

卷一
20002 年 香 港 中 學 會 考

駇毷 䛠卷一試题答题解

本試卷必須用中文作答
兩小時完卷（上午八時三十分至上午十時三十分）

1．在本封面的適當位置塤寫考生編號，試場編號及座位編號。

2．本試卷分三部，即甲部（1），甲部（2）和乙部。每部各佔 33 分。

3．甲部（1）及甲部（2）各题均㥧作管，乙部還管
三题，答案須寫在本試題答題簿中預留的空位內。 如有需要，可要求派發補充答題紙，每張紙均須寫上考生編號，並用繩縛於簿內。

4．在本封面的適當位置塤寫乙部中選答試題的編號。

5．除特別指明外，須詳細列出所有算式。
6．除特別指明外，數値答案須用真確値，或準確至三位有效數字的近似値表示。

7．本試卷的附圖不一定依比例繪成。

考生編號							
試場編號							
座位編號							

	由閏卷員墳富	由試巻主庶填寜
	閱卷員編號	試卷主席編號
甲部試題編號	積分	積分
1－2		
3－4		
5－6		
7－8		
9		
10		
11		
12		
13		
甲部總分		

桋分員高用	甲部總分		

乙部試題編號 （由素生買）	積分	積分
乙部總分		

\square
核分員編號

香港考試局 保留版權
Hong Kong Examinations Authority
All Rights Reserved 2002

參考公式

球	體	表	面 積	$=4 \pi r^{2}$
		體	積	$=\frac{4}{3} \pi r^{3}$
圓	柱	側	面	積
		體		$=2 \pi r h$
圓 積	$=\pi r^{2} h$			
	錐	側 面	積	$=\pi r l$
		體	積	$=\frac{1}{3} \pi r^{2} h$
角	柱	體	積	$=$ 底面積 \times 高
角	錐	體	積	$=\frac{1}{3} \times$ 底面積 \times 高

甲部（1）（33 分）

1．化簡 $\frac{\left(a b^{2}\right)^{2}}{a^{5}}$ ，並以正指數表示答案。
\qquad

2．圖 1 中，扇形的半徑爲 6 cm 。求該扇形的面積，答案以 π 表示。
\qquad

3．圖 2 中，$O P$ 與 $O Q$ 爲兩互相垂直的道路，其中 $O P=100 \mathrm{~m}$ 且 $O Q=80 \mathrm{~m}$ 。
（a）求 θ 的値。
（b）求由 Q 測 P 的方位。

圖 2

4．設 $\mathrm{f}(x)=x^{3}-2 x^{2}-9 x+18$ 。
（a）求 $\mathrm{f}(2)$ 。
（b）因式分解 $\mathrm{f}(x)$ 。
\qquad

5．求以下數據 $4,4,5,6,8,12,13,13,13,18$ 的
（a）平均値，
（b）潨數，
（c）中位數，
（d）標準差。
\qquad

6．某圓的半徑是 8 cm ，將其半徑增加 10% 得一新圓。
（a）求新圓的面積，答案以 π 表示。
（b）求圓面積的增加百分率。
\qquad

7．（a）解不等式 $3 x+6 \geq 4+x$ 。
（b）求所有能同時滿足不等式 $3 x+6 \geq 4+x$ 及 $2 x-5<0$ 的整數。
\qquad

8．圖 3 中，直線 $L: x-2 y+8=0$ 與坐標軸相交於 A 及 B 。
（a）求 A 及 B 的坐標。
（b）求 $A B$ 中點的坐標。

圖 3

9．圖 4 中，$B D$ 爲圓 $A B C D$ 的一直徑。 $A B=A C$ 且 $\angle B D C=40^{\circ}$ 。求 $\angle A B D$ 。

4

甲部（2）（33 分）

本部各戠均須作管，管察須寫在碩留的空位丙。

10．在圖 5 中的三角形 $A B C, \angle B A C=20^{\circ}$ 且 $A B=A C$ 。 $D, ~ E$ 爲 $A B$ 上的兩點及 F 爲 $A C$上的一點使得 $B C=C E=E F=F D$ 。
（a）求 $\angle C E F$ 。

（b）證明 $A D=D F$ 。
\qquad

11．一紙書簽的面積爲 $A \mathrm{~cm}^{2}$ 而其周界爲 $P \mathrm{~cm} \circ A$ 爲 P 的函數。 已知 A 爲兩部分之和，一部分隨 P 正變，另一部分則隨 P 的平方正變。 當 $P=24$ 時，$A=36$ ；且當 $P=18$ 時，$A=9$ 。

$$
\text { (a) 以 } P \text { 表 } A \text { 。 }
$$

\qquad
（b）（i）最佳銷量紙書簽的面積爲 $54 \mathrm{~cm}^{2}$ 。求該書簽的周界。
（ii）製造商想製造一袖珍金書簽，其形狀與最佳銷量紙書簽相似。 若該袖珍金書簽的面積爲 $8 \mathrm{~cm}^{2}$ ，求其周界。
\qquad

12．二百名學生參加暑期閱讀計劃。圖6顯示參加者閱書數目分佈的累積頻數多邊形。

參加者閱書數目分佈的累積頻數多邊形

圖 6
（a）下表爲參加者閱書數目的頻數分佈表。 利用圖 6 中的圖像，完成該表。
（1 分）

閱書數目 (x)	參加人數	獎項
$0<x \leq 5$	66	證書
$5<x \leq 15$		書券
$15<x \leq 25$	64	銅牌
$25<x \leq 35$		銀牌
$35<x \leq 50$	10	金牌

（b）利用圖 6 中的圖像，求該分佈的四分位數間距。
\qquad
\qquad
\qquad
\qquad
\qquad
（c）在獲得獎牌者中隨機抽出兩參加者。 求下列事件的概率：
（i）他們均取得金牌；
（ii）他們取得不同的獎牌。
\qquad

13．一長度爲 3 m 的線段 $A B$ 被分爲三等分 $A C_{1}, ~ C_{1} C_{2}$ 及 $C_{2} B$ ，如圖 7（a）所示。

（1（a）

於中間部分 $C_{1} C_{2}$ 之上，繪出等邊三角形 $C_{1} C_{2} C_{3}$ ，如圖 7（b）所示。

（a）求三角形 $C_{1} C_{2} C_{3}$ 的面積，答案以根式表示。
\qquad
（b）圖 7（b）中每一線段 $A C_{1}, ~ C_{1} C_{3}, ~ C_{3} C_{2}$ 及 $C_{2} B$ 再被分爲三等分。 用前述的步驟繪出四個較小的等邊三角形，如圖 7（c）所示。 求所有等邊三角形的總面積，答案以根式表示。

\qquad
\qquad
\qquad
\qquad
\qquad
（c）圖 7（d）顯示再重複前述的步驟後得出的所有等邊三角形。 若不斷重複前述的步驟，則所有等邊三角形的總面積將會是多少？答案以根式表示。

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

乙部（33 分）

退管三题，每题 11 分，管案須寫在禎留的空位丙。

14．圖 8 中，$A B$ 爲水平地面上長 900 m的直路。 E 是一沿着 $A B$ 而移動的細小物體。 $S T$ 是鉛垂立於水平地面的塔，其高爲 $h \mathrm{~m}$ 。由 A 及 B 測得 S 的仰角分別爲 20° 和 15° 。 $\angle T A B=30^{\circ}$ 。
（a）以 h 表 $A T$ 和 $B T$ 。由此求 h 。
（5 分）

國 8
（b）（i）求 E 與 S 之間的最短距離。
（ii）設由 E 測得 S 的仰角爲 θ 。 求當 E 沿 $A B$ 移動時 θ 的取値範圍。
\qquad

15．（a）圖 9（a）所示的兩容器有相同的高度 24 cm 。 其一爲半徑 6 cm 的直立圓柱體。 另一爲牛徑 9 cm 的直立圓錐體。兩容器分別直立於兩水平的平台上，其中一個平台比另一平台高 5 cm 。 原先圓柱體是空的而圓錐體則滿載着水。 隨後水由圓錐體注入圓柱體中，直至水在兩容器的水平高度相同爲止。 設 $h \mathrm{~cm}$ 爲圓柱體中水的深度。
（i）證明 $h^{3}+15 h^{2}+843 h-13699=0$ 。

9（a）
（ii）已知（a）（i）中的方程只有一實根。證明 h 的値在 11 和 12 之間。 利用分牛法求 h ，答案須準確至一位小數。
（9分）
（b）圖 9（b）所示爲修改自圖 9（a）的一個裝置。 圓錐體的尖端部分被切去，且密封成一高 19 cm 的平截頭圓錐體。 該兩容器均直立於同一水平的平台上。 原先圓柱體是空的而平截頭圓錐體則滿載着水。 隨後水由平截頭圓錐體注入圓柱體中，直至水在兩容器的水平高度相同爲止。 求圓柱體中水的深度。

9（b）
（2 分）
\qquad
16.

10

圖 10 中，$A B$ 爲圓 $A B E G$ 的一直徑，C 爲圓心。由 G 作垂線至 $A B$ 並與 $A B$ 相交於 O 。 $A E$ 與 $O G$ 相交於 D 。 $B E$ 及 $O G$ 的延線交於 F 。小欣和小強嘗試以兩種不同的方法去證明 $O D \cdot O F=O G^{2}$ 。
（a）小欣解決這問題的方法是先證明 $\triangle A O D \sim \triangle F O B$ 和 $\triangle A O G \sim \triangle G O B$ 。請完成下列各項以協助小欣。
（i）證明 $\triangle A O D \sim \triangle F O B$ 。
（ii）證明 $\triangle A O G \sim \triangle G O B$ 。
（iii）利用（a）（i）和（a）（ii），證明 $O D \cdot O F=O G^{2}$ 。
（b）小強解決同一問題的方法是在圖 10 中引入直角坐標系，使得 $C, ~ D$ 和 F 的坐標分別爲 $(c, 0), ~(0, p)$ 和 $(0, q)$ ，其中 $c, ~ p$ 和 q 爲正數。 他設該圓的半徑爲 r 。請完成下列各項以協助小強。
（i）以 $c, ~ p, ~ q$ 和 r 表 $A D$ 和 $B F$ 的斜率。
（ii）利用（b）（i），證明 $O D \cdot O F=O G^{2}$ 。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

17．（a）圖 11 顯示兩直線 L_{1} 及 L_{2} 。 L_{1} 與坐標軸相交於點 $(5 k, 0)$ 及 $(0,9 k)$ ，而 L_{2} 與坐標軸相交於點 $(12 k, 0)$ 及 $(0,5 k)$ ，其中 k 爲正整數。 求 L_{1} 和 L_{2} 的方程。
（b）一工廠有兩條生產線 A 和 B 。生產線 A 生產某一物件時需要的人時數爲 45 ，而生產該物件時會排放出 50 個單位的污染物。生產同一物件時，生產線 B 需要的人時數爲 25 和排放出 120 個單位的污染物。 生產線 A 生產每一物件可獲的利潤爲 \＄3000 而生產線 B 生產每一物件可獲的利潤爲 \＄2000。
（i）該工敞可運用的人時數爲 225 而排放出的污染物不得超過 600 個單位。設生產線 A 和 B 所生產的物件的數量分別爲 x 和 y 。 列出適當的不等式和代 $k=1$ 入圖 11 中，求該工廠最大的可能利潤。
（ii）假設該工廠現可運用的人時數爲 450 ，而排放出的污染物不得超過 1200 個單位。 利用圖 11 ，求最大的可能利潤。

圖 11
\qquad
－試卷完－

2002

Mathematics 1

Section A（1）
1．$\frac{\left(a b^{2}\right)^{2}}{a^{5}}=\frac{b^{4}}{a^{3}}$

2． Area $=12 \pi \mathrm{~cm}^{2}$
3．（a）θ is 38.7° ．
（b）The bearing of P from Q is 129° ．
4．（a）$f(2)=0$
（b） $\mathrm{f}(x)=(x-2)(x-3)(x+3)$

5．（a）Mean $=9.6$
（b）\quad Mode $=13$
（c） Median $=10$
（d）Standard deviation $=4.59$

6．（a）The area of the new circle is $77.44 \pi \mathrm{~cm}^{2}$ ．
（b）The percentage increase in area is 21% ．

7．（a）$x \geq-1$
（b）The required integers are $-1,0,1,2$ ．
8．（a）The coordinates of A are $(-8,0)$ ．
The coordinates of B are $(0,4)$ ．
（b）The mid－point is $(-4,2)$ ．
9．$\angle A B D=20^{\circ}$

Section A（2）

10．（a）$\because A B=A C$

$$
\therefore \quad \angle B=\frac{180^{\circ}-20^{\circ}}{2}=80^{\circ}
$$

$\because \quad B C=C E$
$\therefore \quad \angle C E B=\angle B=80^{\circ}$
$\therefore \quad \angle B C E=180^{\circ}-80^{\circ}-80^{\circ}=20^{\circ}$
$\therefore \quad \angle E C F=\angle A C B-\angle B C E$ $=60^{\circ}$
$\because \quad C E=E F$
$\therefore \quad \angle C E F=60^{\circ}$
（b）

$$
\begin{aligned}
\angle D E F & =180^{\circ}-60^{\circ}-80^{\circ} \\
& =40^{\circ} \\
\because \quad E F=F D & \\
\therefore \quad \angle F D E & =\angle D E F \\
& =40^{\circ} \\
\text { In } \triangle A D F, & \\
\angle D F A & =40^{\circ}-20^{\circ} \\
& =20^{\circ} \\
& =\angle D A F
\end{aligned}
$$

$$
(\operatorname{adj} . \angle \mathrm{s} \text { on st. line })
$$

$$
\text { (base } \angle \mathrm{s} \text { of isos. } \Delta \text {) }
$$

$$
\begin{aligned}
\angle D F A & =40^{\circ}-20^{\circ} \\
& =20^{\circ} \\
& =\angle D A F
\end{aligned}
$$

$\therefore \quad A D=D F \quad($ base $\angle \mathrm{s}$ of $\Delta=)$

11．（a）Let $A=a P+b P^{2}$ ，where a and b are constants．

$$
\text { Sub. } P=24, A=36,
$$

$$
\begin{align*}
& 24 a+576 b=36 \\
& 2 a+48 b=3 \tag{1}
\end{align*}
$$

$$
\begin{gather*}
\text { Sub. } P=18, A=9, \\
18 a+324 b=9 \\
2 a+36 b=1 \tag{2}
\end{gather*}
$$

Solving（1）and（2）

$$
\begin{gathered}
a=-\frac{5}{2} \\
b=\frac{1}{6} \\
\therefore \quad A=-\frac{5}{2} P+\frac{1}{6} P^{2}
\end{gathered}
$$

（b）（i）When $A=54$ ，

$$
\begin{aligned}
& -\frac{5}{2} P+\frac{1}{6} P^{2}=54 \\
& P^{2}-15 P-324=0 \\
& P=27 \text { or } P=-12 \text { (rejected) }
\end{aligned}
$$

$\therefore \quad$ the required perimeter is 27 cm ．
（ii）Let $P^{\prime} \mathrm{cm}$ be the perimeter of the gold bookmark．

$$
\begin{aligned}
& \left(\frac{P^{\prime}}{27}\right)^{2}=\frac{8}{54} \\
& P^{\prime}=6 \sqrt{3}(\approx 10.4)
\end{aligned}
$$

The perimeter of the gold bookmark is $6 \sqrt{3}(\approx 10.4) \mathrm{cm}$ ．

12．（a）

Number of books read（ \boldsymbol{x} ）	66	
$0<x \leq 5$	$\mathbf{3 4}$	Certificate
$5<x \leq 15$	64	Book coupon
$15<x \leq 25$	$\mathbf{2 6}$	Bronze medal
$25<x \leq 35$	10	Silver medal
$35<x \leq 50$		Gold medal

（b）Lower quartile $=3.8$
Upper quartile $=22.8$
Inter－quartile range $=22.8-3.8$

$$
=19
$$

（c）（i）The number of participants who won medals，

$$
64+26+10=100
$$

The number of participants who won gold medals is 10 ．
The probability that they both won gold medals

$$
\begin{aligned}
& =\frac{10}{100} \times \frac{9}{99} \\
& =\frac{1}{110}
\end{aligned}
$$

（ii）Both won bronze medals

$$
P_{1}=\frac{64}{100} \times \frac{63}{99}=\frac{112}{275}
$$

Both won silver medals

$$
P_{2}=\frac{26}{100} \times \frac{25}{99}=\frac{13}{198}
$$

The probability that they won different medals

$$
\begin{aligned}
& =1-\frac{1}{110}-\frac{112}{275}-\frac{13}{198} \\
& =\frac{1282}{2475}
\end{aligned}
$$

13．（a）Area of $\Delta C_{1} C_{2} C_{3}=\frac{1}{2}$（1）（1） $\sin 60^{\circ}$

$$
=\frac{\sqrt{3}}{4} \mathrm{~m}^{2}
$$

（b）Each side of a smaller triangle $=\frac{1}{3} \mathrm{~m}$

$$
\text { Area of each smaller triangle }=\frac{1}{2}\left(\frac{1}{3}\right)\left(\frac{1}{3}\right) \sin 60^{\circ}=\frac{\sqrt{3}}{36} \mathrm{~m}^{2}
$$

$$
\text { Total area }=4 \times \frac{\sqrt{3}}{36}+\frac{\sqrt{3}}{4}
$$

$$
=\frac{13 \sqrt{3}}{36} \mathrm{~m}^{2}
$$

（c）The area

$$
\begin{aligned}
& =\frac{\sqrt{3}}{4}+\frac{4}{9} \times \frac{\sqrt{3}}{4}+\left(\frac{4}{9}\right)^{2} \times \frac{\sqrt{3}}{4}+\left(\frac{4}{9}\right)^{3} \frac{\sqrt{3}}{4}+\cdots \\
& =\frac{\frac{\sqrt{3}}{4}}{1-\frac{4}{9}} \\
& =\frac{9 \sqrt{3}}{20} \mathrm{~m}^{2}
\end{aligned}
$$

Section B

14．（a）$A T=\frac{h}{\tan 20^{\circ}} \mathrm{m}$ and $B T=\frac{h}{\tan 15^{\circ}} \mathrm{m}$ ．

$$
\begin{aligned}
& \because \quad B T^{2}=A B^{2}+A T^{2}-2 A B \cdot A T \cos 30^{\circ} \\
& \therefore \quad\left(\frac{h}{\tan 15^{\circ}}\right)^{2}=900^{2}+\left(\frac{h}{\tan 20^{\circ}}\right)^{2}-2(900)\left(\frac{h}{\tan 20^{\circ}}\right) \cos 30^{\circ} \\
& \\
& \left(\frac{1}{\tan ^{2} 15^{\circ}}-\frac{1}{\tan ^{2} 20^{\circ}}\right) h^{2}+\frac{900 \sqrt{3}}{\tan 20^{\circ}} h-810000=0 \\
& \\
& h \approx 153.86 \approx 154
\end{aligned}
$$

（b）（i）$E S$ is minimum when $S E \perp A B$（or $T E \perp A B$ ）．

$$
\text { When } T E \perp A B, E T=A T \sin 30^{\circ}=\frac{h \sin 30^{\circ}}{\tan 20^{\circ}}(\approx 211.36)
$$

$$
\text { Shortest distance }=\sqrt{h^{2}+\left(A T \sin 30^{\circ}\right)^{2}}
$$

$$
\begin{aligned}
& =h \sqrt{1+\left(\frac{\sin 30^{\circ}}{\tan 20^{\circ}}\right)^{2}} \\
& \approx 261.43 \\
& \approx 261 \mathrm{~m}
\end{aligned}
$$

（ii）$\because \tan \theta=\frac{h}{E T}$
$\therefore \quad \theta$ is maximum when $T E \perp A B$ ．

$$
\begin{aligned}
\tan \theta_{\max } & =\frac{h}{A T \sin 30^{\circ}} \\
& =\frac{\tan 20^{\circ}}{\sin 30^{\circ}}
\end{aligned}
$$

Maximum value of $\theta \approx 36.1^{\circ}$ Hence $15^{\circ} \leq \theta \leq 36.1^{\circ}$ ．

15．（a）（i）Total amount of water $=\frac{1}{3} \pi \cdot 9^{2} \cdot 24=648 \pi \mathrm{~cm}^{3}$
Volume of water in the cylinder $=\pi \cdot 6^{2} h=36 \pi h \mathrm{~cm}^{3}$
Volume of water in the cone $=\frac{1}{3} \pi \cdot 9^{2} \cdot 24 \cdot\left(\frac{h+5}{24}\right)^{3} \mathrm{~cm}^{3}$

$$
\begin{array}{ll}
\therefore \quad & \frac{3 \pi}{64}(h+5)^{3}+36 \pi h=648 \pi \\
& 1-\left(\frac{h+5}{24}\right)^{3}=\frac{h}{18} \\
& h^{3}+15 h^{2}+75 h+125=768(18-h) \\
& h^{3}+15 h^{2}+75 h+125+768 h=13824 \\
& h^{3}+15 h^{2}+843 h-13699=0
\end{array}
$$

（ii）Let $\mathrm{f}(h)=h^{3}+15 h^{2}+843 h-13699$
$\because f(11)=-1280<0$ and $f(12)=305>0$
$\therefore \quad$ The value of h lies between 11 and 12 ．

a $[\mathrm{f}(a)<0]$	b $[\mathrm{f}(b)>0]$	$m=\frac{a+b}{2}$	$\mathrm{f}(m)$
11	12	11.5	-500
11.5	12	11.75	-101
11.75	12	11.875	+101
11.75	11.875	11.8125	+0.224
11.75	11.8125		

$$
\begin{array}{ll}
\therefore \quad & 11.75<h<11.8125 \\
& h \approx 11.8 \quad \text { (correct to } 1 \text { decimal place) }
\end{array}
$$

（b）The situation in Figure 9（b）is the same as the situation in Figure 9（a） if the lower part（ 5 cm height）of the water of the cone is ignored．
Thus the depth of water in the frustum is

$$
\begin{aligned}
& h \mathrm{~cm} \\
\approx & 11.8 \mathrm{~cm}
\end{aligned}
$$

16．（a）（i）In $\triangle A O D$ and $\triangle F O B$ ，
$\angle A O D=\angle F O B=90^{\circ}$
$\because \angle A E B=90^{\circ}$
$\therefore \angle D A O=90^{\circ}-\angle A B E$
On the other hand，
$\angle B F O=90^{\circ}-\angle A B E$
$\therefore \quad \angle D A O=\angle B F O$
Hence，$\triangle A O D \sim \triangle F O B$
（given）
（ \angle in semicircle）
（ \angle sum of Δ ）
$(\angle \operatorname{sum}$ of $\Delta)$
（AAA）
（ii）In $\triangle A O G$ and $\triangle G O B$ ，
$\angle A O G=\angle G O B=90^{\circ}$
$\because \quad \angle A G B=90^{\circ}$
$\therefore \angle A G O=90^{\circ}-\angle B G O$

$$
=\angle G B O
$$

Thus，$\triangle A O G \sim \triangle G O B$

（given）

（ \angle in semicircle）
（ \angle sum of Δ ）
（AAA）
（iii）Hence $\frac{O D}{O A}=\frac{O B}{O F}$

$$
O D \cdot O F=O A \cdot O B
$$

$\because \quad \triangle A O G \sim \triangle G O B$
$\therefore \quad \frac{O A}{O G}=\frac{O G}{O B}$
i．e．$O A \cdot O B=O G^{2}$ ．
Thus $\quad O D \cdot O F=O A \cdot O B=O G^{2}$
（b）（i）$A=(c-r, 0)$ and $B=(c+r, 0)$ ．
Slope of $A D=m_{A D}=\frac{p}{r-c}$
Slope of $B F=m_{B F}=-\frac{q}{r+c}$
（ii）$\because \quad \angle A E B=90^{\circ} \quad(\angle$ in semi circle $)$
$\therefore \quad m_{A D} \cdot m_{B F}=\frac{p}{r-c} \cdot\left(-\frac{q}{r+c}\right)=-1$
$p q=r^{2}-c^{2}$
Since

$$
p q=O D \cdot O F
$$

and

$$
r^{2}-c^{2}=C G^{2}-O C^{2}=O G^{2}
$$

we have $O D \cdot O F=O G^{2}$ ．

17．（a）Equation of $L_{1}: \frac{y-9 k}{x}=-\frac{9}{5}$

$$
9 x+5 y=45 k
$$

Equation of $L_{2}: \frac{y-5 k}{x}=-\frac{5}{12}$

$$
5 x+12 y=60 k
$$

（b）（i）Let x and y be respectively the number of articles produced by lines A and B ．The constraints are

$$
\begin{cases}45 x+25 y \leq 225 & (\text { or } 9 x+5 y \leq 45) \\ 50 x+120 y \leq 600 & (\text { or } 5 x+12 y \leq 60) \\ x \text { and } y \text { are non-negative integers }\end{cases}
$$

The profit is $\$ 1000(3 x+2 y)$ ．
Using the graph in Figure 11 with $k=1$ ，the feasible solutions are represented by the lattice points in the shaded region below．

From the graph，the most profitable combinations are $(3,3)$ and $(5,0)$ ．
At $(3,3)$ ，the profit is $\$ 1000(9+6)=\$ 15000$
At $(5,0)$ ，the profit is $\$ 1000(15+0)=\$ 15000$
At $(0,5)$ ，the profit is $\$ 1000(10)=\$ 10000$
At $(2,4)$ ，the profit is $\$ 1000(6+8)=\$ 14000$
The greatest possible profit is $\$ 15000$ ．
（ii）Let x and y be respectively the number of articles produced by production lines A and B ．The constraints are

$$
\begin{cases}45 x+25 y \leq 450 & (\text { or } 9 x+5 y \leq 90), \\ 50 x+120 y \leq 1200 & (\text { or } 5 x+12 y \leq 120),\end{cases}
$$

x and y are non－negative integers．

Using the same graph as in（i）and taking $k=2$ ，
the feasible solutions are represented by the lattice points in the shaded region．

From the graph ，the most profitable combinations is $(6,7)$ ．
The greatest possible profit is
$\$ 1000(18+14)=\$ 32000$

