

數學 試卷一

試題答題簿

本試卷必須用中文作答
兩小時完卷（上午八時三十分至上午十時三十分）

1．在本封面的適當位置塡寫考生 編號，試場編號及座位編號。

2．本試卷分三部，即甲部（1），甲部（2）和乙部。每部各佔33分。

3．甲部（1）及甲部（2）各題全答。乙部選答三題。答案須寫在本試題答題簿中預留的空位內。如有需要，可要求派發補充答題紙。每張紙均須寫上考生編號，並用繩縛於簿內。

4．在本封面的適當位置颠寫乙部中選答試題的編號。

5．除特別指明外，須詳細列出所有算式。
6．除特別指明外，數値答案可用真確値表示，亦可用近似値表示，惟須準確至三位有效數字。

7．本試卷的附圖不一定依比例繪成

考生編號							
試場編號	\mid						
座位編號							

	由閲卷員填窵	由試卷主席填寫
	閱卷員編號	試卷主席編號
甲部試題編號	積分	積分
1－3		
4－6		
7－8		
9		
10		
11		
12		
13		
14		
甲部總分		

乙部試題編號 （由考生填）	積分	積分
乙部總分		

核分員專用
 乙部總分

核分員編號

球	體	表	面	積		$4 \pi r^{2}$
		體		積		$\frac{4}{3} \pi r^{3}$
圓	柱	側	面	積		$2 \pi r h$
		體		積		$\pi r^{2} h$
圓	錐	側	面	積		$\pi r l$
		體		積		$\frac{1}{3} \pi r^{2} h$
角	柱	體		積		底面積 \times 高
角	錐	體		積		$\frac{1}{3} \times$ 底面積 \times 高

甲部（1）（33 分）
本部各題全答，答亲須寫在預留的空位內。

1．化簡 $\frac{\left(a^{-3}\right)^{2}}{a}$ ，並以正指數表示答案。
\qquad
\qquad
\qquad
\qquad
\qquad

2．令 x 成爲公式 $a=b+\frac{c}{x}$ 的主項。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3．求使不等式 $3 x-4>2(x-1)$ 及 $x<6$ 同時成立的 x 値的範圍。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4．圖 1中，求從 A 測 B 的方位。

圖 1

\qquad
\qquad

\cdots－
\qquad

5．圖 2 中，$A, ~ B, ~ C, ~ D$ 是圓上的點，且 $A C$ 爲直徑。求 x 及 y 。

圖 2

6．y 的一部分隨 x 正變，另一部分隨 x^{2} 正變。當 $x=2, y=20$ ；又當 $x=3, y=39$ 。以 x 表 y 。
\qquad
\qquad
\qquad 근
\qquad
\qquad
\qquad
\qquad

7．$y=x^{2}-x-6$ 的圖像與 x 軸交於 $A(a, 0)$ 和 $B(b, 0)$ ，
與 y 軸交於 $C(0, c)$ ，如圖 3 所示。求 $a, ~ b$ 及 c 。

圖 3 \qquad
\qquad
\qquad

8． 6 名學生的高度是 $x_{\mathrm{cm}}, ~ 161 \mathrm{~cm}, ~ 168 \mathrm{~cm}, ~ 159 \mathrm{~cm}, ~ 161 \mathrm{~cm}$ 和 152 cm 。 （4 分）他們的平均高度爲 158 cm 。
（a）求 x 。
\qquad
\qquad
\qquad
\qquad
\qquad
（b）求這些學生的高度的中位數。
\qquad
\qquad
\qquad
\qquad
\qquad

9．圖 4 所示爲一匑形。
（a）求 r 。
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad圖 4
（b）求陰影區域的面積。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

甲部（2）（33 分）

本部各題全答，答亲須寫在預留的空位內。

10．圖 5 中，$A(-8,8)$ 及 $B(16,-4)$ 爲兩點。 線段 $A B$ 的垂直平分線 ℓ 與 $A B$ 交於 M ，與 \boldsymbol{x} 軸交於 P 。

圖 5
（a）求 ℓ 的方程。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

（b）求 $B P$ 的長度。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
（c）若 N 爲 $A P$ 的中點，求 $M N$ 的長度。
\qquad
\qquad
\qquad
\qquad

11．某校去年曾就其中五畢業生的升學情況進行調查。 200 名畢業生中，有 120 名是男生， 80 名是女生。圖6顯示這些男生的升學情況。

120 名男生的升學情況

圖 6
（a）求重讀中五的男生人數。
\qquad
\qquad
\qquad
\qquad
（b）升讀中六的男生當中，有百分之幾在原校升讀？（2 分）
\qquad
\qquad
\qquad
\qquad
\qquad
（c）調查結果亦顯示有 22.5% 的女生在原校升讀中六。 求畢業生中，原校升讀中六的畢業生所佔的百分數。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12．孫先生正在某巴士站等候巴士。已知 75% 的巴士是有空調的，而當中的 20% 裝有八達通機。至於非空調巴士，則全部沒有安裝八達通機。
（a）求下一輛巴士是裝有八達通機的概率。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
（b）巴士的票㵋爲 $\$ 3.00$ 。孫先生沒有八達通卡，但袋中卻有兩枚一元硬幣和三枚二元硬幣。若他從袋中隨機取出兩枚硬幣，求這些硬幣的總値恰好是 $\$ 3.00$ 的概率。
（4 分）
\qquad
\qquad
\qquad
\qquad
\qquad ․an
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

13．圖7．1中，一倒置的直立圓錐形木塊被一與其底平行的平面分成兩部分。上部爲一平截頭體，其高鴬 10 cm ，兩平行面的半徑則分別鵎 9 cm 和 4 cm 。 圖 7.2 所示的筆座是從該平截頭體的中央銑洞而成。該洞的上部是一半徑鴬 5 cm 的圓柱形，底部則爲同一半徑的半球形。洞的深度僞 9 cm 。

圖 7.2
（a）求該洞的容量，答案以 π 表示。
（3 分）
\qquad
\qquad
\qquad
\qquad
\qquad
（b）求該筆座中木的體積，答案以 π 表示。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

14．圖 8 中，$A B C D$ 是一平行四邊形。 $E B D F$ 爲一直線，且 $E B=D F$ 。

圖 8
（a）證明 $\angle A B E=\angle C D F$ 。

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
（b）證明 $E A / / C F$ 。
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

乙部（33 分）

本部選答三題，答枽須寫在預留的空位內。
每題11分。

15．水務署正計劃用新的配水庫 Y 取代舊的配水庫 X 。
（a）配水庫 X 儲有 10 m 深的水，並以某速率滲漏，使 t 日後的水深（以 $D \mathrm{~m}$ 表示）滿足 $D=10-0.01 t-0.006 t^{3}$ 。利用分牛法，並以 $[11,12]$ 作䳕開始的區間，求使該配水庫漏乾所需時間，答案須準確至最接近的 0.1 日。
（4 分）
（b）配水庫 Y 起初是沒有水的。 A，B，C 爲三條均速的水管，可用來注滿該配水庫。若個別使用這些水管來注滿該配水庫，則水管 A 比水管 B 多用 3 日，而水管 C 則比水管 B 少用2日。若同時使用這三條水管來注滿該配水庫，則需時4日。設單獨使用水管 B 來注滿該配水庫需時 x 日。

證明 $x^{3}-11 x^{2}-14 x+24=0$ 。
由此，並藉因式分解 $x^{3}-11 x^{2}-14 x+24$ ，求 x 。
\qquad

Abstract

\qquad

\qquad
\qquad $\xrightarrow[\text { P }]{\text { P }}$
\qquad （
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Cu－a
\qquad \cdots－
\qquad

16．（a）圖 9．1中，$A B C$ 是一三角形，其中 B爲直角。 D 爲 $A B$ 上一點。以 $D B$爲直徑作一圓。過 D 且本行於 $A C$的直線與圓交於 $E \circ C E$ 的延線與圓交於 F 。
（i）證明 $A, ~ F, ~ B, ~ C$ 共圓。
（ii）若 M 是 $A C$ 的中點，解釋爲什麼 $M B=M F$ 。
（b）圖 9.2 中，圓 RST 的方程爲 $x^{2}+y^{2}+10 x-6 y+9=0$ 。QST 爲一直線。 $P, ~ Q, ~ R, ~ S$ 的坐標分別是 $(-17,0)$ ，$(0,17)$ ，$(-9,0)$ 和 $(-2,7)$ 。
（i）證明 $P Q / / R S$ 。
（ii）求 T 的坐標。
（iii）$P, ~ Q, ~ O, ~ T$ 是否共圓？試加以解釋。
（6 分）

圖 9.2
\qquad

Abstract

\qquad

\qquad
\qquad $\xrightarrow[\text { P }]{\text { P }}$
\qquad \cdots ？
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Cu－a
\qquad \cdots－
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad

17．某工㢢經理估計該潎於 2000 年的收入會由一月份的 \＄ 500000 ，每月下跌 $r \%$ 至十二月份的 $\$ 284400$ 。
（a）求 r ，答案須準確至最接近的整數。
（b）設該廠於 2000 年一月份的生產成本是 \＄400000 。 該經理建議將成本每月彪減 \＄20000 （即二月份的成本爲 $\$ 380000$ ，三月份的成本爲 $\$ 360000$ ，如此類推），並聲稱此舉不會影響該廠的每月收入。
（i）利用（a）中所求得的 r 値，證明該潎全年仍有盈利。
（ii）該潎於2000 年初會開始一項研究以改善生產方法。 該研究的運作成本爲每月 $\$ 300000$ 。若首 k 個月內花費在硏究上的總運作成本超過這年剩餘月份的總生產成本，便會在第 k 個月的終結時停止該項研究。

證明 $k^{2}-71 k+348<0$ 。
由此推斷該項研究會維持多久。
\qquad

Abstract

\qquad

\qquad
\qquad $\cdots=$
\qquad
\qquad \cdots－
\qquad

18．圖 10 顯示將一等邊三角形紙卡 $A B C$ 摺成一架紙飛機。紙卡邊長 $24 \mathrm{~cm} \circ D, ~ E, ~ F$ 爲邊 $B C$上的點使 $B D=D E=E F=F C$ 。飛機的摺法是將紙卡沿直線 $A D, ~ A E$ 及 $A F$ 摺疊，使 $A D$ 與 $A F$ 重疊。 飛機由兩等長的垂杆 $B M$ 及 $C N$ 承托，使 $A, ~ B, ~ D, ~ F, ~ C$ 位於同一平面，而 $A, ~ E, ~ M, ~ N$ 在同一水平地面上

圖 10
（a）求飛機兩翼端點 B 和 C 間的距離。
（b）求飛機兩翼與水平地面間的傾角。
（c）求垂杆 $C N$ 的長度。
\qquad

Abstract

\qquad \qquad \qquad $\cdots=$

\qquad
－試卷完－
99－CE－MATHS 1－19
－ 18 －
虑保留版權 All Rights Reserved 1999
Provided by dse．life

1999

Mathematics 1
Section A（1）
1．$\frac{1}{a^{7}}$

2．$x=\frac{c}{a-b}$
3． $2<x<6$
4． $\mathrm{N} 49.4^{\circ} \mathrm{W}$

5．$x=70, y=40$
6．$y=4 x+3 x^{2}$
7．$a=-2, b=3, c=-6$
8．（a） 147
（b） 160 cm
9．（a） 5.77
（b） $20.5 \mathrm{~cm}^{2}$

Section A（2）

10．（a）$M=\left(\frac{-8+16}{2}, \frac{8-4}{2}\right)=(4,2)$
Slope of $A B=\frac{-4-8}{16-(-8)}=-\frac{1}{2}$
Slope of $\ell=2$
Equation of $\ell: \frac{y-2}{x-4}=2$

$$
2 x-y-6=0
$$

（b）Sub．$y=0$ into the equation of ℓ ，we have $x=3$

$$
\begin{aligned}
& \text { i.e. } P=(3,0) \\
& B P=\sqrt{(16-3)^{2}+(-4)^{2}}=\sqrt{185}
\end{aligned}
$$

（c）By mid－point theorem，

$$
M N=\frac{1}{2} B P=\frac{\sqrt{185}}{2}
$$

11．（a）Number of boys who repeated S． $5=120 \times \frac{360-144-18-126}{360}=24$
（b）Percentage required $=\frac{126}{144+126} \times 100 \approx 46.7 \%$
（c）Number of students promoted to S． 6 in own school
$=120 \times \frac{126}{360}+80 \times 22.5 \%$
$=60$
Percentage required $=\frac{60}{200} \times 100=30 \%$

12．（a）The probability that the next bus has an Octopus machine installed

$$
\begin{aligned}
& =0.75 \times 0.2 \\
& =0.15
\end{aligned}
$$

（b）The probability that the total value of the coins taken out is exactly $\$ 3.00$

$$
\begin{aligned}
& =\frac{3}{5} \times \frac{2}{4}+\frac{2}{5} \times \frac{3}{4} \\
& =\frac{3}{5}
\end{aligned}
$$

13．（a）Volume of the cylindrical part $=5^{2}(4) \pi \mathrm{cm}^{3}$
Volume of the hemispherical part $=\frac{1}{2} \times \frac{4}{3} \times 5^{3} \times \pi \mathrm{cm}^{3}$
Capacity of the hole $=183 \frac{1}{3} \pi \mathrm{~cm}^{3}$
（b）Let $h \mathrm{~cm}$ be the height of the smaller cone cut off from the larger cone．

$$
\begin{aligned}
& \frac{h}{4}=\frac{h+10}{9} \\
& 9 h=40+4 h \\
& h=8
\end{aligned}
$$

Volume of wood in the pen－stand
$=\left[\frac{1}{3}\left(9^{2}\right)(10+8) \pi-\frac{1}{3}\left(4^{2}\right)(8) \pi-183 \frac{1}{3} \pi\right] \mathrm{cm}^{3}$
$=260 \pi \mathrm{~cm}^{3}$

Section B

15．（a）Service reservoir will be empty when $D=0$ ．
When $t=11, D>0$ ．
When $t=12, D<0$ ．
Using the method of bisection，

| Interval | mid－value | \boldsymbol{D} |
| :---: | :---: | :---: | :--- |
| $11<t<12$ | 11.5 | ＋ve (0.760) |
| $11.5<t<12$ | 11.75 | ＋ve (0.149) |
| $11.75<t<12$ | 11.88 | －ve $\quad(-0.179)$ |
| $11.75<t<11.88$ | 11.82 | －ve $\quad(-0.027)$ |

$\therefore \quad 11.75<t<11.82$
$t \approx 11.8 \quad$（correct to the nearest 0.1 ）
i．e．The reservoir will be empty in 11.8 days．
（b）Let $V \mathrm{~m}^{3}$ be the capacity of service reservoir Y ，then the filling rates of pipe A，B and C are $\frac{V}{x+3} \mathrm{~m}^{3} /$ day，$\frac{V}{x} \mathrm{~m}^{3} /$ day and $\frac{V}{x-2} \mathrm{~m}^{3} /$ day respectively．
$\therefore \quad \frac{V}{x+3}+\frac{V}{x}+\frac{V}{x-2}=\frac{V}{4}$
$\frac{1}{x+3}+\frac{1}{x}+\frac{1}{x-2}=\frac{1}{4}$
$\frac{3 x^{2}+2 x-6}{x^{3}+x^{2}-6 x}=\frac{1}{4}$
$x^{3}-11 x^{2}-14 x+24=0$
$\because \quad x^{3}-11 x^{2}-14 x+24=(x-1)(x+2)(x-12)$
$\therefore \quad x=-2,1$ or 12
By the nature of the problem，the first two roots are rejected．
Hence $\quad x=12$

16．（a）（i）

$$
\begin{aligned}
\angle A C F & =\angle D E F \\
\angle D E F & =\angle D B F \\
\therefore \quad \angle A C F & =\angle D B F
\end{aligned}
$$

$$
\begin{aligned}
& (\text { corr. } \angle \mathrm{s}, A C / / D E) \\
& (\angle \mathrm{s} \text { in same segment })
\end{aligned}
$$

Hence A, F, B and C are concyclic．
（conv．of $\angle \mathrm{s}$ in same segment）
（ii）$\because A, F, B$ and C are concyclic and $\angle A B C=90^{\circ}$
$\therefore \quad A C$ is a diameter of the circle $A F B C$
Hence M is the centre and $M B, M F$ are radii of the circle $A F B C$
$\therefore \quad M B=M F$
（b）（i）\because slope of $P Q=$ slope of $R S=1$
$\therefore \quad P Q / / R S$
（ii）Equation of $Q S: \frac{y-17}{x}=\frac{17-7}{2}$

$$
y=5 x+17
$$

Sub．into the equation of the circle：

$$
\begin{aligned}
& x^{2}+(5 x+17)^{2}+10 x-6(5 x+17)+9=0 \\
& 13 x^{2}+75 x+98=0 \\
& (x+2)(13 x+49)=0
\end{aligned}
$$

The coordinates of T are $\left(-\frac{49}{13},-\frac{24}{13}\right)$ ．
（iii）Equation of the circle $P Q O$ is

$$
\begin{aligned}
& \left(x+\frac{17}{2}\right)^{2}+\left(y-\frac{17}{2}\right)^{2}=\frac{289}{2} \\
& x^{2}+y^{2}+17 x-17 y=0
\end{aligned}
$$

$\because \quad T$ does not satisfy the above equation
$\therefore \quad P, Q, O$ and T are not concyclic．

17．（a） $500000(1-r \%)^{11}=284400$
$1-r \%=\sqrt[11]{\frac{284400}{500000}} \approx 0.95$
$r \approx 5$
（b）（i）Income for the whole year
$=\$ \frac{500000\left(1-0.95^{12}\right)}{1-0.95}$
$\approx \$ 4596399$
Production cost for the whole year
$=\$ \frac{12}{2}(2 \times 400000-20000 \times 11)$
$=\$ 3480000$
$\because \quad$ Income $>$ Production cost
$\therefore \quad$ The factory will still make a profit for the whole year．
（ii）Let the research be stopped at the end of the k－th month．
$300000 k>3480000-\frac{k}{2}[2 \times 400000-20000(k-1)]$
$30 k>348-40 k+k(k-1)$
$k^{2}-71 k+348<0$
$\frac{71-\sqrt{71^{2}-4 \times 348}}{2}<k<\frac{71+\sqrt{71^{2}-4 \times 348}}{2}$
$5.2965<k<65.7035$
$\therefore \quad$ The research project will last for 6 months．

18．（a）$A D^{2}=A B^{2}+B D^{2}-2(A B)(B D) \cos \angle A B D$

$$
=24^{2}+6^{2}-2 \times 24 \times 6 \cos 60^{\circ} \mathrm{cm}^{2}
$$

$\therefore \quad A D \approx 21.633 \mathrm{~cm}$

$$
\because \quad \frac{\sin \angle B A D}{B D}=\frac{\sin \angle A B D}{A D}
$$

$$
\therefore \quad \sin \angle B A D=\frac{6 \sin 60^{\circ}}{A D}
$$

$$
\approx \frac{6 \sin 60^{\circ}}{21.633}
$$

$$
\approx 0.2402
$$

Distance between the tips of the wings
$=2(24 \sin \angle B A D) \mathrm{cm}$
$\approx 2 \times 24 \times 0.2402 \mathrm{~cm}$
$\approx 11.5 \mathrm{~cm}$
（b）Inclination of the wings to the horizontal ground $=\angle D A E$
$=\sin ^{-1} \frac{6}{A D}$
$\approx 16.1^{\circ}$
（c）Let K be the mid－point of the wings＇tips．

$$
\begin{aligned}
A K & =24 \cos \angle B A D \mathrm{~cm} \\
& =24 \cos 13.9^{\circ} \mathrm{cm} \\
& \approx 23.297 \\
& \approx 23.3 \mathrm{~cm} \\
C N & =\text { height of point } K \text { from the ground } \\
& =A K \sin \angle D A E \\
& \approx 23.297 \times \frac{6}{21.633} \mathrm{~cm} \\
& \approx 6.46 \mathrm{~cm}
\end{aligned}
$$

