ and give reasons.
(ii) If $C T=6$ and $B C=5$, find $A B$.

12B. 12 HKCEE MA 1991 I-13

In the figure, A, B are the centres of the circles $D E C$ and $D F C$ respectively. $E C F$ is a straight line.
(a) Prove that triangles $A B C$ and $A B \bar{D}$ are congruent.
(b) Let $\angle F E D=55^{\circ}, \angle A C B=95^{\circ}$
(i) Find $\angle C A B$ and $\angle E F D$.
(ii) A circle S is drawn through D to touch the line $C F$ at F.
(1) Draw a labelled rough diagram to represent the above information.
(2) Show that the diameter of the circle S is $2 D F$.

12B. 13 HKCEE MA 1995-I-14

In Figure (1), $A P$ and $A Q$ are tangents to the circle at P and Q. A line through A cuts the circle at B and C and a line through Q parallel to $A C$ cuts the circle at $R . P R$ cuts $B C$ at M.
(a) Prove that
(i) M, P, A and Q are concyclic;
(ii) $M R=M Q$.
(b) If $\angle P A C=20^{\circ}$ and $\angle Q A C=50^{\circ}$, find $\angle Q P R$ and $\angle P Q R$. (You are not required to give reasons.)
(c) The perpendicular from M to $R Q$ meets $R Q$ at H (see Figure (2))
(i) Explain briefly why $M H$ bisects $R Q$.
(ii) Explain briefly why the centre of the circle lies on the line through M and H.

Figure (1)

Figure (2)

12B. 14 HKCEE MA 1997-I - 16

(To continue as 16C.18.)
(a) In the figure, D is a point on the circle with $A B$ as diameter and C as the centre. The tangent to the circle at A meets $B D$ produced at E. The perpendicular to this tangent through E meets $C D$ produced at F.
(i) Prove that $A B / / E F$.
(ii) Prove that $F D=F E$
(iii) Explain why F is the centre of the circle passing through D and touching $A E$ at E.

12B. 15 HKCEE MA 2000-I-16

In the figure, C is the centre of the circle $P Q S . O R$ and $O P$ are tangent to the circle at S and P respectively. $O C Q$ is a straight line and $\angle Q O P=30^{\circ}$.
(a) Show that $\angle P Q O=30^{\circ}$.
(b) Suppose $O P Q R$ is a cyclic quadrilateral.
(i) Show that $R Q$ is tangent to circle $P Q S$ at Q

12B. 16 HKCEE MA 2003 - -17

(To continue as 16C.24.)
(a) In the figure, $O P$ is a common tangent to the circles C_{I} and C_{2} at the points O and P respectively. The common chord $K M$ when produced intersects $O P$ at $N . R$ and S are points on $K O$ and $K P$ respectively such that the straight line $R M S$ is parallel to $O P$.
(i) By considering triangles $N P M$ and $N K P$, prove that $N P^{2}=N K \cdot N M$
(ii) Prove that $R M=M S$.

12B.17 HKCEE MA 2004 I 16(a),(b).(c)(i)
(To continue as 16C.25.)
In the figure, $B C$ is a tangent to the circle $O A B$ with $B C / / O A$. $O A$ is produced to D such that $A D=O B$. $B D$ cuts the circle at E,
(a) Prove that $\triangle A D E \cong \triangle B O E$.
(b) Prove that $\angle B E O=2 \angle B O E$
(c) Suppose $O E$ is a diameter of the circle $O A E B$
(i) Find $\angle B O E$.

12B. 18 HKCEE AM 2002-15

(a) $D E F$ is a triangle with perimeter p and area A. A circle C_{1} of radjus r is inscribed in the triangle (see the figure). Show that $A=\frac{1}{2} p r$.

12B.19 HKDSE MA SP-I-19

In the figure, the circle passes through four points A, B, C and $D . P Q$ is the tangent to the circle at D and is paraliel to $B D . A C$ and $B D$ intersect at E. It is given that $A B=A D$.
(a) (i) Prove that $\triangle A B E \cong \triangle A D E$
(ii) Are the in centre, the orthocentre, the centroid and the circum centre of $\triangle A B D$ collinear? Explain your answer.
(To continue as 16C.50.)

$\triangle O P Q$ is an obtuse-angled triangle. Denote the in-centre and the circumcentre of $\triangle O P Q$ by I and J respecively. It is given that P, I and J are collinear
(a) Prove that $O P=P Q$

12B. 21 HKDSE MA 2019 I 17 (To continue as 16D.14.)
(a) Let a and p be the area and perimeter of $\triangle C D E$ respectively. Denote the radius of the inscribed circle of $\triangle C D E$ by r. Prove that $p r=2 a$.

12 Geometry of Circles

12A Angles and chords in circles
12A.1 HKCEE MA $1980(1 / 1 * / 3)-1-10$
(a) $\angle P A \bar{X}=2 \theta$ (\angle at centre twice \angle at $\sigma^{\text {ce }}$)

Similarty, $\angle Q B X=\angle R C X=2 \theta$
(b) Areas of sector $O A P: O B Q: O C R=(O A: O B: O C)^{2}$ $=4: 9: 16$
(c) $\cos \angle R C X=\frac{C D}{C R}=\frac{2}{4}=\frac{1}{2} \Rightarrow 2 \theta=60^{\circ} \Rightarrow \theta=30^{\circ}$

12A. 2 HKCEE MA 1980(1*)-1-14
(a) $\begin{aligned} \angle C A D & =\angle C A D \\ x+\angle C A D & =\angle C A D+y\end{aligned} \quad$ (common)
$\Rightarrow \angle B A D=\angle C A E$,

$$
\begin{array}{cll}
A B=A C & \text { (given) } \\
\angle B A D=\angle C A E & \text { (proved) } \\
A D & =A E & \text { (given) }
\end{array}
$$

$$
\triangle A B D \cong \triangle A C E \quad \text { (SAS) }
$$

(b) $\because \angle A B K=\angle A C K \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$
$\therefore A B C K$ is cyclic. (converse of $\angle \mathrm{s}$ in the same segment) (c) $A E D K$

12A. 3 HKCEEMA 1981(2)-I-7
$\angle O B A=40^{\circ} \quad$ (base $\angle \mathrm{s}$, isos. \triangle)
$\angle B O A=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ} \quad(\angle$ sum of $\triangle)$
$\angle B C A=100^{\circ} \div 2=50^{\circ} \quad\left(\angle\right.$ at centre twice \angle at $\left.\odot^{\alpha}\right)$
12A.4 HKCEEMA 1982(2)-I-6
$x=50^{\circ}-20^{\circ}=30^{\circ} \quad$ (ext. \angle of $\left.\Delta\right)$
Let $O C$ meet the circle at E. Then
$\angle B O D=180^{\circ} \quad x=150^{\circ}$ (adj. \angle s on st line)
$\Rightarrow \angle B E D=150^{\circ} \div 2=75^{\circ} \quad$ (\angle at centre twice \angle at $\odot^{c e}$)

$\Rightarrow=180^{\circ}-20^{\circ}-z=55^{\circ} \quad(\angle$ sum of $\triangle)$

12A. 5 HKCEE MA 1982(2)-I-13
(a) $\angle D A B=\angle E A C=60^{\circ} \quad$ (property of equil. \triangle) $\angle D A B+\angle B A C=\angle E A C+\angle B A C$ $\angle D A C=\angle B A E$
(b) (i) $\because \angle A D C=\angle A B F \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$ A, D, B and F are concyclic.
$\angle B A D=60^{\circ} \quad / \angle \mathrm{sin}$ th

$$
\begin{aligned}
& \text { In } \triangle A D C \text { and } \triangle A B E \text {, } \\
& \begin{aligned}
D A & =B A \quad \quad \text { (property of equil. } \triangle \text {) }
\end{aligned} \\
& \angle D A C=\angle B A E \quad \text { (proved) } \\
& A C=A E \quad \text { (property of equil. } \Delta \text {) } \\
& \therefore \triangle A D C \cong \triangle A B E \\
& \text { (corr sides, } \cong \Delta \mathrm{s} \text {) }
\end{aligned}
$$

(c)

$\therefore B X=X D$ and $B Y=Y C \quad$ (given)
$\therefore X Y=\frac{1}{2} D C$ and $X Y / / D C$ (mid-pt thm)
Similarly. $Y Z=\frac{1}{2} B E$ and $Y Z / / B E$ (mid-pt thm)
$\because D C=B E$ (proved). $X Y=Y Z$
$\angle B F D=60^{\circ}$ (proved)
$\angle B F C=180^{\circ}-60^{\circ}=120^{\circ} \quad$ (adj. $\angle s$ on st. line) and $\angle C F E=60^{\circ}$ (vert. opp. $\angle \mathrm{s}$)
Suppose $X Y$ meets $B E$ at H and $Y Z$ meets $D C$ at K. Then $\angle Y B F=\angle C F E=60^{\circ}$ (corr. $\angle \mathrm{s}, X Y / / D C$) $\angle Y K F=\angle B F D=60^{\circ}$ (corr. $\left.\angle \mathrm{s}, Y Z / / B E\right)$ Hence,
$\angle X Y Z=360^{\circ}-\angle Y H F-\angle Y K F-\angle B F C=120^{\circ}$
 $=\left(180^{\circ}-120^{\circ}\right) \div 2=30^{\circ} \quad(\angle$ sum of $\triangle)$

HKCEE MA 1989-I-4

(b) In $\triangle A B M$ and $\triangle A C M$
$A M=A M$
$M B=M C$
$\angle A M B=\angle A M C=90^{\circ}$
$\therefore \triangle A B M \cong \triangle A C M$
$\therefore \angle B A M=\angle C A M$
i.e. $A M$ bisects $\angle B A C$.

12A.7 HKCEE MA 1989-1-6
(a) $\angle A B D=\angle A C D=60^{\circ}$ ($\angle \mathrm{s}$ in the same segment) $\angle A B D=\angle A C D=60^{\circ}(\angle \mathrm{s}$ in the same segmen)
$\angle B A D=180^{\circ}-\left(60^{\circ}+40^{\circ}\right) \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.) $=80^{\circ}$

2A. 3 HKCEE MA 1990~1-9
(a) In $\triangle A B D$ and $\triangle A C D$,

$\angle A D B$	$=\angle A D C=90^{\circ}$		(\angle in semi-circle)
$A B$	$=A C$		(given)
$A D$	$=A D$		(common)

$\begin{aligned} A D & =A D \\ \triangle A B D & \text { (common) }\end{aligned}$
$\therefore \triangle A B D \cong \triangle A C D$
(b)
$\angle A B D=\angle A D E \quad(\angle$ in alt. segment $)$
$\angle B A D=\angle D A E \quad($ corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$
$\begin{array}{ll}\angle A D B & =\angle A E D \quad(\angle \text { sum of } \triangle)\end{array}$
c) (i) $A D=\sqrt{A B^{2}}-\overline{B D^{2}}=3$ (Pyth thm)

$$
\begin{aligned}
\frac{A B}{A D} & =\frac{A D}{D E} \quad(\text { cor. sides. } \cong \Delta \mathrm{s}) \\
\frac{5}{4} & =\frac{3}{D E} \\
D E & =2.4
\end{aligned}
$$

(ii) $\angle A E D=\angle A D B=90^{\circ}$ (corr $\angle \mathrm{s}, \sim \triangle \mathrm{s}$) $\angle C F B=90^{\circ} \quad$ (\angle in semi-circle)
In $\triangle C F B$ and $\triangle C D A$,

$$
\begin{array}{rlrl}
\angle C P B & =\angle C D A=90^{\circ} & & \text { (proved) } \\
\angle C & =\angle C & \text { (common) } \\
\angle C B F & =\angle C A D & (\angle \text { sum of } \triangle) \\
\therefore \triangle C F B & \sim \triangle C D A & \quad(A A A A) \\
\therefore \frac{C F}{C B} & \left.=\frac{C D}{C A} \quad \text { (corr. sides, } \cong \triangle \mathrm{s}\right) \\
\frac{A C+A F}{C D+D B} & =\frac{C D}{C A} \\
\frac{5+A F}{4+4} & =\frac{5}{5} \Rightarrow A F=1.4
\end{array}
$$

12A. 9 HKCEEMA 1992-1-11
(a) $\quad e_{3}=d \quad$ (cor. $\left.\angle \mathrm{s}, F E / / A D\right)$
$d=f_{1} \quad$ (ext \angle cyclic quad)
$e_{3}=f$
i.e. $\triangle E F Y$ is isosceles. (sides opp. equal $\angle \mathrm{s}$)
(b) : $\widehat{B C D}=\widehat{A F E}$ (given)
$c_{1}=b \quad$ (equal arcs, equal $\angle \mathrm{s}$)
$B A / / D E$ (alt. $\angle \mathrm{s}$ equal)
(c) $f_{1}=b$ (ext \angle, cyclic quad.)
$\begin{array}{ll}=e_{1} & \text { (proved) } \\ e_{3}=d & \text { (proved) }\end{array}$
$\therefore f_{1}+e_{3}+y=180^{\circ}$ (\angle sum of Δ)
$\Rightarrow\left(e_{1}\right)+(d)+y=180^{\circ}$
$x+y=180^{\circ} \quad($ ext \angle of $\triangle)$
$\therefore A, X, E$ and Y are concyclic. (opp. $\angle \mathrm{s}$ supp.)
d) $f_{1}=b=47^{\circ} \quad$ (proved)
$\therefore y=180^{\circ} \quad$ (proved) ${ }^{\circ}$ (\angle sum of $\left.\triangle 1\right)$
$x=180^{\circ}-y=94^{\circ}$ (opp (\angle cyclic quad)

12A. 10 HKCEEMA 1993-1-11

(a) $\angle A B P=90^{\circ} \quad$ (\angle in semi-circle)
$\angle P Q D=90^{\circ}$
$-\quad \angle A B P=\angle P Q D$
$\because \angle A B P=\angle P Q D$
$\therefore A, Q, P$ and B are concyclic. (ext. $\angle=$ int. opp. \angle)
b) (i) $\angle B A C=\angle B Q P=\theta$ ($\angle \mathrm{s}$ in the same segment) $\Rightarrow \angle B D C=\theta \quad(\angle s$ in the same segment $)$ Similar to (a), we get D, Q, P and C are concyclic.
$\Rightarrow \angle P Q C=\angle B D C=\theta \quad(\angle \mathrm{s}$ in the same segment) $\Rightarrow \angle B Q C=\angle B Q P+\angle P Q C=2 \theta$
$\therefore \angle B Q C=\angle B Q P+\angle P Q C=2 \theta$
\therefore BOQC is cyclic. (converse of $\angle s$ in the same segmen)
$\angle C B Q=\angle C O Q$ ($\angle \mathrm{s}$ in the same segment)
$2 \angle C A D=2 \phi \quad$ (\angle at centre twice \angle at $\odot^{c c}$)
12A. 11 HKCEEMA 1994-I-13
(a) $d=b$ (ext. \angle, cyclic quad.)
$. g=180^{\circ}-d-\angle D E G$ (\angle sum of \triangle)
$=180^{\circ}-d-e$
$k_{2}=k_{1} \quad$ (vert. opp. $\angle \mathrm{s}$)
$=180^{\circ}-b-\angle A E G \quad(\angle$ sum of $\triangle)$
$=180^{\circ}-d-e=g \quad$ (prove
$\therefore \angle B C H=\angle F K H$
(b) $h_{2}=g+\angle G F H=g+f \quad$ (ext. \angle of \triangle)
$h_{1}=k_{2}+\angle K F H=k_{2}+f \quad$ (ext. \angle of $\left.\triangle\right)$
$\therefore h_{1}=h_{2}=180^{\circ} \div 2=90^{\circ}$ (adj. $\angle \mathrm{s}$ on s. line)
i. $F H \perp G K$
(c) (i) $d=180^{\circ}-a-2 e \quad(\angle$ sum of $\triangle)$
$=180^{\circ}-a \quad 2 f$ (given)
$=\angle A B F \quad(\angle$ sum of $\triangle)$. $\quad \angle A B F=180^{\circ}$ (opp. cyclic quad.)
$d=180^{\circ} \div 2=90^{\circ}$
Heace, $d=h_{2}=90^{\circ} \quad$ (proved)
$\Rightarrow D, J, H$ and G are concyclic. (ext. $\angle=\mathrm{int} . \mathrm{opp} . \angle)$
(ii) $d=180^{\circ} \quad 28^{\circ}-a=152^{\circ}-a \quad(\angle$ sum of $\triangle)$
$b=a+46^{\circ}$ (ext. \angle of \triangle)
$152^{\circ} \quad \begin{aligned} a & =a+46^{\circ} \quad \text { (ext. } \angle \text {, cyclic quad.) } \\ a & =53^{\circ}\end{aligned}$
$\therefore \angle B C D=180^{\circ} \quad 53^{\circ}$ (opp. $\angle \mathrm{s}$, cyclic quad)
$=127^{\circ}$

2A. 12 HKCEEMA 1996-I- 6

$\angle B A P=\angle D C P \quad$ (ext. \angle, cyclic quad. $)$
 $=\angle A B P \quad$ (corr $\angle \mathrm{s}, A B / / D C)$

$A P=B P \quad$ (sides opp. equal $\angle \mathrm{s}$)

12A. 13 HKCEE MA 1997-1-9
(a) $\angle B D C=\angle B A C=30^{\circ} \quad$ ($\angle \mathrm{s}$ in the same segment) $\angle A D B=90^{\circ}-\angle B D C=60^{\circ} \quad$ (\angle in semi-circle)
(b) $\widehat{A B}: \widehat{B C}=\angle A D B: \angle B D C=2: 1$ (arcs prop. to $\angle \mathrm{s}$ at ©
$\angle A B C=90^{\circ} \quad$ (\angle in semi-circle)
$\Rightarrow A B=4 \cos 30^{\circ}=2 \sqrt{3}, B C=4 \sin 30^{\circ}=2$
$\therefore A B: B C=\sqrt{3}: 1$

12A.14 HKCEE MA 1998-I-6

(a) $\triangle E B A$
(b) $\frac{y}{3}=\frac{6}{4} \Rightarrow y=\frac{9}{2} \quad$ (corr. sides, $\sim \Delta$ s)

12A. 15 HKCEE MA 1998-I- 14

$O B=O D$ (radii)
$\angle O D B=\angle O B D$ (base $\angle \mathrm{s}$, isos. \triangle)
$C B=B A \quad$ (given)
$\angle C D B=\angle B D A \quad$ (equalchords, equal $\angle \mathrm{s}$)
$=\angle O B D$
$B O / / C D$ (alt. $\angle \mathrm{s}$ equal)

12A.16 HKCEE MA 1999-I-5
$\angle A D C=90^{\circ} \quad(\angle$ in semi-circle)
$\angle A D B=50^{\circ} \quad$ ($\angle \mathrm{s}$ in the same segment)
$y=90-50=40$
$y=90-30=40$
$x=180-20 \quad 90=70 \quad(\angle$ sum of $\Delta)$
12A. 17 HKCEEMA1999-I-16
(a) (i) $\angle B F E=\angle B D E$ ($\angle \mathrm{s}$ in the same segment) $=\angle B A C \quad($ corr. $\angle \mathrm{s}, A C / / D E)$ A, F, B and C are concyclic.
(converse of $\angle \mathrm{s}$ in the same segment)
$\because \angle A B C=90^{\circ}$ (given)
$A C$ is a diameter of circle $A F B C$.
(converse of \angle in sem-circle)
$\Rightarrow M$ is the centre of circle $A F B C \Rightarrow M B=M F$

12A. 18 HKCEE MA 2000-I-7

$x=25 \quad(\angle$ in alt. segment) $A D / B C$
$\angle D B C=\angle D A C=25^{\circ} \quad$ ($\angle \mathrm{s}$ in the same segment)
$\angle D A B+\angle A B C=180^{\circ}$ (int. $\angle s, A D / / B C$)
$\therefore y=180-25-56-25=74$

12A.1 HKCEEMA 2001-I-S
 $\angle A D C=90^{\circ} \quad$ (\angle in semi-circle)

 $\angle A C D=30^{\circ}$ ($\angle \mathrm{s}$ in the same segment) $\angle D A C=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}(\angle$ sum of $\triangle)$
12A. 20 HKCEEMA 2002-I-9

$\angle B A C=40^{\circ} \quad$ ($\angle \mathrm{s}$ in the same segment) $\angle A B C=\angle A C B \quad$ (base $\angle \mathrm{s}$, isos. $\triangle)$
$=\left(180^{\circ}-40^{\circ}\right) \div 2=70^{\circ} \quad(\angle$ sum of $\triangle)$
12A. 21 HKCEE MA $2002-\mathrm{I}-16$
(a) (i) $\angle A E B=90^{\circ}$ (\angle in semi-circle)
$\angle D A O=180^{\circ}-\angle \angle A E B-\angle A B E$ (\angle sum of $\left.\triangle\right)$
$\begin{aligned} & =90^{\circ}-\angle A B E \\ \angle B F O & =180^{\circ}-\angle F O\end{aligned}$
$\begin{aligned} \angle B F O & =180^{\circ}-\angle F O B-\angle A B E \quad(\angle \text { sum of } \triangle) \\ & =90^{\circ} \quad \angle A B E\end{aligned}$ $D A O=\angle B F O$
In $\triangle A O D$ and $\triangle F O B$,
$\angle D A O=\angle B F O$
$\angle A O D=\angle B F O B=90^{\circ} \quad$ (proved)
$\begin{array}{ll}\angle A D D=\angle F O B=90^{\circ} & \text { (given) } \\ \angle A D O=\angle F B O & (\angle \text { sum of } \triangle)\end{array}$ (AAA)
(ii) $\angle A G B=90^{\circ}$ (\angle in semi-circle)
$\angle G A O=180^{\circ}-\angle A G O-\angle A O G(\angle$ sum of $\triangle)$
In $\triangle A O G$ and $\triangle G O B$, $=\angle B G O$
$\angle G A O=\angle B G O$
$\angle A O G=\angle G O B=90^{\circ} \quad$ (proved)
$\angle O G A=\angle O B G$
$\triangle A O G \sim \triangle G O B$
(given)
$(\angle$ sum of $\triangle)$
GOB (AAA)
(iii) From(i), $\quad \frac{A O}{O D}=\frac{F O}{O B}$ (corr. sides, $\sim \Delta \mathrm{s}$) $A O \cdot O B=O D \cdot O F$
From (ii), $\frac{A O}{O G}=\frac{G O}{O B}$ (corr. sides, $\sim \triangle \mathrm{s}$)
$A O \cdot O B=$
$F=O G^{2}$

HKCEE MA 2005-1-17

$\because M N$ is a diameler (given)
$\therefore \angle N O M=\angle O R P=90^{\circ}$
$\therefore \angle N O M=\angle Q R P=90^{\circ}$ (\angle in semi-circle)
In $\triangle O Q R$ and $\triangle O R P$,
$\angle R O Q=\angle P O R=90^{\circ} \quad$ (given)
$\angle Q R O=\angle Q R P-\angle P R O \quad$.
$\begin{aligned} & =90^{\circ}-\angle P R O\end{aligned}$
$\angle P O R=180^{\circ}-\angle R O P-\angle P R O$

$$
=90^{\circ}-\angle P R O
$$

$\Rightarrow \angle Q P O=\angle P R O$
$\begin{aligned} \angle \angle R Q O & =\angle P R O & & (\angle \text { sum of } \triangle) \\ \therefore \triangle O Q R & \sim \triangle O R P & & (A A A)\end{aligned}$
$\Rightarrow \frac{O R}{O Q}=\frac{O P}{O R}$
$O R^{2}=O P \cdot O Q$
(ii) In $\triangle M O N$ and $\triangle P O R$.
$\angle N M O=\angle Q R O \quad(\angle \sin$ the same segment)
$\begin{aligned} & =\angle R P O \\ \angle M O N & =\angle P O R\end{aligned} \quad$ (proved)
$\angle M N O=\angle R Q O \quad(\angle$ sum of $\triangle)$
$\therefore \triangle M O N \sim \triangle R Q O$ (AAA)
12A. 23 HKCEE MA $2006-\mathrm{I}-16$
G is the circumcentre (given)
$S C \perp B C$ and $S A \perp A B$ (\angle in semi-circle)
$A H \perp B C$ and $C H \perp A B$
Thus, $S C / / A H$ and $S A / / C H \Rightarrow A H C S$ is a //gram
(ii)
$\frac{\text { Method }}{\because \angle G R B}=\angle S C B=90^{\circ} \quad$ (proved)
$\therefore G R / / S C$ (cort $\angle \mathrm{s}$ equal)
$\therefore B G=G S=$ radius
$\therefore B R=R C$ (intercept thm)
$\Rightarrow S C=2 G R$ (mid
$\Rightarrow S C=2 G R$ (mid-pt thm)
Hence, $A H=S C=2 G R$ (property of $/ / \mathrm{gram}$)
$\stackrel{\text { Method } 2}{\because B G}=G$
$\because B G=G S=$ radius
and $B R=R C \quad(\perp$ from centre to chord bisects
chord)
Hence, $A H=S C=2 G R$ (property of $/ /$ gram)
12A. 24 HKCEE MA 2007-1-17
$\because I$ is the incentre of $\triangle A B D$ (given)
$\therefore \angle B G=\angle D B G$ and $\angle B A E=\angle C A E$
In $\triangle A B G$ and $\triangle D B G$ given)
In $\triangle A B G$ and $\triangle D B G$,
$\begin{array}{cc}\angle A B G & =\angle D B G \quad \text { (proved) } \\ A B=D B & \text { (given) }\end{array}$ $\begin{array}{ll}A B=D B & \text { (given) } \\ B G=B G & \text { (common) }\end{array}$
(ii) $\because \triangle A B D$ is isoseeles and $\angle A B G=\angle D B G$
$\therefore \angle B G A=90^{\circ}$ (property of isos. \triangle)
In $\triangle A G I$ and $\triangle A B E$,

$\angle A G I$	$=90^{\circ}=\angle A B E$		(\angle in semi-circle)
$\angle A I G$	$=\angle E A B$		(proved)
$\angle A I G$	$=\angle A E B$		(\angle sum of \triangle)
$\therefore \triangle A G I \sim \triangle A B E$		(AAA)	
\Rightarrow	$G I$		
$\Rightarrow A G$	$=\frac{B E}{A B}$		(corr. sides, $\sim \Delta \mathrm{s}$)

12A. 25 HKCEE MA 2008-I- 17

(a) Method 1 .

$\because I$ is the incentre or $\triangle A B C$ (given)
$\therefore \angle B A P=\angle C A P$
$B P=C P \quad$ (equal $\angle \mathrm{s}$, equal chords)
Method 2
I is the incentre of $\triangle A B C$ (given)
$\angle B A P=\angle C A P$
$\angle B C P=\angle B A P$ (/s in the same segment)
$=\angle C A P$ (proved)
$=\angle C B P$ ($\angle s$ in the same segment
$\Rightarrow B P=C P \quad$ (sides opp. equal $\angle s$)
Both methods

Join CI. Let $\angle A C I=\angle B C I=\theta$ and $\angle B C P=\phi$. $\angle P A C=\phi \quad$ (equal chords, equal $\angle \mathrm{s}$)
$\Rightarrow \angle P I C=\angle P A C+\angle A C I=\theta+\phi \quad($ ext \angle of $\triangle)$
$\therefore I P=C P \quad$ (sides opp. equal $\angle \mathrm{s}$)
i.e. $B P=C P=I P$

12A. 26 HKDSE MA $S P-I-7$

Method 1

$\angle C O D=38^{\circ}$ (corr $\angle \mathrm{s}, A B / / O C$)
$\because O C=O D$ (radii)
$\therefore \angle O D C=\angle O C D$ (base $\angle \mathrm{s}$, isos. \triangle)
$=\left(180^{\circ}-38^{\circ}\right)+2=71^{\circ} \quad(\angle$ sum of $\triangle)$
Metiod 2

$\angle B O D=2\left(38^{\circ}\right)=76^{\circ} \quad\left(\angle\right.$ at centre twice \angle at $\left.\bigodot^{c c}\right)$
$\angle C O D=38^{\circ}$ (corr. $\angle \mathrm{s}, A B / / O C$)
$\Rightarrow \angle B O C=76^{\circ}-38^{\circ}=38^{\circ}$
. $\angle B D C=38^{\circ} \div 2=19^{\circ}$ (\angle at centre twice \angle at $\left.\odot^{\infty}\right)$ Method 3
$\angle C O D=38^{\circ}$ (corr. $\angle \mathrm{s}, A B / / O C$)
$O A=O C \quad$ (radii)
$\Rightarrow \angle O A C=\angle O C A \quad$ (base \angle s, isos. \triangle)
$=\angle C O D \div 2=19^{\circ} \quad$ (ext. \angle of \triangle)
$\therefore \angle B A C=38^{\circ}-19^{\circ}=19^{\circ}$
$\Rightarrow \angle B D C \quad \angle B A C \quad 19^{\circ}$ ($\angle \mathrm{s}$ in the same segment)

12A. 27 HKDSEMAPP-I-7

$\angle D C B=90^{\circ}$ (\angle in semi-circle)
$\Rightarrow \angle D B C=180^{\circ} \quad 90^{\circ} \quad 36^{\circ}=54^{\circ} \quad(\angle$ sum of \triangle
$\angle C A B=36^{\circ} \quad$ ($\angle \mathrm{s}$ in the same segment)
$\angle A B C=\angle A C B \quad$ (base $\angle \mathrm{s}$, isos. \triangle) $/$ (equal chords, equal $\angle \mathrm{s}$) $=\left(180^{\circ}-\angle C A B\right) \div 2=72^{\circ} \quad(\angle$ sum of $\triangle)$

$$
\angle A B D=72^{\circ}-54^{\circ}=18^{\circ}
$$

$$
\begin{aligned}
& \text { 12A. } 28 \text { HKDSE MA PP-I-14 } \\
& \text { (a) } \triangle A O D \sim \triangle C B D \\
& \text { 12A. } 29 \text { HKDSEMA 2012-I-8 } \\
& \text { (a) } \triangle A E D \sim \triangle B E C \\
& \left.\therefore \frac{A E}{D E}=\frac{B E}{C E} \quad \text { (cor. sides, } \sim \Delta \mathrm{s}\right) \\
& \Rightarrow A E=\frac{8}{20} \times 15=6(\mathrm{~cm})
\end{aligned}
$$

(b) $A B^{2}=10^{2}=100$
$A E^{2}+E B^{2}=6^{2}+8^{2}=100=A B^{2}$
$\therefore A C \perp B D$ (converse of Pyth thm)

12A. 30 HKDSE MA 2015-I-8

$\angle A C B=\angle A D B=58^{\circ} \quad(\angle \mathrm{s}$ in the same segmen $)$
$\angle A B D=\angle A D B \quad$ (base $\angle \mathrm{s}$, isos. $\Delta) /($ equal chords, equal $\angle \mathrm{s})$
$\angle B D C=\angle B A C \quad$ ($\angle \mathrm{s}$ in the same segment)
$=180^{\circ} \quad \angle A B C-\angle A C B$ (\angle sum of $\left.\triangle \triangle\right)$
$=180^{\circ}-\left(58^{\circ}+25^{\circ}\right)-58^{\circ}=39^{\circ}$
$=180^{\circ}-\left(58^{\circ}+25^{\circ}\right)-58^{\circ}=39^{\circ}$

Method 2

$\angle A B D=\angle A D B \quad$ (base $\angle \mathrm{s}$, isos. $\triangle) /($ equal chords, equal $\angle \mathrm{s}$) $\begin{aligned} & =58^{\circ} \\ & \end{aligned}$
$\begin{aligned} \angle A D C+\angle A B C & =180^{\circ} \quad \text { (opp. } \angle \mathrm{s} \text {, cyclic quad.) } \\ 58^{\circ}+\angle B D C+\left(58^{\circ}+255^{\circ}\right) & =180^{\circ}\end{aligned}$
$\begin{aligned} 58^{\circ}+\angle B D C+\left(58^{\circ}+25^{\circ}\right) & =180^{\circ} \\ \angle B D C & =39^{\circ}\end{aligned}$

Cothmethods

$\angle B A C=\angle B D C=39^{\circ} \quad(\angle \mathrm{s}$ in the same segment)
In $\triangle B C E . \angle B E C=\angle E B C \quad$ (base $\angle \mathrm{s}$, isos. \triangle)

$$
\begin{array}{rlrl}
c & =\angle E B C & & (\text { base } \angle \mathrm{s}, \text { isc } \\
& =\left(180^{\circ}-\angle B C A\right) \div 2 & (\angle \text { sum of } \angle \\
& =61^{\circ} &
\end{array}
$$

$\angle A B E=\angle B E C-\angle B A C=22^{\circ} \quad($ ext. \angle of $\triangle)$
12A. 31 HKDSEMA 2017-I-10
(a) In $\triangle O P S$ and $\triangle O R S$,

$$
\begin{array}{ll}
P S \text { and } \triangle O R S, & \text { (given) } \\
O P=O R & \text { (givenmon) } \\
O S=O S & \text { (comen) } \\
P S=R S & \text { (given) }
\end{array}
$$

$\triangle O P S \cong \triangle O R S$ (SSS)
(b) $\angle R O Q=\angle P O Q$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$)
$=2 \angle P R Q=20^{\circ}$ ($\left(\angle\right.$ at centre twice \angle at $\left.\odot^{\alpha \alpha}\right)$
\therefore Area of sector $=\frac{2\left(20^{\circ}\right)}{3600} \times \pi(6)^{2}=4 \pi\left(\mathrm{~cm}^{2}\right)$

12A. 32 HKDSE MA 2018-1-8

$x=180^{\circ}-\theta \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.)
$\angle B E D=\angle B A D=x \quad$ ($\angle \mathrm{s}$ in the same segment)
$\therefore y=180^{\circ}-\angle B E D-\angle A D E \quad(\angle$ sum $)$ $\left.\begin{array}{rl} & =180^{\circ}-\angle B E D-\angle A D E \\ & =180^{\circ} \quad 2\left(180^{\circ}\right.\end{array} \quad \theta\right)=2 \theta-180^{\circ}$

12A. 33 HKDSEMA 2019-I- 13

(a) Method I

$=2 \angle D E A \quad\left(\angle\right.$ at centre twice \angle at $\odot^{c c}$ $=230^{\circ}$
$\Rightarrow \angle D O C=230^{\circ}-180^{\circ}=50^{\circ}$
$\therefore \angle C B F=\angle D O C \div 2=25^{\circ}\left(\angle\right.$ at centre twice \angle at $\left.\odot^{\text {cet }}\right)$ Method 2
$\angle A B D=180^{\circ}-\angle A E D=65^{\circ} \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.) $\angle A B C=90^{\circ} \quad$ (\angle in semi-circle)
$\angle O C B=90^{\circ}-65^{\circ}=25^{\circ}$
(b) $\angle O C B=\angle D O C=50^{\circ} \quad$ (alt. $\left.\angle \mathrm{s}, B C / / O D\right)$
$\Rightarrow \angle B O C=180^{\circ}-2 \angle O C B=80^{\circ}$
\therefore Perimeter of sector $O B C=2 \times 18+\overparen{B C}$

$$
=36+\frac{80^{\circ}}{360^{\circ}} \times 2 \pi(18)
$$

$$
=61.13>60(\mathrm{~cm})
$$

12B Tangents of circles

12B. 1 HKCEE MA 1980(1*)-I 8

$\angle T A B=\angle T B A=65^{\circ} \quad(\angle$ in alt. segment $)$
$\therefore=\angle T A B+\angle T B A=130^{\circ} \quad($ ext. \angle of $\triangle)$

12B. 2 HKCEE MA 1981(2)-1-13
(a) $\angle M Q T=x \quad$ (\angle in alt. segment)
$\angle M O N$ (\angle in alit. segment
(b) $\angle P T R=180^{\circ}-\angle T P R-\angle P R T \quad(\angle$ sum of $A)$ $=180^{\circ}-x-y$
$\angle M Q N+\angle M T N=(x+y)+\left(180^{\circ}-x \quad y\right)=180^{\circ}$
$\therefore Q, M, T$ and N are concyclic. (opp. $\angle \mathrm{s}$ supp.)
(c) \because QMTN is cyclic, (proved)
$\angle N M T=\angle N Q T=y$ (\angle sin the same segment)
$\because \angle N M T=\angle P R N=y \quad$ (proved)
$\therefore P, M, N$ and R are concyclic. (ext. $\angle=$ int. opp. \angle
(d) $\triangle M N T \sim \triangle R P T, \triangle M Q T \sim \triangle Q P T, \triangle N Q T \sim \triangle Q R T$

12B. 3 HKCEE MA 1982(2)-I-14
(a) $\angle A \overline{B T=\angle A T R \quad \text { (} \angle \text { in alt. segment)(large circle) }) ~}$
$=\angle P Q T \quad$ (\angle in ait. segment)(small circle)
$A B / / P Q$ (corr. $\angle \mathrm{s}$ equal)
(b) Consider the small circle
$\begin{aligned} \angle Q T S & =\angle B S Q \quad \text { (} \angle \text { in alt. segment }) \\ & \left.=\angle S Q^{P} \quad(\angle 1) \angle A B / / P Q\right)\end{aligned}$
$=\angle S T P \quad(\angle \mathrm{~s}$ in the same segm
i.e. $S T$ bisects $\angle A T B$.
(c) $\triangle P T K, \triangle A T S, \triangle A S P, \triangle S Q K$

12B. 4 HKCEE MA 1983(A/B)-I-2
(a) $\angle O A B=\angle O B A=60^{\circ} \quad$ (property of equil \triangle
$A C=O A=A B \quad$ (given)
$\therefore \angle A B C=\angle A C B \quad$ (base $\angle \mathrm{s}$, isos. \triangle)

$$
=\angle O A B \div 2=30^{\circ} \text { (ext. } \angle \text { of } \triangle \text {) }
$$

(b) $\because \angle O B C=60^{\circ}+30^{\circ}=90^{\circ}$
. $C B$ is tangent to the circle at B.
(converse of tangent \mathcal{L} radius)

12B.5 HKCEE MA 1984(A/B)-1-5
$\angle C B D \quad 80^{\circ} \quad$ (\angle in alt. segment)
$x=180 \quad 30 \quad 80=70 \quad$ (adj. $\angle \mathrm{s}$ on st. line)
$y=x=70 \quad(\angle$ in alt. segment $)$
$A B=A D \quad$ (angent properties
$A B=A D \quad$ (tangent properties)
$\Rightarrow \angle B D A=x^{\circ} \quad$ (base \angle s. isos. \triangle)

12B. 6 HKCEE MA 1985(A/B) - $\mathrm{I}-2$
$\angle A P B=\angle A B P$ (base $\angle \mathrm{s}$, isos. A)
$=x^{\circ} \quad(\angle$ in all. segment $)$
In $\triangle B C P \quad x^{\circ}-x^{\circ}+\left(x^{\circ}+60^{\circ}\right)$
In $\triangle B C P, x^{\circ} \div x^{\circ}+\left(x^{\circ}+60^{\circ}\right)=180^{\circ} \quad(\angle$ sum of $\triangle)$

12B. 7 HKCEE MA 1986(A/B) -I-2
$T A=T B$ (tangent properties)
$\angle A B T=x^{\circ} \quad$ (base \angle s, isos. \triangle)
$=\left(180^{-30^{\circ}}\right) \div 2(\angle$ sum of $\Delta) \Rightarrow x=75$
(alt. $\langle\mathrm{s}, A C / / T F$)
$=\angle A B T=x^{\circ} \quad(\angle$ in alt. segment $) \Rightarrow y=75$

12B. 8 HKCEE MA 1986(A/B)-I 6
(a) $\triangle C A T$
(b) $\because \triangle B C T \sim \triangle C A T$

$$
\begin{aligned}
\therefore \frac{B T}{C T} & \left.=\frac{C T}{A T} \quad \text { (corr. sides, } \sim \Delta \mathrm{s}\right) \\
\frac{x}{10 \sqrt{2}} & =\frac{10 \sqrt{2}}{17+x} \\
17 x+x^{2} & =200 \Rightarrow x=8 \text { or }-25 \text { (rejected) }
\end{aligned}
$$

12B. 9 HKCEE MA 1987 (A/B) - I- 6
$\angle O D A=90^{\circ} \quad$ (tangent L radius)
$\angle O A D=60^{\circ} \div 2=30^{\circ} \quad$ (tangent properties)
$\therefore A O=1$
$\therefore r=A E=2+1=3$

12B. 10 HKCEE MA 1987(A/B)-1-7
$\angle A B C=90^{\circ} \quad(\angle$ in semi-circle)
$\angle A P B=\angle P A B=x^{\circ} \quad$ (base $\angle \mathrm{s}$, isos. $\left.\triangle \mathrm{A}\right)$
$=\angle C B P \quad(\angle$ in alt. segment $)$
In $\triangle A B P, x^{\circ}+x^{\circ}+\left(90^{\circ}+x^{\circ}\right)=180^{\circ} \quad(\angle$ sum of $\Delta)$

12B. 11 HKCEE MA 1988-I-8(b)
(i) In $\triangle \overline{A C T}$ and $\triangle T C B$,
$\angle T C A=\angle B C T \quad$ (common
$\angle T A C=\angle B T C \quad$ (\angle in alt. segment)
$\begin{array}{cl}\angle C T A=\angle C B T & (\angle \text { sum of } \triangle) \\ \triangle A C T \sim \triangle T C B & (\mathrm{AAA})\end{array}$
) $\frac{A C}{C T}=\frac{T C}{C B}$ (corr. sides, $\sim \triangle$
$\frac{A B+5}{} \quad \frac{6}{5} \quad \begin{gathered}5 B=\frac{11}{5}\end{gathered}$
12B. 12 HKCEE MA 1991-I-13
(a) In $\triangle A B C$ and $\triangle A B D$,

$$
\begin{array}{ll}
A C=A D & \text { (radii) } \\
B C=B D & \text { (radii) } \\
A B=A B & \text { (common } \\
A R C \approx A R D & \text { roms }
\end{array}
$$

$\therefore \triangle A B C \cong \triangle A B D$ (SSS)
(b) (i) $\begin{aligned} \because \angle C A D & =2\left(55^{\circ}\right) \quad\left(\angle \text { at centre twice } \angle \text { at } \odot^{r c}\right) \\ & =110^{\circ}\end{aligned}$ $=110^{\circ}$
and $\angle C A B=\angle D A B$ (corr, $\angle \mathrm{s}, \cong \triangle \mathrm{s}$)
$\angle C A B=110 \div 2=55^{\circ}$
$\angle D B A=\angle C B A \quad$ (corr. $\angle \mathrm{s}, \cong \triangle \mathrm{s})$
$=180^{\circ} \angle A C B-\angle C A B \quad(\angle$ sum of $\triangle)$
$=30^{\circ} \quad 20$
$\Rightarrow \angle C B D=30^{\circ}+30^{\circ}=60^{\circ}$
$\therefore \angle E F D=\frac{1}{2} \angle C B D \quad$ (\angle at cenire twice \angle at $\odot^{c c}$) $=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
(ii) (1)

(The centre of S lies on the intersection of the perpendicular bisector of $D F$ and the line at F perpendicular to $C F$.)
(2) Let P be a point on major $\overparen{D F}$ and G be the centre of S.
$\angle C F D=\angle F P D=30^{\circ} \quad$ (\angle in alt. segment) $\angle F G D=2 \times 30^{\circ} \quad\left(\angle\right.$ at centre twice \angle at $\left.\Theta^{c c}\right)$ $=60^{\circ}$
$=$
Hence, $\triangle F G D$ is equilateral.
\Rightarrow Diameter $=2 G F=2 D F$
12B. 13 HKCEE MA 1995-I- 14
(a) (i) $\because \angle P Q A=\angle P R Q \quad(\angle$ in alt. segment)
$=\angle P M A \quad($ conc. $\angle s, A C / / Q R)$
M, P, A and Q are concyclic.
(ii) $\angle M Q R \quad \angle A M Q$ (alt. $\angle \mathrm{s}, A C / / Q R$)
(ii) $\angle M Q R=\angle A P Q$ ($\angle \mathrm{s}$ in the same segme
$=\angle M R Q \quad(\angle$ in alt. segment $)$
$M R=M Q$ (sides opp. equal $\angle \mathrm{s}$)
(b) $\angle Q P R=\angle Q A C=50^{\circ} \quad$ ($\angle \mathrm{S}$ in the same segment) $\angle R M Q=\angle P A Q=70^{\circ}$ (opp. $\angle \mathrm{s}$, cyclic quad.) $\angle M Q R=\left(180^{\circ}-70^{\circ}\right) \div 2=55^{\circ} \quad(\angle$ sum of $\triangle)$ $\angle M Q P=\angle P A C=20^{\circ} \quad$ ($\angle \mathrm{s}$ in the same segment)
$\therefore \angle P Q R=\angle M Q R+\angle \angle M Q P=75^{\circ}$
(c) (i) Property of isos. \triangle
(ii) \perp bisector of chord passes through centre

12B. 14 HKCEE MA 1997-I-16
(a) (i) $\angle E A B=90^{\circ}$ (tangent I radius)
$\because \angle F E A+\angle E A B=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore A B / / E F$ (int. $\angle \mathrm{s} \mathrm{supp}$.)
(ii) $\angle F D E=\angle B D C$ (vert. opp. \angle s)
$=\angle D B C \quad$ (base $\angle \mathrm{s}$, isos. \triangle)

$$
\therefore F D=F E \quad(\text { sides opp. equal } \angle \mathrm{s})
$$

(iii) If the circle touches $A E$ at E, is centre lies on $E F$

If $E D$ is a chord, the centre lies on the \perp bisector of ED.
of the circle described.
12B. 15 HKCEE MA 2000-I-16
(a) in $\triangle O C P, \angle C P O=90^{\circ}$
\qquad (tangent L radius) $\therefore \angle P Q O=60^{\circ} \div 2=30^{\circ} \quad\left(\angle\right.$ at centre twice \angle at $\left.\odot^{\text {ce }}\right)$
(b) (i) $\angle S O C=\angle P O C=30^{\circ}$ (tangent properties)
$\angle P Q R=180^{\circ}-\angle P O S \quad$ (opp. $\angle \mathrm{s}$, cyclic quad.)
$=120^{\circ}$
$\Rightarrow \angle R Q O=120^{\circ}-30^{\circ}=90^{\circ}$
$R Q$ is tangent to the circle at Q
(converse of tangent \perp radius)

12B. 16 HKCEE MA 2003-1-17
(a) (i) in $\triangle N P M$ and $\triangle N K P$, $\angle P N M=\angle K N P$ $\angle N P M=\angle N K P \quad$ (common) $\angle P M N=\angle K P N \quad$ (\angle in alt. segmen $\therefore \triangle N P M \sim \triangle N K P$ ${ }_{(A A A)}^{(\angle \text { sum of } \Delta)}$
$\therefore \underset{N P}{\triangle N P M} \sim \Delta N K$ (cor. sides, $\sim \Delta s$) $N P^{2}=N K \cdot N M$
(ii) $\because R S / / O P$ (given)
$\therefore \triangle K R M \sim \triangle K O N$ and $\triangle K S M \sim \triangle K P N$
$\Rightarrow \frac{R M}{O N}-\frac{K M}{K N}$ and $\frac{S M}{P N}-\frac{K M}{K N}$
$\Rightarrow \frac{R M}{O N}=\frac{S M}{P N}$
Similar to (a), $N O^{2}=N K \quad N M \Rightarrow N P=N O$ Hence, $R M=M S$.
12B. 17 HKCEE MA 2004-I- 16
(a) In $\triangle A D E$ and $\triangle B O E$,
$\angle A D E=\angle E B C \quad$ (all. $\angle \mathrm{s}, O D / / B C)$
$\begin{aligned} & =\angle B O E \\ & \text { (} \angle \mathrm{in} \text { alt. segment) } \\ \angle D A E & =\angle O B E\end{aligned}$ $A D=B O \quad$ (given)
$\therefore \triangle A D E \cong \triangle B O E \cong(A S A)$
(b) $D E=O E$ (corr sides, $\simeq \triangle$
$\begin{aligned} & =\angle A O E \text { (base } \angle \mathrm{s} \text {, isos, } \triangle \text {) }\end{aligned}$
i.e. $\angle A O B=2 \angle B O E$
$\therefore \angle B E O=\angle A E D$ (corc. $\angle \mathrm{s}, \cong \triangle \mathrm{s}$)
$=\angle A O B \quad$ (ext. \angle, cyclic quad.) $=2 \angle B O E$ (proved)
(c) Suppose $O E$ is a diameter of the circle $O A E B$. (i) $\angle O B E=90^{\circ} \quad(\angle$ in semi-circle) $\angle O B E=90^{\circ} \quad(\angle$ in semi-circle $)$
In $\triangle O B E, \angle B O E=180^{\circ}-90^{\circ}-(2 \angle B O E)$
$3 \angle B O E=90^{\circ} \Rightarrow \angle B O E=30^{\circ}$
12B. 18 HKCEE AM 2002-15
(a) Cut the triangle into $\triangle O D E, \triangle O E F$ and $\triangle O F D$. Then the radii are the heights of the triangles. (tangent \perp radius)
$\therefore A=\frac{D E \cdot r}{2}+\frac{E F \cdot r}{2}+\frac{F D \cdot r}{2}$
$=\frac{1}{2}(D E+E F+F D) r$
$=\frac{1}{2} p r$

22B. 19 HKDSEMA SP-I-19
(a) (i) In $\triangle A B E$ and $\triangle A D E$,
$A B=A D$ $=\angle E B C$ (\angle in alt. segment) $\begin{array}{ll}=\angle E B C & \text { (alt. } \angle \mathrm{s}, B D / / P Q) \\ =\angle D A E & \text { (} \mathrm{s} \text { sis the same segment) }\end{array}$ $\therefore \triangle A B E \cong \triangle A D E$ (SAS)
(ii) $\because A B=A D$ (given)
and $A E$ is an \angle bisector of $\triangle A D E$ (proved) $A E$ is an altitude, a median and \perp bisecior of $\triangle A D E$. (property of isos. \triangle)
e. The in-centre, orthocentre, centroid and circumcentre of $\triangle A B D$ all lie on $A E$, and are thus collinear.

12R20 HKDSE MA 2016-1-20
(a) Method I

Let $\angle O P J=\angle Q P J=\theta$. (in-centre)
$O J=P J=O I$
In $\triangle P O J, \angle P O I=\angle O P J=\theta \quad$ (base $\angle s$, isos. \triangle)
In $\triangle P Q J, \angle P Q J=\angle Q P J=\theta \quad$ (base $\angle s$, isos. \triangle)
In $\triangle P O J$ and $\triangle P Q J$,
$\angle O P J=\angle Q P J=\theta \quad$ (in-ceatre)
$\angle P O J=\angle P Q J=\theta$
(proved)
$P J=P J$
(common)
$\therefore \triangle P O J \cong \triangle P Q$
$\therefore P O=P Q$
(AAS)
(corr. sides, $\cong \Delta s$)

Method 2

Let $\angle O P J=\angle Q P J=\theta$. (in-cenire)
$O J=P J=Q^{J}$ (radii)
In $\triangle P O J, \angle P O I=\angle O P J=\theta$ (base $\angle \mathrm{s}$. isos. \triangle)
$\Rightarrow \angle P J O=180^{\circ} \quad 2 \theta \quad(\angle$ sum of $\triangle)$
$\Rightarrow \angle P Q O=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta$
In $\triangle P Q J, \angle P Q J=\angle Q P J=\theta$ (base \angle s isses $\angle a$)

$$
\begin{aligned}
& \Rightarrow \angle P J Q=180^{\circ}-2 \theta \quad(\angle \text { sum of } \triangle) \\
& \Rightarrow \angle P O Q=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta
\end{aligned}
$$

$$
\Rightarrow \angle P O Q=\left(180^{\circ}-2 \theta\right) \div 2=90^{\circ}-\theta
$$

$\therefore \angle P Q O=\angle P O Q=90^{\circ}-\theta \quad \begin{aligned} & \text { (proved) }\end{aligned}$
$\therefore P O=P Q$ (sides opp. equal $\angle \mathrm{s}$)

Method 3

Let $P J$ extended meet the circle $O P Q$ at R. Then $P R$ is a diameter of the circle.
$\therefore \angle P O R=\angle P Q R=90^{\circ} \quad$ (\angle in semi-circle)
Let $\angle O P R=\angle Q P R=\theta$. (in-centre)
In $\triangle O P R, P O=P R \cos \theta$
In $\triangle Q P R, P Q=P R \cos \theta$
$\therefore P O=P Q$
128.21 HKDSEMA 2019-I - 17
(a) Let I be the in-centre of $\triangle C D E$. Then the perpendiculars from I io $C D, D E$ and $E C$ are all r
$a=\frac{r \cdot C D}{2}+\frac{r \cdot D E}{2}+\frac{r E C}{2}$
$\begin{aligned} a & =\frac{L^{2}}{2}+\overline{2}+\overline{2} \\ & =\frac{r(C D+D E+E C)}{2}=\frac{r(p)}{2} \Rightarrow p r=2 a\end{aligned}$

