

試題答題簿

本試卷必須用中文作答 兩小時完卷(上午八時三十分至上午十時三十分)

- 在本封面的適當位置填寫考生編號、試場 編號及座位編號。
- 本試卷分**三部**,即甲部(1)、甲部(2)和乙 部。每部各佔 33 分。
- 甲部(1)及甲部(2)各題均須作答,乙部還答
 三題,答案須寫在本試題答題簿中預留的 空位內。如有需要,可要求派發補充答題 紙,每張紙均須寫上考生編號,並用繩縛 於簿內。
- 在本封面的適當位置填寫乙部中選答試題 的編號。
- 5. 除特別指明外,須詳細列出所有算式。
- 6. 除特別指明外,數值答案須用真確值,或 準確至三位有效數字的近似值表示。
- 7. 本試卷的附圖不一定依比例繪成。

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2002

2002-CE-MATH 1-1

考生編號					
試場編號					
座位編號					

	由關卷員填寫	由試卷主席 填寫
	閱卷員編號	試卷主席編號
甲部試題編號	積分	積分
1–2		
3–4		
5–6		
7–8		
9		
10		
11		
12		
13		
甲部總分		

核分員專用	甲部總分		
-------	------	--	--

乙部試題編號 (由考生填寫)	積分	積分
乙部總分		

核分員專用

乙部總分

恩分

核分員編號

球	<u>単</u> 曲 目立	表 面	積	$= 4\pi r^2$
		<u>興</u> 月豆	積	$= \frac{4}{3}\pi r^3$
員	柱	側 面	積	$= 2\pi rh$
		體	積	$= \pi r^2 h$
員	錐	側 面	積	$= \pi r l$
		豐	積	$= \frac{1}{3}\pi r^2 h$
角	柱	體	積	= 底面積×高
角	錐	體	積	$=\frac{1}{3} \times $ 底 面 積 × 高

參考公式

			(3 云)
	(a) 求 θ 的值。		(3))
	(b) 求由 Q 測 P 的方位。		
	北面 <i>Q</i> 80 m		
	$O \xrightarrow{\theta} p \neq \overline{p}$	面	
	2		

4.	$ ∃ 2 $ $ f(x) = x^3 - 2x^2 - 9x + 18 $ ∘		(3分)
	(a) 求 f(2) ∘		
	(u) $j(1(2))$		
	(b) 因式分解 f(x)。		

まい	下謝墟 4 4 5 6 8 12 13 13 13 18 的	(4 分)
不以 (a)	平均值,	(4))
(b)	眾數 ,	
(c)	中位數,	
(d)	標準差。	
ŤĪ	的少勿見 9 am , 收甘少勿協加 100/ 復二英国。	(4.75)
某圓 (a)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積,答案以 π 表示。	(4分)
某圓 (a)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π表示。	(4分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積 ,答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積 ,答案以 π表示。 求圓面積的增加百分率。	(4分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積 ,答案以 π表示。 求圓面積的增加百分率。	(4分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積 ,答案以 π表示。 求圓面積的增加百分率。	(4分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積,答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積,答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積,答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積,答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π表示。 求圓面積的增加百分率。	(4分)
某圓 (a) (b)	的半徑是 8 cm , 將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π 表示。 求圓面積的增加百分率。	(4分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π 表示。 求圓面積的增加百分率。	(4分)
某圓 (a) (b)	的半徑是 8 cm ,將其半徑增加 10% 得一新圓。 求新圓的面積,答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm , 將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π 表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm , 將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π 表示。 求圓面積的增加百分率。	
某圓 (a) (b)	的半徑是 8 cm , 將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π表示。 求圓面積的增加百分率。	(4 分)
某圓 (a) (b)	的半徑是 8 cm , 將其半徑增加 10% 得一新圓。 求新圓的面積, 答案以 π 表示。 求圓面積的增加百分率。	(4 分)

© 保留版權 All Rights Reserved 2002

	解个等式 3x+6≥	4+x °		
(b)	求所有能同時滿足	已不等式	$3x+6\geq 4+x$ 及 $2x-5<0$ 的整數。	1.4
				(4 5
	у			
	$\stackrel{\mathcal{Y}}{\uparrow}$			
	y A	/		
	y A	/		
	y L	/		
A		 		
		\Rightarrow_{x}		
A	<i>v</i> <i>L</i> <i>O</i> ■ 3	\Rightarrow_{x}		
A	L 0 B 3	> x		
A	L 0 B 3	\Rightarrow_{x}		
A		$\Rightarrow x$		
A	<i>L</i> <i>O</i> ■ 3	> x		
A		\Rightarrow_x		
A		\Rightarrow_{x}		
A		\Rightarrow_x		
A		\Rightarrow_x		
A		arrow x		

C 保留版權 All Rights Reserved 2002

圖 4 中, BD 為圓 ABCD 的一直徑。 $AB = AC \perp \angle BDC = 40^\circ$ 。 求 $\angle ABD$ 。 9. (5分) A D 40[°] В Ċ 4

-6-

2002-CE-MATH 1-7 ⓒ 保留版權 All Rights Reserved 2002

Provided by dse.life

頁

後

續

甲部(2) (33 分) 本部各題均須作答,答案須富在預留的空俭內。

10. 在圖 5 中的三角形 ABC, $\angle BAC = 20^{\circ} \pm AB = AC$ 。 $D \cdot E \triangleq AB$ 上的兩點及 $F \triangleq AC$ 上的一點使得 BC = CE = EF = FD 。

(a)	求 ∠CEF 。	$\bigwedge^{A} (4\mathcal{F})$
		B = C
(b)	證明 <i>AD = DF</i> 。	(3分)

(2)	D. P	, 夷 ⊿ 。						(34)
(a)	KI	X A						
(b)	(i)	最佳銷量緣	氏書簽的面	積爲 54 cm	² 。 求該書簽	6的周界。		
(b)	(i) (ii)	最佳銷量 製造商想 書 答 的 西 新	氏書簽的面 製造一袖珍	積為 54 cm ² 金書簽, 其	² 。 求該書簽 其形狀與最佳	音的周界。 銷量紙書簽	章相似。 老	該袖珍金
(b)	(i) (ii)	最佳銷量約 製造商想動 書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, , 求其周界	² 。 求該書簽 4形狀與最佳 4。	音的周界。 銷量紙書簽	音相似。 老	;該袖珍金 (5分
(b)	(i) (ii)	最佳銷量約 製造商想 書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, , 求其周界	² 。 求該書簽 4形狀與最佳 4。	音的周界。 銷量紙書簽	音相似。 若	;該袖珍会 (5分
(b)	(i) (ii)	最佳銷量約 製造商想 書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, , 求其周界	² 。 求該書簽 其形狀與最佳 L。	新量紙書簽	音相似。 老	言該袖珍金 (5 分
(b)	(i) (ii)	最佳銷量約 製造商想 書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, 其 , 求其周界	² 。 求該書簽 4形狀與最佳 4。	音的周界。 銷量紙書簽	音相似。 若	;該袖珍金 (5分
(b)	(i) (ii)	最佳銷量約 製造商想 書簽的面積	氏書簽的面 22造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, 其 , 求其周界	² 。 求該書簽 其形狀與最佳 ² 。	6的周界。 銷量紙書第	至相似。 若	;該袖珍会 (5分
(b)	(i) (ii)	最佳銷量系 製造商想 書簽的面積	氏書簽的面 22造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, 其 , 求其周界	² 。 求該書簽 其形狀與最佳 L。	6的周界。 銷量紙書第	き相似。 若	F該袖珍劲 (5分
(b)	(i) (ii)	最佳銷量 製造商想 書簽的面积	氏書簽的面 22造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, , 求其周界	² 。 求該書簽 其形狀與最佳 ¹ 。	€的周界。 銷量紙書簽	至相似。 老	F該袖珍分 (5分
(b)	(i) (ii)	最佳銷量編製造商想動書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, , 求其周界	² 。 求該書簽 其形狀與最佳 L。	音的周界。 銷量紙書第	至相似。 若	ī該袖珍奇 (5 分
(b)	(i) (ii)	最佳銷量 製造商想 書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, , 求其周界	² 。 求該書簽 其形狀與最佳 L 。	新量紙書第	き相似。 老	ī該袖珍分 (5分
(b)	(i) (ii) (iii)	最佳銷量編製造商想調書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, , 求其周界	² 。求該書簽 其形狀與最佳 」。	新量紙書第	§相似。 老	F該袖珍会 (5分
(b)	(i) (ii) (ii)	最佳銷量編製造商想製書簽的面積	氏書簽的面 製造一袖珍 責為 8 cm ²	積為 54 cm 金書簽, 其 , 求其周界	² 。 求該書簽 其形狀與最佳 L。	新量紙書第	§相似。 老	F該袖珍会 (5分

2002-CE-MATH 1-9 ④ 保留版權 All Rights Reserved 2002

頁

續後

-8-

6

2002-CE-MATH 1-10 C 保留版權 All Rights Reserved 2002

(2分)

(a) 下表爲參加者閱書數目的頻數分佈表。 利用圖 6 中的圖像, 完成該表。 (1分)

閱書數目 (x)	參加人數	獎項
$0 < x \le 5$	66	證書
$5 < x \le 15$		書券
$15 < x \le 25$	64	銅牌
$25 < x \le 35$		銀牌
$35 < x \le 50$	10	金牌

(b) 利用圖 6 中的圖像, 求該分佈的四分位數間距。

在獲得獎牌者中隨機抽出兩參加者。 求下列事件的概率: (c) (6分) 他們均取得金牌; (i) (ii) 他們取得不同的獎牌。

頁

後

糟

乙部(33分) 選答三題,每題11分,答案須寫在預留的空位內。

圖 8 的 個 前 個 小 物 古 「 小 物 古 「 小 物 古 「 小 物 古 「 小 物 一 小 物 「 あ 「 よ 「 の 一 小 物 「 ち 「 ろ 「 ろ 「 ろ 「 ろ 「 う 」 う 「 う 「 う 「 う 「 う 」 う 「 う 「 う 」 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 「 う 」 う 「 う 」 う 「 う 「 う 」 う 」 う 「 う 」 う 」 う 「 う 「 う 」 う 」 う 」 う 「 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 」 う 一 」 う 」 う 」 う う う 」 う 」 う 」 う 」 う 」 う 」 う う う う う う う う う う う う う	中, AB 為水平地面上長 900 m 路。 E 是一沿着 AB 而移動的 物體。 ST 是鉛垂立於水平地面 , 其高為 hm 。 由 A 及 B 測 S 的仰角分別為 20° 和 15°。 B = 30°。	S h m 20° T E 30° B
(a)	以 <i>h</i> 表 <i>AT</i> 和 <i>BT</i> 。 ← 由此求 <i>h</i> 。 (5分)	900 m →
(b)	(i) 求 E 與 S 之間的最短距離。	
	(ii) 設由 E 測得 S 的仰角為 θ。 求當	E 沿 AB 移動時 θ 的取值範圍。 (6分)
	圖 8 的細的得 <i>ZTA</i> (a) (b)	圖 8 中, AB 為水平地面上長 900 m 的直路。E 是一沿着 AB 而移動的 細小物體。ST 是鉛垂立於水平地面 的塔,其高為 hm 。由 A 及 B 測得 得 S 的仰角分別為 20°和 15°。 ZTAB = 30°。 (a) 以 h 表 AT 和 BT 。 由此求 h。 (5分) (b) (i) 求 E 與 S 之間的最短距離。 (ii) 設由 E 測得 S 的仰角為 θ。求當

Provided by dse.life

頁

續 後

24 cm

(9分)

19 cm

< 9 cm

< ^{9 cm}

- 15. (a) 圖 9(a) 所示的兩容器有相同的高度 24 cm 。 其一為半徑 6 cm 的直立 圓柱體。 另一為半徑 9 cm 的直立 圓錐體。 兩容器分別直立於兩水平 的平台上, 其中一個平台比另一平 台高 5 cm 。 原先圓柱體是空的而 圓錐體則滿載着水。 隨後水由圓錐 體注入圓柱體中, 直至水在兩容器 的水平高度相同為止。 設 h cm 為 圓柱體中水的深度。
 - (i) 證明 $h^3 + 15h^2 + 843h 13699 = 0$ 。
 - (ii) 已知 (a)(i) 中的方程只有一實根。 證明 h 的值在 11 和 12 之間。 利用分半 法求 h, 答案須準確至一位小數。

24 cm

24 cm

6 cm

h cm

📕 9(a)

9(b)

6 cm

5 cm

(b) 圖 9(b) 所示為修改自圖 9(a) 的一個裝置。 圓錐體的尖端部分被切去, 且密封成一高 19 cm 的平截頭圓錐 體。 該兩容器均直立於同一水平的 平台上。 原先圓柱體是空的而平截 頭圓錐體則滿載着水。 隨後水由平 截頭圓錐體注入圓柱體中, 直至水 在兩容器的水平高度相同為止。 求 圓柱體中水的深度。

2002-CE-MATH 1-17 ② 保留版權 All Rights Reserved 2002

Provided by dse.life

頁

續 後

圖 10 中, AB 為圓 ABEG 的一直徑、C 為圓心。 由 G 作垂線至 AB 並與 AB 相交於 $O \circ AE$ 與 OG 相交於 $D \circ BE$ 及 OG 的延線交於 $F \circ$ <u>小欣</u>和<u>小強</u>嘗試以兩種不同的方法去證明 $OD \cdot OF = OG^2 \circ$

- (a) <u>小欣</u>解決這問題的方法是先證明 $\Delta AOD \sim \Delta FOB$ 和 $\Delta AOG \sim \Delta GOB$ 。 請完成下列各項以協助<u>小欣</u>。
 - (i) 證明 $\Delta AOD \sim \Delta FOB$ 。
 - (ii) 證明 $\Delta AOG \sim \Delta GOB$ 。
 - (iii) 利用 (a)(i) 和 (a)(ii), 證明 $OD \cdot OF = OG^2$ 。

(7分)

- (b) 小強解決同一問題的方法是在圖 10 中引入直角坐標系, 使得 C、D 和 F 的坐標 分別為 (c,0)、(0,p) 和 (0,q), 其中 c、p 和 q 為正數。 他設該圓的半徑為 r。 請完成下列各項以協助小強。
 - (i) 以 *c*、*p*、*q* 和 *r* 表 *AD* 和 *BF* 的斜率。
 - (ii) 利用 (b)(i), 證明 $OD \cdot OF = OG^2$ 。

(4分)

頁

續 後

- (a) 圖 11 顯示兩直線 L1 及 L2 。 L1 與坐標軸相交於點 (5k, 0) 及 (0, 9k), 而 L2 與坐標軸相交於點 (12k, 0) 及 (0, 5k), 其中 k 為正整數。 求 L1 和 L2 的方程。
 (2分)
 - (b) 一工廠有兩條生產線 A 和 B 。 生產線 A 生產某一物件時需要的人時數為 45, 而生產該物件時會排放出 50 個單位的污染物。 生產同一物件時, 生產線 B 需 要的人時數為 25 和排放出 120 個單位的污染物。 生產線 A 生產每一物件可獲 的利潤為 \$3000 而生產線 B 生產每一物件可獲的利潤為 \$2000。
 - (i) 該工廠可運用的人時數為 225 而排放出的污染物不得超過 600 個單位。 設生產線 A 和 B 所生產的物件的數量分別為 x 和 y。 列出適當的不等式 和代 k=1 入圖 11 中, 求該工廠最大的可能利潤。
 - (ii) 假設該工廠現可運用的人時數為 450,而排放出的污染物不得超過 1200 個 單位。利用圖 11,求最大的可能利潤。

(9分)

-19-

ł

2002-CE-MATH 1-21 ④ 保留版權 All Rights Reserved 2002

Provided by dse.life

頁

續 後

	- 試卷完 -		

2002

Mathematics 1 Section A(1)

- 1. $\frac{(ab^2)^2}{a^5} = \frac{b^4}{a^3}$
- 2. Area = 12π cm²
- 3. (a) θ is 38.7°.
 - (b) The bearing of P from Q is 129° .
- 4. (a) f(2) = 0
 - (b) f(x) = (x-2)(x-3)(x+3)

5. (a) Mean = 9.6

- (b) Mode = 13
- (c) Median = 10
- (d) Standard deviation = 4.59
- 6. (a) The area of the new circle is 77.44π cm².
 - (b) The percentage increase in area is 21%.
- 7. (a) $x \ge -1$
 - (b) The required integers are -1, 0, 1, 2.
- 8. (a) The coordinates of A are (-8, 0). The coordinates of B are (0, 4).
 - (b) The mid-point is (-4, 2).
- 9. $\angle ABD = 20^{\circ}$

Section A(2)

10. (a)
$$\therefore AB = AC$$

 $\therefore \angle B = \frac{180^\circ - 20^\circ}{2} = 80^\circ$
 $\therefore BC = CE$
 $\therefore \angle CEB = \angle B = 80^\circ$
 $\therefore \angle BCE = 180^\circ - 80^\circ - 80^\circ = 20^\circ$
 $\therefore \angle ECF = \angle ACB - \angle BCE$
 $= 60^\circ$
(b) $\angle DEF = 180^\circ - 60^\circ - 80^\circ$ (adj. $\angle s$ on st. line)
 $= 40^\circ$
 $\therefore \angle FDE = EF$
 $\therefore \angle CEF = 60^\circ$
(b) $\angle DEF = 180^\circ - 60^\circ - 80^\circ$ (adj. $\angle s$ on st. line)
 $= 40^\circ$
 $\therefore \angle FDE = \angle DEF$
 $= 40^\circ$ (base $\angle s$ of isos. \triangle)
In $\triangle ADF$,
 $\angle DFA = 40^\circ - 20^\circ$ (ext $\angle of \triangle$)

A

20

F

C

D

Ε

В

$$\angle DFA = 40^{\circ} -20^{\circ} \qquad (ext \ge of \Delta)$$
$$= 20^{\circ}$$
$$= \angle DAF$$
$$\therefore AD = DF \qquad (base \angle s \text{ of } \Delta =)$$

11. (a) Let $A = aP + bP^2$, where a and b are constants. Sub. P = 24, A = 36, 24a + 576b = 362a + 48b = 3.....(1) Sub. P = 18, A = 9, 18a + 324b = 92a + 36b = 1.....(2) Solving (1) and (2) $a = -\frac{5}{2}$ $b = \frac{1}{6}$ $\therefore \qquad A = -\frac{5}{2}P + \frac{1}{6}P^2$ (b) (i) When A = 54, $-\frac{5}{2}P + \frac{1}{6}P^2 = 54$ $P^2 - 15P - 324 = 0$ P = 27 or P = -12 (rejected) \therefore the required perimeter is 27 cm.

(ii) Let P' cm be the perimeter of the gold bookmark.

$$\left(\frac{P'}{27}\right)^2 = \frac{8}{54}$$
$$P' = 6\sqrt{3} \ (\approx 10.4)$$

The perimeter of the gold bookmark is $6\sqrt{3}$ (≈ 10.4) cm .

12. (a)	Number of books read (x)	Number of participants	Award
	$0 < x \le 5$	66	Certificate
	$5 < x \le 15$	34	Book coupon
	$15 < x \le 25$	64	Bronze medal
	$25 < x \le 35$	26	Silver medal
	$35 < x \le 50$	10	Gold medal

- (b) Lower quartile = 3.8 Upper quartile = 22.8 Inter-quartile range = 22.8 - 3.8 = 19
- (c) (i) The number of participants who won medals, 64+26+10=100The number of participants who won gold medals is 10. The probability that they both won gold medals $= \frac{10}{100} \times \frac{9}{99}$

$$=\frac{10}{100} \times \frac{9}{99}$$

 $=\frac{1}{110}$

(ii) Both won bronze medals

$$P_1 = \frac{64}{100} \times \frac{63}{99} = \frac{112}{275}$$

Both won silver medals

$$P_2 = \frac{26}{100} \times \frac{25}{99} = \frac{13}{198}$$

The probability that they won different medals

$$= 1 - \frac{1}{110} - \frac{112}{275} - \frac{13}{198}$$
$$= \frac{1282}{2475}$$

13. (a) Area of $\Delta C_1 C_2 C_3 = \frac{1}{2} (1)(1) \sin 60^\circ$ = $\frac{\sqrt{3}}{4} \text{ m}^2$

(b) Each side of a smaller triangle =
$$\frac{1}{3}$$
 m
Area of each smaller triangle = $\frac{1}{2}(\frac{1}{3})(\frac{1}{3})\sin 60^\circ = \frac{\sqrt{3}}{36}$ m²
Total area = $4 \times \frac{\sqrt{3}}{36} + \frac{\sqrt{3}}{4}$
= $\frac{13\sqrt{3}}{36}$ m²

(c) The area

$$= \frac{\sqrt{3}}{4} + \frac{4}{9} \times \frac{\sqrt{3}}{4} + \left(\frac{4}{9}\right)^2 \times \frac{\sqrt{3}}{4} + \left(\frac{4}{9}\right)^3 \frac{\sqrt{3}}{4} + \cdots$$
$$= \frac{\frac{\sqrt{3}}{4}}{1 - \frac{4}{9}}$$
$$= \frac{9\sqrt{3}}{20} m^2$$

Section B

14. (a)
$$AT = \frac{h}{\tan 20^{\circ}} \text{ m and } BT = \frac{h}{\tan 15^{\circ}} \text{ m }.$$

 $\therefore BT^{2} = AB^{2} + AT^{2} - 2AB \cdot AT \cos 30^{\circ}$
 $\therefore \left(\frac{h}{\tan 15^{\circ}}\right)^{2} = 900^{2} + \left(\frac{h}{\tan 20^{\circ}}\right)^{2} - 2(900)\left(\frac{h}{\tan 20^{\circ}}\right)\cos 30^{\circ}$
 $\left(\frac{1}{\tan^{2} 15^{\circ}} - \frac{1}{\tan^{2} 20^{\circ}}\right)h^{2} + \frac{900\sqrt{3}}{\tan 20^{\circ}}h - 810000 = 0$
 $h \approx 153.86 \approx 154$

(b) (i) ES is minimum when $SE \perp AB$ (or $TE \perp AB$). When $TE \perp AB$, $ET = AT \sin 30^\circ = \frac{h \sin 30^\circ}{\tan 20^\circ}$ (≈ 211.36) Shortest distance $= \sqrt{h^2 + (AT \sin 30^\circ)^2}$ $= h \sqrt{1 + \left(\frac{\sin 30^\circ}{\tan 20^\circ}\right)^2}$ ≈ 261.43 $\approx 261 \text{ m}$.

-27-

(ii)
$$\therefore \quad \tan \theta = \frac{h}{ET}$$

 $\therefore \quad \theta \text{ is maximum when } TE \perp AB.$
 $\tan \theta_{\max} = \frac{h}{AT \sin 30^{\circ}}$
 $= \frac{\tan 20^{\circ}}{B}$

 $\frac{1}{\sin 30^{\circ}}$ Maximum value of $\theta \approx 36.1^{\circ}$ Hence $15^{\circ} \le \theta \le 36.1^{\circ}$.

15. (a) (i) Total amount of water = $\frac{1}{3}\pi \cdot 9^2 \cdot 24 = 648\pi$ cm³ Volume of water in the cylinder = $\pi \cdot 6^2 h = 36\pi h$ cm³

Volume of water in the cone =
$$\frac{1}{3}\pi \cdot 9^2 \cdot 24 \cdot \left(\frac{h+5}{24}\right)^3$$
 cm³

$$\therefore \quad \frac{3\pi}{64} (h+5)^3 + 36\pi h = 648\pi$$
$$1 - \left(\frac{h+5}{24}\right)^3 = \frac{h}{18}$$
$$h^3 + 15h^2 + 75h + 125 = 768(18-h)$$
$$h^3 + 15h^2 + 75h + 125 + 768h = 13824$$
$$h^3 + 15h^2 + 843h - 13699 = 0$$

(ii) Let
$$f(h) = h^3 + 15h^2 + 843h - 13699$$

- : f(11) = -1280 < 0 and f(12) = 305 > 0
- \therefore The value of *h* lies between 11 and 12.

$a \\ [f(a) < 0]$	b [f(b) > 0]	$m = \frac{a+b}{2}$	f(<i>m</i>)
11	12	11.5	-500
11.5	12	11.75	-101
11.75	12	11.875	+101
11.75	11.875	11.8125	+0.224
11.75	11.8125		

 $\therefore \quad 11.75 < h < 11.8125$ $h \approx 11.8$ (correct to 1 decimal place)

- (b) The situation in Figure 9(b) is the same as the situation in Figure 9(a) if the lower part (5 cm height) of the water of the cone is ignored. Thus the depth of water in the frustum is
 - h cm

≈ 11.8 cm

-29-

16. (a) (i) In
$$\triangle AOD$$
 and $\triangle FOB$,
 $\angle AOD = \angle FOB = 90^{\circ}$ (given)
 $\therefore \ \angle AEB = 90^{\circ}$ (\angle in semicircle)
 $\therefore \ \angle DAO = 90^{\circ} - \angle ABE$ (\angle sum of \triangle)
On the other hand,
 $\angle BFO = 90^{\circ} - \angle ABE$ (\angle sum of \triangle)
 $\therefore \ \angle DAO = \angle BFO$
Hence, $\triangle AOD \sim \triangle FOB$ (AAA)

(ii) In $\triangle AOG$ and $\triangle GOB$, $\angle AOG = \angle GOB = 90^{\circ}$ $\therefore \angle AGB = 90^{\circ}$ $\therefore \angle AGO = 90^{\circ} - \angle BGO$ $= \angle GBO$ Thus, $\triangle AOG \sim \triangle GOB$

(given)
(
$$\angle$$
 in semicircle)
(\angle sum of \triangle)
(AAA)

(iii) Hence
$$\frac{OD}{OA} = \frac{OB}{OF}$$
$$OD \cdot OF = OA \cdot OB$$
$$\therefore \qquad \Delta AOG \sim \Delta GOB$$
$$\therefore \qquad \frac{OA}{OG} = \frac{OG}{OB}$$
i.e.
$$OA \cdot OB = OG^{2}.$$
Thus
$$OD \cdot OF = OA \cdot OB = OG^{2}$$

(b) (i)
$$A = (c-r, 0)$$
 and $B = (c+r, 0)$.
Slope of $AD = m_{AD} = \frac{p}{r-c}$
Slope of $BF = m_{BF} = -\frac{q}{r+c}$

(ii)
$$\therefore \quad \angle AEB = 90^{\circ} \quad (\angle \text{ in semi circle})$$

 $\therefore \qquad m_{AD} \cdot m_{BF} = \frac{p}{r-c} \cdot \left(-\frac{q}{r+c}\right) = -1$
 $pq = r^2 - c^2$
Since $pq = OD \cdot OF$
and $r^2 - c^2 = CG^2 - OC^2 = OG^2$,
we have $OD \cdot OF = OG^2$.

2002-CE-MATH 1-31 ② 保留版權 All Rights Reserved 2002 -30-

17. (a) Equation of L_1 : $\frac{y-9k}{x} = -\frac{9}{5}$ 9x+5y = 45kEquation of L_2 : $\frac{y-5k}{x} = -\frac{5}{12}$ 5x+12y = 60k

(b) (i) Let x and y be respectively the number of articles produced by lines A and B. The constraints are

 $\begin{cases} 45x + 25y \le 225 & \text{(or } 9x + 5y \le 45), \\ 50x + 120y \le 600 & \text{(or } 5x + 12y \le 60), \\ x \text{ and } y \text{ are non-negative integers.} \end{cases}$

The profit is \$1000(3x+2y).

Using the graph in Figure 11 with k = 1, the feasible solutions are represented by the lattice points in the shaded region below.

From the graph, the most profitable combinations are (3, 3) and (5, 0).

At (3, 3), the profit is 1000(9+6) = 15000At (5, 0), the profit is 1000(15+0) = 15000At (0, 5), the profit is 1000(10) = 10000At (2, 4), the profit is 1000(6+8) = 14000

The greatest possible profit is \$15000.

2002-CE-MATH 1-32 ⓒ保留版權 All Rights Reserved 2002 -31-

(ii) Let x and y be respectively the number of articles produced by production lines A and B. The constraints are

ounction miles A and D .	The constraints are	
$\int 45x + 25y \le 450$	(or $9x + 5y \le 90$),	
$\int 50x + 120y \le 1200$	(or $5x + 12y \le 120$),	

x and y are non-negative integers.

Using the same graph as in (i) and taking k = 2, the feasible solutions are represented by the lattice points in the shaded region.

From the graph , the most profitable combinations is (6, 7) .

The greatest possible profit is $\$ 1\ 000\ (18+14) = \$\ 32\ 000$