

20005 年 香 港 中 學 會 考

數學 試卷一

試題答題簿

本試卷必須用中文作答
兩小時完卷（上午八時三十分至上午十時三十分）

1．在本封面的適虽位置填寫考生編號，試場編號及座位編號。

2．本試卷分三部，即甲部（1），甲部（2）和乙部。每部各佔 33 分。

3．甲部（1）及甲部（2）各題均須作答，乙部選答三題，答案須寫在本試題答題簿中預留的空位內。 如有需要，可要求派發補充答題紙，每張紙均須寫上考生編號，並用繩縛於簿內。

4．在本封面的適當位置填寫乙部中選答試題的編號。

5．除特別指明外，須詳細列出所有算式。
6．除特別指明外，數値答案須用真確値，或準確至三位有效數字的近似値表示。

7．本試卷的附圖不一定依比例繪成。

考生編號							
試場編號							
座位編號							

	由閱卷員填窵	由試卷主席填藛
	閱卷員編號	試卷主席編號
甲部試題編號	積分	積分
1－3		
4－5		
6－7		
8		
9		
10		
11		
12		
13		
甲部總分		

核分员專用 甲部總分

乙部試題編號 （由寿生填舀）	積分	積分
乙部總分		

核分皇專用

乙部總分

```
核分員編號
```

球	體	表	面	積		$4 \pi r^{2}$
		體		積		$\frac{4}{3} \pi r^{3}$
圓	柱	側	面	積		$2 \pi r h$
		體		積		$\pi r^{2} h$
圆	錐	側	面	積		$\pi r l$
		體		積		$\frac{1}{3} \pi r^{2} h$
角	柱	體		積		底面積 \times 高
角	錐	體		積		$\frac{1}{3} \times$ 底面積

甲部（1）（33 分）
本部各題均須作答，答案須窘在預留的空位內。

1．令 a 成爲公式 $P=a b+2 b c+3 a c$ 的主項。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2．化簡 $\frac{\left(x^{3} y\right)^{2}}{y^{5}}$ ，並以正指數表示答案。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3．因式分解
（a） $4 x^{2}-4 x y+y^{2}$ ，
（b） $4 x^{2}-4 x y+y^{2}-2 x+y$ 。
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

4．解不等式 $\frac{-3 x+1}{4}>x-5$ ，
並寫出所有能同時滿足不等式 $\frac{-3 x+1}{4}>x-5$ 及不等式 $2 x+1 \geq 0$ 的整數。
\qquad

5．小美擁有玻璃珠子的數目與佩怡擁有玻璃珠子的數目之比爲 $5: 2$ 。 小美擁有 n 顆玻璃珠子。 若小美將她其中的 18 顆玻璃珠子送給們怡，她們將擁有相同數目的玻璃珠子。求 n 。
\qquad

6．某計算機的成本爲 $\$ 160$ 。 若該計算機以其標價出售，則盈利百分率爲 25% 。
（a）求該計算機的標價。
（b）若該計算機以其標價九折出售，求盈利百分率或虧蝕百分率。
\qquad

7．某等差數列的第 1 項及第 2 項分別爲 5 及 8 。若該數列首 n 項之和爲 3925 ；求 n 。
\qquad

8．圖1中，$A B C D E F$ 爲一正六邊形。 $A C$ 與 $B F$ 交於 G 。求 x ，y 及 z 。

圖 1
\qquad

9．圖 2 中，$O A B C$ 爲一扇形且 $\overparen{A B C}=10 \pi \mathrm{~cm}$ 。

圖 2
（a）求 $O A$ 。
（b）求弓形 $A B C$ 的面積。
\qquad

甲部（2）（33 分）

本部各展均㥧作答，答案須高在預留的空位内。

10．已知 $\mathrm{f}(x)$ 爲兩部分之和，一部分隨 x^{3} 正變，另一部分則隨 x 正變。 假定 $\mathrm{f}(2)=-6$及 $f(3)=6$ 。
（a）求 $\mathrm{f}(x)$ 。
\qquad
（b）設 $\mathrm{g}(x)=\mathrm{f}(x)-6$ 。
（i）證明 $x-3$ 爲 $g(x)$ 的因式。
（ii）因式分解 $\mathrm{g}(x)$ 。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11.

圖 3

七名球手參加一項男子網球單打淘汰賽。 他們被隨機編排在位置1，2，3，4，5， 6 及 7 上。已知偉健及嘉豪分別在位置 2 及位置 7 上。 如圖 3 所示，每場比賽的勝方可進入下一輪比賽，負方則被淘汰。嘉豪直接進入準決賽。 在每場比賽中，每位球手均有同等機會撃敗對手。
（a）寫出偉健進入準決賽的概率。
\qquad
\qquad
\qquad
（b）求偉健成爲冠軍的概率。
\qquad
\qquad
\qquad
\qquad
（c）求偉健未能進入決賽的概率。
\qquad
\qquad
\qquad
\qquad
\qquad
（d）求偉健與嘉豪在決賽中互相對壘的概率。
\qquad
\qquad
\qquad
\qquad
\qquad

12．圖 4 顯示的固體是由一直立圓錐體及一牛球體所組成，兩部分的底相同。 該圓錐體的高及底半徑分別爲 $h \mathrm{~cm}$ 及 $(h-4) \mathrm{cm}$ 。已知該圓錐體的體積與該车球體的體積相等。

圖 4
（a）求 h 。
\qquad
（b）求該固體的總表面面積，答案須準確至最接近的 cm^{2} 。
\qquad
\qquad $\cdots+$
\qquad （
（c）若該固體被切成兩個完全相同的部分，求所增加的總表面面積，答案須準確至最接近的 cm^{2} 。
\qquad $\xrightarrow{2}$
\qquad \square
\qquad \cdots \square
\qquad
\qquad $\xrightarrow[-(-3)]{ }$

13．蒚 5 中，直線 $L_{1}: 2 x-y+4=0$ 與 x 軸及 y 軸分別交於 A 及 B 。直線 L_{2} 通渘 B並垂直於 L_{1} ，且與 x 軸交於 C 。由原點 O 作一直線垂直於 L_{2} 且與 L_{2} 交於 D。

（a）寫出 A 及 B 的坐標。
\qquad
\qquad
\qquad
\qquad
\qquad
（b）求 L_{2} 的方程。
\qquad
（c）求 $\triangle O D C$ 的面積與四邊形 $O A B D$ 的面積之比。
\qquad
\qquad
\qquad －－a－3
\qquad \cdots －a
\qquad \cdots Con
\qquad \cdots Corex
\qquad

乙部（33 分）
 本部選答三題，每题 11 分，答案須䳆在預留的空位內。

14.

圖 6

圖6中，$A B C$ 爲一懸掛着的三角形薄板，其頂點 C 位於水平地面上。 D 及 E 爲地面上的點，且分別鉛垂於 A 及 B 之下。 $B C$ 與水平傾斜 30° 。已知 $A D=100 \mathrm{~cm}$ ， $B C=120 \mathrm{~cm}$ ，$\angle C A B=60^{\circ}$ 及 $\angle A B C=80^{\circ}$ 。
（a）求 $B E$ 度 $C E$ 。
（b）求 $A B$ 及 $A C$ 。
（c）求 $\angle C D E$ 及由 C 到 $D E$ 的最短距離。
\qquad

15．某班有 20 名學生，他們在一次音樂測驗的得分（單位爲分）如下：

84	86	90	93	100
103	120	120	120	121
122	134	134	136	137
144	146	146	146	158

（a）求以上得分的平均値，平均偏差及標準差。
（b）小麗爲該班的一名學生，且她在該音樂測驗的標準分爲 1 。在該音樂測驗中，小麗是否該班得分最高的 20% 學生之一？試解釋你的答案。
（c）（i）若該班有一名學生退學，求餘下 19 名學生在該音樂測驗的得分的巫均値爲 122 分的概率。
（ii）若該班有兩名學生退學，求餘下 18 名學生在該音樂測驗的得分的平均値爲 122 分的概率。
\qquad

16．文俊向某銀行借 $\$ 200000$ 的貸款，年利率爲 6% ，複利計算，每月一結。 在提取誜筆貸款當天起計之後的每個月計算利息，並隨即每月還款 $\$ x$ 給該銀行，直至該筆貸款完全清還（最後一次還款可少於 $\$ x$ ），其中 $x<200000$ 。
（a）（i）求第1個月的貸款利息。
（ii）以 x 表文俊在第 1 次還款後尚欠該銀行的金額。
（iii）證明若文俊在第 n 次還款後晌未完全清還該筆貸款，則他向欠該銀行 $\$\left\{200000(1.005)^{n}-200 x\left[(1.005)^{n}-1\right]\right\}$ 。
（b）假定文俊每月還款 $\$ 1800$（最後一次還款可少於 $\$ 1800$ ）。
（i）求文俊可完全清還該筆貸款所需的月數。
（ii）文俊欲以較低的每月還款額去完全清還該筆貸款。 他要求每月還款 $\$ 900$ ，但遭該銀行拒絕。 爲甚贸？
\qquad
\qquad ＂
\qquad
17.

圖7（a）

圖 7（b）
（a）圖 7（a）中，$M N$ 爲圓 $M O N R$ 的一直徑。 弦 $R O$ 垂直於直線 $P O Q$ 。 $R N Q$ 及 $R M P$均爲直線。
（i）藉考慮三角形 $O Q R$ 及三角形 $O R P$ ，證明 $O R^{2}=O P \cdot O Q$ 。
（ii）證明 $\triangle M O N \sim \triangle P O R$ 。
（b）在圖7（a）中引入以 O 爲原點的直角坐標系，使得 R 在正 y 軸上，且 P 及 Q的坐標分別爲 $(4,0)$ 及 $(-9,0)$（見圖 $7(b)$ ）。
（i）求 R 的坐標。
（ii）若圓 $M O N R$ 的圚心位於第二象限及 $O N=\frac{3 \sqrt{13}}{2}$ ，求圓 $M O N R$ 的半徑及圓心的坐標。
\qquad
Coran
\qquad

