2007－CE

數學
卷一
20007 年 香 港 中 學 會 考

數學 試卷一

試題答題簿本試卷必須用中文作答兩小時完卷（上午八時三十分至上午十時三十分）

考生須知

1．在第 1 頁之適當位置填寫考生編號。
2．在第 1，3，5，7，9及 11 頁之適當位置貼上電腦條碼。

3．本試卷分三部，即甲部（1），甲部（2）和乙部。每部各佔 33 分。

4．甲部（1）及甲部（2）各题均須作答，乙部選答三题，答案須寫在本試題答題簿中預留的空位內。各頁框線以外位置，不得書寫。

5．如有需要，可要求派發方格紙及補充答題紙。每張紙均須塤寫考生編號及貼上電腦條碼，並用繩縑於簐內。

6．在第 1 頁之適當位置塤寫乙部中選答試題的編號。

7．除特別指明外，須詳細列出所有算式。
8．除特別指明外，數値答案須用真確値，或準碓至三位有效數字的近似値表示。

9．本試巻的附圖不一定依比例繪成。

請在此貼上電腦條碼

考生編號

	由閱卷員填藛	由試卷主席 填冩
	閱卷員編號	試卷主席編號
甲部試題編號	積分	積分
$1-3$		
$4-6$		
$7-8$		
9		
10		
11		
12		
13		
甲部總分		

核分員專用 甲部總分

Z部試题編號 （由考生	積分	積分
乙部總分		

核分员専用

乙部總分

核分員編號

参考公式

球	體	表面面 積	$=4 \pi r^{2}$
		體 積	$=\frac{4}{3} \pi r^{3}$
圓	柱	曲面面 積	$=2 \pi r h$
		體 積	$=\pi r^{2} h$
圆	錐	曲面面 積	$=\pi r l$
		體 積	$=\frac{1}{3} \pi r^{2} h$
角	柱	體 積	$=$ 底面積 \times 高
角	錐	體 積	$=\frac{1}{3} \times$ 底面積 \times 高

請在此貼上電腦條碼

甲部（1）（33 分）

本部各题均須作答，答案害篤在預留的空位内。
1．令 p 成爲公式 $5 p-7=3(p+q)$ 的主項。
\qquad
\qquad
\qquad
\qquad
\qquad

2．化簡 $\frac{m^{6}}{m^{9} n^{-5}}$ ，並以正指數表示答案。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3．因式分解
（a）$r^{2}+10 r+25$ ，
（b）$r^{2}+10 r+25-s^{2}$ 。
\qquad
\qquad
\qquad
\qquad
\qquad

4．下面的幹葉圖顯示某學校 15 位老師的體重（以 kg 爲單位）的分佈。幹（十位）	葉（個位）

5	0	5	5	5	8	
6	2	3	7	8	8	9
7	1	3	3	5		

求該分佈的中位數，分佈域及標準差。
\qquad
\qquad
\qquad
\qquad

5．設 k 爲一常數。若二次方程 $x^{2}+14 x+k=0$ 沒有賣根，求 k 的取値範圍。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6．某花瓶的標價爲 $\$ 400$ 。該花瓶以其標價八折售出。
（a）求該花瓶的售價。
（b）售出該花瓶的盈利爲 \＄70。求盈利百分率。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
請在此貼上電腦條碼

7．某醫生爲長者病人及非長者病人診症的診金分別爲 \＄120 及 $\$ 160$ 。在某日，該醫生爲 67 位病人診症，且總診金爲 $\$ 9000$ 。該醫生當日爲多少位長者病人診症？（4分）
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8．圖 1 中，$A B C$ 及 $D E F$ 均爲直線。已知 $A C / / D F, ~ B C=C F, ~ \angle E B F=90^{\circ}$及 $\angle B E D=110^{\circ}$ 。求 x ，y 及 z 。

圖 1
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9．圖2 中，蒋形 $A O B$ 的半徑爲 40 cm 。已知 $\overparen{A B}=16 \pi \mathrm{~cm}$ 。
（a）求 $\angle A O B$ 。
（b）求尿形 $A O B$ 的面積，答案以 π 表示。

圖 2
\qquad

請在此貼上電腦條碼

甲部（2）（33 分）

本部各题均須作答，答室須寫在預留的空位內。

10．（a）若一條幼金屬線的長度量得 5 cm 準確至最接近的 cm ，求該金屬線的最小可取長度。
\qquad
\qquad
\qquad
\qquad
（b）一條幼金屬線的長度量得 2.0 m 準確至最接近的 0.1 m 。
（i）這金屬線的貴際長度有沒有可能超過 206 cm ？試解釋你的答案。
（ii）有沒有可能將這金屬線分割爲 46 條較短的金屬線，且每條均量得 5 cm 準確至最接近的 cm ？試解釋你的答案。
\qquad

11．圖 3 顯示一鉛垂倒置的直立圓錐形容器。 該容器的高及底半徑分別爲 24 cm 及 18 cm 。 該容器載有一些水，且水深爲 8 cm 。

圖 3
（a）求該容器所載的水的體積，答案以 π 表示。
\qquad
\qquad
\qquad
\qquad
\qquad

（b）（i）求該容器被浸瀑的曲面面積，答案以 π 表示。
（ii）另一鉛垂倒置的直立圓錐形容器的高及底牛徑分別爲 36 cm 及 27 cm 。這較大的容器與圖 3 所示的容器均載有相同體積的水。 求該較大容器被浸濝的曲面面積，答案以 π 表示。
\qquad

12．團4中的棒形圖及圚形圖均顯示 A 班學生所暒有錀匙的數目的分佈。擁有 2 條鍽匙， 3 條鍽匙及 4 條錀匙的學生人數分別爲 12 ， 17 及 k 。

圖 4
（a）求 k 的値。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
淸在此貼上電腦條碼
（b）求 A 班的學生人數。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
（c）求從 A 班中隨機選出的一名學生只擁有一條鍽匙的概率。
\qquad
\qquad
\qquad
（d）已知 A 班與 B 班的學生人數相同，且 A 班與 B 班學生所擁有錀匙的數目的分佈亦相同。現兩班合成一蒘。圖4中的棒形圖及圓形圖各自有沒有需要作出一項修改，使得每一個統計圖能顯示這拳學生所暒有鍽题的數目的分佈？若你的答案爲「有需要」，試寫出所需要的修改。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

13．圖5中，由 B 到 $A C$ 的垂線與 $A C$ 相交於 D 。已知 $A B=A C$ 且 $A B$ 的斜率爲 $\frac{-4}{3}$ 。

圖 5
（a）求 $A B$ 的方程。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
（b）求 h 的値。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
（c）（i）寫出 k 的値。
（ii）求 $\triangle A B C$ 的面積。
由此，或利用其他方法，求 $B D$ 的長度。
\qquad

乙部（33 分）

本部選管三魅，每题 11 分，答案須完在預留的空位内。

14．（a）設 $\mathrm{f}(x)=4 x^{3}+k x^{2}-243$ ，其中 k 爲一常數。已知 $x+3$ 爲 $\mathrm{f}(x)$ 的因式。
（i）求 k 的値。
（ii）因式分解 $\mathrm{f}(x)$ 。
（b）設 $\$ C$ 爲製作一個以 $x \mathrm{~cm}$ 爲邊長的正立方體手工藝品的成本。已知 C 爲兩部分之和，一部分隨 x^{3} 正孌，而另一部分則隨 x^{2} 正孌。 當 $x=5.5$ 時， $C=7381$ ；又當 $x=6$ 時，$C=9072$ 。
（i）以 x 表 C 。
（ii）若製作一個正立方體手工藝品的成本爲 $\$ 972$ ，求該手工藝品的邊長。
\qquad

15．下表顯示 80 名學生在某上課日所穿着褛衣的尺碼的調査結果。

| 學生 | 尺碼 | 細碼 | 中碼 | 大碼 |
| :---: | :---: | :---: | :---: | :---: | 總數

（a）在該上課日，從該 80 名學生中隨機選出一名學生。
（i）求所選出的學生爲男生的概率。
（ii）求所選出的學生爲男生且他穿着大碼裍衣的概率。
（iii）求所選出的學生爲男生或所選出的學生穿着大碼䘽衣的概率。
（iv）已知所選出的學生爲男生，求他穿着大碼䘽衣的概率。
（b）在該上課日，從該 80 名學生隨機潠出兩名學生。
（i）求所選出的兩名學生均穿着大碼褛衣的概率。
（ii）所選出的兩名學生穿着相同尺碼願衣的概率是否大於穿着不同尺碼襯衣的概率？試解釋你的答案。
\qquad
ב－

16．圖6顯示一實心木製紀念品 $A B C D E F$ ，其三角形底 $A B C$ 在水平地面上。 A • B 及 C分別鉛垂於 E ，F 及 D 之下。 $D E F$ 爲三角形斜面。已知 $A B=9 \mathrm{~cm}, ~ B C=5 \mathrm{~cm}$ ， $A C=6 \mathrm{~cm}$ ，$A E=B F=20 \mathrm{~cm}$ 及 $C D=23 \mathrm{~cm}$ 。

圖 6
（a）求三角形底 $A B C$ 的面積及紀念品 $A B C D E F$ 的體積。
（b）求 $\angle D F E$ 及由 D 到 $E F$ 的最短距離。
（c）有沒有可能將一塊大小爲 $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ 的矩形金屬薄片固定在三角形表面 $D E F$ 上，使該金屬薄片完全在三角形 $D E F$ 內？試解釋你的答案。
\qquad
\qquad
17.

圖7（a）

㘣7（b）
（a）園7（a）中，半圓 $A B C$ 的圓心爲 O ，直徑爲 $A C$ 。 D 爲 $A C$ 上的一點使得 $A B=B D \circ I$ 爲 $\triangle A B D$ 的內心。 $A I$ 的延線與 $B C$ 相交於 $E \circ B I$ 的延線與 $A C$相交於 G 。
（i）證明 $\triangle A B G \cong \triangle D B G$ 。
（ii）藉考慮三角形 $A G I$ 及三角形 $A B E$ ，證明 $\frac{G I}{A G}=\frac{B E}{A B}$ 。
（b）在圖7（a）中引入以 O 我原點的直角坐標系使得 C 及 D 的坐標分別爲 $(25,0)$及 $(11,0)$ ，且 B 位於第二象限（見圖 7（b））。現知 $B E: A B=1: 2$ 。
（i）求 G 的坐標。
（ii）求 $\triangle A B D$ 的內切圓的方程。
\qquad
\qquad
בר ב－＿

