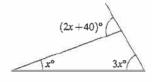
11 Geometry of Rectilinear Figures

11A Angles in intersecting lines and polygons

11A.1 HKCEE MA 1980(1/1*/3) -I-1

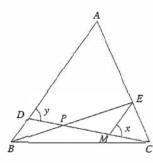
Find the value of x in the figure.



11A.2 HKCEE MA 1980(1*)-I-15

In $\triangle ABC$ (see the figure), $BD = \frac{1}{4}AB$, $CE = \frac{1}{3}AC$, BE intersects CD at P. x = y. Prove that

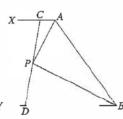
- (a) $\triangle EMC$ and $\triangle ADC$ are similar and $EM = \frac{1}{4}AB$,
- (b) $\triangle BDP$ and $\triangle EMP$ are congruent,
- (c) PM = CM,
- (d) area of triangle BDP is half the area of triangle PEC.



11A.3 HKCEE MA 1981(2) - I - 14

In the figure, AX//BY. AP and BP bisect $\angle XAB$ and $\angle YBA$ respectively, and they meet at P. A straight line passing through P meets AX and BY at C and D respectively. Prove that

- (a) $\angle APB = 90^{\circ}$,
- (b) CP = DP,
- (c) AC+BD = AB.



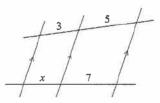
11A.4 HKCEE MA 1988 – I – 8(a)

P is a point inside a square ABCD such that PBC is an equilateral triangle. AP is produced to meet CD at Q.

- (i) Draw a diagram to represent the above information.
- (ii) Calculate $\angle PAB$ and $\angle PQC$.

11A.5 HKCEE MA 1993(I) - I - 1(c)

In the figure, find x.



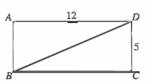
11. GEOMETRY OF RECTILINEAR FIGURES

11A.6 HKCEE MA 1995 - I - 1(c)

Find the size of an interior angle of a regular octagon (8-sided polygon).

11A.7 HKCEE MA 1995-1-1(d)

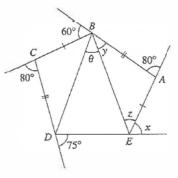
In the figure, ABCD is a rectangle. Find BD.



11A.8 HKCEE MA 1996 - I - 10

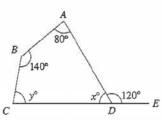
In the figure, AB = CD and AE = BC.

- (a) Find x.
- (b) Which two triangles in the figure are congruent?
- (c) Find θ , y and z.



11A.9 HKCEE MA 1998 - I - 2

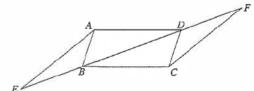
In the figure, CDE is a straight line. Find x and y.



11A.10 HKCEE MA 1999 - I - 14

In the figure, ABCD is a parallelogram. EBDF is a straight line and EB = DF.

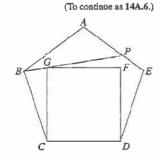
- (a) Prove that $\angle ABE = \angle CDF$.
- (b) Prove that EA//CF.



11A.11 HKCEE MA 2000 I 13

In the figure, ABCDE is a regular pentagon and CDFG is a square. BG produced meets AE at P.

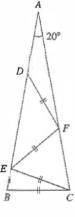
(a) Find $\angle BCG$, $\angle ABP$ and $\angle APB$.



11A.12 HKCEE MA 2002-I-10

In the figure, ABC is a triangle in which $\angle BAC = 20^{\circ}$ and AB = AC. D, E are points on AB and F is a point on AC such that BC = CE = EF = FD.

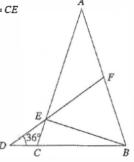
- (a) Find ∠CEF.
- (b) Prove that AD = DF.



11A.13 HKCEE MA 2004 I-12

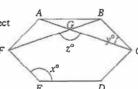
In the figure, AEC, AFB, BCD and DEF are straight lines. AB = AC, CD = CE and $\angle CDE = 36^{\circ}$.

- (a) Find
 - (i) $\angle AEF$,
 - (ii) ∠BAC.
- (b) Suppose AF = FB.
 - (i) Prove that ∠AEB is a right angle.
 - (ii) If AE = 10 cm, find the area of $\triangle ABC$.



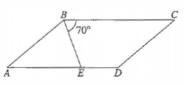
11A.14 HKCEE MA 2005 - I - 8

In the figure, ABCDEF is a regular six-sided polygon. AC and BF intersect at G. Find x, y and z.



11A.15 HKCEE MA 2006 I 5

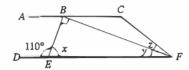
In the figure, ABCD is a parallelogram. E is a point lying on AD such that AE = AB. It is given that $\angle EBC = 70^{\circ}$. Find $\angle ABE$ and $\angle BCD$.



11. GEOMETRY OF RECTILINEAR FIGURES

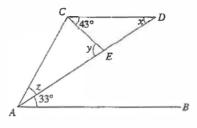
11A.16 HKCEE MA 2007 - I - 8

In the figure, ABC and DEF are straight lines. It is given that AC//DF, BC = CF, $\angle EBF = 90^{\circ}$ and $\angle BED = 110^{\circ}$. Find x, y and z



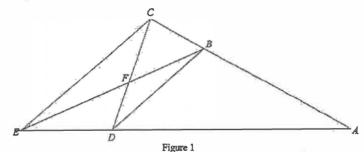
11A.17 HKCEE MA 2008 I-9

In the figure, AB//CD. E is a point lying on AD such that AE = AC. Find x, y and z.



11A.18 HKDSE MA 2020 - I - 8

In Figure 1, B and D are points lying on AC and AE respectively. BE and CD intersect at the point F. It is given that AB = BE, BD //CE, $\angle CAE = 30^{\circ}$ and $\angle ADB = 42^{\circ}$.



- (a) Find ∠BEC .
- (b) Let $\angle BDC = \theta$. Express $\angle CFE$ in terms of θ .

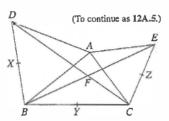
(5 marks)

11B Congruent and similar triangles

11B.1 HKCEE MA 1982(2) I - 13

In the figure, $\triangle ADB$ and $\triangle ACE$ are equilateral triangles. DC and BE intersect at F.

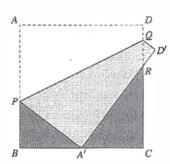
(a) Prove that DC = BE. [Hint: Consider $\triangle ADC$ and $\triangle ABE$.]



11B.2 HKCEE MA 2001 - I - 11

As shown in the figure, a piece of square paper ABCD of side 12 cm is folded along a line segment PQ so that the vertex A coincides with the mid-point of the side BC. Let the new positions of A and D be A' and D' respectively, and denote by R the intersection of A'D' and CD.

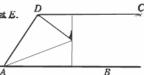
- (a) Let the length of AP be x cm. By considering the triangle PBA', find x
- (b) Prove that the triangles PBA' and A'CR are similar.
- (c) Find the length of A'R.



11B.3 HKCEE MA 2003 - I - 8

The figure shows a parallelogram ABCD. The diagonals AC and BD cut at E.

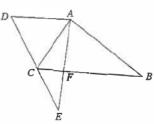
- (a) Prove that the triangles ABC and CDA are congruent.
- (b) Write down all other pairs of congruent triangles.



11B.4 HKCEE MA 2009-I-11

In the figure, C is a pointlying on DE. AE and BC intersect at F. It is given that AC = AD, BC = DE and $\angle BCE = \angle CAD$.

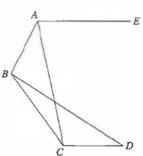
- (a) Prove that $\triangle ABC \cong \triangle AED$.
- (b) If AD//BC,
 - (i) prove that △ABF ~ △DEA;
 - (ii) write down two other triangles which are similar to △ABF.



11B.5 HKCEE MA 2010 - I - 9

In the figure, AB = CD, AE//CD, $\angle BAE = 108^{\circ}$ and $\angle BCD = 126^{\circ}$.

- (a) Find ∠ABC.
- (b) Prove that $\triangle ABC \cong \triangle DCB$.

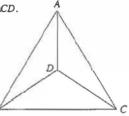


11. GEOMETRY OF RECTILINEAR FIGURES

11B.6 HKCEE MA 2011 - I - 9

In the figure, AD is the angle bisector of $\angle BAC$. It is given that $\angle ABD = \angle ACD$.

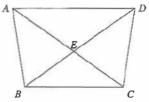
- (a) Prove that $\triangle ABD \cong \triangle ACD$.
- (b) If $\angle BAD = 31^{\circ}$ and $\angle ACD = 17^{\circ}$, find $\angle CBD$.



11B.7 HKDSE MA 2013 - I - 7

In the figure, ABCD is a quadrilateral. The diagonals AC and BD intersect at E. It is given that BE = CE and $\angle BAC = \angle BDC$.

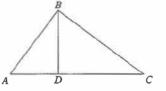
- (a) Prove that $\triangle ABC \cong \triangle DCB$.
- (b) Consider the triangles in the figure.
 - (i) How many pairs of congruent triangles are there?
 - (ii) How many pairs of similar triangles are there?



11B.8 HKDSE MA 2014 - I - 9

In the figure, D is a point lying on AC such that $\angle BAC = \angle CBD$.

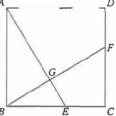
- (a) Prove that $\triangle ABC \sim \triangle BDC$.
- (b) Suppose that AC = 25 cm, BC = 20 cm and BD = 12 cm. Is △BCD a right angled triangle? Explain your answer.



11B.9 HKDSE MA 2015 - I - 13

In the figure, ABCD is a square. E and F are points lying on BC and CD respectively such that AE = BF. AE and BF intersect at G.

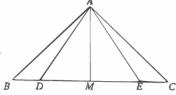
- (a) Prove that $\triangle ABE \cong \triangle BCF$.
- (b) Is △BGE a right-angled triangle? Explain your answer.
- (c) If CF = 15 cm and EG = 9 cm, find BG.



11B.10 HKDSE MA 2016 I 13

In the figure, ABC is a triangle. D, E and M are points lying on BC such that BD = CE, $\angle ADC = \angle AEB$ and DM = EM.

- (a) Prove that $\triangle ACD \cong \triangle ABE$.
- (b) Suppose that AD = 15 cm, BD = 7 cm and DE = 18 cm.
 - (i) Find AM.
 - (ii) Is △ABE a right-angled triangle? Explain your answer.

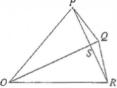


11B.11 HKDSE MA 2017-I-10

(To continue as 12A.31.)

In the figure, OPQR is a quadrilateral such that OP = OQ = OR. OQ and PR intersect at the point S. S is the mid-point of PR.

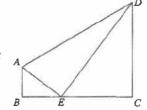
(a) Prove that $\triangle OPS \cong \triangle ORS$.



11B.12 HKDSE MA 2018 I 13

In the figure, ABCD is a trapezium with $\angle ABC = 90^{\circ}$ and AB//DC. E is a point lying on BC such that $\angle AED = 90^{\circ}$.

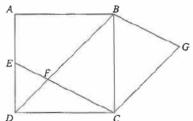
- (a) Prove that $\triangle ABE \sim \triangle ECD$.
- (b) It is given that $AB = 15 \,\mathrm{cm}$, $AE = 25 \,\mathrm{cm}$ and $CE = 36 \,\mathrm{cm}$.
 - (i) Find the length of CD.
 - (ii) Find the area of $\triangle ADE$.
 - (iii) Is there a point F lying on AD such that the distance between Eand F is less than 23 cm? Explain your answer.



11B.13 HKDSE MA 2019 I 14

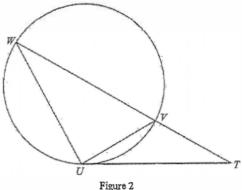
In the figure, ABCD is a square. It is given that E is a point lying on AD. BD and CE intersect at the point F. Let G be a point such that BG//EC and CG//DB.

- (a) Prove that
 - (i) $\triangle BCG \cong \triangle CBF$.
 - (ii) $\triangle BCF \sim \triangle DEF$.
- (b) Suppose that $\angle BCF = \angle BGC$.
 - (i) Let $BC = \ell$. Express DF in terms of ℓ .
 - (ii) Someone claims that AE > DF. Do you agree? Explain your answer.



11B.14 HKDSE MA 2020 I 18

In Figure 2, U, V and W are points lying on a circle. Denote the circle by C. TU is the tangent to C at U such that TVW is a straight line.



Prove that $\triangle UTV \sim \triangle WTU$.

(2 marks)

- It is given that VW is a diameter of C. Suppose that TU = 780 cm and TV = 325 cm.
 - Express the circumference of C in terms of π .
 - Someone claims that the perimeter of ΔUVW exceeds 35 m. Do you agree? Explain your answer. (5 marks)

11 Geometry of Rectilinear Figures

11.1 HKCEE MA 1980(1/1*/3) - I - 1

$$x^{\circ} + 3x^{\circ} = (2x + 40)^{\circ}$$
 (ext. \angle of \triangle)

11.2 HKCEE MA 1980(1*) - I - 15

(a) In △EMC and ▲ADC,

x = y(given) $\angle ECM = \angle ACD$ (common) $\angle MEC = \angle DAC \quad (\angle sum of \triangle)$ $\triangle EMC \sim \triangle ADC$ (AAA) Hence, $\frac{EM}{\Delta D} = \frac{EC}{\Delta C} = \frac{1}{3}$ (corr. sides, $\sim \Delta s$) $EM = \frac{1}{2}AD$ $=\frac{1}{3}\left(\frac{3}{4}AB\right)=\frac{1}{4}AB$

(b) x = y (given) .. AB//EM (corr. \(\s equal \)

In $\triangle BDP$ and $\triangle EMP$.

 $\angle BPD = \angle EPM$ (vert. opp. ∠s) $\angle PBD = \angle PEM$ (alt. \(\alpha \), \(AB \) \(\begin{aligned} EM \) $BD = EM = \frac{1}{4}AB$ (proved) $\triangle BDP \cong \triangle EMP$ (AAS)

(c) PD = PM (corr. sides. $\cong \triangle s$) $\frac{PD = PW}{CD} = \frac{EC}{AC} = \frac{1}{3} \text{ (cort sides, } \sim \Delta s)$ $\Rightarrow DM = \frac{2}{3}CD = 2CM$

PM = CM (= PD)

(d) PM = CM (proved)

Area of $\triangle EMP = \text{Area of } \triangle EMC$

 $\triangle BDP \cong \triangle EMP$ (proved)

... Area of $\triangle BDP = \text{Area of } \triangle EMP$

Hence, Area of $\triangle BDP = \frac{1}{2}$ Area of $\triangle PEC$

11.3 HKCEE MA 1981(2) - I - 14

(a) $\angle XAB + \angle YBA = 180^{\circ}$ (int. $\angle s$, XA/YB) $2\angle PAB + 2\angle PBA = 180^{\circ}$ (given) $\angle PAB + \angle PBA = 90^{\circ}$ $\angle APB = 180^{\circ} - (\angle PAB + \angle PBA)$ (\angle sum of \triangle) $= 180^{\circ} - 90^{\circ}$ (proved) $=90^{\circ}$

(b) Let Q be on AB such that $\angle APQ = \angle APC$.

 $= \angle QPB$

In $\triangle APC$ and $\triangle APO$. AP = AP(common) $\angle CAP = \angle OAP$ (given) $\angle APC = \angle APQ$ (by construction) $\triangle APC \cong \triangle APQ$ (AAS) CP = PO (corr. sides, $\cong \triangle s$) $\angle QPB = 90^{\circ} - \angle APQ = 90^{\circ} \quad \angle APC \quad (corr. \angle s, \cong \triangle s)$ \Rightarrow $\angle DPB = 180^{\circ} - 90^{\circ}$ $\angle APC$ (adj. \angle s on st. line) $=90^{\circ}-\angle APC$

 \therefore In $\triangle BPD$ and $\triangle BPO$. PB = PB(common) $\angle PBD = \angle QBP$ (given) $\angle DPB = \angle OPB$ (proved) $\triangle BPD \cong \triangle BPQ$ (AAS) PD PO $(corr. sides, \cong \triangle s)$ CP = DP (= PQ)

(c) : AC = AO (corr. sides, $\cong \triangle s$) X =BD = BQ (corr. sides. $\cong \triangle s$) AC + BD = AQ + BQ = AB

11.4 HKCEE MA 1988 - I - 8(a)

(ii) $\angle ABC = 90^{\circ}$ (property of square) $\angle PBC = 60^{\circ}$ (property of equil \triangle) $\Rightarrow \angle ABP = 90^{\circ} - 60^{\circ} = 30^{\circ}$ AB = BC (property of square) =BP (property of equi $1\triangle$) $\Rightarrow \angle PAB = \angle APB$ (base $\angle s$, isos. \triangle) = $(180^{\circ} - 30^{\circ}) \div 2 = 75^{\circ}$ (\angle sum of \triangle) $\angle PQC = 180^{\circ} - \angle PAB = 105^{\circ}$ (int. $\angle s$, AB//DC)

11.5 HKCEE MA 1993(I) - I - 1(c)

 $\frac{x}{7} = \frac{3}{5}$ (intercept thm) $\Rightarrow x = \frac{21}{5}$

11.6 HKCEE MA 1995 - I - 1(c)

Required $\angle = (8-2)180^{\circ} \div 8 = 135^{\circ}$ (\angle sum of polygon)

11.7 HKCEE MA 1995 - I - 1(d)

AB = DC = 5 and $\angle A = 90^{\circ}$ (property of rectangle) $BD = \sqrt{AB^2 + AD^2} = 13$ (Pyth. thm)

11.8 HKCEE MA 1996 - I - 10

(a) $x = 360^{\circ} - 80^{\circ} - 80^{\circ} - 75^{\circ} = 65^{\circ}$ (sum of ext. Zs of polygon)

(b) △ABE and △CDB (SAS)

(c) In $\triangle ABE$, $y+z=80^{\circ}$ (ext. \angle of \triangle) $\triangle ABE \cong \triangle CDB$

 $\angle CDB = v \quad (corr. \angle s. \cong \triangle s)$ BD = BE (corr. sides, $\cong \triangle$ s)

 $\angle BDE = \angle BED$ (base $\angle s$, isos, \triangle)

= $180^{\circ} - z$ (65°) (adj. \angle s on st. linc) $= 115^{\circ} - 7$

 $\angle CDB + \angle BDE + 75^{\circ} = 180^{\circ}$ (adj. \angle s on st. line) $y + (115^{\circ} - z) + 75^{\circ} = 180^{\circ}$

Hence, $\begin{cases} z - y = 10^{\circ} \\ y + z = 80^{\circ} \end{cases} \Rightarrow \begin{cases} y = 35^{\circ} \\ z = 45^{\circ} \end{cases}$

. In $\triangle BDE$, $\theta = 180^{\circ}$ 2 $\angle BED$ (\angle sum of \triangle) $= 180^{\circ} \quad 2(115^{\circ} \quad z) = 40^{\circ}$

11.9 HKCEE MA 1998 - I - 2

x = 180 120 = 60(adj. ∠s on st. line) y = (4-2)180 - 80 - 140 - x (2 sum of polygon) = 80

11.10 HKCEE MA 1999 - I - 14

(a) ∠ABE 180° - ∠ABD (adj. ∠s on st. line) $180^{\circ} - \angle CDB$ (alt. $\angle s$, AB//DC) $\angle CDF$ (adj. ∠s on st. line)

(b) In $\triangle ABE$ and $\triangle CDF$. AB = CD(property of //gram)

EB = FC(given) $\angle ABE = \angle CDF$ (proved)

 $\triangle ABE \cong \triangle CDF$ (SAS) $\Rightarrow \angle E = \angle F$ (corr. $\angle s$, $\cong \triangle s$)

⇒ EA//CF (alt, ∠s equal)

11.11 HKCEE MA 2000-1-13

(a) $\angle A = \angle ABC = \angle BCD$ (given) $= (5 2)180^{\circ} \div 5 (\angle \text{sum of polygon})$ $=108^{\circ}$

 $\angle GCD = 90^{\circ}$ (property of square) $\Rightarrow \angle BCG = 108^{\circ} - 90^{\circ} = 18^{\circ}$

BC = CD = CG (given)

 $\angle GBC = \angle BGC$ (base $\angle s$, isos. \triangle)

In $\triangle BCG$, $\angle GBC = (180^{\circ} - \angle BCG) \div 2$ (\angle sum of \triangle) ± 81°

 $\angle ABP = 108^{\circ} 81^{\circ} = 27^{\circ}$ $\angle APB = 180^{\circ} - \angle A - \angle ABP = 45^{\circ} \quad (\angle \text{ sum of } \triangle)$

11.12 HKCEE MA 2002 - I - 10

(a) In $\triangle ABC$, $\angle B = \angle C$ (base $\angle s$, isos, \triangle) $=(180^{\circ}-20^{\circ})\div 2 \quad (\angle \text{ sum of } \triangle)$ $= 80^{\circ}$

In $\triangle CBE$, $\angle E = \angle B = 80^{\circ}$ (base \angle s, isos. \triangle) $\angle ECB = 180^{\circ} - 2(80^{\circ})$ (\angle sum of \triangle) = 20°

 $\angle ECF = 80^{\circ} \quad 20^{\circ} = 60^{\circ}$

Thus, $\triangle CEF$ is equilateral. $\Rightarrow \angle CEF = 60^{\circ}$

(b) $\angle EDF = \angle DEF$ (base \angle s. isos. \triangle) = $180^{\circ} - \angle CEF - \angle BEC$ (adj. $\angle s$ on st. line) $=40^{\circ}$

 $\angle DFA = 40^{\circ} - \angle A = 20^{\circ}$ (ext \angle of \triangle) $\angle DFA = \angle DAF = 20^{\circ}$ (proved)

AD = DF (sides opp. equal \angle s)

11.13 HKCEE MA 2004 - I - 12

(a) (i) $\angle AEF = \angle CED$ (vert. opp. $\angle s$) $= \angle CDE$ (base $\angle s$, isos, \triangle) $=36^{\circ}$

(ii) $\angle ABC = \angle ACB$ (base $\angle s$, isos. \triangle) $= \angle CDE + \angle CED$ (ext. \angle of \triangle)

 $\angle BAC = 180^{\circ} \quad 2(72^{\circ}) = 36^{\circ} \quad (\angle \text{ sum of } \triangle)$

(b) (i) $\angle FAE = \angle AEF = 36^{\circ}$ (proved) AF = FE(sides opp. equal ∠s)

AF = FB, FE = FB (given)

 $\angle EFB = \angle A + \angle AEF = 72^{\circ} \text{ (ext. } \angle \text{ of } \triangle \text{)}$ $\angle FEB = \angle FBE$ (base $\angle s$, isos. \triangle)

 $= (180^{\circ} - \angle EFB) \div 2 = 54^{\circ}$ Hence, $\angle AEB = \angle AEF + \angle FEB = 36^{\circ} + 54^{\circ} = 90^{\circ}$ (i i) $AC = AB = \frac{AE}{\cos \angle A} = \frac{10}{\cos 36^\circ}$ $BE = AE \tan \angle A \approx 10 \tan 36^\circ$ Area of $\triangle ABC = \frac{1}{2}AC \cdot BE = 44.9 \text{ (cm}^2, 3.s.f.)$

11.14 HKCEE MA 2005 - I - 8

 $x = (6-2)180 \div 6 = 120$ (\angle sum of polygon) In $\triangle ABC$, $\angle B = 120^{\circ}$

AB = BC(given) $y^{\circ} = \angle BAC$ (base $\angle s$, i sos. \triangle)

 $y = (180 - \angle B) \div 2$ (\angle sum of \triangle) = 30

 $\angle ABG = \angle BAG = 30^{\circ}$ $z^{\circ} = \angle AGB$ (vert. opp. Zs) z = 180 - 30 30 = 120 ($\angle sum of \triangle$)

11.15 HKCEE MA 2006 - I - 5

 $\angle ABE = \angle AEB$ (base \angle s, isos, \triangle) $= \angle CBE = 70^{\circ}$ (alt. \angle s, BC//AD) $\angle BCD = 180^{\circ} - \angle ABC$ (int. $\angle s$, AB//DC) $= 180^{\circ} - (70^{\circ} - 70^{\circ}) = 40^{\circ}$

11.16 HKCEE MA 2007 - I - 8

 $x = 180^{\circ} - 110^{\circ} = 70^{\circ}$ (adj. \angle s on st. line) $\angle CBF = z$ (base $\angle s$, isos. \triangle) $\angle EBC = 110^{\circ}$ (alt. $\angle s$, AC//DF) $z = 110^{\circ} 90^{\circ} = 20^{\circ}$ $y = 180^{\circ} - 90^{\circ} - x = 20^{\circ} \ (\angle \text{ sum of } \triangle)$

11.17 HKCEE MA 2008 - I - 9

 $x = 33^{\circ}$ (alt. \angle s, CD//AB) $y = 43^{\circ} + x = 76^{\circ} \text{ (cxt. } \angle \text{ of } \triangle \text{)}$ $\angle ACE = y = 76^{\circ}$ (base $\angle s$, isos. \triangle) $z = 180^{\circ} - \angle ACE - y = 28^{\circ} \quad (\angle \text{ sum of } \triangle)$

11.18 HKDSE MA 2020 - I - 8

8a AB = BE (given) $\angle AEB = \angle BAE$ (base $\angle s$, isos. \triangle) $\angle AEB = 30^{\circ}$ $\angle ADB = \angle BED + \angle DBE \quad (ext. \angle of \Delta)$ $42^{\circ} = 30^{\circ} + \angle DBE$ $\angle DBE = 12^{\circ}$ $\angle BEC = \angle DBE$ (alt. $\angle s$, $BD \parallel CE$) =12° $\angle DCE = \angle BDC$ (alt. $\angle s$, $BD \parallel CE$)

 $\angle CEF + \angle CFE + \angle ECF = 180^{\circ}$ ($\angle sum of \Delta$) $12^{\circ} + \angle CFE + \theta = 180^{\circ}$

 $\theta = 168^{\circ} - \theta$

11B Congruent and similar triangles

11B.1 HKCEE MA 1982(2) - I - 13

 $\angle DAB = \angle EAC = 60^{\circ}$ (property of equil. \triangle) $\angle DAB + \angle BAC = \angle EAC + \angle BAC$ $\angle DAC = \angle BAE$ In $\triangle ADC$ and $\triangle ABE$. DA = BA(property of equil. △) $\angle DAC = \angle BAE$ (proved) AC = AE(property of equil. \triangle) $\triangle ADC \cong \triangle ABE$ (SAS) DC = BE

(corr. sides, $\cong \triangle s$)

118.2 HKCEE MA 2001 - I - 11

(a) PA' = PA = x cm

In $\triangle PBA'$, $x^2 = PB^2 + BA'^2$ (Pyth, thm) $x^2 = (12 - x)^2 + (12 \div 2)^2$ $x^2 = 144 - 24x + x^2 + 36 \implies x = 7.5$ (b) In $\triangle PBA'$ and $\triangle A'CR$. $B = C = 90^{\circ}$ (given) $\angle BPA' = 180^{\circ} \angle B - \angle PA'B$ (L sum of A) $= 90^{\circ} - /PA'B$ $\angle CA'R = 180^{\circ} - \angle PA'R - \angle PA'B$ (adj. \angle s on st. line) $=90^{\circ}-\angle PA'B$ $\Rightarrow \angle BA'P = \angle CA'R$ $\angle BA'P = \angle CRA'$ $(\angle sum of \triangle)$ $\triangle PBA' \sim \triangle A'CR$ (AAA)

(corr. sides, $\sim \triangle s$)

11B.3 HKCEE MA 2003 -- I - 8

 $\frac{7.5}{12-7.5} = \frac{A^{1}R}{6} \implies A^{2}R = 10 \text{ (cm)}$

(a) In △ABC and △CDA.

AB = CD(property of //gram) BC = DA(property of //gram) AC = CA(common)

 $\triangle ABC \cong \triangle CDA$ (SSS) (b) $\triangle ABD \cong \triangle CDB$, $\triangle ABE \cong \triangle CDE$. $\triangle ADE \cong \triangle CBE$

11B.4 HKCEE MA 2009 - I - 11

(a) $\angle ADC = \angle ACE - \angle CAD$ (ext. \angle of \triangle) $= \angle ACE - \angle BCE$ (given) $= \angle ACB$ In $\triangle ABC$ and $\triangle AED$, AC = ADBC = ED(given) $\angle ACB = \angle ADE$ (proved) $\triangle ABC \cong \triangle AED$ (SAS) (b) (i) In △ABF and △DEA. $\angle AFB = \angle DAE$ (alt. $\angle s$, AD / /BC) $\angle ABF = \angle DEA$ (con. $\angle s \cong \Delta s$) $\angle BAF = \angle EDA \quad (\angle sum of \triangle)$ $\triangle ABF \sim \triangle DEA$ (AAA) (ii) △CEF, △CBA

11B.5 HKCEE MA 2010 - I - 9

(a) $\angle EAC + \angle ACD = 180^{\circ}$ (int. $\angle s$, AE//CD) $\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$ $(\angle sum of \triangle)$ $\angle ABC + (108^{\circ} - \angle EAC) + (126^{\circ} - \angle ACD) = 180^{\circ}$ $\angle ABC + 234^{\circ} - (180^{\circ}) = 180^{\circ}$ (proved) $\angle ABC = 126^{\circ}$

(b) In △ABC and △DCB. AB = DC(given) $\angle ABC = \angle DCB = 126^{\circ}$ (proved)

BC = CB(common) $\triangle ABC \cong \triangle DCB$ (SAS)

11B.6 HKCEE MA 2011-I-9

(a) In $\triangle ABD$ and $\triangle ACD$,

∠BAD ∠CAD (given) AD = AD(common) $\angle ABD = \angle ACD$ (given) $\triangle ABD \cong \triangle ACD$ (ASA) (b) $\angle CAD = \angle BAD = 31^{\circ}$ (given) In $\triangle ACD$, $\angle ADC = 180^{\circ} - 31^{\circ} - 17^{\circ} = 132^{\circ}$ $(\angle sum of \triangle)$ $\angle ADB = \angle ADC = 132^{\circ}$ $(corr. \angle s. \cong \triangle s)$ DB = DC(corr. sides, $\cong \triangle s$) $/BDC = 360^{\circ} - 132^{\circ} - 132^{\circ} = 96^{\circ}$ (∠s at a pt) $\angle CBD = \angle BCD$ (base $\angle s$, isos. \triangle)

 $(\angle \text{ sum of } \triangle)$

11B.7 HKDSE MA 2013-1-7

(a) BE = CE (given) $\angle BCE = \angle CBE$ (base $\angle s$, isos. \triangle) In $\triangle ABC$ and $\triangle DCB$, $\angle BAC = \angle BDC$ (given) $\angle ACB = \angle DCB$ (proved) BC = CB(common) $\triangle ABC \cong \triangle DCB \quad (AAS)$

 $=(180^{\circ}-96^{\circ})\div 2=42^{\circ}$

(b) (i) $3(\triangle ABC \cong \triangle DCB, \triangle ABE \cong \triangle DCE, \triangle ABD \cong \triangle DCA)$

(ii) 4 (the 3 in (i) and $\triangle ADE \sim \triangle CBE$)

11B.8 HKDSE MA 2014 - I - 9 (a) In $\triangle ABC$ and $\triangle BDC$, $\angle C = \angle C$ (common) $\angle BAC = \angle DBC$ (given) $\angle ABC = \angle BDC \quad (\angle \text{sum of } \triangle)$ $\triangle ABC \sim \triangle BDC$ (AAA) AC BC (corr. sides, $\sim \Delta s$) $\overline{BC} = \overline{DC}$ 25 20 20 DC DC = 16 $BC^2 = 20^2 = 400$

 $BD^2 + CD^2 = 12^2 + 16^2 = 400 = BC^2$ $\triangle BCD$ is a right- $\angle ed \triangle$. (converse of Pyth. thm)

11B.9 HKDSE MA 2015 - I - 13

(a) In $\triangle ABE$ and $\triangle BCF$, (property of square) $\angle B = \angle C = 90^{\circ}$ (property of square) AE = BF(given) $\triangle ABE \cong \triangle BCF$ (RHS)

In ▲BEG. $\angle BGE = 180^{\circ}$ $\angle GBE$ $\angle GEB$ (\angle sum of \triangle) = $180^{\circ} - \angle GBE - \angle BFC$ (proved) $= \angle BCF = 90^{\circ}$ $(\angle sum of \triangle)$.: YES.

(c) BE = CF = 15 cm (corr. sides, $\cong \triangle s$) $BG = \sqrt{BE^2 - EG^2} = 12 \text{ cm}$ (Pyth. thm)

(b) $\angle AEB = \angle BFC$ (corr. sides, $\cong \triangle s$)

11B.10 HKDSE MA 2016-1-13

DE = ED(common) BD + DE = CE + ED(given) BE = CDIn $\triangle ACD$ and $\triangle ABE$,

> BE = CD(proved) $\angle AEB = \angle ADC$ (given) AE = AD(sides opp. equal ∠s)

 $\triangle ACD \cong \triangle ABE$ (SAS) (b) (i) DM = EM (given) \therefore AM \perp DE (property of isos. \triangle) $AM = \sqrt{AD^2 - (DE \div 2)^2} = 12$ (cm) (Pyth. thm)

(ii) $AB = \sqrt{AM^2 + BM^2} = 20 \text{ (cm)}$ (Pyth. thm) $BE^2 = 25^2 = 625$ $AB^2 + AE^2 = AB^2 + AD^2$ (corr. sides, $\cong \Delta s$) $=20^2+15^2=625=BE^2$ YES. (converse of Pyth, thm)

11B.11 HKDSE MA 2017 - I - 10

(a) P = OR and PS = RS (given) .. OS ⊥ PR (property of isos. △) In $\triangle OPS$ and $\triangle ORS$, OP = OR(given) OS = OS(common) $\angle OSP = \angle OSR$ (proved) $\triangle OPS \cong \triangle ORS$ (RHS)

11B.12 HKDSE MA 2018 - I - 13

(a) $\angle C = 180^{\circ}$ $\angle B = 90^{\circ}$ (int. $\angle s$, AB//DC) $\angle BAE = 180^{\circ} - \angle ABE - \angle AEB$ quad (\angle sum of \triangle) $=90^{\circ}$ $\angle AEB$ $\angle CED = 180^{\circ} - \angle AED - \angle AEB$ (adi. \angle s on st. line) = 90° ∠AEB $BAE = \angle CED$ In $\triangle ABE$ and $\triangle ECD$. $\angle B = \angle C = 90^{\circ}$ (proved) $\angle BAE = \angle CED$ (proved) $\angle BEA = \angle CDE$ $(\angle sum of \triangle)$ $\triangle ABE \sim \triangle ECD$ (AAA)

(b) (i) $BE = \sqrt{AE^2 - AB^2} = 20 \text{ cm}$ (Pyth. thm) AB EC $\frac{AB}{BE} = \frac{EC}{CD}$ (corr. sides, $\sim \Delta s$) 36 15 $\frac{10}{20} = \frac{30}{CD}$ $CD = 48 \, \mathrm{cm}$

(ii) $DE = \sqrt{CD^2 + CE^2} = 60 \text{ cm}$ (Pyth. thm) Area of $\triangle ADE = \frac{1}{2}(25)(60) = 750 \text{ (cm}^2)$ (iii) $AD = \sqrt{25^2 + 60^2} = 65$ (cm) (Pyth. thm) Let ℓ cm be the shortest distance from E to AD. = Area of $\triangle ADE$ $\ell = 2 \times 750 \div 65$ = 23.077 > 23.: NO.

11B.13 HKDSE MA 2020 - I - 18

```
∠TUV = ∠TWU (∠ in alt, segment)
                        ZUTV = ZIVTU (common Z)
                        \angle UVT = \angle RUT (3rd \angle \cdot of \triangle)
                        AUTV - AFTU (A A.A.)
bi
                            DUTY ~ DITTU (from (n))
                              \frac{TU}{TW} = \frac{TV}{TU} (cont. sides, \sim \Delta s)
                         \frac{IU}{IV + VW} = \frac{IV}{IU}
                         \frac{780}{325 + VW} = \frac{325}{780}
                               VW = 1547 cm
      The circumference of C = \pi(1547)
                             ≕1547π cm
ű
                           \Delta UTV \sim \Delta WTU (from (n))
                             UV IV
                                          (corr. sides, ~Au)
                             1971 TEI
                             UV _ 325
                             URY 780
                              UV = \frac{5}{12}UR'
                                ∠VUW = 90° (∠ in semi-circle)
                           UV^2 + UW^2 = VW^2 (Pyth. Thun.)
                       5 UW + UW 1547
                                   L/IV = 1428 cm
      The perimeter of AUVIV = UV + UN' + VIF
                               = - UW + UNT + VNT
                              =\frac{5}{12}(1428)+1428+1547
                              = 3570 cm
                              = 35.7 20
                              > 35 m
      Therefore, the perimeter of \( \DVW \) exceeds 35 m.
     The claim is agreed with.
```